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ABSTRACT

We consider the Bekenstein-Hawking entropy-area formula in four dimensional extended
ungauged supergravity and its electric-magnetic duality property.

Symmetries of both “large” and “small” extremal black holes are considered, as well as
the ADM mass formula for N = 4 and N = 8 supergravity, preserving different fraction of
supersymmetry.

The interplay between BPS conditions and duality properties is an important aspect of
this investigation.
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1 Introduction

In d = 4 extended ungauged supergravity theories based on scalar manifolds which are (at
least locally) symmetric spaces

M =
G

H
, (1.1)

it is known that the classification of static, spherically symmetric and asymptotically flat
extremal black hole (BH) solutions is made in terms of charge orbits of the corresponding
classical electric-magnetic duality group group G [1, 2, 3, 4, 5, 6] (later called U -duality1 in
string theory) .

These orbits correspond to certain values taken by a duality invariant2 combination of
the “dressed” central charges and matter charges. Denoting such an invariant by I, the set
of scalars parametrizing the symmetric manifold M by φ, and the set of “bare” magnetic
and electric charges of the (dyonic) BH configuration by the 2n× 1 symplectic vector

P ≡

 pΛ

qΛ

 , Λ = 1, ..., n, (1.2)

then it holds that
∂φI (φ,P) = 0⇔ I = I (P) . (1.3)

1Here U -duality is referred to as the “continuous” version, valid for large values of the charges, of the
U -duality groups introduced by Hull and Townsend [7].

2By duality invariant, throughout our treatment we mean that such a combination is G-invariant. Thus,
it is actually independent on the scalar fields, and it depends only on “bare” electric and magnetic (asymp-
totical) charges (defined in Eq. (1.2)).
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In some cases, the relevant invariant I is not enough to characterize the orbit, and additional
constraints are needed. This is especially the case for the so-called3 “small” BHs, in which
case I = 0 on the corresponding orbit [3, 4, 9].

An explicit expression for the E7(7)-invariant [10] was firstly introduced in supergravity
in [11], and then adopted in the study of BH entropy in [12]. The additional U -invariant
constraints which specify charge orbits with higher supersymmetry were given in [3]. The
corresponding (large and small) charge orbits for N = 8 and exceptional N = 2 supergravity
were determined in [4], whereas the large orbits for all other symmetric N = 2 supergravities
were obtained in [6], and then in [13] for all N > 2-extended theories. Furthermore, the
invariant for N = 4 supergravity was earlier discussed in [14, 15].

The invariants play an important role in the attractor mechanism [16, 17, 18, 19, 20],
because the Bekenstein-Hawking BH entropy [8], determined by evaluating the effective black
hole potential ([18, 19, 20])

VBH (φ,P) ≡ −1

2
PTM (φ)P (1.4)

at its critical points, actually coincides with the relevant invariant:

SBH
π

= VBH |∂φVBH=0 = VBH (φH (P) ,P) = |I (P)|1/2 (or |I (P)| ). (1.5)

In Eq. (1.4) M stands for the 2n × 2n real (negative definite) symmetric scalar-dependent
symplectic matrix

M (φ) ≡

 ImNΛΣ +ReNΛΞ (ImN )−1|Ξ∆ ReN∆Σ −ReNΛΞ (ImN )−1|ΞΣ

− (ImN )−1|Λ∆ ReNΞΣ (ImN )−1|ΛΣ

 , (1.6)

defined in terms of the normalization of the Maxwell and topological terms4

ImNΛΣ (φ)FΛFΣ, ReNΛΣ (φ)FΛF̃Σ (1.7)

of the corresponding supergravity theory (see e.g. [21, 22] and Refs. therein). Furthermore,
in Eq. (1.5) φH (P) denotes the set of charge-dependent, stabilized horizon values of the
scalars, solutions of the criticality conditions for VBH :

∂VBH (φ,P)

∂φ

∣∣∣∣
φ=φH(P)

≡ 0. (1.8)

For the case of charge orbits corresponding to small BHs, in the case of a single-center
solution I (P) = 0, and thus the event horizon area vanishes, and the solution is singular

3Throughout the present treatment, we will respectively call small or large (extremal) BHs those BHs
with vanishing or non-vanishing area of the event horizon (and therefore with vanishing or non-vanishing
Bekenstein-Hawking entropy [8]). For symmetric geometries, they can be G-invariantly characterized respec-
tively by I = 0 or by I 6= 0.

4Attention should be paid in order to distinguish between the notations of the number N of supercharges
of a supergravity theory and the kinetic vector matrix NΛΣ introduced in Eqs. (1.6) and (1.7).
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(i.e. with vanishing Bekenstein-Hawking entropy). However, the charge orbits with van-
ishing duality invariant play a role for multi-center solutions as well as for elementary BH
constituents through which large (i.e. with non-vanishing Bekenstein-Hawking entropy) BHs
are made [23, 24, 25].

In the present investigation, we re-examine the duality invariant and the U -invariant
classification of charge orbits of N = 8, d = 4 supergravity, we give a complete analysis
of the N = 4 large and small charge orbits, and we also derive a diffeomorphism-invariant
expression of the N = 2 duality invariant, which is common to all symmetric spaces and
which is completely independent on the choice of a symplectic basis.

The paper is organized as follows.

In Sect. 2 we recall some basic facts about electric-magnetic duality in N -extended
supergravity theories, firstly treated in [2]. The treatment follows from the general analysis
of [1], and the dictionary between that paper and the present work is given.

In Sect. 3 we re-examine N = 8, d = 4 supergravity and the E7(7)-invariant charac-
terization of its charge orbits. This refines, re-organizes and extends the various results of
[3, 4, 5, 9].

In Sect. 4 we reconsider matter coupled N = 4, d = 4 supergravity. The SL (2,R) ×
SO (6,M)-invariant characterization of all its BPS and non-BPS charge orbits, firstly ob-
tained in [3, 9], is the starting point of the novel results presented in this Section.

Sect. 5 is devoted to the analysis of the N = 2, d = 4 case [3]. Beside the generalities
on the special Kähler geometry of Abelian vector multiplets’ scalar manifold, the results of
this Section are novel. In particular, a formula for the duality invariant is determined, which
is diffeomorphism-invariant and holds true for all symmetric special Kähler manifolds (see
e.g. [26] and Refs. therein), regardless of the considered symplectic basis.

Sect. 6, starting from the analysis of [3, 9], deals with the issue of the ADM mass [27] in
N = 8 (Subsect. 6.1) and N = 4 (Subsect. 6.2), ungauged d = 4 supergravities. In general,
for all supersymmetric orbits the ADM mass has a known explicit expression, depending on
the number of supersymmetries preserved by the state which is supported by the considered
orbit (saturating the BPS [28] bound).

