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ABSTRACT

ThePHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermedi-
ate particles and resonances. Momenta are generated in sucha way that samples of events cover
the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance
can be then taken into account.

The program is based on an exact multiphoton phase space. Crude matrix element is ob-
tained by iteration of a universal multidimensional kernel. It ensures exact distribution in the
soft photon region. Algorithm is compatible with exclusiveexponentiation. To evaluate the
program’s precision, it is necessary to control the kernel with the help of perturbative results. If
availabe, kernel is constructed from the exact first order matrix element. This ensures that all
terms necessary for non-leading logarithms are taken into account. In the present paper we will
focus on theW → lν andγ∗ → π+π− decays. The Born level cross sections for both processes
approach zero in some points of the phase space.

A process dependent compensating weight is constructed to incorporate the exact matrix
element, but is recommended for use in tests only. In the hardphoton region, where scalar QED
is not expected to be reliable, the compensating weight forγ∗ decay can be large. With respect
to the total rate, the effect remains at the permille level. It is nonetheless of interest. The terms
leading to the effect are analogous to some terms appearing in QCD.

The present paper can be understood either as a contributionto discussion on how to match
two collinear emission chains resulting from charged sources in a way compatible with the exact
and complete phase space, exclusive exponentiation and thefirst order matrix element of QED
(scalar QED), or as the practical study of predictions for accelerator experiments.
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1 Introduction

One of the crucial goals of any high energy physics experiments is the comparison between
results of new measurements and predictions obtained from theory. If agreement is obtained,
then the validity domain for the theory is extended. Discrepancy can be attributed to the so
called new physics. This scheme is in principle rather simple, but in practice, it is involved. For
LEP experiments, enormous effort for such a program was documented in [1, 2]. It was nec-
essary because for very precise scattering experiments oneneeds to study radiative corrections
simultaneously with detector acceptance. As a consequence, it was possible to confirm experi-
mentally that the Standard Model was indeed a field theory of elementary particle interactions.
Quantum effects could not be omitted, they had to be includedin calculations. The importance
of this achievement was confirmed by the 1999 year Nobel Prizeattributed to ’t Hooft and
Veltman. Also the 2008 Nobel Prize for the mechanism of quarkflavour mixing [3] required
precise measurements and comparison with data. These experiments, Belle and BaBar, located
respectively in Japan and USA required good control of radiative corrections too [4,5].

Because of the nature of accelerator experiments, it is generally believed that the Monte
Carlo technique is the only suitable tool for the precision comparison of theory with experi-
mental data [1]: effects of detector acceptance can be merged into theoretical predictions by
simple rejection of some of the generated events. Theoretical effects of different nature can be
taken into account, in particular radiative corrections. Amultitude of Monte Carlo programs
were developed in context of QED [6,7] and QCD [8,9]. The references can serve as examples.

Such Monte Carlo programs must rely on results obtained fromperturbative methods. In
the case of QED, exponentiation [10] is useful. Exponentiation is a long established and rigor-
ous scheme of reorganization of perturbative expansions. It was found [11] that Monte Carlo
programs can be developed using it as a basis. Significant theoretical effort was nonetheless
necessary. It required not only explicit calculation of exact fixed order cross sections, but also
to separate them into appropriate parts, at the cross section or the spin amplitude level, to finally
match results of fixed order calculations with coherent exclusive exponentiation (CEEX) [12]
and implement it into computer programs.

QED predicts distributions which are strongly peaked in phase space. They may vary by
more than 10 orders of magnitude. This and the complex structure of infrared singularity can-
cellations, poses a challenge in Monte Carlo method. Appropriate choice of the crude distribu-
tion over the phase space must be found. In the case of multi-photon radiation, a particularly
elegant method was found [12]. Thanks to conformal symmetry, it was possible to construct
a crude distribution which was actually exact from the phasespace point of view. All simpli-
fications were localized in an approximated matrix element.An approximated matrix element
consisting of the Born amplitude multiplied by the so-called soft factors was used at a first step.
Any further improvements could then be easily achieved witha correcting weight. The weight
is the ratio of distributions calculated from an available matrix element obtained perturbatively
to a given fixed order and the one used in first step of the generation.

The case of QCD is by far more complex, but the general principle is similar. One constructs
a simplified matrix element (and approximated phase space) as a basis for the parton shower
algorithms. Such a solution is limited to leading logarithms [13–17]. Phase space organizations
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based on so-called orderings are often used [18,19]. Improvements beyond leading approxima-
tions are possible and widely used [20,21], but have technical difficulties, for example through
the appearance of negative weight events.

Another difficulty of QCD is the necessity to use parameterization ofαs at lowQ2 where the
standard parameterizationαs = αs(Q2) becomes unreliable1. At small scales non-perturbative
aspects of QCD can dominate. Phenomena like underlying event [24] or hadronization [25]
lead to further complications. This is of course on top of hadron structure functions obtained
from experiments [26].

We will not elaborate in our paper on these topics, we think however, that the methods ap-
plied in this paper may provide a useful hint. First results [27] are encouraging. Our paper is
devoted to reliability of thePHOTOS Monte Carlo.PHOTOS is a Monte Carlo [28,29] for the QED
bremsstrahlung in decays. Its structure is similar to the algorithms for QED exclusive exponen-
tiation; the parameterization of its phase space is exact, but its algorithm is iterative2. Conformal
symmetry is not used. This is advantageous, terms responsable for leading logarithms of decay
product are reproduced to all orders.

