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A bstract

W e investigate the hypothesized existence of an S-m atrix for gravity, and som e of its
expected general properties. W e rst discuss basic questions regarding existence of such
a matrix, including those of infrared divergences and description of asym ptotic states.
D istinct scattering behavior occurs in the Bom, ekkonal, and strong gravity regim es, and
w e describe agpects of both the partial wave and m om entum space am plitudes, and their
analytic properties, from these regin es. C lassically the strong gravity region would be
dom inated by form ation of black holes, and we assum e its unitary quantum dynam ics is
described by corresponding resonances. M asslessness lim its som e pow erfiilm ethods and re—
sults that apply to m assive theories, though a continuation path in plying crossing sym m e
try plausibly still exists. P hysical properties of gravity suggest nonpolynom ialam plitudes,
although crossing and causality constrain (w ith m odest assum ptions) this nonpolynom ial
behavior, particularly requiring a polynom ialbound in com plex s at xed physicalm om en—
tum transfer. W e explore the hypothesis that such behavior corresponds to a nonlocality
Intrinsic to gravity, but consistent w ith unitarity, analyticity, crossing, and causality.
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1. Introduction

In a quantum gravitational theory where spacetin e, locality, etc. m ay not be funda—
m ental concepts, an In portant question is what quantities are am enable to quantitative
analysis. In this paper, we w ill assum e that at space, or som ething which it closely ap-
proxin ates, is an allowed con guration of the theory. W e w illm oreover assum e that there
is an action of its sym m etry group, nam ely the Poincare group, both on this con gura—
tion and on perturbations about it. This suggests that we can consider states incident
from in nity, with given m om enta and energies, and study their scattering. T he resulting
quantum am plitudes should be sum m arized in an S-m atrix.

O ne would like to understand what properties are expected of such an S-m atrix. For
a quantum theory, unitarity is a given. Analyticity in m om enta and crossing symm e—
try encode im portant physical features of S-m atrices in quantum eld theory (QFT ), like
causality 1. G ravity o ers som e new features whose role needs to be understood. M ass-
lessness is  rst, and causes Infrared singularities; these we how ever envision regqulating by
working in spacetin e dim ension D > 4, or by proper form ulation of inclusive am plitudes.
A nother is grow th of the range of gravity w ith energy, as is seen for exam ple in grow th of
the Schw arzschild radius of a black hole form ed in a high-energy collision. An In portant
question ishow these new featurescan be reconciled w ith the others. O newould also like to
understand how these and other physical properties either do or don "t m anifest them selves
in a gravitational S-m atrix { particularly locality and causality. T he latter properties are
especially interesting, given that a certain lack of locality could be part of a m echanism
for inform ation to escape a black hole, and thus explain the m ysteries surrounding the
inform ation paradox. Yet locality ism anifest in low -energy descriptions of nature, and is
a comerstone of Q F'T ; it is also nontrivially related to causality, which plays an In portant
role In consistency of a theory.

In this paper, we carry out som e prelim inary investigation of these m atters, w ith
particular focus on the ultra-high energy regin e. W e w ill m ake the m axin al analyticity
hypothesisfl] ], where one assum es that the only singularities that appear in the scattering
am plitudes are those dictated by unitarity. Our investigations will then focus on the
question of what can be leamed by com bining unitarity, analyticity, crossing and causality
together w ith expected general features of gravity. In spite of the plausibly nonlocal
behavior of the gravitational am plitudes that we w ill explore, we have found no evidence
for a Jack of hamm ony between such nonlocality and these basic properties. W e thus



entertain the possibility that an S-m atrix representation of such nonlocaldynam ics exists,
w hich retains the essential physical features.

T he next section w ill further describe the S-m atrix hypothesis, and som e issues that
m ust be confronted in its form ulation, particularly questions of infrared divergences and
asym ptotic com pleteness, and sum m arizes aspects of exclusive am plitudes and their partial
wave expansion. Section three contains a summ ary of the di erent scattering regimn es
(broadly, Bom, eikonal, and strong gravity), and aspects of the physics of each. Section
four focusses on the strong gravity regin e, w here one expects signi cant contributions from
processes classically described asblack hole form ation. W e param eterize the corresponding
interm ediate states as resonances, and investigate their in plications for the form of the
partialwave am plitudes. Section ve further develops the description of these am plitudes,
sum m arizing our know ledge of the contributions to the phase shifts and their im aginary
parts from the di erent regim es. Section six overview s som e properties of am plitudes in
m om entum space, som e of which can be inferred from those of partial wave am plitudes.
In particular, for both form s of am plitudes, we nd strong indications of non-polynom ial
behavior. Section seven investigates aspects of analyticity and crossing; the latter is less
transparent than in a theory with a mass gap. Nonetheless, there is an argum ent for
crossing, and this together w ith causality (plus hem itian analyticity and a sm oothness
assum ption) in tum leads to constraints on non-polynom ial grow th. Section eight closes
w ith further discussion of nonpolynom iality,and its connection w ith the question of locality
of the theory.

Study of ultraplanckian collisions in gravity has a long history. In string theory, this
includes BH1and 1, and other prom inent early references are [1J[d[4LJ]. An in portant
question is whether string theory resolves the puzzles of this regin e. In particular, the
Inform ation paradox suggests a breakdown of locality in this context; while string theory
is apparently nonlocaldue to string extendedness, it has been argued ]that thise ect
does not appear to enter in a central way in the regin es of interest. In fact, the strong
gravitationalregim e, w here classically black holes form , apparently corresponds to a break—
dow n of the gravitational loop expansion. R ef. lhas argued for a possible resum m ation
of string am plitudes that continues into this regim e, but we view the apparent need for
nonlocalm echanics as well as the absence of clearly relevant stringy e ects as suggesting
that a new ingredient is instead required for fundam ental description of this regin ef] 1.
T hough a perturbative string description appears insu cient for a com plete description,



it has been argued that non-perturbative dual form ulations such asAdS/CFEFT Jwillad-
dress these problem s. W hile there has been som e progress tow ards extracting a at space
gravitational S-m atrix from AdS/CFT [134.9], som e puzzles rem ain [L7PJ] about w hether
this is possible; one expects sin ilar issues in M atrix theory[2]]]. W hether or not it is, we
take a m ore general view point, extending work of [24]: whatever theory provides this S—
m atrix, we would like to characterize its features, and som e of those m ay be rather special
in order to describe gravity. M oreover, it m ay be that, as suggested in 23], the need to
describe such features is in fact a critical clue to the dynam ics of a quantum theory of

gravity.

2. The hypothesis of the gravitational S-m atrix

It is natural to expect that the problem of high-energy gravitational scattering in
asym ptotically at space can be properly form ulated in termm s of the S-m atrix. Here,
how ever, one m ust grapple w ith som e prelin inary issues.

A st issue is that we don’t know a precise description of the quantum num bers of
these states. For exam ple, they could be states of string theory, som e other com pletion
of supergravity, or som e other theory of gravity. However, in any case, we expect that
the asym ptotic states include those corresponding to w idely separated individual incident
particles, eg. electrons, neutrinos, etc., iIn order to m atch our fam iliar description of
nature. O r, ifthe theory w ere string theory, incident states are string states. W em ight have
states w ith other quantum num bers as well. An exam ple of the latter that is som etim es
usefuil to consider is scattering in M inkow skispace that is reached by com pacti cation from
higherdim ensions; there, onem ay have incident particles or stringsw ith conserved K aluza—
K lein charge. In any of these cases, a nice feature of gravity is that it universally couples
to all energy, so we view it as plausible that som e in portant features of gravitational
scattering, particularly at high-energy, are independent of this detailed description of the
asym ptotic states.

A second issue is that, in a perturbative description of gravitons propagating in  at
space, gravity su ers from infrared divergences in four dim ensions, arising from soft gravi-
tons, and as a conseguence one m ust generalize from the S-m atrix to inclusive am plitudes.
W hile it does not seem Inconceivable that this is of fundam ental in portance, we w ill as-
sum e that it is not. One reason for this is that QED su ers a sim ilar problem , with

the sim ple resolution through inclusive generalization of the S-m atrix, sum m ing over soft
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photon states. M oreover, w e note that thisproblem isnotpresent if one worksw ith higher—
din ensionalgravity. Speci cally, for spacetin edin ension D > 4, soft graviton divergences
are not present. (For D 7, the total cross—section is nite.) W e have already m otivated
considering higherdim ensional theories, by including the possibilities of string theory or
supergravity, or we m ay sin ply think of this as din ensional reqularization { in any case,
to avoid this issue we w ill typically work in D > 4.

A nother issue that plausibly com es closer to being findam ental regards the question
of asym ptotic com pleteness of states. T he asym ptotic com pleteness conoljj:jonliI states that
the H ibert space of the theory is equivalent to a Fock gpace of asym ptotic free particles.
H owever, there are apparent lim itations to such a Fodk space description. An exam ple
is the locality bound 23 4] and its N -particle generalizations[ll]]. Speci cally, if one
considers tw o particles in wavepackets, w hich we for exam ple can take to be gaussian w ith
central positions and m om enta x;y and p;q, these have a eld theory description in tem s
of a Fock space state «, ,qPi. However, such a description m ust break down when we
violate the bound

* vy > Gh+ gj (2:1)

where G Gp , the D -din ensional New ton constant. In this regim e, gravity becom es
strong, and so lim its a Fock space description of the system ; this lim itation in principle
extends to arbitrarily large distances. O ne m ay yet be able to construct an asym ptotic
description of all states in termm s of freeparticle states, using further evolution { if one
evolves a state violating (2.]) backwards in tim e, it generically ceases violating the bound,
and would be expected to resolve itself into wellseparated free particles asym ptotic from
In nity. Thus,with such a lim iting procedure, and a weak form of localLorentz invariance
(in order to describe asym ptotic particles w ith relative boosts), one plausibly describes
asym ptotics In tem s of certain Fock space states.

