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1 Introduction

If a dark matter candidate is produced at the LHC, one of our experimental priorities will
be to measure its mass. This is a non-trivial exercise, since dark matter is, by its very
nature, invisible in the detectors. Thus, kinematic information is lost in each event. What
is more, the difficulties are compounded by the fact that dark matter is invariably pair-
produced. Despite receiving a lot of attention in the recent literature, we still only have
one method for measuring masses1 in the case of pair decays which are identical, with each
containing one invisible particle in the final state,2 but are otherwise arbitrary [2–5].3 The
method is based on the mT2 variable, introduced in [43, 44] and defined by

mT2 ≡ min max(mT ,m
′
T ). (1.1)

Here mT and m′T are the transverse mass variables for the individual decays, introduced
originally for measuring the mass of the W -boson [45, 46], and defined explicitly below.
The ‘max’ tells us to take the larger of these two variables. In the minimization, one is
instructed to consider all possible partitions of the measured missing transverse momentum
in the event between the two invisible particles, and to minimize with respect to partitions.

1Once the dynamics are known or postulated, one could hope to measure masses directly from the matrix

element. We comment on this later.
2For decays with more than one invisible particle, see e.g. [1].
3In cascade decays, which represent a special case with extra kinematic constraints, other methods

are available [6–39]. A near-relative of mT2 has also been proposed [40] which is identical under certain

conditions [41]. An alternative method for the general case making use of the distribution of initial state

radiation has also recently been proposed [42].
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This ad hoc definition is designed to cope with the fact that only the sum of the
transverse momenta of the two invisible particles can be inferred from the missing transverse
momentum observed in a collision, whilst inheriting one desirable property from the usual
transverse mass: it is bounded above by the mass of the parent particle. Unfortunately,
mT2 is still not an observable when the masses of the invisible daughters are unknown and
non-negligible, because the usual transverse mass is a function of the invisible daughter
mass. In the case of neutrinos, whose mass can be neglected, this is not a problem. But it
certainly is a problem for dark matter candidates.

To cope with this obstacle, a futher ad hoc step was taken: consider mT2 as a function
of the unknown invisible daughter mass mi: mT2(mi). Now mT2(mi) is an observable,
albeit an observable function. That is to say, each detector event returns a function.
Unfortunately, in taking this step, the boundedness property of mT2 is lost: it is not true
that mT2(mi) is bounded above by the mass of the parent, for abitrary values of mi.

What then are the properties of mT2(mi)? On an event-by-event basis, mT2(mi) is
simply a smooth function of mi. But if one plots the envelope of curves coming from many
events, one discovers that the maximal curve features a kink [2–5]. That is to say, it is
continuous, but not differentiable, exactly at the point mi = m̃i, where m̃i is the true
mass of the invisible daughter. Moreover, since we already know that the maximal value
of mT2(m̃i) is the (true) parent mass, m̃0, we see that the kink has co-ordinates (m̃i, m̃0);
by identifying the location of the kink in an experiment, one may measure the masses of
both the parent and the invisible daughter.

On reflection, this result, though pleasing, is somewhat mysterious. One started from
an ad hoc definition of a transverse mass for identical pair decays, guaranteeing only the
desirable property that mT2(m̃i) ≤ m̃0. Moreover, generalization to mi 6= m̃i, in which
the one desirable property contained in the definition is lost, gives rise to a strange kink
behaviour. What does all of this mean?

Recently, Cheng and Han, gave an elegant interpretation of the function mT2(mi) [47].4

They showed that, for a given event, it defines the boundary of the region in the (mi,m0)
plane for which the various kinematic constraints, namely conservation of four-momentum
and the mass shell constraints, admit a solution. By ‘admit a solution’, one means that
there exist real values of the unknown momenta, and real, non-negative values of the
unknown energies, solving the constraints. The existence of such a solution for a given
value of (mi,m0) means that one cannot rule out the possibility that the true mass values,
(m̃i, m̃0), are given by (mi,m0), on the basis of the information obtained from that event.

The proof is very simple, though we refrain from repeating it here (we shall, in any
case, give a proof for a more general case of non-identical pair decays in what follows).
The beauty of the result is that it shows that the original ad hoc definition of mT2(m̃i),
and its ad hoc extension to mT2(mi), fortuitously give rise to a natural function, namely
the function that defines the boundary of the allowed region in mass space, on an event-
by-event basis. If one considers multiple events, the allowed region is restricted to the
intersection of the allowed regions coming from each event. If one considers arbitrarily

4A similar interpretation was given without proof in [22, 25, 41].
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many events, one ends up with an extremal allowed region, and a corresponding extremal
boundary. In the case of identical pair decays this extremal boundary is precisely that
containing the kink identified in [2–5].