As in the cases mentioned before effort in understanding results of exact perturbative cal-
culations was necessary for the construction ofPHOTOS. Cross section level distributions, Refs.
[30, 31], were used. Later, thanks to experience gained in KKMC project [12, 32], spin ampli-
tudes were found to be helpful. In particular, results of Refs. [33–35] were used. They were
essential for design and tests of the program, in particularfor the choice of single emission ker-
nels. Thanks to these works, interference of consecutive emissions from a charged line as well
as interference of emissions from distinct charged lines was properly taken into account, with-
out any need to divide the phase space into differently treated sectors. That is also why there
was no need to separate the photon emission phase space into regions where either a shower or
a fixed order hard matrix element is used.

Refs. [36–38] were devoted to numerical tests, but also a better explanation of theoretical
foundation of the program was given there. It may be worth mentioning that for many years
the program’s precision was of no interest and such explanations were delayed to the present
decade.

The best detailed description of the phase space parameterization as used inPHOTOS and the
explanation that it is actually exact, is given in Refs. [37,38]. However, it is not different from
what was already explained in [28,29].

The precision of the program is significantly improved with respect to its early versions. As
it was shown in [36,37], even if the incomplete first order matrix element is used inPHOTOS, its
results agree much better withKKMC using second order matrix element exclusive exponentia-
tion [32] than withKKMC, using matrix element restricted to first order and exponentiation. To
quantify this statement, the method described in [39,40] was used.PHOTOS was found to exploit
result of perturbative calculation quite well, but it cannot be a substitute of such calculations.

The main goal of the present paper is to study spin amplitudesfor construction of the process

1 Discussion of this problem can be found in [22,23].
2That is why it is similar to solutions used in QCD parton showers, but no phase space ordering of any sort is

applied and of course most of the difficulties present in QCD are absent as well. One should also stress differences;
iterated, single emission kernel simultaneously feature all emission sources.
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dependent weight, as in [37,38], but forγ∗→ π+π− andW±→ l±ν. For that purpose, the matrix
element needs to be studied in great detail. Its gauge invariant parts3 need to be identified and
with their help relations with amplitudes of lower orders have to be found. This second aspect
is important and is closely related to properties used in defining factorization schemes, see
eg. [41,42].

Let us point out that in this paper we will not discuss spin amplitudes from the perspective
of matching consecutive emissions from the same charged line. Such studies were performed
earlier [29] and for other decays; these studies required double emission QED amplitudes [34,
35]. We will focus on single photon emission and matching theemissions from two charged
lines inγ∗ → π+π−. The analysis of the spin amplitudes and tests for the algorithm in the case
of Z decay into pair of charged fermion was given earlier, in ref.[37]. The scalar particle decay
into a pair of fermions was covered in [43] and the decay of a spinless particle into a pair of
scalars was studied in [38]. It seems that the algorithm works better (correction weights are
less important) when initial state is spinless4. The case ofW decay was covered in [44], though
some approximations were used and the decay requires to be revisited.

The two processes are not only of the technical interest, they provide examples for studies
of Lorentz and gauge group properties of spin amplitudes andcross sections. Theγ∗ → π+π−

decay is well measured. It is important to improve theoretical uncertainty ofPHOTOS for this
decay, because of its relevance to establishingαQED(MZ) and to phenomenology ofg−2. From
that perspective, the validity of our study is limited by validity of scalar QED5. TheW → lν
decay is of interest for precision measurement ofW mass and width, at LHC for example.

Our paper is organized as follows. In Section 2 we present thescalar QED spin amplitudes
for the processe+e− → γ∗ → π+π−(γ). It will be shown that the spin amplitudes can be sepa-
rated into two gauge invariant parts. Section 3 covers further discussion of the amplitudes, and
the formulae for the cross section used to obtain numerical results. A separation into eikonal
part and remaining parts is also presented. Section 4 is devoted to the numerical results ob-
tained with the help ofMC-TESTER [39,40]. Different options of separating non-leading effects
are demonstrated. Section 5 is devoted to the discussion of further tests, where distributions
sensitive to the beam direction will be used as well. Similarities and differences with respect
to the previous case will be underlined. Section 6 summarizethe paper. Spin amplitudes for
W± → l±ν are given in the Appendix.

2 Amplitudes

One of the necessary steps in the development of any Monte Carlo program is analyzing spin
amplitudes calculated from the theory or phenomenologicalmodel under consideration. Fixed
order analytical results are often not sufficient. Even wellknown amplitudes have to be revisited
again to study their structure. It appears to be fruitful to study decompositions of the amplitude

3 In our case, gauge invariance reduces to independence of longitudinal component of photon polarization.
4This is particularly interesting from the point of view of future attempts to extent into QCD.
5 This last constraint is of course common with the projects such asPHOKARA [45]. PHOTOS will not be better

or worse from that point of view.
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into sums of gauge invariant parts, which can be further factorized into gauge invariant terms. In
particular, to find correspondence with factorization properties of the underlying field theory6.