2 Electric-Magnetic Duality in Supergravity : Basic Facts

The basic requirement for consistent coupling of a non-linear sigma model based on a sym-
metric manifold (1.1) to N -extended, d = 4 supergravity (see e.g. [21] and Refs. therein)
is that the vector field strengths and their duals (through Legendre transform with respect
the Lagrangian density L)

FΛ, GΛ ≡
δL
δFΛ

, (2.1)
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belong to a symplectic representation Rs of the global (classical, see Footnote 1) U -duality
group G, given by 2n× 2n matrices with block structure A B

C D

 ∈ Sp (2n,R) , (2.2)

where A, B, C and D are n × n real matrices. By defining the 2n × 2n symplectic metric
(each block being n× n)

Ω ≡

 0 −1

1 0

 , (2.3)

the finite symplecticity condition for a 2n× 2n real matrix P

P TΩP = Ω (2.4)

yields the following relations to hold for the block components of the matrix defined in Eq.
(2.2):

ATC − CTA = 0; (2.5)

BTD −DTB = 0; (2.6)

ATD − CTB = 1. (2.7)

An analogous, equivalent definition of the representation Rs is the following one: Rs is real
and it contains the singlet in its 2-fold antisymmetric tensor product

(Rs ×Rs)a 3 1. (2.8)

If the basic requirements (2.5)-(2.7) or (2.8) are met, the coset representative of M in
the symplectic representation Rs is given by the (scalar-dependent) 2n× 2n matrix

S (φ) ≡

 A (φ) B (φ)

C (φ) D (φ)

 ∈ Sp (2n,R) . (2.9)

A particular role is played by the two (scalar-dependent) complex n × n matrices f and h,
which do satisfy the properties

− f †h+ h†f = i1, (2.10)

−fTh+ hTf = 0. (2.11)

The constraining relations (2.10) and (2.11) are equivalent to require that

S (φ) =
√

2

 Ref −Imf

Reh −Imh

 , (2.12)
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or equivalently:

f =
1√
2

(A− iB) ; (2.13)

h =
1√
2

(C − iD) . (2.14)

In order to make contact with the formalism introduced by Gaillard and Zumino in [1],
it is convenient to use another (complex) basis, namely the one which maps an element
S ∈ Sp (2n,R) into an element U ∈ U (n, n)∩ Sp (2n,C). The change of basis is exploited
through the matrix

A ≡ 1√
2

 1 1

−i1 i1

 , A−1 = A†. (2.15)

The (scalar-dependent) matrix U is thus defined as follows:

U (φ) ≡ A−1SA =
1√
2

 f + ih f + ih

f − ih f − ih

 ∈ U (n, n) ∩ Sp (2n,C) . (2.16)

This is the matrix named S in Eq. (5.1) of [1]. Correspondingly, the Sp (2n,R)-covariant

vector
(
FΛ, GΛ

)T
is mapped into the vector

A−1

 FΛ

GΛ

 =
1√
2

 1 i1

1 −i1

 FΛ

GΛ

 =
1√
2

 FΛ + iGΛ

FΛ − iGΛ

 . (2.17)

The kinetic vector matrix NΛΣ appearing in Eqs. (1.6) and (1.7) is given by (in matrix
notation)

N (φ) = hf−1 =
(
f−1
)T
hT , (2.18)

and it is named −iK in [1].

Thus, by introducing the 2n× 1 (n× n matrix-valued) complex vector

Ξ ≡

 f

h

 (2.19)

and recalling the definition (1.6), the matrix M can be written as

M (φ) = −iΩ + 2ΩΞ (ΩΞ)† = −iΩ− 2ΩΞΞ†Ω =

= −iΩ− 2

 −h
f

( h†, −f †
)

=

= −i

 0 −1

1 0

+ 2

 hh† −hf †

−fh† ff †

 . (2.20)
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Eqs. (1.4), (1.6) and (2.20) imply that

VBH (φ,P) ≡ −1

2
PTM (φ)P = Tr

(
ZZ†

)
= Tr

(
Z†Z

)
=

=
N∑

A>B=1

ZABZ
AB

+ ZIZ
I

=
1

2
ZABZ

AB
+ ZIZ

I
=

=
1

2
Tr
(
ZZ†

)
+ ZIZ

I
=

1

2
Tr
(
Z†Z

)
+ ZIZ

I
, (2.21)

where (A, B = 1, ...,N and I = 1, ...,m throughout; recall Λ = 1, ..., n)

Z ≡ PTΩΞ = qf − ph = (ZAB (φ,P) , ZI (φ,P)) ; (2.22)

m

Z† ≡ −Ξ
†
ΩP = f

†
q − h†p =

 Z
AB

(φ,P)

Z
I

(φ,P)

 ; (2.23)

ZAB (φ,P) ≡ fΛ
ABqΛ − hAB|ΛpΛ; (2.24)

ZI (φ,P) ≡ f
Λ

I qΛ − hI|ΛpΛ. (2.25)

Thus, Eq. (2.21) yields the “BH potential” VBH (φ,P) to be nothing but the sum of the

squares of the “dressed” charges. It is here worth noticing that
(
fΛ
AB, f

Λ

I

)
and

(
hAB|Λ, hI|Λ

)
are n × n complex matrices, because it holds that5 fΛ

AB = fΛ
[AB], hAB|Λ = h[AB]|Λ (thus

implying ZAB = Z[AB]), and

n =
N (N − 1)

2
+m, (2.26)

where N stands for the number of spinorial supercharges (see Footnote 4), and m denotes
the number of matter multiplets coupled to the supergravity multiplet, except for N = 6,
d = 4 pure supergravity, for which m = 1.

Eqs. (2.24) and (2.25) are the basic relation between the (scalar-dependent) “dressed”
charges ZAB and ZI and the (scalar-independent) “bare” charges P . It is worth remark-
ing that ZAB is the “central charge matrix function”, whose asymptotical value appears in
the right-hand side of the N -extended (d = 4) supersymmetry algebra, pertaining to the
asymptotical Minkowski space-time background:{

QA
α , Q

B
β

}
= εαβZ

AB (φ∞,P) , (2.27)

where φ∞ denotes the set of values taken by the scalar fields at radial infinity (r →∞) within
the considered static, spherically symmetric and asymptotically flat dyonic extremal BH
background. Notice that the indices A, B of the central charge matrix are raised and lowered

5Unless otherwise noted, square brackets denote antisymmetrization with respect to the enclosed indices.
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with the metric of the relevant R-symmetry group of the corresponding supersymmetry
algebra.

By denoting the ADM mass [27] of the considered BH background by MADM (φ∞,P),
the BPS bound [28] implies that

MADM (φ∞,P) > |Z1 (φ∞,P)| > ... >
∣∣Z[N/2] (φ∞,P)

∣∣ , (2.28)

where Z1 (φ,P) , ...,Z[N/2] (φ,P) denote the set of skew-eigenvalues of ZAB (φ,P), and here
square brackets denote the integer part of the enclosed number. If 1 6 k 6 [N /2] of
the bounds expressed by Eq. (2.28) are saturated, the corresponding extremal BH state is
named to be k

N -BPS. Thus, the minimal fraction of total supersymmetries (pertaining to the
asymptotically flat space-time metric) preserved by the extremal BH background within the
considered assumptions is 1

N (for k = 1), while the maximal one is 1
2

(for k = N
2

). See Sect.
6 for further details.