In what follows, we would like to show that this re-interpretation of mT2(mi) in terms
of a boundary is both general and powerful. Firstly, we remark that it also applies to the
simpler case of the usual transverse mass variable for single-particle decays. Secondly, we
show how it can be used to give an almost trivial derivation of the form of the kink curve
for identical pair decays. Thirdly, we show how it can be generalized to pair decays in
which either the parents, or the invisible daughters, or both, are not identical, and have
different masses. This generalization may be practically useful, for example, in the case of
squark-gluino production in the context of supersymmetry, or in theories in which more
than one particle is stable on the length scale of a detector. In these cases, the number of
masses that are, a priori, unknown is increased. Consequently, the mass space is higher-
dimensional, and so is the boundary of the allowed region that follows from applying the
kinematic constraints to an event. Nevertheless, the form of the extremal boundary is
easily obtained. For the case of distinct parents (such as a squark and a gluino) decaying
to a common LSP, the extremal boundary forms a surface in the three-dimensional space
parametrized by the three unknown masses. The surface is, as we shall see, creased, with
various kink structures visible in two-dimensional projections. Fourthly, we explain how
observables introduced previously to cope with combinatorics and upstream or initial state
radiation can also be understood as generating the kinematic boundary.

We stress that our arguments are purely theoretical, and take no account of what
might realistically be achieved in kinematic measurements at the LHC. Nevertheless, we
feel that, in order to properly understand and use variables like mT2, it is important to
know both how the variables behave under ideal conditions, as well as how this is modified
in real situations. Although we shall not address the latter aspect here, we hope to make
a useful contribution to the former.

As an example of how reality deviates from the ideal, it is clear that a real LHC
data sample cannot saturate the true extremal boundary. Indeed, the extremal boundary
corresponds to events in which the parent particles are infinitely boosted with respect
to the laboratory frame [3] by radiation upstream or in the initial state. Nevertheless,
even a subset of events, such as those contained in a finite LHC data sample, defines
a corresponding kinematic boundary. The arguments we give show that reconstruction
of that boundary is the best that one can hope to achieve in the absence of additional
kinematic or dynamic information, whether inferred or assumed. As another example, it
is not yet clear how the boundary hypersurface we describe might best be reconstructed
from LHC data. What one would like to do is to generate one-dimensional distributions of
observables, which can then be fitted by Monte Carlo simulations. Towards the end of the
paper we make a partial effort to address this, by discussing how such observables, related
to the boundary hypersurface, may be derived.

Our notation is as follows. For a single particle decay, we consider a parent particle
of mass m0 decaying into an invisible daughter particle of mass mi and a system of visible
daughter particles of invariant mass mv. We write the four-momenta of particle 0 by
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pµ0 = (E0,p0, q0), where p0 is transverse to the beam direction and q0 is parallel to it. We
denote the transverse energy-momentum by α0 = (e0,p0), where the transverse energy is
defined by e20 = p2

0 + m2
0. For pair decays, we use unprimed quantities for one decay and

primed quantities for the other. We shall often need to distinguish between hypothesized
values of the unknown masses of the parent and invisible daughter, and the true values;
we denote the latter with tildes.

Finally, to avoid confusion, we remark that we shall always illustrate our arguments
with the special case where the visible daughter system contains a single, massless particle.
Although theoretically the simplest case, this is probably the least favourable example from
an experimentalist’s viewpoint, since a kink is generated in this case only by events in which
there is significant upstream transverse momentum. Nevertheless, our general arguments
apply to arbitrary visible systems, including those which appear to be experimentally
more favourable.

2 Single particle decays and the transverse mass

Let us first prove that for an event consisting of a single particle decay, the locus of the
curve m0 = mT (mi) is equivalent to the boundary of the region in (mi,m0) for which the
kinematic constraints5

p2
i = m2

i , (2.1)

p2
0 = (pi + pv)2 = m2

0, (2.2)

pi = /p, (2.3)

admit a solution, in the sense defined above (with real momenta and real, non-negative
energies). In the above, pv and /p are measured, whereas pi are four unknowns. Here, mT

is defined by

m2
T ≡ (αv + αi)2 = m2

v +m2
i + 2(evei − pv · pi). (2.4)

The proof is in two parts. First, we establish that any (mi,m0) for which (2.1)–(2.3)
have a solution is such that m0 ≥ mT (mi). Second, we establish that (2.1)–(2.3) have a
solution for m0 = mT (mi).

