
LH
C

b-
C

O
N

F-
20

09
-0

43
20

/1
0/

20
09

SOFTWARE MANAGEMENT IN THE LHCb ONLINE SYSTEM

N. Neufeld∗, E. Bonaccorsi, L. Brarda, J. Closier, G. Moine, CERN, Geneva, Switzerland
H. Degaudenzi, EPFL, Lausanne, Switzerland

Abstract

LHCb has a large online IT infrastructure with thou-
sands of servers and embedded systems, network routers
and switches, databases and storage appliances. These sys-
tems run a large number of different applications on var-
ious operating systems. The dominant operating systems
are Linux and MS-Windows. This large heterogenous envi-
ronment, operated by a small number of administrators, re-
quires that new software or updates can be pushed quickly,
reliably and as automated as possible. We present here the
general design of LHCb’s software management along with
the main tools: LinuxFC / Quattor and Microsoft SMS,
how they have been adapted and integrated and discuss ex-
periences and problems.

INTRODUCTION

LHCb [1] is one of the four large experiments at the
Large Hadron Collider at CERN. Like all these experi-
ments a large IT infrastructure is at the core of the trig-
ger and control system. In the case of LHCb it consists
of more than 1000 servers, desktops and embedded com-
puters running applications ranging from simple control of
power-supplies to complex SCADA systems, which assure
the overall control of the entire facility.

The wide variety of tasks brings with itself quite a variety
of software and hardware which need to be managed and
operated by a small team of system administrators. The
hardware management is described elsewhere [2], but the
large variety of the hardware increases the complexity of
the software management as well.

REQUIREMENTS

The following requirements must be met by a useful soft-
ware management system for LHCb. In the context of this
paper the term user refers to both a human operator or de-
veloper and a software application or framework using a
specic piece of software.

∙ Multi-platform: Linux and MS-Windows must be
supported in several versions as well as in 32-bit and
64-bit.

∙ Versioning: it must be easy to change forth and back
between different versions of a software.

∙ Scalability: software management is quite simple
when every user gets the software from a single lo-
cation. For a large system a more scalable solution is
needed however.

∗ niko.neufeld@cern.ch

∙ Speed: Software distribution should be very fast, lest
there will be a strong temptation to bypass it as urgent
changes are frequent in the commissioning phase of
an experiment.

∙ Management capabilities: software management is
more than then simply managing versions of pack-
ages. In particular operating system (OS) software
needs specic conguration which can vary from in-
dividual machine to individual machine.

∙ Compatibility: ideally one system would allow the
mangement of all software in the entire experiment on
every single computer. However there is a lot of exist-
ing infrastructure and legacy tools, which in practice
cannot be replaced. So a software management tool
must be open and compatible with existing solutions.

The rst and last point already high-light the major dif-
culty that in practice there can be no common tool for all.
Accordingly a set of tools and the underlying rationale and
policies will be described in the following.

LHCB’S SOFTWARE BASIS

In this section the software used in the LHCb Online sys-
tem is categorized and existing “native” tools are described
where they exist.

Operating Systems

OS software here is understood to comprise not only the
core OS (which is quite small) but also all the software
which make a general purpose OS useful: such as the shell,
an ssh-client, word-processor, web-browser, to name but a
few.

As operating systems Scientic Linux CERN [3] in ver-
sion 4 and 5, both in 32 and 64-bit are used. Scientic
Linux derives from the commercially very succesful Red-
Hat distribution and consequently uses the Redhat Pack-
age Management (RPM) [4] system to manage packages.
RPM provides efcient version management of packages
because it is built around a database. Further automatisa-
tion is done using the YUM (for Yellowdog Update Man-
agement) [5] tool, which is widely used on RedHat and the
freely available Fedora desktop systems. YUM has a pow-
erful dependency management, which makes installing a
software package very easy as YUM will automiatcally in-
stall all required packages in the required version. RPM
and YUM by themselves provide little or no support for
conguration management and they are biased towards up-
dating, i.e. running the latest version available. Installing



several versions of the same package requires some special
effort.