We end the present Section with some considerations on the issue of duality invariants.

A duality invariant I is a suitable linear combination (in general with complex coeffi-
cients) of (φ-dependent) H-invariant combinations of ZAB (φ,P) and ZI (φ,P) such that Eq.
(1.3) holds, i.e. such that I is invariant under G, and thus φ-independent:

I = I (ZAB (φ,P) , ZI (φ,P)) = I (P) . (2.29)

In presence of matter coupling, a charge configuration P (and thus a certain orbit of the
symplectic representation of the U -duality group G, to which P belongs) is called supersym-
metric iff, by suitably specifying φ = φ (P), it holds that

ZI (φ (P) ,P) = 0, ∀I = 1, ...,m. (2.30)

Notice that the conditions (2.30) cannot hold identically in φ, otherwise such conditions
would be G-invariant, which generally are not. Indeed, in order for the supersymmetry
constraints (2.30) to be invariant (or covariant) under G, the following conditions must hold
identically in φ:

∂φZI (φ,P) = 0, ∀φ ∈M. (2.31)

Therefore, supersymmetry conditions are not generally G-invariant (i.e. U -invariant),
otherwise extremal BH attractors (which are large) supported by supersymmetric charge
configurations would not exist.

Nevertheless, in some supergravities it is possible to give U -invariant supersymmetry con-
ditions. In light of previous reasoning, such U -invariant supersymmetric conditions cannot
stabilize the scalar fields in terms of charges (by implementing the attractor mechanism in
the considered framework), because such U -invariant conditions are actually identities, and
not equations, for the set of scalar fields φ. Actually, U -invariant supersymmetry conditions
can be given for all supersymmetric charge orbits supporting small BHs (for which the clas-
sical attractor mechanism does not hold). This can be seen e.g. in N = 8 (pure) and N = 4
(matter coupled) d = 4 supergravities, respectively treated in Sects. 3 and 4.
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3 N = 8

The scalar manifold of the maximal, namely N = 8, supergravity in d = 4 is the symmetric
real coset (

G

H

)
N=8,d=4

=
E7(7)

SU (8)
, dimR = 70, (3.1)

where the usual notation for non-compact forms of exceptional Lie groups is used, with
subscripts denoting the difference “ # non-compact generators − # compact generators”.
This theory is pure, i.e. matter coupling is not allowed. The classical (see Footnote 1) U -
duality group is E7(7). Moreover, the R-symmetry group is SU (8) and, due to the absence
of matter multiplets, it is nothing but the stabilizer of the scalar manifold (3.1) itself.

The Abelian vector field strengths and their duals, as well the corresponding fluxes
(charges), sit in the fundamental representation 56 of the global, classical U -duality group
E7(7). Such a representation determines the embedding of E7(7) into the symplectic group
Sp (56,R), which is the largest symmetry acting linearly on charges. The 56 of E7(7) ad-
mits an unique invariant, which will be denoted by I4,N=8 throughout. I4,N=8 is quartic in
charges, and it was firstly determined in [11].

More precisely, I4,N=8 is the unique combination of ZAB (φ,P) satisfying

∂φI4,N=8 (ZAB (φ,P)) = 0, ∀φ ∈
E7(7)

SU (8)
. (3.2)

Eq. (3.2) can be computed by using the Maurer-Cartan Eqs. of the coset
E7(7)

SU(8)
(see e.g. [29]

and Refs. therein):

∇ZAB =
1

2
PABCDZ

CD
, (3.3)

or equivalently by performing an infinitesimal
E7(7)

SU(8)
-transformation of the central charge

matrix (see e.g. [29] and Refs. therein):

δξABCDZAB =
1

2
ξABCDZ

CD
, (3.4)

where ∇ and PABCD respectively denote the covariant differential operator and the Vielbein

1-form in
E7(7)

SU(8)
, and the infinitesimal

E7(7)

SU(8)
-parameters ξABCD satisfy the reality constraint

ξABCD =
1

4!
εABCDEFGHξ

EFGH
. (3.5)

As firstly found in [11] and rigorously re-obtained in [29], the unique solution of Eq. (3.2)
reads:

I4,N=8 =
1

22

[
22Tr

((
ZACZ

BC
)2
)
−
(
Tr
(
ZACZ

BC
))2

+ 25Re (Pf (ZAB))

]
, (3.6)

where the Pfaffian of ZAB is defined as [11]

Pf (ZAB) ≡ 1

244!
εABCDEFGHZABZCDZEFZGH , (3.7)
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and it holds that (see e.g. [29])

|Pf (ZAB)| = |det (ZAB)|1/2 . (3.8)

In [29] it was indeed shown that, although each of the three terms of the expression (3.6) is
SU (8)-invariant but scalar-dependent, only the combination given by the expression (3.6) is
actually E7(7)-independent and thus scalar-independent, satisfying

δξABCDI4,N=8 = 0, (3.9)

with Eqs. (3.4) and (3.5) holding true.

It is here worth commenting a bit further about formula (3.6). The first two terms in its
right-hand side are actually U (8)-invariant, while the third one, namely 25Re (Pf (ZAB)), is
only SU (8)-invariant. Such a third term introduces an SU (8)-invariant phase ϕZ , defined
as (one fourth of) the overall phase of the central charge matrix, when this latter is reduced
to a skew-diagonal form in the so-called normal frame through an SU (8)-transformation:

ZAB
SU(8)−→ ZAB,skew−diag. ≡ eiϕZ/4


e1

e2

e3

e4

⊗ ε, ei ∈ R+, ∀i = 1, ..., 4, (3.10)

where the ordering e1 > e2 > e3 > e4 can be performed without any loss of generality, and
the 2× 2 symplectic metric

ε ≡
(

0 −1
1 0

)
(3.11)

has been introduced (notice ε = Ω for n = 1, as defined in Eq. (2.3)). For non-vanishing (in
general all different) skew-eigenvalues ei, the symmetry group of ZAB,skew−diag. is (USp (2))4 ∼
(SU (2))4. Thus, beside the 4 skew-eigenvalues ei and the phase ϕZ , the generic ZAB is de-

scribed by 51 = dimR

(
SU(8)

(SU(2))4

)
“generalized angles”. Consistently, the total number of

parameters is 4 + 1 + 51 = 56, which is the real dimension of the fundamental representation
56, defining the embedding of E7(7) into Sp (56,R).

