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imation. We remove that approximation, without introducing any cost in complexity, and

demonstrate that the new variable is a clear improvement over the old: its performance is
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the fit uncertainty on the Higgs mass in that channel by a factor approaching two.
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1 Introduction

The mass of the Higgs boson is the last unknown parameter of the Standard Model. Here,

we present a method to measure it at a hadron collider, assuming the Higgs exists and

is sufficiently massive (mh & 130GeV ) that it decays predominantly to W -bosons. The

method is based on the transverse mass observable, mT , that was originally used to measure

the masses of the W -bosons themselves, via their decays, W → lν, to a lepton and a

neutrino. There, since the neutrino is invisible in a detector, one cannot simply reconstruct

the mass of the parent W from the invariant mass of the lν daughter system; the transverse

mass mT circumvents this problem. Similarly, in the case of Higgs decays to two W s (one

or more of which may be significantly off-mass-shell), then if the W s subsequently decay

leptonically to lν, we end up with two invisible neutrinos in the final state. We will describe

a generalization of mT whose distribution features an edge, which will enable us to extract

mh directly. We believe that the method both complements, and improves upon, existing

strategies [1–3] for measuring mh in this channel, and we encourage experiments to make

use of it. The distribution should also aid ongoing Higgs searches at the Tevatron [4, 5].

We also briefly discuss potential applications to mass measurement of other parti-

cles at the LHC, for example new resonances (such as Kaluza-Klein gluons from an extra

dimension) that decay to tt, as well as the lightest stable superpartner (LSP) in supersym-

metric theories.

The original application of the transverse mass was in measurement of mW [6–8].

We define

m2
T ≡ m2

v + m2
i + 2(evei − pv · pi), (1.1)

where p is the momentum transverse to the beam, e =
√

p · p + m2 denotes the transverse

energy, and v and i label the visible and invisible decay products respectively, (a charged

lepton and a neutrino in the case at hand).
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This definition of mT has two desirable features: first, since the mass of the neutrino

is unknown, but negligible, and the transverse momentum of the neutrino can be inferred

from the missing transverse momentum in the event, mT is indeed an observable; second,

mT is always bounded above by the mass mW of the parent W . This is easily shown using

the invariant mass constraint

m2
W = m2

v + m2
i + 2(EvEi − pv · pi − qvqi), (1.2)

where q is the longitudinal momentum and E =
√

q2 + p · p + m2 is the energy, together

with the lemma

EvEi − qvqi ≥ eiev, (1.3)

with equality at Evqi = Eiqv, which the reader may easily prove for himself. Thus, by

computing the distribution of mT in many events, mW appears as the upper endpoint.

(In practice, the finite decay width of the W and other effects lead to mW appearing as a

Jacobian peak in the data.)

Recently, a number of generalizations of mT have appeared [9–18], with diverse ap-

plications for LHC mass measurements. They include generalizations to: decays with

multiple visible daughters; decays with a massive invisible daughter (such as a DM can-

didate); and decays of pair-produced parent particles. The last of these has already been

used to measure the mass of the top quark in the process tt → bbW+W− → bbl+l−νν at

the Tevatron [19].

2 More invisibles

There is one other generalization that can be made, which is to situations where a single de-

cay in itself contains more than one invisible daughter. Practical examples include the single

Higgs decay h → WW (∗) → ℓ+ℓ−νν̄, the decay of new resonances (such as a Kaluza-Klein

gluon) to tt, followed by a semi-leptonic decay of each top, t → bW → blν, or pair decays

in supersymmetric theories with both the lightest superpartner and neutrinos in the final

state. To generalize mT to such a situation, the obvious thing to do is to replace mi in (1.1)

by the invariant mass of the invisible system [20]. Now, in any event, mi goes unobserved,

but it is useful nevertheless to consider its properties. A first observation is that mi, though

a relativistic invariant, now varies from event to event, taking values on some real, positive

interval. The endpoints of this interval, mi≶, are fixed by the particular decay topology. For

example, if a parent of mass m0 undergoes a pointlike three-body decay to one visible parti-

cle of mass mv and two massless invisible particles, the lower and upper endpoints are given

by mi< = 0 and mi> = m0−mv, respectively, whereas if the decay involves an intermediate

resonance of mass mI , they are given by mi< = 0 and mi> =
√

(m2
0 − m2

I)(m
2
I − m2

v)/m
2
I .