In short, we w ill hypothesize the existence of a gravitational S-m atrix, or its inclusive
generalization n D = 4. W hile we do not have a com plete description of the asym ptotic
states, we w ill assum e that they include states closely approxim ating particles that are
Initially w idely-separated, and m oreover are allowed to have very large relative m om enta.
T his starting point am ounts to m aking certain assum ptions about a weak notion of locality
(asym ptotically separated particles) and local Lorentz invariance (large relative boosts

! See, eg., chapter 7 of @].



allowed for widely separated particles). However, we w ill not necessarily assum e that
stronger form s of locality and local Lorentz invariance are fundam ental in the theory.
For practical purposes, it is often convenient to im agine that the asym ptotic states
correspond to spinless particles of mass m , plus gravitons. W ith such a collection of
asym ptotic states j iin, J lout, (taken to be Heisenbergpicture states) we expect an S—
m atrix of the form
S =outh Jiln=h PBJi: (22)

Asusual,we segparate o the non+rivialpartasS = 1+ iT .

2.1 . Exclusive am plitudes

M uch of this paper’s discussion w ill focus on the sim plest non-trivial am plitude of the
theory, that for exclusive 2 ! 2 scattering. H ere, the transition m atrix elem ent T (in the
plane wave lim it) is then de ned by

D D

hos jpa T 15021 = Tpsp, pip, = (2) Pr+p: B RIT(s;D; (23)
and is a function of the M andelstam param eters
s= @+p)Vf=E’;t= (@ BF¥iu= @ Rn\: (2:4)

W e expect that im portant features of the theory are encoded in this am plitude and
its analyticity properties. Since the graviton ism assless, am plitudes are sinqgular at t= 0,
and likew ise in other channels; for exam ple, the B om approxin ation to t<channel exchange
gives

Tiee (Sjt)= 8 Gp s2=t: (25)

W e w ill consider other aspects of analyticity in section seven.

2.2. Partialwave expansion

U nitarity and som e other physical features of the am plitude are m ost clearly form u-—
lated by working w ith the D -din ensional partial wave expansion, w hich isfj]

®
T(s;t)= s° P72 (1+ )C, (cos )fi(s) : (26)
=0
Here = (D  3)=2,
=287 )y (2:7)



and C, are G egenbauer polynom ials, w ith argum ents given by the center-ofm ass (CM )
scattering angle,

cos = 1+i : (2:8)
s 4m?
N ote that
t= (4m? s)sif( =2) ;u= (4m? s)cod( =2) : (2:9)

T he inverse relationship to @) gives the partial wave coe cients f ;(s) in tem s of the
m atrix elem ent,

A
S(D 4)=2
fi(s)= —— d si ® C,(cos )T s;(dm? s)sif( =2) ; (2:10)
pC, (1) ¢
w ith
s=2 2 16 o 27, (2:11)
T he unitarity condition
mfi(s) F(s)F ; (2:12)

for reals 0 can be solved in term s of two real param eters, the phase shift ;(s),and the
absorptive coe cients (s) 0:

h | i
fis)= = 1 &) 2. (2:13)

Tt is in portant to understand the convergence properties of the partialw ave expansion
©d). For a theory with a mass gap, the expansion can be shown to converge in the
Lehm ann ellipse2]], which extends into the unphysical regine t > 0, cos > 1. This
extension is usefiil for further constraining am plitudes, e.g. through the FroissartM artin
P91bound.

M asslessness of gravity alters this behavior. Let us rst ask when the partial wave
coe cients ($.10] are wellde ned. Speci cally, at long-distance/sm all angle, we have the
Bom approxin ation, (£.). T his gives a pole at zero angle, T 1=2, and correspondingly
the Integral .10) only converges for D > 4. W hile other long-distance e ects, like soft
graviton em ission, could m odify the am plitude [.3), we don't expect them to alter this

convergence behavior.

In general, a series of the orm  (.4) converges in an ellipse w ith fociat cos = 1.
T he existence of the singularity in T at = 0 indicates that the partial wave expansion
does not converge past cos = 1. Thus, the Lehm ann ellipse has collapsed into a line



segm ent along the real axis. Note that onedoesexpect In T ( = 0) to be nite forD 7.
This follow s from the optical theoram (see the A ppendix) { as we have noted, the Bom
cross section given by (2.3) is not infrared divergent for D 7. However, this niteness
does not indicate that the expansion of In T can be continued past this point { higher
derivatives of In T are expected to in generaldiverge at = 0.

T he failure of convergence of the partial wave expansion in the regine t > 0 is an
n pedin ent to using som e of the pow erfulm ethods that have been successfully applied in
theories w ith a m ass gap. N onetheless, we suggest that study of partial wave am plitudes
can still be useful for inferring features of scattering. W hile we are in particular interested
in features of the analytic continuation of T (s;t) to com plex values of s and t, where
convergence of the expansion is problem atic, we can exploit the inverse relation £.1Q).
R egardless of the convergence of the partial wave expansion, we have argued that )
is convergent for D 5. Thus, if physical considerations in ply statem ents about the
behavior of f1(s), these in tum im ply properties of the integrand of (£.10), and speci cally
of T (s;t).

3. Scattering regim es

In di erent regions of s and t, or E and 1, we expect di ering physical behavior of
am plitudes. A m ore pictorial way to think of these di erent regim es is as a function
of energy and Im pact param eter b of the collision { these are after all often variables
controlled experim entally. W hile the transform ation to im pact param eter representation
su ers from som e com plexities, ourm ain focus w illbe on collisions in the ultrahigh-enegy
lin it, E Mp,whereM ) ?= (2 P “=(8 Gy ) gives the D din ensional P lanck m ass.

T here, for m any purposes, we expect the classical relation
1 Eb=2; (3:1)

w hich should approxim ately hold m ore generally, to serve as a usefiill guide to the physics,
though we expect precise statem ents to be m ore easily m ade in tem s of the conserved

quantities E and 1.
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Fig. 1: Scattering regim es In an iIn pact-param eter picture; the question

m arks denote possible m odel dependence discussed in section 3.3.

Fig.1 illustrates som e of the regin es that we expect to be relevant for ultrahigh-energy
scattering, in temm s of energy and in pact param eter. W e w ill particularly focus on the
Bom regin e, the ekkonal regin €, and the strong gravity, or \black hole" regin e.

3.1. Bom and eikonal

T he bestunderstood regim e is the Bom regin e, corresponding to large im pact param —
eters/an allangles. H ere, the elastic scattering am plitude, corregponding to single graviton
exchange, has been given in (.J); one m ay also consider corrections due to soft graviton
em ission B4 427 1.

A s the im pact param eter decreases, or the energy increases, diagram s involving ex—
change of m ore gravitons becom e im portant. The leading contributions at large im pact
param eter are the ladder and crossed ladder diagram s, which can be summ ed to give the
eikonal approxin ation to the amphtude@ﬁﬁ@@].ﬂ This can be written in tem s of

2 Onem ay inquire about UV divergences of loop diagram s. H ow ever, these are short distance

e ects, for which we assum e there is som e UV regulation; for exam ple, string theory m ight serve
this purpose, or even supergravity, if it is perturbatively njte[@].



the eikonal phase, which arises from a Fourier transform ation converting the treedlevel
am plitude Into a function of a variable naturally denti ed as the in pact param eter:

1 . & ?qg .
(X, 78) = 2_S (27)[).26 e XTtree(S; (i)

4 Gp s (32)

D

D 4y osxd
where g, is the transverse m om entum transfer and where
2 (n+ 1)=2

= — 33
: [((n+ 1)=2] 55

is the volum e of the unit n—sphere.ZT he eikonal approxim ation to the am plitude is then
iTey (s;t) = 25 d° “x,e 2 % (f B2 1), (3:4)

expressing the am plitude in an In pactparam eter form . From (3.4), one seesw here ekonal
corrections to the Bom am plitude becom e In portant, nam ely when the eikonal phase
becom es of order one. Indeed, 23] showed that at the corresponding point via ), the
partialwave phase shifts becom e of order unity, and thus the eikonal am plitudes unitarize
the am plitudes of the Bom approxim ation. (Contributions due to soft graviton em ission
were also estim ated in [27].) In tem s of in pact param eter, this transition region is given
by
b G E’ T (35)
as is illustrated in Fig. 1. It is altematively described as the region where the m om entum
transfer is of order the inverse im pact param eter,
P— 1, (36)
b
In general, eikonal approxm ations are expected to capture sem iclassical physics. In
the high-energy gravitational context, the sam iclassical geom etry is the collision of two
A ichelburg-Sex1 shock waves, and various evidence supports the correspondence betw een
B4) and this picture[§ B1. In particular, the saddle point of [34) gives a classical scat—
tering angle
1a@ R (E)
E @b b
m atching that of a test particle scattering in the A ichelburg-Sexlgeom etry. H ere, we have

; (3:7)

e}

Introduced the Schw arzschild radius corresponding to the CM energy,

1 kg 0O
RE)= o MD ; (3:8)
D D
w here
2(2 )D 4
kp = (3:9)
(D 2)p 2



Fig. 2: The H-diagram , which provides a leading correction to the eikonal

am plitudes as scattering angles approach 1.