Equivalently, ϕZ can be defined through the Pfaffian of ZAB as follows:

e2iϕZ ≡ Pf (ZAB)

Pf
(
ZAB

) , (3.12)

where clearly Pf
(
ZAB

)
= Pf (ZAB), as yielded by the definition (3.7). It is then immediate

to compute ϕZ from Eq. (3.6):

cosϕZ (φ,P) =

[
22I4,N=8 (P)− 22Tr

((
ZACZ

BC
)2
)

+
(
Tr
(
ZABZ

AC
))2

]
25
(
det
(
ZACZ

BC
))1/4

. (3.13)

9



Notice that through Eq. (3.13) (cos)ϕZ is determined in terms of the scalar fields φ and of
the BH charges P , also along the small orbits where I4,N=8 = 0. However, Eq. (3.13) is not

defined in the cases in which det
(
ZACZ

BC
)

= 0, i.e. when at least one of the eigenvalues

of the matrix ZACZ
BC

vanishes. In such cases, ϕZ is actually undetermined.

In N = 8, d = 4 supergravity five distinct orbits of the 56 of E7(7) exist, as resulting
from the analyses performed in [4] and [5]. They can be classified in large and small charge
orbits, depending whether they correspond to I4,N=8 6= 0 or I4,N=8 = 0, respectively.

Only two large charge orbits (for which I4,N=8 6= 0, and the attractor mechanism holds)
exist in N = 8, d = 4 supergravity:

1. The large 1
8
-BPS orbit [4, 5]

O 1
8
−BPS,large =

E7(7)

E6(2)

, dimR = 55, (3.14)

is defined by the E7(7)-invariant constraint

I4,N=8 > 0. (3.15)

At the event horizon of the extremal BH, the solution of the N = 8, d = 4 Attractor
Eqs. yields [3, 9, 30]

e1 ∈ R+
0 , e2 = e3 = e4 = 0, (3.16)

implying det (ZAB) = 0 ⇔ Pf (ZAB) = 0, and thus ϕZ to be undetermined. Thus,
at the event horizon, the symmetry of the skew-diagonalized central charge matrix
ZAB,skew−diag. defined in Eq. (3.10) gets enhanced as follows, revealing the maximal
compact symmetry of O 1

8
−BPS,large :

(USp (2))4 r→r+
H−→ USp (2)× SU (6) ∼ SU (2)× SU (6) . (3.17)

Indeed, SU (2) × SU (6) is the maximal compact subgroup (mcs, with symmetric em-
bedding [31]) of E6(2) (stabilizer of O 1

8
−BPS,large) itself.

2. The large non-BPS (ZAB 6= 0) orbit [4, 5]

Onon−BPS,ZAB 6=0 =
E7(7)

E6(6)

, dimR = 55, (3.18)

is defined by the E7(7)-invariant constraint

I4,N=8 < 0. (3.19)

At the event horizon of the extremal BH, the solution of the N = 8, d = 4 Attractor
Eqs. yields [3, 9, 30]

e1 = e2 = e3 = e4 ∈ R+
0 , ϕZ = π + 2kπ, k ∈ Z, (3.20)
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so the skew-eigenvalues of ZAB at the horizon (see Eq. (3.10)) are complex. Thus,
at the event horizon, the symmetry of the skew-diagonalized central charge matrix
ZAB,skew−diag. defined in Eq. (3.10) gets enhanced as follows, revealing the maximal
compact symmetry of Onon−BPS,ZAB 6=0:

(USp (2))4 r→r+
H−→ USp (8) . (3.21)

Indeed, USp (8) is the mcs (with symmetric embedding [31]) of E6(6) (stabilizer of
Onon−BPS,ZAB 6=0) itself.

As mentioned above, for such large charge orbits, corresponding to a non-vanishing quar-
tic E7(7)-invariant I4,N=8 and thus supporting large BHs, the attractor mechanism holds.
Consequently, the computations of the Bekenstein-Hawking BH entropy can be performed
by solving the criticality conditions for the “BH potential”

VBH,N=8 =
1

2
ZABZ

AB
, (3.22)

the result being

SBH,
π

= VBH,N=8|∂VBH,N=8=0 = VBH,N=8 (φH (P) ,P) = |I4,N=8|1/2 , (3.23)

where φH (P) denotes the set of solutions to the criticality conditions of VBH,N=8, namely
the Attractor Eqs. of N = 8, d = 4 supergravity:

∂φVBH,N=8 = 0, ∀φ ∈
E7(7)

SU (8)
, (3.24)

expressing the stabilization of the scalar fields purely in terms of supporting charges P at
the event horizon of the extremal BH. Through Eqs. (3.3) and (3.22), Eqs. (3.24) can be
rewritten as follows (notice the strict similarity to Eq. (3.40) further below) [30]:

Z[ABZCD] +
1

4!
εABCDEFGHZ

EF
Z
GH

= 0. (3.25)

Actually, the critical potential VBH,N=8|∂VBH,N=8=0 exhibits some “flat” directions, so not

all scalars are stabilized in terms of charges at the event horizon [32, 33]. Thus, Eq. (3.23)
yields that the unstabilized scalars, spanning a related moduli space of the considered class
of attractor solutions, do not enter in the expression of the BH entropy at all. The moduli
spaces6 exhibited by the Attractor Eqs. (3.24)-(3.25) are [33]

M 1
8
−BPS,large =

E6(2)

SU (2)× SU (6)
, dimR = 40; (3.26)

Mnon−BPS,ZAB 6=0 =
E6(6)

USp (8)
, dimR = 42. (3.27)

6Results obtained by explicit computations within the N = 2, d = 4 symmetric so-called stu model in
[23] and [34] seem to point out that the moduli spaces should be present not only at the event horizon of the
considered extremal BH (i.e. for r → r+

H), but also all along the scalar attractor flow (i.e. ∀r > rH).
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As found in [33], the general structure of the moduli spaces of attractor solutions in super-
gravities based on symmetric scalar manifolds G

H
is

Hnc

h
, (3.28)

where Hnc is the non-compact stabilizer of the charge orbit G
Hnc (apart from eventual U (1)

factors, Hnc is a non-compact, real form of H), and h = mcs (Hnc). As justified in
[29] and then in [32], M 1

8
−BPS,large is a quaternionic symmetric manifold. Furthermore,

Mnon−BPS,ZAB 6=0 given by Eq. (3.27) is nothing but the scalar manifold of N = 8, d = 5
supergravity. The stabilizers of M 1

8
−BPS,large and Mnon−BPS,ZAB 6=0 exploit the maximal

compact symmetry of the corresponding charge orbits; this symmetry becomes fully mani-
fest through the enhancement of the compact symmetry group of ZAB,skew−diag. at the event
horizon of the extremal BH, respectively given by Eqs. (3.17) and (3.21).

It is now convenient to denote with λi (i = 1, ..., 4) the four real non-negative eigenvalues

of the matrix ZABZ
CB

=
(
ZZ†

)C
A

. By recalling Eq. (3.10), one can notice that

λi = e2
i , (3.29)

and one can order them as λ1 > λ2 > λ3 > λ4, without any loss of generality. The explicit ex-

pression of λi in terms of U (8)-invariants (namely of Tr
(
ZZ†

)
, Tr

((
ZZ†

)2
)

, Tr
((
ZZ†

)3
)

and Tr
((
ZZ†

)4
)

, and suitable powers) is given by Eqs. (4.74), (4.75), (4.86) and (4.87)

of [9], and it will be used in Sect. 6 to determine the ADM mass for k
8
-BPS (k = 1, 2, 4)

extremal BH states.

