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Processing of cosmological perturbations in a cyclic cosmology
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The evolution of the spectrum of cosmological fluctuations from one cycle to the next is studied. It is
pointed out that each cycle leads to a reddening of the spectrum. This opens up new ways to generate a
scale-invariant spectrum of curvature perturbations. The large increase in the amplitude of the fluctuations
quickly leads to a breakdown of the linear theory. More generally, we see that, after including linearized
cosmological perturbations, a cyclic universe cannot be truly cyclic.
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I. INTRODUCTION

Recently, there has been renewed interest in cyclic cos-
mologies. The motivation comes in part from general
efforts to construct nonsingular cosmological backgrounds
(see e.g. [1] for a recent review), in part from attempts to
construct a cyclic cosmology [2] as an extension of the
Ekpyrotic universe scenario [3].

A problem which faces most attempts at constructing a
cyclic cosmology and which was already pointed out by
Tolman [4] is that the background cosmology cannot be
cyclic if the fact that entropy is generated in each cycle is
taken into account (see, however, [5] for a recent model
which partially resolves this problem). However, as dis-
cussed in [6], the entropy of cosmological perturbations
does not grow as long as the fluctuations remain well
described by linear theory. This is due to the fact that
each perturbation mode continues to describe a pure state
if it starts out describing a pure state.

In this paper we discuss a problem for cyclic cosmology
that arises even in the absence of entropy generation: since
on super-Hubble scales the curvature fluctuations do not
evolve symmetrically—they grow in the contracting phase
and are constant in the expanding phase—there is a net
growth of the fluctuations from period to period, which
destroys the cyclic nature of the cosmology [7].

Since long wavelength modes have a wavelength that in
the contracting phase is larger than the Hubble radius for a
longer time than short wavelength modes, the spectrum of
fluctuations on super-Hubble scales in the contracting
phase is redder than the initial spectrum on sub-Hubble
scales. Thus, both the amplitude and the slope of the
spectrum of fluctuations changes from cycle to cycle—an
effect which we call “processing of the spectrum of cos-
mological fluctuations.” The reddening of the spectrum
takes place in each contracting phase: the initial sub-
Hubble scaling of the spectrum differs from the later
super-Hubble scaling.

The amount of reddening depends on the contraction
rate of the Universe and hence on the equation of state of
the dominant form of matter. As noticed in [8-10], the
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reddening of the spectrum has the right strength to turn a
vacuum spectrum on sub-Hubble scales into a scale-
invariant spectrum on super-Hubble scales if the
Universe is dominated by cold matter. More specifically,
on scales that exit the Hubble radius in a matter-dominated
phase, an initial vacuum spectrum on sub-Hubble scales is
converted into a scale-invariant one on super-Hubble
scales. This observation was used to propose the ‘“matter
bounce” alternative to cosmological inflation for creating a
scale-invariant spectrum of cosmological fluctuations.
Such a matter bounce is naturally realized [11] in the
context of the “Lee-Wick model [12] for scalar field
matter, which is a particular case of the more general
quintom matter bounce scenario [13]. Modified gravity
theories such as the Biswas et al. [14] ghost-free higher
derivative gravity theory or Horava-Lifshitz gravity [15] on
nonflat spatial sections can also lead to matter bounce
scenarios, as studied in [16,17], respectively [18].

In this paper we will compute the change in the ampli-
tude and slope of the spectrum of cosmological perturba-
tions from one cycle to the next. We begin with a short
review of the relevant formalism. Then, we compute the
change in the spectrum of cosmological perturbations from
one cycle to the next.

II. FLUCTUATIONS IN A CYCLIC BACKGROUND
COSMOLOGY

We postulate the existence of a cyclic background cos-
mology. The turnaround between the expanding phase and
the contracting phase at large radius could be generated by
a spatial curvature term (in the absence of a cosmological
constant), for the turnaround between the contracting
phase and the expanding phase new ultraviolet (UV) phys-
ics, which violates the weak energy condition, is required.
In the context of the Einstein field equations, such new UV
physics can be modeled by quintom matter [20].
Asymptotically free higher derivative gravity actions
such as the ones proposed in [14,21] can also lead to a
nonsingular bounce. Finally, in a background with non-
vanishing spatial curvature, Horava-Lifshitz gravity [15]
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can also lead to a bounce under the conditions on matter
spelled out in [17].

In Fig. 1 we present a space-time sketch of a cyclic
cosmology. We choose the origin of the time coordinate
(vertical axis) to coincide with a bounce point. The equa-
tions simplify if we work in terms of conformal time 7,
which is related to the physical time ¢ via dt = a(n)dn,
where a(n) is the scale factor. During the time interval
between — 7. and 7., the new UV physics that yields the
nonsingular bounce is dominant, for other times the effec-
tive equations of motion for gravity are assumed to reduce
to those of Einstein gravity.