What is more, it is easy to show that mT is a monotonically increasing function of m2
i .

We thus have the chain of inequalities

mT (mi = mi<) ≤ mT (mi) ≤ m0. (2.1)

If mi< is known, then mT (mi<) is an observable that is bounded above by m0; if mi< is un-

known, we can determine it using a generalization of the kink method described in [12–15].

– 2 –
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2.1 Higgs decays

For the Higgs decay h → WW (∗) → ℓ+ℓ−νν̄, it is simple enough to show that mi< = 0,

when we ignore the mass of the neutrinos. To wit, consider the on-shell decay h → WW →
ℓ+ℓ−νν̄, with h at rest in the laboratory, in which the two W s are emitted back-to-back.

Then let the two W s decay such that the neutrinos are emitted parallel to each other (not

anti-parallel). In this configuration, mi = 0. Since mi is positive semi-definite, mi< = 0.

Similar arguments apply to the off-shell decay h → WW ∗.

That the inequalities in (2.1) can be made into equalities also follows from the existence

of these kinematic configurations. Thus, by computing

(mtrue
T )2 ≡ m2

T (mi = 0) = m2
v + 2(ev |pi| − pv · pi), (2.2)

in many events, we should obtain a distribution in mtrue
T whose endpoint yields the mass

of the Higgs boson. Since the observable defined in (2.2) is truly bounded above by m0,

we distinguish it from other transverse-mass-like observables by giving it the label mtrue
T .

In work to date [1, 21, 22], an alternative transverse mass has been used,

mapprox
T ≡ mT (mi = mv). (2.3)

The justification for replacing the unknown mi by the observable mv in those papers is

that for Higgs bosons with masses close to 2mW and produced at or near threshold, each

W boson will decay almost at rest, therefore mi ≈ mv. We note though that mapprox
T is

not bounded above by m0. Not knowing mi and without using the above approximation,

the best lower limit we can place on mh will be with the true transverse mass (2.2).

2.2 h → WW (∗) simulation

To investigate the relative performance of the alternative transverse mass variables (2.2)

and (2.3) we use the HERWIG 6.505 [23, 24] Monte Carlo generator, with LHC beam condi-

tions (
√

s = 14TeV). Our version of the generator includes the fix to the h → WW (∗) spin

correlations described in [25]. Our simulations do not include all corrections from higher

orders in αs (see e.g. [26] for a comparison). These will be important to consider when

later comparing against real experimental distributions.

We generate unweighted events for Standard Model Higgs boson production (gg → h)

and for the dominant background, qq̄ → WW .1 Final state hadrons with pT > 0.5 GeV

and pseudorapidity |η| < 5 are clustered into jets using the longitudinally invariant kT clus-

tering algorithm for hadron-hadron collisions [27] in the inclusive mode [28] with R = 1.0.

The missing transverse momentum pi is calculated from the vector sum of the transverse

momenta of the neutrinos. No detector simulation is applied in this paper. Detector effects

should provide a relatively small correction since lepton momenta are very well measured

at these energies [1, 2], and the dominant contribution to the missing transverse momen-

tum pi will be from recoil against well-measured leptons. There will be some additional

smearing of pi from mismeasured and out-of-acceptance hadrons but such corrections are

small when the hadronic transverse energy in the event is small [1].

1Other backgrounds, such as Z → 2τ , are rendered sub-dominant by the cuts discussed below [1].
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Figure 1. Signal-only distributions of mapprox
T

(top) and mtrue
T

(bottom) for various values of mh

(in GeV). No cuts on ∆φmax
ℓℓ

and pmin
T WW

have been applied.