Three distinct small charge orbits (all with I4,N=8 = 0) exist, and they all are supersym-
metric :

1. The generic small lightlike orbit is 1
8
-BPS, it is defined by the E7(7)-invariant constraint

I4,N=8 = 0, (3.30)

and it reads [4, 5]

O 1
8
−BPS,small =

E7(7)

F4(4) ×s T26

, dimR = 55. (3.31)

Generally, it yields four different λi’s, and in this case Eq. (3.13) reduces to

cosϕZ (φ,P)|I4,N=8=0 = −

[
22Tr

((
ZACZ

BC
)2
)
−
(
Tr
(
ZABZ

AC
))2

]
25
(
det
(
ZACZ

BC
))1/4

∣∣∣∣∣∣∣∣
I4,N=8=0

.

(3.32)
In agreement with the results of [4] and [5], the (maximal compact) symmetry of the
skew-diagonalized central charge matrix ZAB,skew−diag. all along the 1

8
-BPS small flow is
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the generic one: (SU (2))4. The counting of the parameters ofO 1
8
−BPS,small consistently

reads: 55 = 4 skew-eigenvalues λi + 1 phase ϕZ + 51
(

= dimR

(
SU(8)

(SU(2))4

))
“generalized

angles”−1 defining constraint (3.30).

2. The small critical orbit is 1
4
-BPS. It reads [4, 5]

O 1
4
−BPS =

E7(7)

(SO(6, 5)×s T32)× T1

, dimR = 45, (3.33)

and it is defined by the following differential constraint on I4,N=8 [3, 9]:

∂I4,N=8

∂ZAB
= 0, (3.34)

which, due to the reality of I4,N=8, is actually E7(7)-invariant. Let us also notice that,
due to the homogeneity of I4,N=8 of degree four in P , Eq. (3.34) implies the constraint
(3.30). In particular, along the 1

4
-BPS orbit it holds that (the labelling does not yield

any loss of generality)
λ1 = λ2 > λ3 = λ4 > 0. (3.35)

If Pf (ZAB) 6= 0 then
λ1 = λ2 > λ3 = λ4 > 0, (3.36)

and Eq. (3.13) yields ϕZ = kπ, k ∈ Z, so the skew-eigenvalues of ZAB (see Eq. (3.10))
are real and the (maximal) compact symmetry of ZAB,skew−diag. is (USp (4))2. On the
other hand, if Pf (ZAB) = 0 then

λ1 = λ2 > λ3 = λ4 = 0, (3.37)

and ϕZ is undetermined. In this case, the (maximal compact) symmetry of the skew-
diagonalized central charge matrix ZAB,skew−diag. is USp (4)×SU (4) ∼ SO (5)×SO (6),
which is the mcs of the non-translational part of the stabilizer of O 1

4
−BPS, expressing

the maximal compact symmetry of O 1
4
−BPS itself. In agreement with the results of [4]

and [5], the maximal (compact) symmetry of the skew-diagonalized central charge ma-
trix ZAB,skew−diag. along the 1

4
-BPS small flow (fully manifest in the particular solution

(3.37)) is USp (4) × SU (4). The counting of the parameters of O 1
4
−BPS consistently

reads: 45 = 2 skew-eigenvalues λ1 and λ2 + 43
(

= dimR

(
SU(8)

(USp(4))2

))
“generalized an-

gles”.

3. The small doubly-critical orbit is 1
2
-BPS, and it reads [4, 5]

O 1
2
−BPS =

E7(7)

E6(6) ×s T27

, dimR = 28. (3.38)

It can be defined in an E7(7)-invariant way by performing the following two-step proce-
dure [9]. One starts by considering the requirement that the second derivative of I4,N=8
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(with respect to ZAB) projected along the adjoint representation Adj (SU (8)) = 63
of SU (8) vanishes, yielding [9]

∂2I4,N=8

∂ZAB∂Z
BC

∣∣∣∣∣
Adj(SU(8))

= 0⇐⇒ ZACZ
BC

=
1

23
δBAZDEZ

DE. (3.39)

This is a mixed rank-2 SU (8)-covariant condition. By further differentiating with

respect to the scalars φ parametrizing
E7(7)

SU(8)
and using the Maurer-Cartan Eqs. (3.3),

one obtains another SU (8)-covariant relation (notice the strict similarity to theN = 8,
d = 4 Attractor Eqs. (3.25)) [9]:

Z[ABZCD] −
1

4!
εABCDEFGHZ

EF
Z
GH

= 0. (3.40)

Actually, Eq. (3.40) form with Eq. (3.39) an E7(7)-invariant set of differential condi-
tions defining O 1

2
−BPS. Indeed, as noticed in [9], Eq. (3.40) can be rewritten as

∂2I4,N=8

∂Z[AB∂ZCD]

− 1

4!
εABCDEFGH

∂2I4,N=8

∂Z
[EF

∂Z
GH]

= 0. (3.41)

Thus, by using the notation Z56 ≡
(
Z,ZT

)
=
(
ZAB, Z

AB
)

(recall Eqs. (2.22) and

(2.23)), Eqs. (3.39) and (3.40)-(3.41) can be rewritten in the manifestly E7(7)-invariant
fashion

∂2I4,N=8

∂Z56∂Z56

∣∣∣∣
Adj(E7(7))

= 0, (3.42)

where Adj
(
E7(7)

)
= 133 is the adjoint representation of E7(7). Notice that

∂2I4,N=8

∂Z56∂Z56
is

a rank-2 symmetric true-tensor E7(7)-tensor, thus sitting in the symmetric product rep-
resentation (56× 56)s = 1596 of E7(7), which in turns enjoys the following branching
with respect to E7(7) [31, 9]:

(56× 56)s = 1596 −→ 1463 + 133
Adj(E7(7))

. (3.43)

It is here worth remarking that the constraints (3.39) and (3.40)-(3.41) (or equivalently
((3.42))) imply the constraint (3.34), because in fact they are stronger constraints.

Along the 1
2
-BPS orbit it holds that

λ1 = λ2 = λ3 = λ4. (3.44)

Furthermore, it can be shown that ϕZ = 2kπ, k ∈ Z, so the skew-eigenvalues of ZAB (see
Eq. (3.10)) are real. In agreement with the results of [4] and [5], the (maximal compact)
symmetry of the skew-diagonalized central charge matrix ZAB,skew−diag. all along the 1

2
-BPS

small flow is USp (8), which is the mcs of the non-translational part of the stabilizer of
O 1

2
−BPS, expressing the maximal compact symmetry of O 1

2
−BPS itself. The counting of the
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parameters ofO 1
2
−BPS consistently reads: 28 = 1 skew-eigenvalue λ1+27

(
= dimR

(
SU(8)
USp(8)

))
“generalized angles”.