One nds[E] that corrections to the ladder series becom e in portant when P ot E,
or altematively when the scattering angle reaches 1.Eqg. ) show s that this happens
at In pact param eter com parable to the Schwarzschild radius, b R (E ), as pictured in
Fig.1l. A scheam atic argum ent for this follow s from powercounting. Consider a diagram
arising from a graviton tree attached to the extemal lines. Each graviton vertex gives a
fhctorp Gp . Those connecting to extemal lines are accom panied by a P s. The ram aining
din ensions com e from intemal (loop) m om enta. For the processes in question, these have
characteristic valudd k  1=b. T his counting then produces a power series in R=by °.A
Jeading such correction, the H -diagram , w hich has been discussed in B[], is llustrated in
Fig.2. O ne can altematively understand this expansion by thinking of the extermal lines as
classical sources; using standard pow ercounting techniquesf34], one can easily show that
the H diagram isO [(Gp E )*=r*® 3)]com pared to one graviton exchange, if the distance
between the sources isr B3]. Using Gp E R’ 2 and takingr b then yields the sam e
expansion param eter. In temm s of the sam iclassical geom etry, at in pact param etersb R,
one form s a trapped surface34 87], and hence a black hole.

3.2. Strong G ravity

Since corrections to the eikonal am plitudes give term s that di er from the eikonal
am plitudes by powers of R (E )=bf 3, the region where a classicalblack hole form s appar—
ently corresponds to a m anifest breakdow n of the perturbative expansion; it is not even

3 Indeed, in the ekonal regin e, the dom inant term in the exponential serdes of @) occurs at
. s P— .
order N Gp s=b ¢, corresponding to a characteristic m om entum k =N 1=b in each

internal line of the N 1-loop Feynm an ladder diagram .
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asym ptotic. W e can also param eterize this in term s of a critical angularm om entum , given
by
1 LE)=ERE)=2: (3:10)

Onem ight be tam pted to believe that a quantum treatm ent of the evolution can still
be given by perform ing an expansion in uctuations about a shifted background { that
of the sam iclassical black hole. H ow ever, the problem of the singularity guarantees this is
not a com plete description. M oreover, even evolution on spatial \nice slices" that avoid
the singularity is problam atical, given that a standard eld theory treatm ent of it leads
to the inform ation paradoxE T his suggests that the boundary of this regim e represents a
corregpondence boundary, analogous to that for exam ple between classical and quantum
m echanics, beyond which localquantum eld theory does not give a com plete description
of the dynam icsf@(]. In particular, the unitary evolution which we are assum ing, in which
the quantum inform ation m ust escape the black hole w hile it is still com parable to its orig—
inal radiusfd]]], suggests that the nonperturbative dynam ics unitarizing the physics is not
localw ith respect to the sem iclassical geom etry { a sort of \nonlocality principle23 p41."
(This then tswith the proposed param eterization of part of the correspondence bound-
ary given by the locality bound PJfI]Rg]: nam ely local eld theory fails form ultiparticle
states w hose w avefiinctions are concentrated inside a radius of sizeR (E ), where E is their
com bined CM energy.)

W hile we do not have them eans to calculate quantum am plitudes in this regin eE we
can infer som e of their properties if we believe that the sam iclassical picture of form ation
of a black hole and its subsequent evaporation provides a good approxin ate description
of the physics when addressing certain coarsegrained questions. Speci cally, ref. [22]
param eterized certain features of the corresponding S-m atrix, and we w ill In prove on the
corresponding \black hole ansatz" in subsequent sections.

4 For review S, see [@@]

> Ref. [B] has suggested analytic continuation of the perturbative sum giving the am plitude in
the region b> R . However, onem ight at best expect such a sum to approxin ately reconstruct the
sem iclassicalgeom etry, as in ]. Then, in particular, it isnot clear how the resulting prescription
would give unitary am plitudes that escape the usual reasoning behind the inform ation paradox,
which aswe have sum m arized, apparently requires new dynam ical ingredients. Indeed, this paper
elaborates on the view that localQ FT cannot fully capture the physics of the strong gravitational
regin e sem iclassically associated w ith black hole form ation.
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O foourse, Investigating the interaldynam ics seen, e.g. by observers falling into black
holes, and reconciling that w ith outside observations such as described by an S-m atrix, re—
m ains a challenging problem . Ref. AJhasargued for aw s in the \nice slice argum ent" for
inform ation loss, of two origins. F irst, attem pts to m easure the nice slice state at a level
of precision appropriate to investigate infomm ation loss lead to large backreaction on the
state. Secondly, uctuationse.g. in the H aw king radiation are argued to lead to uctua-
tions in the nice=slice state after long tim es. W e expect that sharper investigations should
olow from use of proto-JocalobservablesfE3], but ultin ately the full non-perturbative dy—
nam ics of gravity is plausibly necessary in order to give both a com plete picture of infalling

observers and of reconciliation of their observations w ith a unitary S-m atrix.

3.3. O ther regim es

B efore tuming to further description of the strong gravity regin e, it is im portant to
note that at in pact param eters larger than b R (E ), other features of the dynam ics can
becom e relevant. Indeed, som e have argued that this indicates other dynam ics besides
strong gravity is a dom inant feature of high-energy scattering. To give an exam ple, in the
context of string theory, with string m ass M 4, it is possible to m ake long strings w ith
length 1 E =Mszt. In fact, such processes are highly suppressed, but [] pointed out that
such am plitudes receive other in portant string corrections through \di ractive excitation"
beginning at in pact param eters of size by~ M, ' (E=M )> P 2). Ideed, [@4]proposed
that this e ect m ay provide im portant corrections to a picture of black hole form ation; if
true, this would likely obscure a stronggravity interpretation of the regineb < R (E ).

Refs. [L1[L3] investigated these e ects m ore closely. Indeed, as pointed out in [L1],
a sin ple picture of the origin of these e ects is string excitation arising from the tidal
i pulse of the gravitational eld of the other colliding string. M oreover, [[LZ] investigated
the evolution of the corresponding string states. For in pact param eters b b R(E),
the asym ptotic state of the string is Indeed highly excited as a result of this tidal string de-
form ation. H ow ever, for In pact param etersb < R (E ), the tim escales of horizon form ation
and string excitation di er signi cantly. Roughly, in a sam iclassical picture the trapped
surface form s before the tidal excitation causes signi cant extension of the string. T hus,
one seem ingly produces a con guration described as a pair of excited strings inside a black
hole; in this context there is no clear reason to believe that string extendedness would lead

to signi cantm odi cation of the black hole description of the dynam ics. L ikew ise, there is
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not a clear m echanism for string e ects to provide the necessary nonlocality w ith respect
to the sam iclassical picture, to allow inform ation escape.

Indeed, one can Im agine a sim ilar dynam ics being relevant for collisions of other
com posite ob cts { hydrogen atom s, protons, etc. Speci cally, when tidal forces reach a
size su cient to excite the internaldegrees of freedom of the ob Fct, asym ptotic statesw i1l
be excited states. T hus, there can be m odeldependent tidal excitation e ects. H owever,
once im pact param eters reach the regine b < R (E ) (and for su ciently large E ), such
e ects are not expected to prevent black hole form ation. Since these m odeldependent
tidalexcitation e ects do not appear to contribute fiindam ental features to the story, we
w il largely ignore them in the follow ing discussion.

A nother regin e that hasbeen ofm uch interest in string theory discussions is that near
the string energy, E Mg, where one m ight expect to initially see weakly-coupled string
excitations. T his region lies in the lower left comer of Fig. 1. O ne expects such excitations
to m erge into black holes at a \correspondence point[d3]" where R (E.) 1M4:. Our
focus w ill be on higher energies.

4. The strong gravitational regim e

W e currently lack a com plete quantum description of the strong gravitational regim e.
However, we w ill assum e that the quantum description of this regim e m ust be com pat-
ble with certain features follow ing from a sam iclassical picture of black hole form ation.
If one accepts such a viewpoint, and m oreover assum es that the m icrophysical evolu—
tion is unitary, these com bined assum ptions potentially provide interesting constraints on
the dynam ics { particularly in view of the preceding statem ents that unitary evolution
is apparently incom patible w ith evolution that is local w ith respect to the sem iclassical
geom etry.

4.1. Black hok form ation

W e begin by recalling basic features of black hole form ation in a high-energy collision,
which has been extensively studied as a phenom enological feature of m odels w ith a low
P lanck scale(dq &7 ]E

Consider a high-energy collision of two particles, with CM energy E Mp . Letus

m oreover assum e that the wavefunctions of these particles are gaussian wavepackets w ith

® For a review with som e further references, see &g1.
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characteristic size x, and that these collide with an Inpact parameter b < R (E ); for
large E ,wemay take x R((E).