The horizontal axis in Fig. I denotes comoving distance
x. The vertical line corresponds to the wavelength of a
cosmological fluctuation mode. This mode crosses the
Hubble radius (the dashed curve) at times * (k).

In the presence of cosmological perturbations without
anisotropic stress, the metric in longitudinal gauge takes
the form
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FIG. 1 (color online). Space-time sketch of the cyclic back-
ground cosmology. Time is along the vertical axis, comoving
length along the horizontal axis. The majenta curve ( labeled by
H) denotes the Hubble radius H~!(¢), the vertical line labeled by
k represents the wavelength of a perturbation mode, which exits
the Hubble radius at the time 7 (k). The origin of the time axis is
chosen to be the nonsingular bounce point (around the bounce
the Hubble radius diverges to infinity, an effect not shown on the
graph. The time 7b is the turnaround from the expanding phase to
the contracting phase.
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ds* = a’(n)[(1 + 2®)dn> — (1 — 2®)dx*], (1)

where the function ®(x, 1) describes the fluctuations (see
e.g. [22] for a review of the theory of cosmological per-
turbations). We are interested in computing the spectrum of
{, the function describing the curvature fluctuations in
comoving coordinates. ¢ is given in terms of @ via

1
1+w

= %(3—[(13’ + D) + D, (2)
H denoting the Hubble expansion rate in conformal time,
a prime indicating the derivative with respect of 7, and
w = p/p being the equation of state parameter of matter
(p and p are pressure and energy density, respectively).
The variable { in turn is closely related to the variable v
[23,24] in terms of which the action for cosmological
fluctuations has canonical kinetic term

(=2 3)
Z

Here, z(7n) is a function of the background, which for
constant equation of state is proportional to the scale factor
a(m).

At linear order in perturbation theory, the equation of
motion for the Fourier mode v; of v is that of a harmonic
oscillator with a mass whose time dependence is given by
the background cosmology

1
vl + <k2 - %)vk =0, )
This shows that, whereas on sub-Hubble scales vy is os-
cillating with approximately constant amplitude, on length
scales larger than the Hubble radius (where the k> term is
negligible) the oscillations of v freeze out and the time
dependence of v is given by that of the background. One of
the solutions of (4) on super-Hubble scales evolves as v ~
z ~ a and corresponds to a constant value of {. The second
mode of v corresponds to a decreasing mode of { in an
expanding Universe. On the other hand, in a contracting
phase it corresponds to an increasing mode.

We see that the evolution of the curvature fluctuation £ is
asymmetric between the contracting phase and the expand-
ing phase. The dominant mode is constant on super-Hubble
scales in the expanding phase whereas it is increasing in the
contracting phase. It is this asymmetry that is responsible
for the processing of the spectrum of fluctuations in a
cyclic background cosmology.

III. PROCESSING OF THE SPECTRUM OF
COSMOLOGICAL PERTURBATIONS

In this section, we will study the processing of the
spectrum of cosmological perturbations from one cycle
to the next. We will consider scales for which the back-
ground is expanding (or contracting) as a power of time

a(t) ~ tP. (5)
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In this case, the solutions of (4) are given by
v(n) ~ 0%, (6)

with
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We are interested in the range of values 1/3 < p < 1 for
which v is a negative number. In the contracting phase
prior to the bounce at n = 0, the dominant solution of (4)
thus scales as

vi(n) ~ p'/2tr ~ p(=2p)/(0=p)), (8)

There are two cases of special interest. First, in a matter-
dominated universe p =2/3 and hence the dominant
mode of v, scales as

vi(np) ~ 77!, )

whereas in a universe dominated by relativistic radiation
p = 1/2 and hence

vi(n) ~ const. (10)

In fact, from (8) we see that for matter with an equation of
state w > 1/3 the amplitude of v is decreasing as the
bounce is approached, whereas for w < 1/3 the amplitude
is increasing. We will focus on the more physical second
case.

Let us assume initial conditions for fluctuations on sub-
Hubble scales at some initial time —n; long before the
bounce point

k\@ni—1)/2
vA—n»:=d—n»AV%f”{;) . an
0

where A; is the initial amplitude of the spectrum of £, n; is
the initial slope, and k is the pivot scale. Our aim is to
calculate the amplitude A, and slope n; after one cycle.