Interestingly, USp (8) also is the enhanced compact symmetry of ZAB,skew−diag. at the
event horizon of the large non-BPS ZAB 6= 0 attractor scalar flow (see Eq. (3.21) above).
Indeed, the charge orbits Onon−BPS,ZAB 6=0 and O 1

2
−BPS (respectively given by Eqs. (3.18)

and (3.38)) coincide, up to the translational factor T27 in the stabilizer, and thus they have
the same maximal compact symmetry.

As given by the analysis of [3], the classification of large and small orbits of the 56 of
E7(7) can be performed also considering the symplectic basis composed by the fluxes qΛ (Λ =
1, ..., 56). In general, the symplectic basis of charges is useful in order to determine, through
constraints imposed on the relevant U -invariant, the number and typology of orbits of the
relevant representation of the U -duality group. On the other hand, using the manifestly H-
covariant basis of central charges and matter charges one can achieve a symplectic-invariant
characterization of charge orbits, and also study the related supersymmetry-preserving fea-
tures.

Finally, it is worth pointing out once again that there is a crucial difference among the
various constraints defining the two large and the three small charge orbits of N = 8, d = 4
supergravity listed above:

• The large charge orbits O 1
8
−BPS,large and Onon−BPS,ZAB 6=0, respectively given by Eqs.

(3.14) and (3.18), are in order defined by the E7(7)-invariant conditions I4,N=8 > 0
and I4,N=8 < 0. Due to their E7(7)-invariance, these conditions are identities for the

scalar fields φ spanning
E7(7)

SU(8)
. However, the classical attractor mechanism does hold

for large extremal BHs, and the scalars φ are stabilized purely in terms of charges P
at the event horizon (r → r+

H) through the only two independent solutions (3.16) and
(3.20) to the N = 8, d = 4 Attractor Eqs. (3.24)-(3.25).

• The small charge orbits O 1
8
−BPS,small , O 1

4
−BPS and O 1

2
−BPS, respectively given by Eqs.

(3.31), (3.33) and (3.38), are in order defined by the E7(7)-invariant conditions (3.30),
(3.34) and (3.42). Due to their E7(7)-invariance, these conditions are identities for
the scalars φ, which thus are not stabilized along such orbits. Indeed, the classical
attractor mechanism does not hold for small BHs.

4 N = 4

In N = 4, d = 4 supergravity, unlike the N = 8 case, matter (vector) multiplets appear
(see e.g. [35, 36]). By denoting their number with M , the related scalar manifold is the
symmetric coset(

G

H

)
N=4,d=4

=
SL (2,R)

U(1)
× SO (6,M)

SO (6)× SO (M)
, dimR = 6M + 2. (4.1)
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The Abelian vector field strengths and their duals, as well the corresponding fluxes
(charges), sit in the bi-fundamental (2,6 + M) representation of the global, classical (see
Footnote 1) U -duality group SL (2,R) × SO (6,M) [37]. Such a representation determines
the embedding of SL (2,R) × SO (6,M) into the symplectic group Sp (12 + 2M,R). The
representation (2,6 + M) is endowed with a natural symplectic metric

Ω ≡ εαβηΛΣ, (4.2)

where εαβ (α, β = 1, 2) is the (inverse of the) SL (2,R) skew-symmetric metric defined in
Eq. (3.11), and ηΛΣ (Λ,Σ = 1, ..., 6 + M = n; recall Eq. (2.26)) is the Lorentzian metric of
SO (6,M). Moreover, the R-symmetry group is U (4).

Furthermore, (2,6 + M) admits an unique invariant, which will be denoted by I4,N=4

throughout. I4,N=4 is quartic in charges, and it was firstly determined in [14, 19, 38].

More precisely, I4,N=4 is the unique combination of “dressed” charges ZAB = Z[AB] (φ,P)
(central charge matrix, A,B = 1, ..., 4) and ZI (φ,P) (matter charges, I = 1, ...,M) satisfying

∂φI4,N=4 (ZAB (φ,P) , ZI (φ,P)) = 0, ∀φ ∈
(
G

H

)
N=4,d=4

. (4.3)

Eq. (4.3) can be computed by using the Maurer-Cartan Eqs. of the coset SL(2,R)
U(1)

× SO(6,M)
SO(6)×SO(M)

(see e.g. [29], and Refs. therein):

∇ZAB =
1

2
PεABCDZ

CD
+ PABIZ

I
; (4.4)

∇ZI =
1

2
PABIZ

AB
+ PηIJZ

J
, (4.5)

or equivalently by performing an infinitesimal SL(2,R)
U(1)

× SO(6,M)
SO(6)×SO(M)

-transformation of the

central charge matrix and of matter charges (see e.g. [29], and Refs. therein):

δ(ξ,ξAB|I)ZAB =
1

2
ξεABCDZ

CD
+ ξAB|IZ

I ; (4.6)

δ(ξ,ξAB|I)ZI = ξηIJZ
J

+
1

2
ξAB|IZ

AB
, (4.7)

where ∇ stands for the covariant differential operator in SL(2,R)
U(1)

× SO(6,M)
SO(6)×SO(M)

. P and PABI

respectively are the Vielbein 1-forms of SL(2,R)
U(1)

and SO(6,M)
SO(6)×SO(M)

, with PABI satisfying the
reality condition:

PABI =
1

2
ηIJεABCDP

CDJ
. (4.8)

Moreover, ξ is the infinitesimal SL(2,R)
U(1)

-parameter and ξAB|I are the infinitesimal SO(6,M)
SO(6)×SO(M)

-
parameters, satisfying the reality condition

ξ
AB|I

=
1

2
ηIJεABCDξCD|J . (4.9)

16



As found in [14, 19, 38] and rigorously re-obtained in [29], in terms of ZAB and ZI the unique
solution of Eq. (4.3) reads:

I4,N=4 = S2
1 − |S2|2 , (4.10)

where one can identify S1 ≡ L0, S2 = L1 + iL2, with L ≡ (L0, L1, L2) being an SL (2,R) ∼
SO (1, 2)-vector with square norm

L2 = L2
0 − L2

1 − L2
2 = S2

1 − |S2|2 . (4.11)

S1 and S2 are defined as [29]

S1 ≡
1

2
ZABZ

AB − ZIZ
I ∈ R; (4.12)

S2 ≡
1

4
εABCDZABZCD − ZIZI ∈ C. (4.13)

In [29] it was indeed shown that I4,N=4 given by Eq. (4.10) is the unique combination
of SO (6,M)-invariant and scalar-dependent quantities, which is actually also SL (2,R)-
independent and thus scalar-independent, satisfying

δξI4,N=4 = 0; (4.14)

δξAB|II4,N=4 = 0, (4.15)

with Eqs. (4.6), (4.7) and (4.9) holding true.