In the classical description of this process, a trapped surface will form in the
geom etry B939], signaling form ation of a black hol, and as a result of the anall cur-
vatures, one expects a corresponding statem ent in a sam iclassical approxim ation to the
quantum dynam ics[87]. N ot all of the collision energy is trapped in the black hole, which
is Initially rather asym m etrical, and radiation (soft gravitons,gauge elds,etc.) w illescape
to in nity during the \balding" process in which it settles down to a K err black holeH of
massM . The tim e scale for balding is of order ¢orm R (E ), and for im pact param eters
su ciently below R (E ), the am ount of energy lost isan O (1) fraction, but not large (eg.
< 40% ), thusM E .

Subsequently, the black hole w ill radiate, Initially preferentially radiating states that
lower its spin. T he characteristic energy of radiated particles is the H aw king tem perature,
Ty 1=R M ), and roughly one quantum is em itted per tim e RM ).

4.2. Black hols as resonances

W e will thus think of the black holes that form after form as resonances]. Since
the width for such a state to decay (typically into a lowerenergy black hole) is M )
1=R (M ), this isa lim it to the sharpness w ith which we can de ne the energy of the black
hole. However, black holes w ith M M p are sharp resonances In the sense that

<
el
=
)
[

where S (M ) is the B ekenstein-H aw king entropy.
W e will assum e that the num ber of possible black hole resonances is given by this
entropy. To bem ore precise, let us assum e that the num ber ofblack hole m icrostates w ith

energiesinarange M ;M + M ) is
NM)=BM )M RrRM)M ; (42)

where B (M ) is a possible prefactor that is din ensionless and is expected to have m uch
m ore slow ly-varying energy dependence than the exponential. T hus the density of black
hole states is of the form

™M )=RB&™); (4:3)

7 In m odels w ith gauge charges not carried by light particles, the black hole can also carry
charge.
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and the total num ber of states w ith energy M sNM™M)’” BM )expfSM™M )g. The
spacing between the states is clearly much sm aller than their w idths. Let us label the
states In the mterval M ;M + 1=R ) as

M GIi; (4:4)

where T = 1; ;N (M) expfS (M )g.W em ay further re ne the description to pro fct
on angular m om entum eigenstates, with angular m om enta 1. In that case, the entropy
entering the preceding fomm ulas is expected to be

4 ERM ;1)
sM ;)= ——; (4:5)
D 2

where R (E ;1) is given by [5(]

D 2§12 16 Gp M
R? ° R?%4 ( i - D : (46)
4M 2 (D 2)p 2

For sm all 1, this gives an expansion of the form

12
SM;l)=SM™ ;0) 1 const:L—2 : (4:7)

4.3. Black holk spectrum and evolution

Let us explore In m ore detail the quantum states form ed in a collision, which could
be either a two-article collision with a CM energy E , or an n-body collision. Note
that one can also form a black hole ofmassM by producing a higherm ass black hole in
a collision w ith E M ,and then waiting for that black hole to evaporate to M .

Consider general initialm ultijparticle (but not black hole) states; these can be labeled
by energy,m om entum , generalized partialw aves, and asym ptotic species and spin content.
Letuswork in the CM fram e, and ignore the e ects of particle spin. Som e subset of the
states, denoted F ;aiy,, will form a black hole; exam ples are the two-particle states de-
scribed above, w hich classically do so, and thus are expected to have probability essentially
unity for black hole form ation.

Thism eans that a statea F ;aiiy can be rewritten in term s of states that at a tin e
Just after form ation corresponds to a com bined state of black hole and balding radiation;

let us choose an orthonom albasis F 0:i1,.4 for the latter, and thus w rite

X
£ aiy = AEM M ;IiE M jitag 5 (4:8)
M ;I

8 A m ore carefiil treatm ent uses narrow w avepackets.
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here we neglect the possibility of a am all com ponent on states that are not black holes.
In principle we can progct on a de nite state of the radiation, yielding a pure black hole
State:
X
radlE M jiF jai, = AEM )i ;Ii: (49)
I

In a generic black hole basis we expect the am plitudes A (E ;M ),1; to be of order
e 5™ =2 corresponding to the fact that from ({.J) we expect there to be O (e ) states.
T he space of states in (4.9) can be com bined to form an orthonomm albasis for a subspace
of black hole states, denoted M ;A i, and labeled by the initial and radiation state labels.
H ow ever, this basis w ill not span the space of allblack hole states, since {.9) yields too
few states. Indeed, note that there are argum ents (extending ]) that only of order

expfE @ 3 g (4:10)

states can be form ed from collapse of m atter of energy E ; thus a should have such a
range. If one also accounts for the balding radiation, as above, there are m ore states
that can be accessed through their entanglem ent w ith this radiation. T ypical radiated
quanta have energies 1=R , and given the radiated energy E M , this yields an entropy
RE)E M)/ EP 2=0 3 This exponentiates to give the num ber of states over
which the index i can range. However, this is still far fewer than the expS (M ) black
hole states, since typically M > E =2. T hus, the num ber of states that are \accessible" in
the collision at energy E is far less than the num ber of possible states of the black hole.
W e can label a basis for the ram aining com plem entary black hole state space as M ;A 1.
O ne expects that one approach to accessing these states is to form a black hole of m ass
M °> M in a higher energy collision, and then allow it to evaporate down tomassM . In
doing so, intemal states of the black hole becom e entangled w ith the state of the H aw king
radiation, like in the preceding discussion of balding radjatjonE For large enough M ?, this
gives €8 M ) independent accessible states. For m any purposes, it is sin plest to forget the
balding radiation, w hich as we have explained does not appear to play a particular central
role, and in a slight abuse of notation, think of the Jabels A as corresponding to the initial
states from which the black hole form ed.
W e can likew ise Jabel the possible n-body out states, representing the nal decay
products of a given black hole, as F ;aiout. In a sim ilar spirit to the preceding discussion,

° One can in principle \purify" such states by projction on de nite states of the Haw king
radiation, as w ith the preceding pro fction of balding radiation.

16



we could choose a basis of black hole states labelled by this outstate description. A gain,
we expect the m atrix elem ents between the preceding basis and this one to generically
have size expf S (M )=2g. Correspondingly, the am plitude for a given initial black hole
state to decay into a given nal state of the H aw king radiation w ill be of generic size

oM jad ;jIi] e S™ =2 (4:11)

T he quantum description ofblack holes asa decaying m ultistate system hasanalogies
to other such system s, ke K 0 K 0 mesons. In the assum ed unitary dynam ics, an initial
black hole state M ;Ii can both m ix with other states w ith the sam e energy, and w ith
states that are in the continuum ,w hich consist ofa lighterblack hole togetherw ith radiated
quanta. One m ight expect, via a W eisskopfW igner[5]] approxin ation, that evolution
in the Hibert space of black hole states with m ass M is govemed by an e ective
Ham iltonian:

d
i— ;Ii=H ;I4: 412
dtj’l M ( )

T hough conceivably m ore general dynam ics is needed@ this exhibits possible features of
black hole evolution. D ue to the decay, the ham iltonian is not hem itian in this subspace,
and in general takes the form _

Hig=M1g 51 177 (4:13)

whereM 15 and 15 are hem itian m atrices. Tn general, these w ill not com m ute.

4 4. Exclusive processes

If one considers in particular an exclusive process w ith two-particle initial and nal
states 11 ;0210 » P37Palout, SUch as pictured in Fig. 3, one thus expects the interm ediate
black hole states to contribute to the S-m atrix as

X X .
P °( p tospPTi ——  hiipi: (4:14)
IJ E H JI

outlP3;Pa o1 72 iin = (2

(N ote that in the bases adapted to in or out states, described in the preceding subsection,
the indices are expected to only range over S(E) values.) If My and 13 do not
comm ute, H 15 cannot be diagonalized by a unitary transform ation, but we w ill assum e it

10 m particular, we don’t expect H to necessarily be a ham iltonian constructed from a local

lagrangian.

17



Fig. 3: Schem atic of a black hole as a resonance in 2 ! 2 scattering.

can be diagonalized by a m ore general linear transform ation. T he eigenstates M ;Ii are
then not orthogonal;
M ;IM ;Ji= g5 (4:15)

forsomeg;; 6 ;. In such a basis @.14) becom e

X X 1 .
; i— hT o1 ;0215 416
P Ipsip gz HIqIJ Prip2 (4:16)
1J

ouths jPs 1 jo2din = (2 F P«
whereH ;= M ; 1;=2areeigenvalues. Thisw illproduce a sum of term s of B reit-W igner
form contributing to the am plitude. H owever, the sum itself w ill not, in general, take the
B reitW igner fom .

In the case where the particles being collided are the narrow ly—-focussed w avepackets
that we have described, one plausibly expects the corresponding am plitude to be of size

Jutabin g e SE)2: (4:17)

The reason for this is that for such wavepackets the am plitude to form a black hole is
essentially unity, and the am plitude for it to decay back to a two-particle state is of size
given by ). N ote that ourdiscussion suggests a resolution to questions raised [ ]about
the relation of interm ediate black holes to B reitW igner behavior. O ne hasO (1) am plitude

' The form ofthis equation m ay altemately be sim pli ed through the de nition ofa dualbasis,

hl j= g 'h73.
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to form som e black hole state; in a generic basis for black hole states, this isa superposition
wih O (e 572) coe cients, although, as indicated in the preceding subsection, one can
choose a special basis w here black hole states are labeled by the initial states that created
them . T hus, the am plitude to form a generic black hole state from a two-particle state is

e 572, as is the am plitude for a generic black hole state to decay back into a two-particle
State.