For the first part, we have

m2
0 = (pv + pi)2 = p2

v + p2
i + 2pv · pi (2.5)

= m2
v +m2

i + 2(EvEi − pv · pi − qvqi). (2.6)

But since EvEi − qvqi ≥ evei (with equality at Evqi = Eiqv), we have that (αv + αi)2 ≤
(pv + pi)2, or, in other words, mT (mi) ≤ m0.

5Cheng and Han [47] call these the minimal kinematic constraints, because one may have supplementary

constraints in theories with cascade decays.
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For the second part, we need to show that the equations

p2
i = m2

i , (2.7)

(pi + pv)2 = m2
T (m2

i ), (2.8)

pi = /p, (2.9)

admit a solution. Equations (2.9) fix pi, and equation (2.7) fixes Ei in terms of qi. Equa-
tion (2.8) is satisfied by requiring (pi + pv)2 = (αv +αi)2, which, as we just learnt, requires
qi
Ei

= qv
Ev

. Now for a given event, qv
Ev

takes a value in [−1, 1], and as the remaining unknown
qi varies in R, qi

Ei
takes all values in [−1, 1]. Thus, equations (2.7)–(2.9) admit a solution.

So for a given event, m0 = mT (mi) defines the boundary of the allowed region in
(mi,m0)6. Given multiple events, the allowed region shrinks to the intersection of the
allowed regions for each event. In the limit of arbitrarily many events, we obtain the
extremal boundary given by the kink curve. Its explicit form was derived in eqns (8) and
(11) of [3] and (3.38-9) of [4] (we caution the reader that the convention for the use of
the tilde in [3, 4] is opposite to the one used here) and corresponds to events in which
the upstream transverse momentum becomes arbitrarily large. Here we simply quote the
result for the special case where the visible system consists of a single, massless particle.
The locus of the extremal boundary is given by

m2
0 − m̃2

0 = m2
i − m̃2

i , for mi ≤ m̃i, (2.10)

m2
0

m̃2
0

=
m2
i

m̃2
i

, for mi > m̃i. (2.11)

These are simply straight lines in the space of mass-squareds.

3 Identical pair decays and mT2

The analogue for identical pair decays and mT2 of the argument just given has already
been given in [47], and in any case follows as a corollary from our analysis of non-identical
pair decays to be given below. Here, we point out that it can be immediately used to derive
the form of the extremal boundary or kink curve, from the form of the maximal curve for
a single decay (given by (2.10)–(2.11) for the special case of massless visible particles).

Indeed, for a single event, the mT2 locus is given by the boundary of the region in
(mi,m0) for which the equations

p2
i = m2

i , (3.1)

p′2i = m′2i , (3.2)

(pi + pv)2 = m2
0, (3.3)

(p′i + p′v)
2 = m′20 , (3.4)

pi + p′i = /p, (3.5)

6There is no upper bound on m0.
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have a solution, with m′i = mi and m′0 = m0. The extremal boundary is given by the
intersection of the allowed regions for all possible event configurations. But in considering
all events, we permit any value of /p, such that the last equation (3.5) can always be
satisfied and becomes trivial.7 But then the remaining equations decouple into those for
the individual decaying systems. For these systems, the extremal curve has already been
computed in [3]. Since we have identical decays, the extremal curves for the two individual
systems are the same, and this same curve is the extremal curve for the pair decay. By
this argument, which we call the ‘decoupling argument’, we thus find a simple proof of the
results previously obtained in [4, 5].