On the other hand, the expression of I4,N=4 in terms of the “bare” charges P reads
[14, 15, 18, 19]

I4,N=4 = p2q2 − (p · q)2 =
1

2
(pΛqΣ − pΣqΛ) (pΞqΩ − pΩqΞ) ηΛΞηΣΩ =

1

2
T

(a)
ΛΣT

(a)|ΛΣ, (4.16)

where
p2 ≡ p · p ≡ pΛpΣη

ΛΣ, q2 ≡ q · q ≡ qΛqΣη
ΛΣ, p · q ≡ pΛqΣη

ΛΣ, (4.17)

and the tensor
T

(a)
ΛΣ ≡ pΛqΣ − pΣqΛ = T

(a)
[ΛΣ] (4.18)

has been introduced (the upperscript “(a)” stands for “anti-symmetric”).

The classification of charge orbits, in particular the BPS ones, was performed in [3] and
[9]. By performing a suitable U(1) × SO (6) (∼ U (4))-transformation, the central charge
matrix ZAB can be skew-diagonalized in the normal frame (recall definition (3.11)):

ZAB
U(4)−→ ZAB,skew−diag. ≡

(
z1

z2

)
⊗ ε, z1, z2 ∈ R+, (4.19)

where the ordering z1 > z2 does not imply any loss of generality. Furthermore, by performing
a suitable SO (M)-transformation, the vector ZI of matter charges can be reduced to have
only two non-vanishing entries, one real positive and the other one complex, say (without
loss of generality, with the subscript “red.” standing for “reduced”)

ZI
SO(M)−→ ZI,red. ≡

(
ρ1e

iθ, ρ2, 0, ..., 0
)
, ρ1, ρ2 ∈ R+, θ ∈ R. (4.20)
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For non-vanishing (in general different) skew-eigenvalues z1 and z2, the symmetry group of
ZAB,skew−diag. is (USp (2))2 ∼ (SU (2))2. Analogously, for non-vanishing (in general differ-
ent) ρ1 and ρ2 (and non-vanishing phase θ) the symmetry group of ZI,red. is SO (M − 2).
Thus, beside z1, z2, ρ1, ρ2 and θ the generic ZAB and ZI are described by 7 + 2M =

dimR

(
U(4)×SO(M)

(SU(2))2×SO(M−2)

)
“generalized angles”. Consistently, the total number of parameters

is 2+2+1+7+2M = 12+2M , which is the real dimension of the bi-fundamental represen-
tation (2,6 + M), defining the embedding of SL (2,R)× SO (6,M) into Sp (12 + 2M,R).

In N = 4, d = 4 matter coupled supergravity three distinct large charge orbits of the
(2,6 + M) of SL (2,R) × SO (6,M) (for which I4,N=4 6= 0, and the attractor mechanism
holds) exist, as resulting from the analysis performed in7 [13]:

1. The large 1
4
-BPS orbit

O 1
4
−BPS,large = SL (2,R)× SO (6,M)

SO (4,M)× SO(2)
, dimR = 11 + 2M, (4.21)

is defined by the SL (2,R)× SO (6,M)-invariant constraint

I4,N=4 > 0. (4.22)

Thus, the corresponding horizon solution of the N = 4, d = 4 Attractor Eqs. yields
[3, 9, 13]

z1 ∈ R+
0 , z2 = 0, ρ1 = ρ2 = 0, θ undetermined ; (4.23)

S1 = z2
1 > 0, S2 = 0. (4.24)

Therefore, at the event horizon, the symmetry group of ZAB,skew−diag. defined in Eq.
(4.19) does not get enhanced, while the symmetry group of Zi,red. defined in Eq. (4.20)
gets enhanced as follows:

SO (M − 2)
r→r+

H−→ SO (M) . (4.25)

As a consequence, the horizon attractor solution exploits the maximal compact sym-
metry SU (2) × SU (2) × SO (M) × SO(2), which is the mcs [31] of the stabilizer of
O 1

4
−BPS,large itself.

2. The large non-BPS ZAB = 0 orbit (existing for M > 2) [13]

Onon−BPS,ZAB=0,large = SL (2,R)× SO (6,M)

SO (6,M − 2)× SO(2)
, dimR = 11 + 2M, (4.26)

is defined by the SL (2,R)× SO (6,M)-invariant constraint

I4,N=4 > 0. (4.27)

7Consistent with the analysis of [13], Eqs. (4.21), (4.26) and (4.31) fix a slightly misleading notation for
the large charge orbits of N = 4, d = 4 matter coupled supergravity, as given by Table 1 of [39].
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Thus, the corresponding attractor solution of the N = 4, d = 4 Attractor Eqs. yields
(for M > 2) [3, 9, 13]

z1 = z2 = 0, ρ2
1e

2iθ + ρ2
2 = 0⇔ ρ1 = ρ2 ∈ R+

0 , θ =
π

2
+ kπ, k ∈ Z; (4.28)

S1 = −2ρ2
1 < 0, S2 = 0. (4.29)

Therefore, at the event horizon, the symmetry group of ZAB,skew−diag. defined in Eq.
(4.19) gets enhanced as follows:

(SU (2))2 r→r+
H−→ SU (4) , (4.30)

and the symmetry group of Zi,red. defined in Eq. (4.20) does not get enhanced. Con-
sequently, the horizon attractor solution exploits the maximal compact symmetry
SU (4)×SO (M − 2)×SO(2), which is themcs [31] of the stabilizer ofOnon−BPS,ZAB=0,large

itself.

3. The large non-BPS ZAB 6= 0 orbit (existing for M > 1) [13]

Onon−BPS,ZAB 6=0,large = SL (2,R)× SO (6,M)

SO (5,M − 1)× SO(1, 1)
, dimR = 11 + 2M,

(4.31)
is defined by the SL (2,R)× SO (6,M)-invariant constraint

I4,N=4 < 0. (4.32)

At the event horizon of the extremal BH, the solution of the N = 4, d = 4 Attractor
Eqs. yields (for M > 1) [3, 9, 13]

z1 = z2 =
ρ1√

2
∈ R+

0 , ρ2 = 0, θ =
π

2
+ kπ, k ∈ Z; (4.33)

S1 = 0, S2 = 3z2
1 > 0. (4.34)

Thus, at the event horizon, the symmetry group of ZAB,skew−diag. defined in Eq. (4.19)
gets enhanced as follows:

(SU (2))2 r→r+
H−→ USp (4) , (4.35)

and the symmetry group of Zi,red. defined in Eq. (4.20) gets also enhanced as

SO (M − 2)
r→r+

H−→ SO (M − 1) . (4.36)

As a consequence, the horizon attractor solution exploits the maximal compact sym-
metry USp (4)× SO (M − 1) which, due to the isomorphism USp (4) ∼ SO (5), is the
mcs [31] of the stabilizer of Onon−BPS,ZAB 6=0,large itself.
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As mentioned above, for such large charge orbits, corresponding to a non-vanishing quar-
tic SL (2,R) × SO (6,M)-invariant I4,N=4 and thus supporting large BHs, the attractor
mechanism holds. Consequently, the computations of the Bekenstein-Hawking BH entropy
can be performed by solving the criticality conditions for the “BH potential”

VBH,N=4 =
1

2
ZABZ

AB
+ ZIZ

I
, (4.37)

the result being

SBH,
π

= VBH,N=4|∂VBH,N=4=0 = VBH,N=4 (φH (P) ,P) = |I4,N=4|1/2 , (4.38)

where φH (P) denotes the set of solutions to the criticality conditions of VBH,N=4, namely
the Attractor Eqs. of N = 4, d = 4 matter coupled supergravity:

∂φVBH,N=4 = 0, ∀φ ∈ SL (2,R)

U(1)
× SO (6,M)

SO (6)× SO (M)
, (4.39)

expressing the stabilization of the scalar fields purely in terms of supporting charges P at
the event horizon of the extremal BH. Through Eqs. (4.4)-(4.5) and (4.37), Eqs. (4.39) can
be rewritten as follows [13]:

(
Z
AB

+ 1
2
εABCDZCD

)
ZI = 0;

ZIZJδIJ + 1
4
εABCDZ

AB
Z
CD

= 0.