The spin amplitudes forW → lνγ are collected in the Appendix. In principle they are
straightforward and available already in appropriate formin [44] but let us recall them again to
clarify possible ambiguities on how emission fromW is separated into final state radiation and
initial state radiation. Let us point also to [47], where spin amplitudes for radiative corrections
andW decay Monte Carlo are discussed for the first time. This is an important starting point
for the discussion of radiative corrections necessary for precise measurement ofW lineshape.

In the following, let us concentrate on the processγ∗(p)→ π+(q1)π−(q2)γ(k,ε). Since the
precision required by experiments is lower in this case thanat LEP, we will limit ourselves to
the discussion of amplitudes for single photon emission. Wewill not perform detailed analysis
of virtual corrections. At required level of precision, it is enough to anticipate their size thanks
to the Kinoshita-Lee-Nauenberg theorem [48, 49]. Anyway, scalar QED predictions for our
process are only partly reliable.

The spin structure of our process is new with respect to the processes we have already
studied:Z → l+l−, h→ l+l− or B0 → π+π−. The spin of the initial state can not be transmitted
into helicities of the outgoing particles. That is why we canexpect different properties of the
amplitudes.

If one considers the processe+e− → γ∗(p) → π+(q1)π−(q2)γ(k,ε), amplitudes equivalent
to those given in [50] are obtained. The amplitude can be written asM = VµHµ whereVµ =
v̄(p1,λ1)γµu(p2,λ2). Thep1,λ1, p2,λ2 are momenta and helicities of the incoming electron and
positron. TheVµ define the spin state of the intermediateγ∗.

Let us turn to the virtual photon decay now. Following conventions of [50], the final inter-
action part of the Born matrix element for such process is

Hµ
0(p,q1,q2) =

eF2π(p2)

p2 (q1−q2)
µ. (1)

Herep= q1+q2. If a photon is present, this part of the amplitude reads:

Hµ =
e2F2π(p2)

p2

{
(q1+k−q2)

µq1 · ε∗
q1 ·k

+(q2+k−q1)
µq2 · ε∗

q2 ·k
−2ε∗µ

}
, (2)

which can be re-written to the following form:

Hµ = Hµ
0(p,q1,q2)e

(
q1 · ε∗
q1 ·k

− q2 · ε∗
q2 ·k

)
+

e2F2π(p2)

p2

(
kµq1 · ε∗− ε∗µq1 ·k

q1 ·k
+

kµq2 · ε∗− ε∗µq2 ·k
q2 ·k

)
. (3)

Formally,Hµ
0(p,q1,q2) is as in the Born case, but withp = q1+q2+k instead ofp = q1+q2

for the virtual photon propagator. Let us note, that the firstBorn-like term and two other terms

6The particulary rich case ofe+e− → νeν̄eγ and Monte Carlo implementation of spin amplitudes separated
into parts is discussed in [33,46].
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in the second line of (3) are separately gauge invariant. Thenormalization of space-like part of
H0 is not as at the Born level:|~q1−~q2| <

√
s−4m2

π. The time-like part ofH0 drops out when
the product withVµ is taken.

Let us now return toVµ. Following conventions of [51] it reads:

Vµ = 2
(
|λ+|êµ

1+ iλ+êµ
2−mλ−êµ

3

)
. (4)

whereλ± = λ1±λ2. The vectors satisfy(êα)
µ = δµ

α. We choose ˆe1 to lie in the reaction plane,
while ê2 = p1× (q1−q2)/|p1× (q1−q2)| is chosen to be perpendicular to that plane. The ˆe1

is along incoming electron beam and ˆe0 is proportional top1+ p2. The basis vectors can be
written as

ê0 =
(

1 0 0 0
)
, ê1 =

(
0 1 0 0

)
, ê2 =

(
0 0 1 0

)
, ê3 =

(
0 0 0 1

)
. (5)

We can drop the term proportional to the electron mass.
At Born level the second term in the expression (4) will not contribute becausee2 · (q1−

q2) = 0. The complete amplitude is thus:

MBorn = e2F2π(S)
1√
S
|λ+|ê1 · (q1−q2), (6)

where
√

S is the energy of c.m.. One can see that the amplitude is proportional to sinθB as it
should be. HereθB = ∠p1q1 is a scattering angle. Squared and summed over initial spin states
the amplitude yelds:

∑
λ
|MBorn|2(S,T,U) =

8(4πα)2F2
2π(S)

S2

(
TU−m2

πS
)
. (7)

The Mandelstam variables are defined as follows:

S= 2p1 · p2, T = 2p1 ·q1, U = 2p1 ·q2. (8)

The amplitude (3) for single photon emission can be decomposed into a sum of two gauge
invariant parts:

Hµ = Hµ
I +Hµ

II (9)

or
Hµ = Hµ

I ′ +Hµ
II ′ (10)

where

Hµ
I =

e2F2π(p2)

p2 (q1−q2)
µ
(

q1 · ε∗
q1 ·k

− q2 · ε∗
q2 ·k

)
, (11)

Hµ
II =

e2F2π(p2)

p2

(
kµ
(

q1 · ε∗
q1 ·k

+
q2 · ε∗
q2 ·k

)
−2ε∗µ

)
, (12)

and alternatively

Hµ
I ′ =

e2F2π(p2)

p2

(
(q1−q2)