One m ight ask whether there could be any larger contributions to the 2 ! 2 am —
plitude, due to processes that avoid black hole form ation. For exam ple, our gaussian
wavepackets w i1l have tails at large im pact param eter. H owever, these have probability
of size expf (R= x)?gatb R.Thewith x isconstrained by x > 1=E , but this
constraint produces a quantity m erely of size > expf Sg.

W hile we can't at present rule out other such e ects, none have been identi ed. An-
other test of this statem ent com es from scattering of a particle of high energy E o a
preexisting black hole in the relevant range b R ; here the am plitude R for re ection is
also exponentially suppressed 631

R e?ER . (4:18)

Tt is thus plausible that the am plitude for the chssically predicted 6934 B71]1 black hole
form ation process only receives corrections that are exponentially suppressed at least to
the level @.17).

5. Partialw ave am plitudes

In this section we restrict attention to 2 ! 2 scattering, in a partial wave basis, and
Investigate consequences of the preceding picture and related considerations. For sin plicity,
we focus on scattering of one species of spinless particles. T he initial two-particle states
w illbe Jabeled by just their energy and angularm om entum 1, and the scattering am plitude
is of form

S.(E ) 2 1(E)+211(E) (5:1)

Il
)
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5.1. Strong gravitational regim e

A s outlined above, for im pact param eters b R (E ), or correspondingly angular
momental L (E),theam plitude for such a state to form a black hole w ith totalangular
momentum ky 1 is expected to be of order unity.

A bsorption

In the 2 ! 2 process that goes through the black hole channel, ky = 1. From (@.11),
we note that the am plitude for the given resonance F ;1i to decay kack to a two-article
state is e S (E ;1)=2 .

A s in the preceding section, it isplausible that processes avoiding black hole form ation
in thereginel L areexponentially suppressed at least to this level. A rgum ents for that
build on the preceding ones, together w ith the properties of partialwave wavepackets.

For exam ple, consider a wavepacket w ith de nite angular m om entum in the relative
coordinates between the two particles:

Z
m (x)= dE Ju ED) Bty w (VEE); (52)
(Er)

where J;, is a Bessel function, Yy, ( ) are D 2 dim ensional spherical harm onics, and
f (E ) is a gaussian wavepacket w ith w idth E . A sym ptotics of B essel functions for large
order and argum ent (see eq. 8.41 4 of [@]) then show thatforl Er,

r

Jn (Er)! icos Er L) - (5:3)
Er 2 4

w ith subleading corrections consisting of term s suppressed by powers of (1+ )=E r tim es
sine or cosine functions of the same form . Thus com bining (@) and (E) gives a
wavepacket that isgaussian in t r with width r 1= E , and subleading tem s are
sim ilarly gaussian.

A related argum ent com es from the relation between the partial wave representation
and In pact param eter representation [53]. Speci cally, if £ (b;s) is the am plitude In in pact
param eter representation, then at high-energies one nds the corresponding partial wave

am plitude54 571

A d?f (b;s)
fi(s)= £(2(1+ )=E ;s)+ ————— + ;
s d? b= (2(1+ ))=E

20

(54)



where A is a num erical coe cient, indicating that in the high-energy lim it, localization in
angular m om entum corresponds to localization in In pact param eter, as expected E

A nal argum ent com es from the behavior of partial waves scattering from a preex—
isting black hole; [53]argues that their re ection am plitude in the lin it E R 1 is of size
@19).

Based on these, and on the discussion of section four, we thus con gcture that in the
reginel L(E),the2 ! 2 amplitude is indeed exponentially am all in the entropy, and
arises m ainly due to such a strong gravity channel. T hese statem ents suggest additional
rationale for the \black hole ansatz" of ], that in this regim e

F1(E)j=e ' expf S(E ;D=2g: (55)

N otice that this behavior has two characteristic features. The rst is the exponential
strength of the absorption. The second is the long range of the absorption, which is
characterized by the growth of L (E ) w ith energy. Even should the preceding argum ents
regarding the strength of the exponential suppression be evaded, we expect the feature of
signi cant absorption at long range to persist.
Phase shifts
W e have suggested that the am plitude is essentially unity for a given initial two-
particle statewith 1 L (E ) to enter the strong gravitationalregine. Tn 2 ! 2 scattering,
one m ight therefore expect that in each energy range (E ;E + 1=R ) we form one of the
N (E ;1) black hole statesB w ith the corresponding energy and angularm om entum . T his
would correspond to a density of \accessble" states

acc (E ;1) RE): (5:0)

(This value would be less relevant for 2 ! N scattering, where, as we have argued, m ore
states m ay be accessible and entangle w ith the balding radiation.) N otice that this would
In ply that the total num ber of such accessible black hole states of angular m om entum 1
and energy < E isgiven by

Z E

Nacc (E )= acc (E ;1)dE S(E ;D : (5:7)
0

12 The series (@) m ay be regulated by considering incom ing wavepackets instead of plane
w aves.

13 A s noted, this state is a superposition of states of a generic basis w ith coe cients of size
0 (e 572y,
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Consider the param etrization (4.14) of the contrbutions of interm ediate black hole
states. If them atrix H 7 were diagonalin the \in"-state basis M ;A i, discussed in section
four, then we would expect a contribution to the am plitude of B reit#W igner fomm :

i

giiE) gle g : (5:8)
E EBH + l:2

where 1 isa \background" value. Then, the phase (E ) would increase by aswe pass
through each such \accessible" (or strongly coupled) resonance, and correspondingly, the
com bined e ect of resonances at increasing energies would give

BIE)= Nawe(®;l)  SE;D; (529)

as with Levinson’s theoram for singlechannel scattering. Note also that such a result
would yield a decay tin e d =dE R (E ), com patible w ith the w dth 1=R .
However, we see no reason to expect H 15 to be diagonal, and so consider phase shifts

of a m ore general form , which we param eterize as
1(E)= k(E;DSE ;D (5:10)

where k (E ;1) variesm ore weakly w ith energy than S (E ;1). O nem ight expect k(E ;1) > O
(corresponding to tim e delay) due to the attractive nature of gravity. Indeed, in scatter—
ing o a preexisting black hole the gravitational eld introduces a positive phase shift
relative to scattering from the angularm om entum barrier. W e w ill investigate additional
constraints on k (E ;1) in subsequent sections.

To summ arize, com bining (69), (6.10) suggests that the partial wave am plitudes in
the strong gravity regin e take the form

sG i 1 ,
77 (s) > 1 exp ES(E ;DL 4 ik(E ;D] : (5:11)

N otice that this expression di ers from that of [27]; that analysisdid not take into account
the role of inelasticity and accessibility of resonance channels. Thus (5.1]) com prises an
in provem ent of the black hole ansatz of RJ].

22



5.2. Bom and eikonal

O ne can lkew ise infer properties of the partialwaves in the longerdistance regin es,
w here the Bom or efkonal approxin ations are expected to be valid. In particular, ref. B3]
com puted the eikonal phase shift,
ok (O 2)[O 4)=2LE)P > E? ?

1B = 8 (D 1)=2] P ¢ P’ G:2)

and checked that the elkkonalam plitude unitarizes the B om am plitude, w hich is the leading
term In an expansion In 1, as expected. T hus the transition from Bom to eikonal regim es
occurs in the smallanglereginel E® 2= 4) Notice that the phase shifts are indeed
positive de nite, as expected from the attractive nature of grav'wﬂ T he correspondence
between the eikonal am plitudes and the sem iclassical picturef§ AH§] suggest the utility of
the eikonaldescription untill L.

Fordecreasing in pact param eter/ increasing scattering angle,di erent e ects can con-—
tribute to absorption. A generic e ect is softgraviton brem m strahlung. This was esti-
m ated in 23] to give a contribution of size

E3D 6

?r L (E ?D 9:l3D 10 (5:13)

1D 10

N ote that thism atches onto the energy dependence of 53)at1l L ,which also tswitha
picture w here a non-negligible fraction of the collision energy can be em itted in the balding
radiation.

A snoted In section three, therem ay be other lessgeneric e ects, eg. due to excitation
of iIntemal degrees of freedom of the colliding bodies. Tn string theory, such an e ect is the
\di ractive excitation" or \tidal string excitation" explored in B-H,[LILF]. But, as noted,
we do not expect such e ects to prevent am plitudes from m atching onto those of the strong

gravitational regim e.

5.3. Com bined pictures

14 This is the case provided D > 4. The four din ensional case su ers from Coulom b-lke

singularities, requiring the usual inclusive am plitudes, avoided in this paper by working in higher

din ensions.
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Fig.4: Absorption coe cientsata xed angularm om entum asa function of

the CM energy.
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Lc3 D—9/13 D-10

L

Fig.5: Absorption coe cientsata xed CM energy as a function of angular

m om entum , with L. L{E).

W e can thus suggest com bined pictures describing the weak and strong coupling
regim es. T he results ) and (@) suggest energy and angularm om entum dependences
of the absorptive coe cients ; aspictured in Fig.4,F1i. 5.