4 Non-identical pair decays

The most general case is the one in which neither the parents nor the invisible daughters
have common mass. The kinematic constraints are then given by (3.1)–(3.5), but now with
m′i 6= mi and m′0 6= m0. It is simple enough to derive the form of the extremal boundary
of the allowed region in such a case. Just as for identical pair decays, we may invoke the
decoupling argument. The extremal locus is then given simply by the individual extremal
loci for the individual decays. Thus, in the four-dimensional space (mi,m

′
i,m0,m

′
0), the

extremal locus (which is a two-dimensional surface) simply factorizes into the product of the
two one-dimensional curves in (mi,m0) and (m′i,m

′
0). Things become more interesting if we

posit that either the parents or the daughters have a common mass. For example, if there
exists a pair-produced, unique, stable dark-matter candidate, then the daughter particles
in a pair decay will have common mass. Let us, for the sake of argument, consider this case
in what follows. The allowed regions now occupy the 3-dimensional space parametrized by
(m0,m

′
0,mi = m′i). What is the form of the extremal boundary surface? By the decoupling

argument, the extremal allowed region is given by the intersection of the extremal allowed
regions for the individual decays. In the special case of massless visible particles, for
example, the individual extremal allowed regions are bounded by

m2
0 − m̃2

0 = m2
i − m̃2

i , m0 ≤ m̃0, (4.1)

m2
0

m̃2
0

=
m2
i

m̃2
i

, m0 > m̃0, (4.2)

for the unprimed system, and by

m′20 − m̃′20 = m2
i − m̃2

i , m
′
0 ≤ m̃′0, (4.3)

m′20
m̃′20

=
m2
i

m̃2
i

, m′0 > m̃′0, (4.4)

for the primed system. These both describe a surface in the space with co-ordinates
(m2

0,m
′2
0 ,m

2
i = m′2i ). The extremal boundary for the pair decay is then given at each

point (m2
0,m

′2
0 ), by the surface that gives the smaller value of m2

i . Let us assume that

7This does not hold if we only consider a subset of events, for example those in which initial state or

upstream momentum is forbidden, such that /p + pv + p′
v = 0.
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Figure 1. Representation of the bounding planes (visible faces) and the extremal allowed region
(solid) for the case described in the text with m̃i = m̃′

i, mi = m′
i, and mv = m′

v = 0. The vertex
representing the true values of the masses is indicated with a red ball. The origin of the axes is at
the point (m2

0 = m̃2
0 − m̃2

i ,m
′2
0 = m̃′2

0 − m̃2
i ,m

2
i = 0).

m̃0 > m̃′0, without loss of generality. The extremal boundary surface is sketched in fig-
ure 1. The intersections of the four planes give rise to four creases in the extremal boundary
surface, generalizing the kinks observed in extremal curves for identical pair decays. Fur-
thermore, one can see that various types of kink behaviour may arise by taking various
two-dimensional slices through the three-dimensional space of masses.

Consider, for example, the extremal curves of m′0 vs. mi obtained at fixed m0. For
m2

0 > m̃2
0 there are two kinks – the ‘usual one’ at (m0 = m̃′0,mi = m̃i) and a second on

the upper part of the diagonal crease in figure 1; for m̃2
0 − m̃2

i < m2
0 < m̃2

0 there is a single
kink on the lower part of the diagonal crease; for m2

0 < m̃2
0− m̃2

i the allowed region is null.
The locus of the diagonal crease in (m2

0,m
′2
0 ) is given by

m′20 − m̃′20 = m2
0 − m̃2

0, m̃
2
0 − m̃2

i ≤ m2
0 ≤ m̃2

0, (4.5)

m′20
m̃′20

=
m2

0

m̃2
0

, m2
0 > m̃2

0. (4.6)

A particularly striking kink is seen if one fixes m2
i and considers m′20 as a function of

– 7 –
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m2
0. There is then a right-angled kink coming from the diagonal crease.

In the above, we have chosen to derive the extremal boundary directly, rather than re-
lying on an explicit functional definition (like the original definition of mT2). Nevertheless,
an explicit functional definition is easily guessed. If we just have non-identical daughters,
but common mass parents, we can simply use the original mT2 definition. But if the par-
ents have distinct mass, the original mT2 is no good, because its definition exploits the
equality of the maximal values of mT and m′T . To maintain this equality, we propose a
generalized definition of mT2 for non-identical parent decays as

m2
T2(mi,m

′
i,m

′
0/m0) ≡ min max(

m′0
m0

m2
T ,
m0

m′0
m′2T ). (4.7)

Note that both m′
0

m0
m2
T (m̃i) and m0

m′
0
m′2T (m̃′i) are bounded above by m0m

′
0.