The second family of operating systems are Microsoft
Windows XP and Windows 2003 server. Currently these
are only used in their 32-bit versions. Microsoft has its
own propriatary system for OS updates (Windows Update)
which can be mirrored locally. Software packages are (ide-
ally) distributed as MSIs, but this is not such a widely es-
tablished standard as RPM in the RedHat world and indeed
we have Windows applications which come as exectuables,
various install-kits or even as bare ZIP-archives. Version
management is also rather weak as it consists essentialy of
free-form version numbers in the Windows registry, whose
usage are not enforced by the OS. Conguration manage-
ment is not done by either of these tools. In modern Win-
dows installations (“domains”) this is achived by the use of
group policies. For package management we use Microsoft
System Management Server (SMS) [6].

Application Software

The “physics” software in LHCb, that is all the code
written to analyse and process physics data, is version-
managed by a custom system called CMT [7] and dis-
tributed in the form of tar-archives. Conguration of the
physics applications is done either by text les (so called
option les) or via steering scripts written in Python. One
of CMTs strong points is that it is very easy to have mul-
tiple versions of the same package installed and choose (in
principle) freely between them at run-time. Conguration
is limited to versions of sub- and dependent packages.

The Experiment Control System (ECS) is based on the
JCOP framework [8]. JCOP has developed its own compo-
nent management system which includes versioning sup-
port and (optionally) a centralised database with automated
installation of components. These components are es-
sentially scripts and data-structures for use of the PVSS
SCADA software used throughout the ECS. JCOP provides
a conguration and package management build using an
Oracle database, which is currently not used by LHCb.

SOFTWARE MANAGEMENT IN LHCB

LHCb has an isolated local area network. Isolated means
that (almost) no packets are directly routed between the
CERN networks, let alone the Internet and the LHCb con-
trols network [9]. Access from outside is only possible
via dedicated gateway machines, which are dual-homed.
This architecture allows LHCb to only update the very few
exposed gateway machines whenever important security
patches come out. These machines do not run any oper-
ationally important tasks, i.e. the experiment can run with-
out these machines, albeit in this case it can be monitored
only by on-site operators.

For machines inside the network, OS updates are infre-
quent and reserved for special maintenance windows. For
Linux these updates are in form of RPM package-lists for
Windows typically as service packs. Both RHEL4/5 and

Windows 2003 are very mature operating systems. Except-
ing security there are not so many updates or feature addi-
tions.

Linux Software Management

Linux software which is not part of the physics software
and hence managed using CMT is only accepted in form
of RPMs. As it is quite easy to create RPMs, any soft-
ware which we are asked to install is rst packaged into an
RPM, usually by an administrator. Good RPMs use pris-
tine sources, that means that the packager takes the orig-
inal software as it is and only applies a patch to change
whatever is necessary to package the software properly.
Unless there are strict requirements against this, all soft-
ware packaged by the LHCb Online administrators is in-
stalled in /usr/local. As has been mentioned RPMs and
YUM repositories are not very suitable for managing mul-
tiple versions. However even rigorous testing can not cover
all potential problems with a new version of a package, and
more often than not it becomes necessary to revert to a pre-
vious version on all or, more difcult, part of the cluster.
A toolsuite has been developed for the LHC grid initiative,
which is called Quattor [10]. An adaptation of Quattor for
control systems developed at CERN is LinuxFC (Linux for
Controls). LinuxFC/Quattor allow repositories containing
all versions of a package and to dene in a database which
machine receives which version of a specic package. The
descriptions of (groups of) machines are called templates.
Installation of the RPMs is handeled by service processes
running on each machine. Quattor components allow con-
guring almost every “standard” package on a Linux sys-
tem, including for example privileges for users.

Quattor makes it easy to group machines and also au-
tomatizes the installation. Quattor has two disadvantages:
rstly it does not provide a tool for dependency check-
ing, so that missing dependencies are only discovered at
package installation, secondly it has a distinct avour of a
Unix system administration tool, which results in a steep
learning curve and consequently a tendency of people to
try to bypass it. We are actively working on higher-level
tools to simplify the utilization and increase the the user-
friendliness.

For example we have developed a Nagios plugin [2] to
verify that the actual installation of a package has worked
on a node. An alarm and an email are generated, when
the installation fails on a specic node. This is useful as
conicts can depend on the specic software environment
of a node and by no means all nodes are equal as in general
only required software is installed.

Windows Software Management

There are only about 100 Windows machines in the
LHCb Online system, much fewer than Linux (well over
1000), nevertheless our experience is that it is crucial to
have automated management as well.