Selection cuts are applied based on [1], requiring:

• Exactly two leptons ℓ ∈ {e, µ} with pT > 15 GeV and |η| < 2.5

• Missing transverse momentum, 6pT > 30 GeV

• 12GeV < mℓℓ < 300GeV

• No jet with pT > 20 GeV

• Z → ττ rejection: the event was rejected if |mττ −mZ | < 25GeV and 0 < xi < 1 for

both i ∈ {1, 2}2

• Relative azimuth ∆φℓℓ < ∆φmax
ℓℓ

• Transverse momentum of the W pair system, pT WW > pmin
T WW

As has been done in previous studies [1], we optimize the values of the latter two cuts,

∆φmax
ℓℓ and pmin

T WW for each Higgs boson mass. In this case we select the values which would

be predicted to best constrain mh – experimentally one would select cuts which would give

the best expected measurement once an approximate Higgs boson mass was known. The

optimal values ranged from 1.4 to 2.4 for ∆φmax
ℓℓ and 0 to 10 GeV for pmin

T WW .
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Figure 2. Example pseudo-experiment mtrue
T

distribution (points with error bars) and model

distribution (shaded histograms) for integrated luminosity of 10 fb−1. The plot includes the WW

background and is made for mh = mmodel
h

= 180 GeV , ∆φmax
ℓℓ

= 1.8 and pmin
T WW

= 10 GeV .

Both observables correlate with mh (see figure 1), so it is possible to make a mass mea-

surement with either. However mapprox
T does not provide a strict event-by-event lower bound

on mh, whereas the kinematic endpoint of the mtrue
T distribution shows a clear edge at mh.

To examine the relative performance of the two variables, we generate distributions of

them for various choices of mh. This is done for twenty independent pseudo-experiments

(including both signal and the dominant WW background contributions), each correspond-

ing to integrated luminosity of 10 fb−1. Each pseudo-experiment is compared to (signal

and WW background) model distributions with differing hypotheses of mmodel
h .

An example pseudo-experiment distribution for mtrue
T is shown in figure 2. For each

pseudo-experiment the binned log likelihood of the data is calculated. Each likelihood is

maximised over the normalisations of the model h → WW signal and WW background

distributions, reflecting our uncertainty in the cross-sections and luminosity:3

logL(mh,mmodel
h ) =

〈

max
fSIG

fBG

∑

i

logLP
(

ntrial
i ;xi

)

〉

trials

where the sum is over histogram bins, LP (n;x) is the Poisson likelihood and

xi(fSIG, fBG,mmodel
h ) is the expected number of events if signal and background cross sec-

tions are f times their leading-order Monte Carlo predictions. The angle brackets indicate

an average over the twenty pseudo-experiments.

2The variable xi is the momentum fraction of the ith tau carried by its daughter lepton and mττ is

the di-tau invariant mass. They are calculated using the approximation that each τ was collinear with its

daughter lepton.
3While uncertainties in the shapes of these distributions are also likely to be important, they are difficult

to estimate without collision data and so are not considered in this paper. We note that shape effects are

likely to be more detrimental for m
approx

T
; the position of the kinematic edge in mtrue

T should be robust

against uncertainties in smoothly-varying background parameters.
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Figure 3. Relative log likelihood distributions for various Higgs boson masses for

each of several different input masses and for both mapprox
T

(dashed) and mtrue
T

(solid).

The points correspond to integrated luminosity of 10 fb−1, and are plotted for mh ∈
{130, 140, 150, 160, 170, 180, 200, 220, 240}GeV.

The resulting curves of −2∆ logL are plotted in figure 3, where ∆ indicates the dif-

ference from the minimum value. The relative precision with which each method can be

expected to measure the Higgs boson mass is determined from a quadratic fit to −2∆ logL
around the minimum. The fractional uncertainties (figure 4) show that the true transverse

mass performs somewhat better than the approximate version for all mh, so there appears

to be no advantage in making the approximation mi ≈ mv. When mh > 2mW there is a

significant penalty to pay for assuming mi ≈ mv — the true transverse mass provides the

higher-precision measurement.