µ+kµq2 ·k−q1 ·k
q2 ·k+q1 ·k

)(
q1 · ε∗
q1 ·k

− q2 · ε∗
q2 ·k

)
, (13)

Hµ
II ′ =

2e2F2π(p2)

p2

(
kµ

q2 ·k+q1 ·k
(q1 · ε∗+q2 · ε∗)− ε∗µ

)
. (14)
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3 Cross section and amplitude separation

Before going into numerical results, let us elaborate on theformulas presented above in more
details. One can see rather easily that formulas (11) and (13) have a form typical for amplitudes
of QED exclusive exponentiation [52], that is, Born factorsmultiplied by an eikonal factor(

q1·ε∗
q1·k − q2·ε∗

q2·k

)
. In fact, the two expressions differ in the way how the Born factor approach the

genuine Born expression. In both cases the expressions approach the Born in soft photon limit.
In case of (13) this property holds for the photon collinear to π+ or π−. This was achieved
by adding to (13) the term proportional tokµq2·k−q1·k

q2·k+q1·k and subtracting it from (14). As a con-
sequence the expression in the first bracket of (13), in collinear configurations will be close
to q1−q2∓ k respectively ifq1 · k ≪ q2 · k andq2 · k ≪ q1 · k. Thus, it is consistent with LL
level factorization into Born amplitude and eikonal factor. Generally expressions (11) and (13)
differ from a product of Born times eikonal factor only by normalization. This defect is easy
to correct, and we will return to this point later in this section when discussion of cross section
will be given.

Experience with theZ → l+l− decay has shown that it is useful not only to rely on spin
amplitudes, but to collect expressions for amplitudes squared and (partly) averaged over the spin
degrees of freedom, since it can be useful for future work on matching kernels of consecutive
emissions.

If one takes separation (9) for the calculation of two parts of spin amplitudes, after spin
average, an expression for the cross section based on (9) takes the form:

∑
λ,ε

|M|2 = ∑
λ,ε

|MI |2+∑
λ,ε

|MII |2+2∑
λ,ε

MI M
∗
II , (15)

where

∑
λ,ε

|MI |2 = −2e6F2
2π(S)

S2

(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 −
S′

(q1 ·k)(q2 ·k)

)

{(
TU′−m2

πS
)
+
(
T ′U −m2

πS
)
−
(
TT′+UU ′−SS′

)}

=−(πα)
(

m2
π

(q1 ·k)2 +
m2

π
(q2 ·k)2 −

S′

(q1 ·k)(q2 ·k)

)
(A+B+C+D)+

8e6F2
2π(S)

S2

(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 −
S′

(q1 ·k)(q2 ·k)

)
(q1 ·k)(q2 ·k), (16)
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∑
λ,ε

|MII |2 = −2e6F2
2π(S)

S2

{(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 +
S′

(q1 ·k)(q2 ·k)

)

((
TU′−m2

πS
)
+
(
T ′U −m2

πS
)
+
(
TT′+UU ′−SS′

))
−8S

+
4

q1 ·k

(
TU′−m2

πS+
1
2
(TT′+UU ′−SS′)

)

+
4

q2 ·k

(
T ′U −m2

πS+
1
2
(TT′+UU ′−SS′)

)}

= −(πα)
F2

2π(S)

S2

{(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 +
S′

(q1 ·k)(q2 ·k)

)

(A+B−C−D)+
4

q1 ·k

(
B− 1

2
(C+D)

)
+

4
q2 ·k

(
A− 1

2
(C+D)

)}

−8e6F2
2π(S)

S2

(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 +
S′

(q1 ·k)(q2 ·k)

)
(q1 ·k)(q2 ·k)

+8e6F2
2π(S)

S2 (S′+2m2
π +S), (17)

2∑
λ,ε

MIMII
∗ = −4e6F2

2π(S)

S2

{(
m2

π
(q1 ·k)2 −

m2
π

(q2 ·k)2

)

(
−
(
TU′−m2

πS
)
+
(
T ′U −m2

πS
))

− 2
q1 ·k

(
TU′−m2

πS− 1
2
(TT′+UU ′−SS′)

)

+
2

q2 ·k

(
−(T ′U −m2

πS)+
1
2
(TT′+UU ′−SS′)

)}

=−(πα)
{(

m2
π

(q1 ·k)2 −
m2

π
(q2 ·k)2

)
(2A−2B)− 4

q1 ·k

(
B+

1
2
(C+D)

)

− 4
q2 ·k

(
A+

1
2
(C+D)

)}
+8e6F2

2π(S)

S2 (S′+2m2
π −S). (18)

The definitions of termsA,B,C,D,E will be given later in the section.
If instead of expression (9) we use (10) the following relation is obtained:

∑
λ,ε

|M|2 = ∑
λ,ε

|MI ′|2+∑
λ,ε

|MII ′|2+2∑
λ,ε

MI ′M
∗
II ′ , (19)

7



where

∑
λ,ε

|MI ′|2 = −8e6F2
2π(S)

S2

(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 −
S′

(q1 ·k)(q2 ·k)

)