W hile the phase shift is wellstudied in the eikonal regin e, as we have indicated,
we have less inform ation in the strong gravity regim e, but expect an increase bounded by

(E) EP 20 3) 35in (5.1(). Sketches of energy and angularm om entum dependence

aregiven n Fig.6,Fig. 7.
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Fig. 6: Phase shift for xed angular m om entum as a function of the CM
energy.

6,(E)

K(EB)L,
~K(E)L,

Eikonal

Black Hole Regime

L(\D73 /1D74

Fig.7: Phase shift fora xed CM energy asa function ofangularm om entum ,

with L. L(E).

6. M om entum space am plitudes

W e now ask what properties ofm om entum space am plitudes can be inferred from the
preceding discussion. In section two, we noted the collapse of the Lehm ann ellipse, and
in particular that convergence of the partial wave expansion cannot extend past t = 0
to positive t. Likew ise, continuation of s to com plex values with xed realt < 0 would
correspond to com plex cos , outside the convergence region. T hese and related 1im itations
restrict our ability to prove results that follow in m assive theories. H ow ever, w e have argued
that the expression for the partialwave coe cients, ($.10), is expected to be wellde ned
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and nite. Thism eans that properties of the £, (s) are those of the corresponding integral,
and this In tum constrains the behavior of T (s;t).

A dditional inform ation about the m om entum space am plitudes com es directly from
their eikonal approxin ation, (38.4). At very snall angles, this expression reduces to the
Bom am plitude, (@). The m atch between the Bom and eikonal regim es occurs near

1, corresponding to t =0 4 or

(6:1)

T he asym ptotics of the eikonal am plitude at larger angles follow s from perform ing the
integral over angles in (34), which yieds

ey (s;t) = 2is2 © 27%g, © 972 dxn x® P72

JTo o (@ xs )(e ®®) 1)
2
(622)
T hen, com bining the B essel fiinction asym ptotics (5.3) w ith a saddlepoint approxin ation

of the Integral gives an asym ptotic am plitude of the form

n O
Texe exp ils( tff 9=2p=0 (6:3)

T his exhibits som e interesting features { such as nonpolynom iality { that we w ill retum
to In the next section.

Onem ay also inquire about im plications for T of the strong gravity behavior outlined
in the preceding section. Recall that the physical features of that behavior were 1) sig-
ni cant scattering, and m oreover absorption, to an angular m om entum that grow s w ith
energy as 1 L(E ), 2) strong absorption for large E and 1 L(E ), and 3) potentially
rapid grow th in the phase, (5.10).

For ;= .= 0, ) gives f1 = 0, so the rst feature im plies nonvanishing f; to
1 L (E);slgni cant absorption m oreover im plies that f§  i=2. T hese becom e conditions

on the integral 7

.p 3 Cy(cos )~ phis) .
: d sin WT [s;t(s; )]_WI (6:4)

where t(s; ) isgiven by (2.9). However, a direct statem ent about T in the strong gravity

regine s t, is not easily nferred from the signi cance of the right side of[(6]4), since
the integral in particular receives a contribution from the Bom regime. For < pz_p and
1< L,onehas1 1 and can use the an allangle approxin ation
c,(1 *=2)7c,) 1 -2 )7 (6:5)
! N . 22 +1)
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The Bom contribution to (6.4) is thus of size

(6:0)

T his show s that one expects a contribution to partialwave am plitudes from both the Bom
and eikonal regions that is signi cant at angularmom enta 1< L (E ).

Indeed, a related fact is that the crosssection due to this sm allangle scattering is
expected to be large as com pared to that of the strong gravity region,

se REH ¢ ©g® 2=0 3. (6:7)

For D > 6, where the sn all angle contribution converges, it can be estin ated using the

im pact param eter w here Bom and eikonalm atch, giving[d]
B -E g2 =0 4, (68)

Large growth of ; and ; with energy imply that f; =2, or di=ds, are amn all,
and rapidly oscillating. Eg. (6.4) thus indicates that T (s;t) correspondingly has rapid
fallo and oscillations. M oreover, we see that exponential allo of £, i=2 would indicate
precise cancellations between the contributions of T (s;t(s; )) in the Bom, eikonal, and
strong gravity regin es; as we have discussed, physical aspects of the scattering such as the
analogy w ith scattering from a xed black hole suggest such fallo .

A sharper statem ent arises if one considers continuation of (5.11)) into the com plex s
plane. Thisform for f;(s) suggests that generically it would grow exponentially som ew here
in the com plex s (or E ) plane. ITn particular, for am all enough k, one nds exponential
grow th In the s upper halfplane (UHP) 0 < Args < : for constant k, this would occur
for

k< —tan——; (69)

and lkew ise for the exam ple of a decreasing power, k / E P. By (6.4), this corresponds
to exponential, thus not polym om ially bounded, growth In T (s;t) for com plex t. W hile
w ith the speci ¢ finctional orm (F.11]), a phase that is too am all leads to grow th that is
not polynom ially bounded, it is conceivable that a m ore com plicated analytic structure of
the exact am plitude avoids this conclusion

5T hough, with added assum ptions like herm itian analyticity/dispersion relations, one m ay
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7. A nalyticity and crossing

W e have investigated aspects of unitarity, particularly via the partialwave expansion;
we now tum to analyticity and crossing.

C onsider scattering of two m assive particles of m assm coupled to gravity. W em ight
in agine these to be an e" e pair, although to avoid com plications of spin we w ill treat
the scalar case. A nother speci ¢ context to contem plate, if in a string theory context, is
scattering ofa D 0 D O pair.

F irst, consider behavior for xed realt< 0, as a function of s. T he two-particle cut
in the schannel begins at s= 4m 2. However, one can also have such a pair annihilate to
tw o or m ore gravitons (in the absence of a net conserved charge), In plying m ultiple cuts
beginning at s = O Likew ise, there are m ultiple u—channel cuts beginning at u = 0.
G ven

s+ t+u=4dm” ; (7:1)

we nd that the u<channel cuts, for xed t, originate at
S (72)

and are taken to extend along the negative s axis. Thus, these cuts overlap those from

s= 0 { there are branch cuts running allalong the real s axis, w ith no gap between them ,
unlike them assive case. T hese featuires ofm assless theories w eaken som e of the constraints
present in m assive theories.

W e lkew ise expect singular behavior at £t = 0; we have noted the Coulomb pole
there, but one m ight nd a m ore general singularity (eg. branch point) when higher—
order processes are accounted for. A s we have already described, this prevents the usual
continuation along the real axis from t < 0 to t > 0, that is a useful tool in m assive

theories.

possibly generalize m ethods of [@@] to show that the exponential allo in () In plies a
lower bound on the phase, eg. > logs, given a polynom ial bound in the UHP ; also, certain
analyticity assum ptions together w ith this f2llo m ight possibly be used to prove violation of
polynom ialbounds in som e region, w ith m ethods like in [@@ ]. W e leave these for future investi-
gation. (Notice that in Q FT we do not expect such a strong absorptive behavior, thus polynom ial
boundedness is expected to lead to a phase bounded above by log s.)

1 Onem ight also contem plate the possibility of worse behavior, eg. e ™ Broome P.
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7.1. Crossing symm etry

For realsy > 4m ?, the physical am plitude with s = sy, t < 0 is assum ed to arise
from the analytic function T (s;t) with s= sp+ 1 Inthelinit ! 0. By themaximal
analyticity hypothesis, T only has sinqularities dictated by unitarity, so can be continued
throughout the s UHP ; likew ise for xed s, one can continue in t, avoiding singularities.

In a m assive theory,at an allt < 0, one can continue in s across the real axis, through
the gap between the cuts. T hisallow sone to de ne the am plitude fors= s; 1 , for large
negative real s, , which by (7.]]) corresponds to u-channel kinem atics. C rossing sym m etry
is the assum ption that a single function T (s;t;u), w ith variables satisfying (7.]]), de nes
am plitudes in all channels through such continuation.

C learly this gpeci ¢ continuation fails in the m assless case, given the lack of a gap
between the cuts. However, it appears possible to still obtain crossing, through use of a
di erent path.

The BEG path

Such a path was given by Bros, Epstein, and G laser in [63], as follow s. F irst, begin at
large sp > 0,and hod u = ug < 0 xed. One can continue through the upper sfplane to
e’ sy. Here, twillapproach the positive realaxiswith a 1 ;we can denote thisas the t
channel. Next, beginning at this point, keep s < 0 xed and continuet! e * t. Thisis
analogous to the preceding continuation, and takest tou* { here the positive realu axis
is approached from above. T he com bined path thus continues from the physical schannel

s" to the physical u-channel u® , perm itting crossjngg

7.2. Crossing and polynom ialloundedness

17 Note that one must also inchide a an all path segm ent from (s;t;u) = ( 9 + 1 ;4m2

Ug + So i;9) to ( 3);4m2 W+ So i+ 1 ). W eassume this is pem itted by su cient
holom orphy in this neighborhood, as in [@], though m ore system atic investigation is conceivably

w arranted.
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Fig. 8: The com plex s plane, indicating som e of the relationships entering

into the Phragm en-1, indelof argum ent for a polynom ialbound.