It remains to show that this definition reproduces the boundary of the allowed region,
event by event. As for single particle decays, there are two parts to the proof, which gen-
eralizes immediately from that given in [47]. First, we establish that any (mi,m

′
i,m0,m

′
0)

for which (3.1)–(3.5) have a solution is such that m0m
′
0 ≥ m2

T2(mi,m
′
i,m

′
0/m0). This fol-

lows immediately from m2
T (mi) ≡ (αv + αi)2 ≤ (pv + pi)2 = m2

0, from the corresponding
inequality in the primed system, and from m2

T2 ≤ max(m
′
0

m0
m2
T ,

m0
m′

0
m′2T ) ≤ m0m

′
0.

Second, we establish that (3.1)–(3.5) have a solution for m2
0 = m0

m′
0
m2
T2(mi,m

′
i,m

′
0/m0)

and m′20 = m′
0

m0
m2
T2(mi,m

′
i,m

′
0/m0). There are three possibilities to consider, arising from

the three different ways in which values of mT2 may arise [44]: (i) the balanced case, with
m2
T2 = m′

0
m0
m2
T = m0

m′
0
m′2T , (ii) the unbalanced case with m2

T2 = m0
m′

0
m′2T >

m′
0

m0
m2
T , and (iii)

the unbalanced case with m2
T2 = m′

0
m0
m2
T >

m0
m′

0
m′2T . In case (i), the solution of (3.1)–(3.5) is

given by the pi assigned by the minimization in the definition of mT2 and the qi such that
qi
Ei

= qv
Ev

, and similarly for the primed quantities. In case (ii), the solution has qi′
Ei′ = qv ′

Ev ′ ;
to find a suitable qi, we note that, if we chose qi such that qi

Ei
= qv

Ev
, we would obtain

(pi + pv)2 = m2
T < m0

m′
0
m2
T2, whereas if we chose qi → ∞, we would find (pi + pv)2 → ∞.

Since (pi + pv)2 is a continuous function of qi on R, there must, by the intermediate value
theorem, exist values of qi such that (pi + pv)2 = m0

m′
0
m2
T2, as required. A similar argument

applies to case (iii).
Thus we have proven that the explicit definition of mT2 for non-identical decays in (4.7)

reproduces the kinematic boundary surface. Interestingly, it would appear that, in the case
of distinct daughter and parent masses, the boundary for each event is given by a three-
dimensional hypersurface in the four-dimensional space of (m0,m

′
0,mi,m

′
i), whose locus is

m0m
′
0 = m2

T2(mi,m
′
i,
m′

0
m0

). By contrast, the extremal boundary in this case, whose form we
derived at the beginning of this section, is a two-dimensional surface in four dimensions.

5 Combinatorics and mTGen

In the real world of experiment, one must also face the fact that in pair decays there will
be combinatoric ambiguities. For example, in identical pair decays, there are (at least)
two copies of each visible particle in the final state, and one does not know which decay
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to assign them to. With 2n visible particles, this results in a 2(n−1)-fold ambiguity. As
a result, the visible momenta in equations (3.1)–(3.5) are themselves ambiguous. In the
presence of such an ambiguity, the allowed kinematic region is given by the union of the
allowed regions obtained by considering all possible branch assignments. Equivalently, the
boundary of the allowed region is obtained by taking the minimal mT2 curve with respect
to the different combinatoric assignments. This corresponds to the mTGen variable defined
in [48].

Similar combinatoric ambiguities can arise in the presence of upstream or initial state
radiation. Again, to find the allowed kinematic region, one simply takes the union of
regions obtained by considering all possible assignments, which is equivalent to the mT2-
based prescription given in [49].

6 Derived observables and one-dimensional distributions

The kinematic boundary hypersurface for a decay topology gives a complete picture of
the kinematic constraints coming from an event. In principle, it can be generated from
experimental data, but in practice, it is not clear how this will be achieved. More likely
is that experimentalists would prefer to generate one-dimensional distributions of specific
observables, which they can then compare with the results of numerical simulations.

In order to do so, one would like to understand how to ‘translate’ the kinematic bound-
ary plot into observables. This can certainly be achieved if one has determined all but one
of the unknown masses. One simply needs to isolate the pertinent observable. For example,
in an identical pair decay, if one knows the mass of the invisible daughter, the mT2(m̃i)
distribution can be used to measure the mass of the parent. Conversely, one could imagine
that one knew the mass of the parent, and wished to extract the mass of the invisible
daughter. Clearly what one needs in this case is an observable derived from the inverse
function of mT2(mi).