{
(q1 ·k)2

(q1 ·k+q2 ·k)2

(
TU′−m2

πS
)
+

(q2 ·k)2

(q1 ·k+q2 ·k)2

(
T ′U −m2

πS
)
−

(q1 ·k)(q2 ·k)
(q1 ·k+q2 ·k)2

(
TT′+UU ′−SS′

)}

=−(4πα)
(

m2
π

(q1 ·k)2 +
m2

π
(q2 ·k)2 −

S′

(q1 ·k)(q2 ·k)

)

(
(q2 ·k)2

(q1 ·k+q2 ·k)2A+
(q1 ·k)2

(q1 ·k+q2 ·k)2B+
(q1 ·k)(q2 ·k)
(q1 ·k+q2 ·k)2(C+D)

)
+

32e6F2
2π(S)

S2

(
m2

π
(q1 ·k)2 +

m2
π

(q2 ·k)2 −
S′

(q1 ·k)(q2 ·k)

)
(q1 ·k)2(q2 ·k)2

(q1 ·k+q2 ·k)2
′ (20)

∑
λ,ε

|MII ′|2 =
−8e6F2

2π(S)

S2

[
S

(q1 ·k+q2 ·k)2

(
TU′−m2

πS+T ′U −m2
πS+TT′+UU ′−SS′

)

−2S]

=
−(4πα)S

(q1 ·k+q2 ·k)2(A+B−C−D)+
16e6F2

2π(S)

S2

(q1 ·k)2+(q2 ·k)2

(q1 ·k+q2 ·k)2 S. (21)

Note that∑λ,ε |MII ′|2 is free of infrared and collinear divergences. The interference contribution
is given by the following expression:

2∑
λ,ε

MI ′M
∗
II ′ =

−8e6F2
2π(S)

S2

1
(q1 ·k+q2 ·k)2

{(
(2m2

π +S′)
q1 ·k
q2 ·k

−S

)(
TU′−m2

πS
)
+

(
(2m2

π +S′)
q2 ·k
q1 ·k

−S

)(
T ′U −m2

πS
)
+

(
S
2

(
q1 ·k
q2 ·k

+
q2 ·k
q1 ·k

)
−2m2

π −S′
)(

TT′+UU ′−SS′
)}

=
−4πα

(q1 ·k+q2 ·k)2

{(
(2m2

π+S′)
q2 ·k
q1 ·k

−S

)
A+

(
(2m2

π +S′)
q1 ·k
q2 ·k

−S

)
B

−
(

S
2

(
q1 ·k
q2 ·k

+
q2 ·k
q1 ·k

)
−2m2

π −S′
)
(C+D)

}
−

32e6F2
2π(S)

S2(q1 ·k+q2 ·k)2

[
S
2

(
(q1 ·k)2+(q2 ·k)2)− (2m2

π +S′)(q1 ·k)(q2 ·k)
]
.

(22)
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The Mandelstam variables are defined as follows

S= 2p1 · p2, S′ = 2q1 ·q2, (23)

T = 2p1 ·q1, T ′ = 2p2 ·q2, (24)

U = 2p1 ·q2, U ′ = 2p2 ·q1. (25)

Finally

A= ∑
λ
|MBorn|2(S,T′,U), (26)

B= ∑
λ
|MBorn|2(S,T,U ′), (27)

C= ∑
λ
|MBorn|2(S,T,U), (28)

D = ∑
λ
|MBorn|2(S,T′,U ′), (29)

E = 32(4πα)3m2
π
F2

2π(S)

S2 . (30)

Let us point that the complete expression for the amplitude squared is, in comparison to its
parts, short:

∑
λ,ε

|M|2 = 4πα
{ −m2

π
(q1 ·k)2A+

−m2
π

(q2 ·k)2B+
S−2m2

π
2(q1 ·k)(q2 ·k)

(C+D)

}
+E . (31)

We should stress that our two separation options (eqs.(15) and (19)) can have their first terms
even closer to Born-times-eikonal-factor form. For that purpose it is enough to adjust normal-
ization of (11) (or (13)) to Born amplitude times eikonal factor. Compensating adjustment to
(12) (or (14)) is then necessary. The changes can be performed by numerical manipulation of
the three contributions to (15) and (19). The resulting new separation into parts will be dis-
tinguished by additional prime over its parts. For example∑λ,ε |M′

II |2 will be used instead of
∑λ,ε |MII |2.

Such a modification is of interest, because if∑λ,ε |M′
I |2 or ∑λ,ε |M′

I ′|2 is used alone, then it
is the expression used in simulation withPHOTOS Monte Carlo and refinement of [38]. In the
next section, we will perform our numerical investigationswith respect to results obtained from
formulas of ref. [38] (which for our present process is just an approximation).

4 General numerical results

We have performed our numerical studies for the decaying photon virtualities of 2, 20, 200 and
2000 GeV. However in this paper we will show only the case of 2 GeV. The other ones confirm
only that the collinear logarithms are properly reproducedby the simulation with standard set-
up of thePHOTOS kernel and would not add anything relevant to our discussion.
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Let us start with a presentation of the case when the weight for the matrix element is that
for ∑λ,ε |M′

I |2 or ∑λ,ε |M′
I ′|2. As one can see from fig.1 agreement with matrix element of [38] is

excellent over all the phase space. Unfortunately, as it will be discussed in the next section, this
is true only for the case when distributions are averaged over the orientation of the whole event
with respect to incoming beams (or spin state of the virtual photon). At this moment let us note
that as a consequence of strongly varying Born cross section(approaching zero in forward and
backward direction) the resulting weight distribution from ∑λ,ε |M′

I |2 or ∑λ,ε |M′
I ′|2 has a tail.