A nalyticity and crossing constrain possible nonpolynom ial behavior, as we w ill now
discuss; the reader m ay wish to refer to qgure Fig. 8. This cbservation follow s from the
Phragm en-.indelof T heorem : If an analytic functon is lounded along two straight lines
sustaining an angk —, eg. ¥ (F)j< M on the lines, and if T (s) grows atm ost like e®’
with < in any other direction, then in fact T (s) is bounded by M in the whole sector
sustained by the two lines.

Choose, for exam ple, = 1. Let us assum e that the am plitude is quite weakly
bounded, I (s;t< 0)j< e®I. Note that this bound is easily satis ed both by the eikonal
behavior (6.3), and by behavior that could arise from grow th of the strong gravity region,
either from the large absorption coe cients § 1(s)j FF 27=@0 3D 55 or the large
rangeR (E) E™P 3) which suggests behaviorf]] (see the next section), T (s;t< 0)

REp
&R (E)

tT herefore, by the theorem , f we had a nonfpolynom ialgrow th in the UH P, that

would also require a non-polynom ialgrow th in a straight line 1 above the real axis from
1 to+1 .

The region [0;+ 1 ) corregponds to the schannel am plitude. H ow ever, properties of

the G egenbauer polynom ials com bined w ith the optical theorem (see appendix) show that
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T (s;t< 0) < MmT(s;0) st(s)< s . (The polynom ialbound at t= 0 is directly

connected to existence of a forward dispersion relation 3], follow ing from causality, to be

discussed in the next section.) M oreover, we have the high-energy expression

Z Z Z
d sif ° ReTi/ dp 2ReTF< dp FIF/ P72 5 2<8 P72 g5

(7:3)

w here proportionality is m odulo num erical coe cients, and therefore the real part of the

am plitude also m ust be polynom ially bounded, provided it is su ciently sm ooth. (Recall

that in the strong gravitationalregin e the realpart of the am plitude is indeed subdom inant

due to strong absorption).

In m assive theories, the ( 1 ;0] region is related to the u channel am plitude by
com plex con jugation E T his follow s from the property ofherm itHan anal/ticity or extended
unitarity, which is the requirement T (s ;£ ) = T (s;t) . Notice that this im plies f1(s ) =
f1(s) forthepartialwave coe cients. Ifwework at negative values of transferm om entum ,
eg. t < 0, hem itian analyticity also connects the discontinuity across the cuts due to
threshold singularities to the In aginary part of the am plitude by

DiscT (s;t)= 2iIm T (s+ 1 ;%) : (7:4)

W ith am assgap, hem itian analyticity follow s from reality of the am plitude below thresh-
old, along w ith the Schwarz re ection property. In m assless theories the status of herm itian
analyicity rem ains unclear, although it seem s to hold at any order in perturbation theory.
If hemm itian analyticity holds in gravity, it thus also forlbids non-polynom ial grow th along
( 1 ,;0],and so by the above theorem , in the UHP of s.

A conservative con gcture is that gravity respects both crossing sym m etry and herm i-
tian analyticity, and that am plitudes thus satisfy such a polynom ialbound. W e can check
this in the asym ptotics of the eikonal, ((.3), which doesso forD > 4, asdoes the preceding
strong gravity expression.

N onpolynom iality of am plitudes is how ever generally expected to give unbounded be-
havior in other regions of s;t, and u. Indeed, one can directly see indications for such
behavior given the partial wave coe cients (. For exam ple, if k(E ;1) E P for
som ep > 0, then the strong-gravity f;’s given by (5.17]) w illhave polynom ially-unbounded

18 A rough argum ent for this follow s from the relation between the continuations s ! s and
E ! E ; the Jatter corresponds to taking the com plex conjugate of the am plitude.
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behavior som ewhere in the UHP Im (s) > 0. Then, () In plies that T [s;t(s; )]must
likew ise be unbounded. N otice, though, that this is for xed rather than t; thus un-—
boundedness at large $f' corresponds to t 5% . Asdiscussed, even k(E ;1) = O (1)
does not necessarily elim inate this behavior, though positive k { corresponding to tim e
delay { decreases the region of non-Jounded behavior in the UHP. Likewise, k < 0, cor-
regoonding to a tin e advance, increases the dom ain of this behavior. O ne also observes
unbounded behavior from the ekonalphases, (5.19).

Tt is interesting that a polynom ialbound in the physical region Im (s) > 0,t< 0 (and
correspondingly in other channels) follow s from the very generalassum ptions that we have
described, together w ith the assum ption of causality in the form of the forward polynom ial
bound. W e next tum to investigation of connections between polynom iality and locality.

8. Locality vs. nonpolynom iality

T he status of locality in gravity is a very in portant question, given that it is one of
the comerstones of a localquantum eld theory description of nature. Locality is also one
of the assum ptions leading to the inform ation paradox, and conversely, certain violations
of locality inherent to nonperturbative gravity have been proposed as the m echanism for
inform ation to escape an evaporating black ho]e[@f_]l@,@]

If one is restricted to an S-m atrix description of dynam ics, one can ask how speci —
cally locality is encoded in that description. In particular, nonpolynom ialbehavior in the
m om enta, such aswe have described, is suggestive ofnon—]ocalbehavjorﬂ a st heuristic
for this is the observation that nonpolynom ial interactions take the form e’ i position
space, which is clearly not local.

For m assive theories, sharper statem ents can be m ade. In particular, com m utativity
of observables outside the lightcone can be used to show that the forward am plitude is
polynom ialbounded 1], I (s;0)j< s . W ith am ass, such statem ents can be extended 69 ]
both to t< 0 and to com plex values of t, including t> 0.

D i eom orphism invariance forbids local observables in gravity. Tt has been proposed
that local observables are approxin ately recovered from certain relational protolocal ob-
servabks; initial exploration of them in e ective eld theory is described in [E3|E9,[/0]1.

19 For earlier proposals of a role for nonlocale ects, see 451691
20 p Ithough, form ulations of local eld theory with m ild nonpolynom ial behavior have been

proposed@ 1.
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H ow ever, as yet no sharp criterion for locality can be form ulated in term s of these cbserv—
ables, and indeed it has been argued P§[43] that there are fundam ental obstacles to such
precise ]oca]jty@
N onetheless, bounds on am plitudes can also be understood from a physical perspec—
tive, in connection w ith causality. T his becom es particularly clear w ith forward scattering.
Consider st 0+ 1 dim ensional scattering, w ith initial and nal am plitudes related
by an S-m atrix, Z .

£ (D)= afs it & ;) (841)
1

Causality states that if the source ; vanishes for t < 0, the response ¢ does aswell. Tn
the com plex energy plane, this arises as a result of S (E ) having the appropriate analytic
structure, and in particular the needed contour deform ation argum ents require that S (E )
be poknom ially bounded in the UHP forE . Forexample, S(E )= e ¥ would produce
an acausal tin e advance by

T he argum ents for higherdin ensional forward scattering can be form ulated in anal-
ogous fashion; a wavepacket that scatters at zero angle should not reach in nity m ore
rapidly than one that does not scatter, Im plying a polynom ialbound, and corresponding
digpersion re]atjons W hereas in the m assive case such a bound also in plies bounds for
t6 0,the collapse of the Lehm ann ellipse that we have noted in them assless case obstructs
such argum ents.

C onsider, how ever, a physical picture of non—forward scattering, as described in eg.
[747; see Fig. 9. If the scattering has a range R , a wavepacket can shorten its path by an
am ount up to R §FE w ith respect to a path going through the origin, w ith a corresponding
tin e advance. T hus, we would expect asym ptotic behavior

s e’ ¥ (8:2)

which is not bounded. Note, however, that such a picture is appropriate to a repulsive
potential. Tf one instead considers scattering in gravity, eg. in the background of a high—
energy particle, whose gravitational eld is approxin ately A ichelburg-Sex] (see Fig. 10),
the scattering angle is negative, and the particle receives a tim e delay, corresponding to

2l For further discussion, see [IE].

22 The relations betw een causality, analyticity and a wellde ned UV com pletion are interesting
and subtle. Indeed, other strong restrictions on which IR behavior can be consistently com pleted
into a causalUV theory, given existence of forward dispersion relations, are described in [@E]
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Fig. 9: Tustration of scattering by a repulsive interaction of range R ; the
has a path that is shorter by 2R sin; relative to

scattered wave at angle
a wave traveling unscattered through the origin, thus has a relative tim e ad-

vance.
positive phase shift, appropriate to an attractive force. Ifof nite rangeR , this corresponds
to behavior
P —
S e = (8:3)

In thisway, long range behavior of thiskind, which in the absence of a betterde nition
wew illalso callnonlocal,doesnot obviously con ictw ith causality. T hedangerofa con ict

appears even less in an attractive case which produces only tim e delays; correspondingly
one has a polynom ialbound forR / EP in this case when E undergoes a an all enough

positive phase rotation. T hus, plausibly, nonlocality w ith tin e delays is consistent w ith the
existence of a polynom ialbound in the physical region, t< 0, In (s) > 0. T he preceding
section also argued that crossing, herm itian analyticity, and causality im ply such a bound.
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Alichelburg — Sex] Shock Wave

Fig. 10: Iustration of scattering of a particle by the gravitational eld of
an ultrarelativistic source; the scattering angle is negative, corresponding to
attraction, and this results in a path for the scattered wave that is longer by
R sin 2Rp ‘tu=s as com pared to a wave that passes through the scattering

center.