The absolute uncertainties (for both variables) will obviously be somewhat broad-

ened when experimental resolution and sub-leading backgrounds are included. While such

detailed simulations are beyond the scope of this paper, we project that the desirable

properties of mtrue
T will mean it is also the more appropriate variable in the real world.

One might also expect mtrue
T to be a good selection variable for Higgs boson discovery

and for measuring the product of cross-section and branching ratio for Higgs production

and di-leptonic decay, by counting the number of signal events. Indeed, as discussed in the

appendix, we find that mtrue
T again gives an improvement, albeit a slight one, over mapprox

T

in both cases.

2.3 Other applications

There are many other possible decay processes at the LHC involving multiple invisible

daughters, to which similar methods might be applied. One is to decays of new reso-

nances, such as a Kaluza-Klein gluon from an extra dimension [29], in the tt channel,

followed by semi-leptonic decays of the tops. For heavy resonances (existing constraints

suggest that a KK gluon should be multi-TeV, for example), the approximation will

certainly be inappropriate.
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Figure 4. The bands show the fractional uncertainty with which one could expect to measure mh

with mapprox
T

(black) and mtrue
T

(shaded) as a function of mh. The integrated luminosity simulated

is 10 fb−1.

A second example is supersymmetric decays involving both the LSP and neutrinos.

There, we do not know the mass of the LSP and we are forced to resort to a kink-based

method, as in [12–15].

3 Conclusions

There seems to be no advantage in using the approximate version of the transverse mass

— whether for Higgs boson discovery, for mass determination or for measuring event rates.

Indeed our simulations show that the approximation is often counter-productive, partic-

ularly if the objective is to make a Higgs boson mass measurement and especially when

mh > 2mW . The true transverse mass is easy to calculate, and (unlike the approximate

version) provides an event-by-event lower bound on mh.

These results should be cross-checked with more detailed studies with: full detector

simulation; more sophisticated models for the signal and background distribution shape

uncertainties; and with calculations to higher orders in αs.
4 Future work should also

consider the case of Higgs boson production via vector boson fusion for which one might

expect rather similar results.

Other examples of processes where this generalization of mT could be used include

Kaluza-Klein gluon decays gKK → tt̄, where the top quarks decay via leptonic W bosons,

and supersymmetric decays involving neutrinos, such as χ̃+
1 → ℓνχ̃0

1.

Although we have focussed our attention here on the decay h → WW , it is worth

remarking that, in the case of an Standard Model Higgs boson with mh > 2mZ , the decay

channel h → 2Z → 4l will allow the Higgs mass to be measured at the per mille level.

Nevertheless, the decay h → WW would provide an important corroborative measurement.

4A subsequent study with full detector simulation [30] confirms our results and, in addition, suggests

that the true transverse mass appears to have the advantage over m
approx

T
of being less correlated with ∆φℓℓ.
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A Higgs discovery and branching ratio

To quantify the Higgs boson discovery potential using mtrue
T as a selection variable, we

calculate the log likelihood difference

−2∆ logL = −2
〈

logL − logL 6h
〉

trials
,

where L 6h is the likelihood of the trial data when the model contains no Higgs boson

contribution. L is maximised over fSIG, fBG and mmodel
h ; L 6h is maximised over fBG.

Plots of this −2∆ logL are shown as a function of mh in figure 5. The absolute numbers

are optimistic, since the discovery potential will be reduced by subdominant backgrounds

and detector resolution, but the relative performance of the two variables is meaningful.

One can see that the plots are rather similar, but there may be a small advantage in using

mtrue
T rather than mapprox

T when mh > 2mW .

The branching ratio of the Higgs boson to W boson pairs is another parameter of

significant interest. The relative precision with which one could measure the number of

signal events, which is proportional to σ(pp → h)×BR(h → WW (∗)), was determined from

quadratic fits to

logL(mh, fSIG) =

〈

max
fBG, mmodel

h

∑

i

logLP
(

ntrial
i ;xi

)

〉

trials

for various mh. The resulting fractional uncertainty bands are shown in figure 6. There is

again an advantage in using mtrue
T , though in this case it is slight.
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