We have used special techniques to appropriately adapt Monte Carlo simulation to that.
If ∑λ,ε |MI |2 or ∑λ,ε |MI ′|2 is used directly instead of∑λ,ε |M′

I |2 or ∑λ,ε |M′
I ′|2, normalization

of Born-like factor is not performed, differences with respect to formulas of [38] are much
larger, see respectively figs 2 and 3. In the last case discrepancies are smaller, because the
normalization is correct in collinear limit. Finally let uscompare results of complete scalar
QED matrix element with that of [38], see fig. 4. In the high photon energy region there is a
clear surplus of events with respect to the formulas of [38].That contribution should not be
understood as bremsstrahlung, but rather as a genuine process. Anyway in that region of phase
space scalar QED is not expected to work well. Even though expression (31) looks elegant and
is short, it needs to be separated into (at the cross section level) longer expressions, where Born
times eikonal factor part is explicitly separated. Note thedifference between results shown on
figs 1 and 4 is only 0.2 % of the total rate. That is why our detailed discussion is not important
for numerical conclusions, but for the understanding of theunderlying structure of distributions.
Once the status of approximations used inPHOTOS at single photon radiation is understood, we
can, as in other processes iterate and to simulate effects ofmultibremsstrahlung simultaneously
with the detector effects. As an example we show in fig. 5 results of the single photon emission
mode, and compare with the one of multiple emission mode. Differences are rather small. This
may not be the case if selection cuts are present.

Now, let us consider the decayW→ lν(γ). In [44] a simple correcting weight was introduced
into PHOTOS for discrepancies with respect to exact predictions ofSANC [53]. A weight based
on the exact matrix element is presently available, see Appendix. One can check again how
good approximation of ref. [44] is. As one can see from fig. 6 the correction weight reproduces
the result of exact matrix element well. In fig. 7, we show thatonce the exact matrix element
is implemented intoPHOTOS the agreement with the benchmark calculation is better thanthe
statistical error of 108 events. In contrary to the previously studiedγ∗ → π+π−γ case, there
were no problems of weight distribution tail.

5 Numerical results using beam direction

In the previous section we have discussed distributions regarding four-momenta of decay prod-
ucts only. Agreement between results ofPHOTOS using universal kernel and simulations based
on matrix element was excellent both in case ofW → lν(γ) andγ∗ → π+π−(γ) decays, even
though the decaying particle spin effects were not taken into account7 in thePHOTOS kernel.

7This is definitely a complication requiring some attention.It is an interesting aspect of the validation of
PHOTOS, absent in the scalar state [38], but present in case ofZ decay [37], and it is strongly related to limits of
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Figure 1: Distributions of invariant masses normalized to center of mass energy and squared (M2/S)
for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results fromPHOTOS with matrix element taken
from [38] are given in red (or darker grey) colour. If matrix element∑λ,ε |M′

I |2 or ∑λ,ε |M′
I ′ |2 is used (the

two options are effectively identical) results are given ingreen colour. Logarithmic scale is used, but
for the ratio (black line) linear scale is used instead. Fraction of events with photons above 50 MeV is
respectively 4.2279± 0.0021 % and 4.2269± 0.0021% for the two programs.
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(a) This distribution is identical to the distribution of
photon energy in the reaction frame as well.
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squared invariant mass ofπ−γ pair.

Figure 2: Distributions of invariant masses normalized to center of mass energy and squared (M2/S)
for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results fromPHOTOS with matrix element taken
from [38] are given in red colour. If matrix element|MI |2 is used results are given in green colour.
Logarithmic scale is used, but for the ratio (black line) linear scale is used instead. Fraction of events
with photons above 50 MeV is respectively 4.2279± 0.0021 % and 3.4435± 0.0019 % for the two
programs.
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Figure 3: Distributions of invariant masses normalized to center of mass energy and squared (M2/S)
for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results fromPHOTOS with matrix element taken
from [38] are given in red colour. If matrix element∑λ,ε |MI ′ |2 is used results are given in green colour.
Logarithmic scale is used, but for the ratio (black line) linear scale is used instead. Fraction of events
with photons above 50 MeV is respectively 4.2279± 0.0021 % and 3.8329± 0.0020 % for the two
programs.
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(a) This distribution is identical to the distribution of
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Figure 4: Distributions of invariant masses normalized to center of mass energy and squared (M2/S)
for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results fromPHOTOS with matrix element taken
from [38] are given in red colour. If complete matrix elementis used results are given in green colour.
Logarithmic scale is used, but for the ratio (black line) linear scale is used instead. Fraction of events
with photons above 50 MeV is respectively 4.2279± 0.0021 % and 4.4320± 0.0021% for the two
programs.
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Figure 5: Distributions of invariant masses normalized to center of mass energy and squared (M2/S)
for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results fromPHOTOS with matrix element taken
from [38] are given in red colour. If exponentiation is activated as well results are given in green colour.
Logarithmic scale is used, but for the ratio (black line) linear scale is used instead. Fraction of events
with at least one photon above 50 MeV is respectively 4.2279± 0.0021 % and 4.1377± 0.0020% for
the two cases.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1

10

210

310

410

510

M2
π+π−/S

(a) This distribution is identical to the distribution of
photon energy in the reaction frame as well.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1

10

210

310

410

510

610

M2
π+γ/S

(b) It coincides with distributions for squared invariant
mass ofπ−γ pair.