W hile the lJarge phase shifts and strong absorption up to large in pact param eters that
w e have inferred on physical groundsm ight have violated such a polynom ialbound in the
physical region, we have found no evidence for such behavior. It rem ains possible that an
exponential grow th m ay em erge at xed (real) scattering angle, other than = 0. This
how ever does not seam to contradict any fiindam ental property we know , but is another
possible signal of nonlocal behavjorE

In saying this, we should address argum ents of 23] suggesting behavior com bining
B3)wih (83),whereR = R (E ), which would be naturally interpreted in term sofa tin e

advance. However, this arose from a sharp cuto in the partialwave sum and does not

23 As noted, one m ight also consider the possibility, which we haven’t been able to rule out,
that am plitudes, while nonpolynom ial, m ay have su ciently com plicated analytic structure to
stay polynom ially bounded in other regions as well.
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account for the phase shifts. If one avoids = 0, where causality requires cancellations of
non-polynom ialbehaviorf2], we can write
X .
T(s;t)/  (1+ )Cy(cos )&h1le) 226) (8:4)
=0
(the sum of i=2 generatesa (cos 1)). P lausibly, the exact phase shifts and absorptive
coe cients yield only tim edelayed behavior, and a bound in the s UHP.

In the preceding section, we argued that the e ective range of the interaction grow s
with E ;R EP,with p= 1=(D 3) for the strong gravity region, and the rough estim ate
p= 2=0D 4), from [6B), for the ekonal am plitudes. It is interesting to com pare this
behavior to what is com m only regarded as another indicator of unitary localbehavior, the
Froissart bound, which states

R Rf = alogE (8:5)

for constant a. Tn a m assive theory, there is a direct connection between this bound and

polynom ialboundedness. H euristically, this is seen via
A (86)

which is polynom ialbehavior. M ore sharply, the polynom ialbound is used directly in the
proof of the Froissart bound [23[/3]. However, this proof proceeds via the partial wave
expansion in the region t> 0, which we have argued is divergent for gravity.

Tt is tem pting to con cture that there is such a direct connection between pow er-law
grow th of the cross section in gravity and nonpolynom iality, perhaps through appropriate
regqulation of the partial wave expansion. Indeed, as discussed in 23] and above, the

appearance of strong absorption to L g® 2=0 3)

E nE im plies nonpolynom ial
behavior of a truncated partial wave sum E However, as we have argued, we expect the
full sum to be polynom ialbounded in the s UHP, even if it is not polynom ial. O ne issue
arising from m asslessm odes is that we cannot neglect the tailof the partialw ave expansion,

as one does for exam ple in theories w ith a m ass gap, where f; decays exponentially for

24 Note that such strong absorption directly corresponds to a cross—section w ith grow th (@).

T his follow s from taking 1 forl L in (@) evaluated at = 0; this, together w ith the
large-1 asym ptotics C, (1) I =2 )givesT( = 0) id* P)=21,P 2 and thus, by the
optical theorem , (@). O fcourse, aswe have noted, an even larger contribution to t com es from
the eikonal region.
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1 E logE . In our gravitational context, these large Im pact param eter contributions
are central in producing the IR singularities at t= 0. Indeed, m asslessness also plays an
In portant role in the form of the am plitudes in the ekonalregine (where 1 L ),which
appears to dom inate the cross—section at large energies. Since the partial wave expansion
does not converge at t> 0, the Froissart bound can be violated w ithout collateraldam age.
W em ay associate this with a sort of IR /UV m ixing, in the sense that the singularities in
the IR (correspondingly the long—range character of gravity ) perm ita m uch faster grow th in
the cross section deep in the UV w ithout con icting w ith any other fiindam ental property.
N otice that the ekonal am plitudes already provide us with such an exam ple, w ithout
explicit reference to the strong gravity region.

O ne thus nds that m asslessness, and in particular singular behavior at t = 0, non-
polynom iality,and polynom ialgrow th of cross sections are intricately entw ined. O nem ight
question whether all novel features follow from m asslessness alone. However, given that
one does not nd power law grow th R EP in gauge theory, gravity appears distinctive,
due in part to the pow er-law grow th of its coupling w ith energy. O nem ight con cture that
a m assless theory like Q ED is on the borderline of locality, but gravity is in a real sense
not local, as for exam ple evidenced by its grow th of range. Such a con gcture is certainly
pem itted w ithout a sharper characterization of locality.

Tt is interesting to consider one known approach to regulating IR behavior in grav-
iy, nam ely working in an AdS background. W ith AdS curvature R 2, the graviton
e ectively has a m ass . Correspondingly, grow th of black hole radius w ith energy
stops being power law once R 1= , and one in particular nds evidence for Froissart-
like behavior, R / logE , for scattering above this energy {74]. O ne m ight likew ise expect
restoration of polynom ial scattering am plitudes. H owever, the m atter of extracting the
S-m atrix in AdS rem ains an open question[20], despite som e recent progressfLd 19].

Tt isvery interesting that no fundam ental inconsistency hasyet arisen betw een the con—
ditions of unitarity, analyticity, crossing sym m etry, causality, and nonlocality in the sense
described, despite the existence of nontrivial constraints arising from their com bination;
it is also m oreover interesting that gravitational am plitudes could well run the gauntlet
am ong these conditions. Thiswould also been in ham ony w ith argum ents that local eld
theory breaks down In contexts described by the locality bound 323 241, and w ith m ore
general statem ents that the nonperturbative physics that unitarizes gravity (and specif-
ically leads to unitary black hole decay) is not intrinsically localp3], yet retains certain
analytic features and aspects of causality { particularly those necessary for consistency! In
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any case, further exploration of properties of consistent quantum -m echanical am plitudes
for gravity is certainly of great interest.
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A ppendix A .O ptical theorem in D dim ensions
From the unitarity of the S-m atrix we have

X Z
T T =i 2 Pd xT Ty (& l1)
N
where we take ; to be the initial and nal two-body states with p B+ pip =
P3+ pa,and the sum runsover allpossible N particle states allow ed by the sym m etries and
conservation of energy and m om entum . Here we use the Lorentz invariant nom alization

of states,
kk’i= 2 P 21, P Tk ¥ @ 2)

w ith !}f = k% + m?,and introduce the Lorentz invariant m easure

d” 'k

If the Interm ediate N -particle state consists of m om enta g, the N Jody phase space is
de ned by |
dw="p @ & (a4
i i=1
U sing these conventions we have for the dim ensions of the 2 ! 2 scattering am plitude,
[T (s;)]=M * .
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Ifwe now restrict (& ) to orward scattering,eg. = ,wecan replace the LHS by
21 T (s;0),and on the RH S we recognize the sum of the square of the am plitudes w hich

enters in the de nition of the total cross section. R ecall that this isde ned as
n #
1 b X 2
r (! all= —p — (2 ) dyFuid: @ 5)
4 (p 78] miym 5 N

N otice that the prefactor in square brackets goes to 1=(8E,E,) when s m?%;m3. We
are now ready to state the optical theorem , which is nothing but a direct consequence of
unitarity: g

T (s;0)=2 (@ H* mimj (s)! s1(s): (B 6)

W e can also relate the coe cients In the partialwave profctions (32.6), where the optical
theorem takes the orm (in thes m? lin it) 7]

2 p=2X

Tnfi(s)= 8(2 F° ? Pon p)EusiENg)F ; A7)

s
Z N
from which (2.17) ollow s. In this expression the f;(s;fN g) are the partialw ave pro fctions
of the generic Interm ediate states, considered m odulo an overall rotation. The sum runs
over all possible such subclasses of statesf]]. Perform ing the sum over 1 on both sides
reproduces the optical theoram .

A swe am phasized in this paper, due to the m asslessness of gravity we expect singu-—
larities at t= 0. W e noticed before that the IR singularities can be rem oved by working
inD > 4. From the de nition of the cross section we prom ptly discover that we actually

neaed even higher D for it to be well de ned. This follow s from the elastic cross section;

(£3) gives probability
1
j[‘ f 7 . (A -8)

T his R utherford-like singularity is tamed for D > 6 by the integration over solid angle,

w ith m easure sin® >

,giving a nite cross section. O nce the cross sections are nite the
optical theorem (A §) shows that In T (s;0) is also nite. One m ay be tem pted to push
the partial wave expansion to t > 0, but this attem pt fails once we realize that t= 0 is
indeed also a threshold for graviton production, and the partial wave expansion w ill not
converge past that point. The niteness of InT (s;0) is due to the fact that in higher
din ensions the threshold behavior scales as a power of m om entum , eg. ( t), rather

than logarithm ically aswe are used to encountering in fourdim ensional el theordies. This

39



is Intim ately linked to the sofflness of the IR divergences in D > 4 due to the prom otion

4 D
of the m easure in the loop integrals from (2 ?4 to (g ?D . It is then easy to see that the

expansion of the derivatives of T (s;t) at t= 0 w illnot converge and w e cannot analytically

continue the partial wave decom position to positive values of t.

A nalcomment is In order. T he reader m ay be puzzled by the fact that the Bom
approxin ation in () seem s to have a divergent im aginary part as t ! 0 from the i
prescription. A careful analysis show s that is indeed not the case, and such singularity
only arises in the planewave lin it and disappears as soon as we take into account wave
packets. The real part of the am plitude is large, but nite, and give rise to a nite
contribution in the cross section as in @ .9).
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