Making use of the fact that v, oscillates until the time
—ny(k) when the wavelength exits the Hubble radius and
subsequently increases in amplitude as given by (8), we see
that at the time — 7, immediately before the bounce, the
time when the weak energy violating effects that yield the
nonsingular bounce start to dominate, the amplitude of v,
is given by

—nH(k))(2p—l)/(1—p)Uk(_Tli)‘ (12)

vk(_nc) = (
|7l

Making use of the Hubble radius crossing condition
nuk) ~ k71, (13)

we obtain the following power spectrum of { just before
the bounce
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The next step of the analysis is to follow v, through the
nonsingular bounce from time —7, to 7.. The first ap-
proach to do this would be to match the values of the
fluctuations at the 2 times using the Hwang-Vishniac [25]
(see also [26]) matching conditions. However, the applica-
bility of this prescription is questionable [27] since the
background does not satisfy these matching conditions.
In the case of a nonsingular bounce we can, however,
follow the evolution of the fluctuations through the bounce
explicitly, assuming the validity of the Einstein equations
for the fluctuations. Since we are dealing with modes that
are in the far infrared (even at the bounce point) compared
to the characteristic scale of the bounce, this assumption is
a safe one to make (as has been verified explicitly in [16]
for the bounce model of [14]). The lesson that has been
learned by following fluctuations through the bounce in
several models [13,28-30] is that the spectrum of v, does
not change on scales for which the wavelength is long
compared to the duration of the bounce. This is clearly
satisfied for the case of interest to us.

In the expanding phase, the amplitude of ¢, is constant
on super-Hubble scales. After the wavelength reenters the
Hubble radius, the amplitude of v; does not change until
the mode leaves the Hubble radius once more in the con-
tracting phase of the following cycle. To obtain the change
in the spectrum of cosmological perturbations, we need to
evaluate the spectrum of fluctuations at the time 7;, the
mirror image of the initial time. The spectrum at n; will be
identical to the spectrum at the time corresponding to — 7,
in the next cycle.

To compute this spectrum, note that the amplitude of ¢,
is decreasing between the time 7y(k) when the mode
reenters the Hubble radius and the time 7, since it is vy,
which has constant amplitude during this time interval.
Thus,

2(ny (k)

P{(kr 771') - ( Z(nc)

2
)&wm) (17)

Making use of the fact that z scales as 7”/(!~?) and of the
relations (14) and (16) we find
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(k) 2p/(1=p) B B B k\n,—1
patnd = (O 200 ()
c 0

Ay
with
np=n; — 231"’__[)1 (19)
and
Ap = Ai( ko) 72CP=D/0=p), (20)

The results (19) and (20) give the change in the slope and
in the amplitude of the spectrum of cosmological pertur-
bations from one cycle to the next. Each cycle leads to a
reddening of the spectrum and to an increase in its ampli-
tude. The slope changes by —2(3p — 1)/(1 — p). The
increase in amplitude soon leads to a breakdown of the
validity of the perturbative analysis, with consequences for
the multiverse discussed in [31].

As mentioned in the Introduction, if p = 2/3, then an
initial vacuum spectrum (n = 3) on sub-Hubble scales is
transformed into a scale-invariant spectrum after the
bounce. If we want an initial Poisson spectrum (n = 4)
to be transformed into a scale-invariant spectrum after one
complete cycle in the second expanding phase, the back-
ground needs to satisfy p = 7/13, i.e. an equation of state
close to that of radiation. This is a simple application of the
processing of the spectrum of cosmological perturbations,
which we have discussed here.

IV. CONCLUSIONS AND DISCUSSION

We have studied the evolution of the linear cosmological
fluctuations from one cycle to the next in a cosmology with
a periodic background. Because of the asymmetry in the
evolution of fluctuations in the contracting and expanding
phases, there is a large increase in the amplitude of the
perturbations from one bounce to the next. In addition,
there is a characteristic reddening of the shape of the
spectrum.
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The immediate implication of our analysis is that the
evolution of the Universe in a cosmology with a cyclic
background is not cyclic (as already stressed in [31]).

The characteristic processing of the slope of the spec-
trum of perturbations thatwe discuss in this paper in prin-
ciple opens up new avenues of generating a scale-invariant
spectrum of perturbations during a specific cycle. For
example, a matter-dominated background with a spectrum
with an initial steep blue index n, = 5 will yield a scale-
invariant spectrum after two bounces, in the same way that
an initial vacuum spectrum with n; = 3 yields a scale-
invariant spectrum after one bounce [9]. The processing
of fluctuations also opens up new ways of generating a
scale-invariant spectrum of curvature perturbations starting
from thermal inhomogeneities [32]. Note that a character-
istic feature of such scenarios are large non-Gaussianities
with a particular shape, as worked out in [33].

However, the increase in the amplitude of the fluctua-
tions quickly leads to a breakdown of the linear analysis.
The nonlinear evolution will then lead to entropy produc-
tion and to the usual problems for cyclic background
cosmologies first discussed in [4].

We should note that the cyclic version [2] of the
Ekpyrotic universe scenario does not suffer from the prob-
lems discussed here since the scale factor of “our”
Universe in the Ekpyrotic model [3] is not cyclic. The
only cyclicity in the Ekpyrotic scenario is in the evolution
of the distance between the two boundary branes. The scale
factor of our Universe is monotonically increasing. Thus,
perturbations produced at a fixed physical scale in one
“cycle” are redshifted by the time the next cycle arrives.
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