To derive an explicit expression for the inverse function of mT2, consider first a single
decay and mT . We claim that the inverse of mT for an event is given by8

(m2
T )−1(m0) ≡ (α0 − αv)2, m0 ≥ mv. (6.1)

(The condition m0 ≥ mv is added to ensure that mT (mi) is surjective, such that m−1
T

exists.) The reader may easily check explicitly that m−1
T (mT (mi)) = mi.

For pair decays, the appropriate definition is

m−1
T2(m0) ≡ max min(m−1

T ,m′−1
T ). (6.2)

Note that, rather than minimizing over momentum assignments, we now maximize over
them, and, rather than taking the larger of the two observables, we now take the smaller

8We note that the inverse of mT may also be useful on its own for hadron collider mass measurements.

For example, one could measure the charged Higgs mass in decays t→ H+b, followed by the decay H+ → τν

with an invisible daughter. In fact, the variable defined in [50] is precisely the inverse transverse mass of

the tbH+ system, with parent t and invisible daughter H+.
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Figure 2. Distribution of the usual mT2 for m0 = 400, m′
0 = 600, mi = 100, i.e. for a case in

which the parent particles have different masses. The distribution has a kinematic endpoint at the
mass of the heavier particle (indicated by the red arrow) but it will be noted that this endpoint is
not very useful, as the density of states near the end point is low.

of the two. To demonstrate explicitly that this is the inverse, it suffices to show that both
mT2 and its inverse give rise to the same kinematic boundary for an event.

We note that the inverse of mT2 can be applied directly to measure the mass of a
common invisible daughter, even if the parent masses are not identical, provided the parent
masses are themselves known.

Finally, let us ask what are the appropriate observables for non-identical decays? If
one knew, say, the two daughter masses as well as the ratio of the two parent masses, one
could simply invoke the observable defined in (4.7) to determine the product of the parent
masses. If, alternatively, one knew the two daughter masses as well as the lighter parent
mass, one could use the usual mT2 definition. Indeed, it is easy enough to see that mT2

is bounded above by the mass of the heavier parent. Unfortunately, the mT2 distribution
has a very poor endpoint behaviour, as we illustrate in figure 2. Experimentally, such fine
edges are likely to be difficult to catch.

Since the distribution of the ratio variable (4.7) has much better end-point behaviour
– it has thick edges, especially when the correct value of the ratio is used – the pragmatic
choice may be to hypothesise different values for the ratio, and to compare the experimental
data to template distributions of (4.7) for each value of m′

0
m0

.
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7 Mass measurement via the matrix element

If one knew (or guessed) explicitly the Lagrangian, one could hope to measure the masses
directly using the likelihood and the matrix element. In practice this reduces to kinematic
constraints plus constraints from parton distribution functions (PDFs), plus a small de-
pendence on dynamics (spins/couplings etc), which in any case one would presumably not
want to trust to begin with. The arguments of Cheng and Han tell us that all of the
information from kinematics is encoded in mT2, which cuts off the lower right region of
the (mi,m0) plane. The PDFs limit the allowed mass of the parent, cutting off the upper
part of the plane. So one can already see, roughly speaking, what the negative likelihood
contours of a matrix element method will look like. They will describe a narrow gully lying
along the boundary of the extremal mT2 curves. Evidence is beginning to emerge which
supports this conjecture [51].

8 Summary

Cheng and Han’s interpretation of the function mT2 as the kinematic boundary between
allowed and disallowed regions of mass space is a powerful one. It has allowed us to
prove more elegantly the known results for the extremal boundaries for single-particle and
identical pair decays. Its generalization has allowed us to prove new results for non-identical
pair decays and for complex pair-decay topologies with indistinguishable particles in the
final state.

We have constructed three explicit examples of bounding functions that perform roles
similar to mT and mT2, but with differing assumptions. The first is a generalization of mT2

that is appropriate when parents with different masses decay to equal-mass invisible daugh-
ters — a case which will be of particular interest at the LHC. The other generalizations are
the inverse functions m−1

T and m−1
T2 which require the parent particle mass as a parameter,

and which then provide the extremal bound on the invisible daughter (WIMP) mass.
As well as providing a mass-determination method in their own right, such variables

encode the kinematic part of the likelihood function. This means that insights gained from
their construction can inform one’s interpretation of mass determinations using the full
matrix element — where such calculations are computationally tractable. This final test
will show whether it is safe to neglect the effects of spin, determine the character of the
creases, and get the desired results by using the boundary.
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