Conceptually what we do is very similar to the Linux
part by replacing RPMs with MSIs and Quattor with a
combination of group policies and SMS. Again software
which we get is re-packaged in MSIs for easy deployment.
While the rst impression SMS and the Microsoft group
policy editor is very good and they seem easier to use than
Quattor, in practice it takes a lot of experience and exper-
imentation to decide which conguration task to achieve
with which tool. Microsoft has released an updated ver-
sion of SMS now called System Center CongurationMan-
ager 2007, which we are currently putting production and
which promises to greatly facilitate managment, in partic-
ular when the migration to Windows 2008 server and Win-
dows 7 will have taken place.

CMT Managed Software

The physics application software used in the High Level
Trigger are distributed as CMT packages in Unix tar-balls.
Since they contain no meta-information in these tar-balls,
all version management is done by external tools using
version-numbers in the le-names of the tar-balls. While
conceptually simple this approach has disadvantages, when
something goes wrong. SMS and RPM both are based on a
data-base approach and allow for easy roll-back, which is
inherent in the tools, i.e. roll-back requires little or no sup-
port from the packager. On the other hand since CMT is
also used to manage the physics software on remote site
connected to the LHC computing grid, we can leverage
the distribution facilities developed for this purpose and
updates run automated pulling packages in from a central
web-repository.

We install this software only once in a shared le-
system [11]. Replication to more places within the LHCb
network, which might be desirable to improve scalability,
will require additional work, because these nodes have no
access to the central repository.

This software does not require much special congura-
tion other than selecting the desired version and congur-
ing load-paths accordingly. The conguration of internal
parameters is part of the operation of the trigger itself and
not managed by the system administrators.

Operational Aspects

Only administrators are allowed to perform updates.
While this ensures a minimum level of checking, it poses
a burden on a rather small team. Quattor and SMSC
both have functionality for ne-grained privilege separa-
tion which would allow to manage sub-sets of software and
nodes, however both these tools are complex and difcult
to learn for physicist users. We are currently working on
high-level tools to facilitate certain tasks in a robust way,
which will then allow delegating them.

Updates must be tested on a test-platform rst. We have
test installations of all major systems, including an entire
“dummy-detector” for this purpose. Afterwards updates
are pushed, usually during a maintenance window. Reboots

are rarely necessary, we try to maximise the uptime of
the machines, normally only the applications are restarted.
Many changes on Windows require that the users login a
new session, as many group policies are typically applied
at login.

Software installations, even major ones, are fairly quick.
Typical times for a change on all Linux machines (more
than 1000) are in the order of 5 minutes, even though there
is only a single software server currently in operation. In
the future this can be upgraded if scalability demands it.
Software installations on the shared lesystem are, natu-
rally even quicker, however there are scalability issues at
run-time.

CONCLUSION

Strict version and conguration management is manda-
tory to successfullly run a large infrastructure, in particular
with a very small team of system administrators. LHCb
Online has four broad categories of software, each with
their own installation tool. These come from long tradi-
tions and are well maintained outside LHCb so we have
abstained from trying to integrate them into one common
tool, which would be an enormous effort in repackaging.
LinuxFC/Quattor and Microsoft SMS are at heart of soft-
ware and conguration management for all the base ser-
vices and all the non-LHCb specic software. While pow-
erful these tools remain complex. We try to make the tools
more user-friendly for non-system experts to ease the bur-
den by wrapping them in high-level scripts and utilities,
which hide the complexity and automatise most of the rou-
tine tasks.

REFERENCES
[1] A. Augusto Alves et al. The LHCb Detector at the LHC.

JINST, 3:S08005, 2008.

[2] Enrico Bonaccorsi and Niko Neufeld. Monitoring the LHCb
experiment computing infrastructure with NAGIOS. In Pro-
ceedings of ICALEPCS 2009, 2009.

[3] Scientic Linux CERN home-page.

[4] Redhat Package Manager home-page.

[5] Yellowdog Updater Modied home-page.

[6] Microsoft Systems Manager Server home-page.

[7] Conguration Management Tool home-page.

[8] The Joint Controls Project home-page.

[9] Guoming Liu and Niko Neufeld. Management of the LHCb
network based on SCADA system. In Proceedings of
ICALEPCS09, 2009.

[10] Quattor homepage.

[11] Rainer Schwemmer and Niko Neufeld. In Proceedings of
ICALEPCS09, 2009.