As can be seen from plots 8–11, distributions in variables sensitive to the orientation of
theW boson spin are affected. The plots 8 and 9 show distributionsin the photon momentum
angle with respect to a spin quantization axis as predicted by SANC and byPHOTOS with the
standard kernel in transversally and longitudinally polarized W boson decays. The plots 10
and 11 correspond to the muon momentum orientation. The regions of phase space, where
distributions are sparcely populated and where in fact at Born level probability density approach
zero, are becoming moderately overpopulated byPHOTOS (increase of up to 14 % of density
was found for transversely polarizedW boson decay). In most cases, this is probably of no
practical consequences, nonetheless it requires quantification. Once the exact matrix element is
implemented intoPHOTOS, agreement with theSANC predictions is better than statistical error of
108 events, see fig. 12.

Similar effects take place forγ∗ → π+π−γ. Even though from fig. 1 one could conclude that
the universal kernel of [38], for arbitrary large samples, is equivalent to the matrix element as
given by∑λ,ε |M′

I |2 or ∑λ,ε |M′
I ′|2, differences appear in distributions sensitive to initialstate spin

orientation, see figs 13 and 14. On these plots angular distributions of the photon momentum
with respect to the beam line are shown. Again, regions of phase space giving zero contribution
at the Born level are becoming overpopulated if an approximation for the photon radiation
matrix element is used. From that perspective and for practical reasons one can conclude that the
∑λ,ε |M′

I ′|2 choice is better than∑λ,ε |M′
I |2. It yelds distributions closer to the ones obtained from

universal kernel. Then, the remaining part of (19) represents better correction to implement bulk

factorization.
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Figure 6: Ratios of results fromPHOTOS with the old correcting weight andSANC for the W→ µν̄(γ)
decay distributions.

of effects from complete matrix element to events generatedwith defaultPHOTOS. We can see
also that distributions obtained from kernel of ref. [38] and ∑λ,ε |M′

I |2 are close to each other but
nonetheless distinct. Complete implementation requires control of theγ∗ spin. The Born level
distribution for γ∗ decay has zero at cosθπ± = ±1. Close to these directions internal weight
of PHOTOS necessary for exact matrix element becomes large, see figs. 13,14. Zero which is
also present in distribution of Born levelW decay is of no such consequences for the weight
distribution.

6 Summary

In this paper we have studied matrix elements for theγ∗ → π+π−γ andW → lνγ processes.
We have observed that the expressions can be separated into gauge invariant parts. In both
cases, the part consisting of eikonal factor multiplying the Born level spin amplitude separates.
This part contributes to the infrared singularity. In the case ofγ∗ → π+π−γ the remaining part
does not contribute to collinear singularity but forW → lν it can be separated further: into

14



0 10 20 30 40

R
at

io

0.96

0.98

1

1.02

1.04

1.06

1.08

Photon Energy

8nEv = 10/SANCexactRatio = PHOTOS

/2000W = Mω

 GeVγE

γ ν µ →W 

0 10 20 30 40

R
at

io

0.96

0.98

1

1.02

1.04

1.06

1.08

Muon Energy

 = 0.21966 GeVanalytical
NLOΓ

 = 0.2196(7) GeVsanc_mc
NLOΓ

 GeVµE

-1 -0.5 0 0.5 1

R
at

io

0.85

0.9

0.95

1

1.05

1.1

Photon Angle

/SANCexactRatio = PHOTOS

γθcos

γ ν µ →W 

-1 -0.5 0 0.5 1

R
at

io

0.8

0.9

1

1.1

1.2

1.3

1.4

Acollinearity Angle

acoll.θcos

/SANCecaxtRatio = PHOTOS

Figure 7:Ratios of results fromPHOTOS with the excact correcting weight andSANC for the W→ µν̄(γ)
decay distributions.

the part proportional to theW charge which does not lead to any logarithmic contribution after
integration, and the part proportional to the lepton charge, which do contribute to collinear
singularity and is identical to an analogous part for theZ → l+l− process (see eg. second
or third part of formula 5 in [27]). This is exactly the factorization property needed for the
iterative solution used inPHOTOS to be valid for multiphoton emissions and processes discussed
in present paper.

For γ∗ → π+π−γ, the factor, identified as Born level amplitude is not unique. As expected,
ambiguity is proportional to photon momentum, and disappears in the soft limit. As a con-
sequence of the ambiguity options were discussed. Their difference is of no practical conse-
quences for the present work, but should be kept in mind if theobtained spin amplitude parts
would be used as building bricks for amplitudes of more elaborated processes.

We have identified dominant parts of spin amplitudes and usedthem for tests and for kernels
of PHOTOS Monte Carlo. Exact matrix element was used for that purpose.We have found, that
the whole matrix element for the processW → lνγ can be incorporated into the photon emission
kernel. However forγ∗ → π+π−γ it is not technically straightforward, because of large weight
events. The responsible term was identified and it may be interesting to point out that it is similar
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to the one obtained in a different calculation (Ref. [27] equation (68)). There, such terms were
interpreted as contributing to running of QCD coupling constant. In present calculation the term
involves complete kinematics ofγ∗ → π+π−γ process.
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Figure 13:Angular distributions for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results from
PHOTOS with matrix element taken from [38] are given in red colour. Matrix element∑λ,ε |M′

I |2 is used
for results with green line. Logarithmic scale is used, but for the ratio (black line) linear scale is used
instead. Fraction of presented events (i.e. with photons above 50 MeV) is respectively 4.2279± 0.0021
% and 4.2269± 0.0021% of the total samples for the two programs.
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Figure 14:Angular distributions for e+e− → π+π−(γ) at 2 GeV center of mass energy. Results from
PHOTOS with matrix element taken from [38] are given in red colour.∑λ,ε |M′

I ′ |2 is used for results with
green line. Logarithmic scale is used, but for the ratio (black line) linear scale is used instead. Fraction
of presented events (i.e. with photons above 50 MeV) is respectively 4.2279± 0.0021 % and 4.2271±
0.0021% of the total samples for the two programs.
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Any further investigation of the analogy, would require amplitudes of higher orders. Such
effort can not be justified for scalar QED. From low energy point of view, terms like (12)
or (14) should be understood as genuine scalar QED process, and not part of real photon
bremsstrahlung. Scalar QED is not supposed to be valid in theregions of phase space where
these terms contribute significantly. It is of phenomenological interest to check this limit of
scalar QED predictions by direct comparisons with data. Thanks to present work, higher order
genuine bremsstrahlung effects forγ∗ → π+π−γ can be simulated with the help ofPHOTOS and
one can concentrate on confronting the data with these non-bremsstrahlung parts (12) or (14).

We have neither discussed here the interference with the photons originating from incoming
beams, nor the interference between two consecutive emissions from the same charged line.
The first effect, requires simultaneous treatment of initial-state and final-state bremsstrahlung.
This is out of scope of work onPHOTOS alone, but spin amplitudes are already prepared. For
discussion of interference of two emissions from the same charged line (and resulting uncer-
tainties) second order matrix element is needed. Fortunately the structure of spin amplitudes
for γ∗ → π+π−γ andW → lν matches that ofZ → l+l−γ [33]. At present, we can only expect
that these results onZ → l+l−γ in combination with our algorithm for matching consecutive
emissions, hold for ourγ∗ → π+π− processes. Results of Ref. [54] point that this expectationis
well founded.

We have not discussed virtual corrections. We assume, following Kinoshita-Lee-Nauenberg
theorem [48,49], that the dominant part can be included in a factor multiplying Born amplitude
and the correction to the total rate is free of any large logarithm. We leave this point for future
work.
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Finally, this paper provides numerical tests ofPHOTOS Monte Carlo, in particular construc-
tion for decays where Born level cross section has a zero. This is of practical interest for users
of the program and also a necessary step before any attempt ofan extension to QCD.

A Matrix element for W decay

The matrix element of the processW−(Q,λ)→ l(pl ,λl) ν̄(pν,λν)γ(k,σ) has the form

Mσ
λ,λν,λl

(k,Q, pν, pl) =

[
Ql

2k · pl
bσ(k, pl)−

QW

2k ·Q (bσ(k, pl)+bσ(k, pν))

]
Bλ

λl ,λν(pl ,Q, pν)

+
Ql

2k · pl
∑

ρ=±
Uσ

λl ,ρ(pl ,ml ,k,0,k,0)Bλ
ρ,−λν(k,Q, pν)

− QW

2k ·Q ∑
ρ=±

(
Bλ

λl ,−ρ(pl ,Q,k)Uσ
−ρ,−λν

(k,0,k,0, pν,0) (32)

+Uσ
λl ,ρ(pl ,ml ,k,0,k,0)Bλ

ρ,−λν(k,Q, pν)
)
,

where we use the following notation :

Bλ
λ1,λ2

(p1,Q, p2) ≡ g

2
√

2
ū(p1,λ1) ε̂λ

W(Q)(1+ γ5)v(p2,λ2) ,

Uσ
λ1,λ2

(p1,m1,k,0, p2,m2) ≡ ū(p1,λ1) ε̂σ
γ (k)u(p2,λ2) , (33)

δλ1λ2
bσ(k, p) ≡ Uσ

λ1,λ2
(p,m,k,0, p,m) ,

Ql andQW are respectively the electric charges of the fermionl and theW boson, in units of
the positron charge,εσ

γ (k) andελ
W(Q) denote respectively the polarization vectors of the photon

and theW boson. An expression of the functionUσ
λ1,λ2

in terms of the massless spinors and
other notations can be found in [52]. It is easy to check that the three components of the sum
contributing to (32) are individually gauge invariant. Note, that the first component coincides
with the amplitude in the eikonal approximation.
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