(4.40)

Actually, the critical potential VBH,N=4|∂VBH,N=4=0 exhibits some “flat” directions, so not

all scalars are stabilized in terms of charges at the event horizon [39]. Thus, Eq. (4.38)
yields that the unstabilized scalars, spanning a related moduli space of the considered class
of attractor solutions, do not enter in the expression of the BH entropy at all. The moduli
spaces exhibited by the Attractor Eqs. (4.39)-(4.40) are [39]

M 1
4
−BPS,large =

SO (4,M)

SU (2)× SU (2)× SO (M)
, dimR = 4M ; (4.41)

Mnon−BPS,ZAB=0,large =
SO (6,M − 2)

SU (4)× SO (M − 2)
, dimR = 6 (M − 2) ; (4.42)

Mnon−BPS,ZAB 6=0,large = SO (1, 1)× SO (5,M − 1)

USp (4)× SO (M − 1)
, dimR = 5 (M − 1) + 1.

(4.43)

As justified in [29] and then in [39], M 1
4
−BPS,large is a quaternionic symmetric manifold.

Furthermore, Mnon−BPS,ZAB 6=0,large given by Eq. (4.43) is nothing but the scalar man-
ifold of N = 4, d = 5 matter coupled supergravity. The stabilizers of M 1

4
−BPS,large,

Mnon−BPS,ZAB=0,large and Mnon−BPS,ZAB 6=0,large exploit the maximal compact symmetry of
the corresponding charge orbits; this symmetry becomes fully manifest through the en-
hancement of the compact symmetry group of ZAB,skew−diag. and ZI,red. at the event horizon
of the extremal BH, respectively given by Eqs. (4.25), (4.30) and (4.35)-(4.36).
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Let us now analyze the small charge orbits of the (2,6 + M) of SL (2,R) × SO (6,M),
associated to I4,N=4 = 0, for which the attractor mechanism does not hold. The analysis
performed below completes the one given in [3] and [9].

While in N = 8, d = 4 supergravity all three small charge orbits are BPS (with various
degrees of supersymmetry-preservation), in the considered N = 4, d = 4 theory there are five
small charge orbits, two of them being 1

2
-BPS, one 1

4
-BPS, and the other two non-BPS (one

with ZAB = 0 and the other with ZAB 6= 0). Such an abundance of different charge orbits
can be traced back to the factorized nature of the U -duality group SL (2,R) × SO (6,M).
Furthermore, it should be remarked that in N = 4, d = 4 supergravity the 1

(N=)4
-BPS charge

orbit exists only in its large version, differently from the d = 4 maximal theory, in which
both large and small 1

(N=)8
-BPS charge orbits exist.

It is now convenient to denote with α1 and α2 the two real non-negative eigenvalues of

the matrix ZABZ
CB

=
(
ZZ†

)C
A

. By recalling Eq. (4.19), one can notice that (i = 1, 2)

αi = z2
i . (4.44)

and one can order them as α1 > α2, without any loss of generality. The explicit expression of

αi in terms of U (4)× SO (M)-invariants (namely of Tr
(
ZZ†

)
, Tr

((
ZZ†

)2
)

, and suitable

powers) is given by Eqs. (5.108) and (5.109) of [9].

Firstly, let us observe that from Eqs. (4.16) and (4.11) the SL (2,R)×SO (6,M)-invariant
“degeneracy” condition can be written in the “dressed” (R-symmetry- and SO (M)- covari-
ant) and “bare” (symplectic-, i.e. Sp (12 + 2M,R)- covariant) charges’ bases respectively as
follows:

I4,N=4 = 0⇔ S2
1 = |S2|2 ⇔ p2q2 = (p · q)2 > 0. (4.45)

Then, in order to determine the number and typology of small orbits, it is convenient

to start differentiating I4,N=4 in the symplectic “bare” charges’ basis P ≡
(
pΛ, qΛ

)T
(recall

definition (1.2)). Eqs. (4.16) and (4.18) yield the constraints defining the “small” critical
orbits to read

∂I4,N=4

∂pΛ

= 2
[
q2pΛ − (q · p) qΛ

]
= 2T (a)|ΛΣqΣ = 0; (4.46)

∂I4,N=4

∂qΛ

= 2
[
p2qΛ − (q · p) pΛ

]
= −2T (a)|ΛΣpΣ = 0. (4.47)

Due to the definition (4.18), or equivalently to the homogeneity (of degree four) in charges
of I4,N=4, it is worth noticing that the “criticality” constraints (4.46) and (4.47) imply the
“degeneracy” condition (4.45).

Beside the trivial one (pΛ = 0 = qΛ ∀Λ), all the solutions to the “criticality” constraints
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(4.46) and (4.47) list as follows:

A]



T
(a)
ΛΣ = 0;
p2q2 = (p · q)2 > 0 :


A.1] p2 > 0, q2 > 0;
aut
A.2] p2 < 0, q2 < 0;

A.3] p2q2 = (p · q)2 = 0 : p2 = 0, q2 = 0;

(4.48)

B]

 T
(a)
ΛΣ 6= 0;

p2 = q2 = p · q = 0.

(4.49)

Notice that each set (A.1, A.2, A.3 and B) of constraints is SL (2,R)×SO (6,M)-invariant,
but formulated in terms of the symplectic charge basis P .

The solutions (4.48)-(4.49) can be rewritten by noticing that
∂2I4,N=4

∂P∂P , i.e. the tensor of
second derivatives of I4,N=4 with respect to P , sits in the symmetric product representation
((2,6 + M)× (2,6 + M))s of the U -duality group SL (2,R)×SO (6,M), which decomposes
as follows [9]:

((2,6 + M)× (2,6 + M))s
SL(2,R)×SO(6,M)−→ (3,1)

T (0)

+(3,TrSym (SO(6,M)))
T

(tr−s)
ΛΣ

+(1,Adj (SO(6,M)))
T

(a)
ΛΣ

.

(4.50)
The antisymmetric tensor

T
(a)
ΛΣ ≡

∂2I4,N=4

∂P∂P

∣∣∣∣
(1,Adj(SO(6,M)))

(4.51)

was already introduced in Eq. (4.18). TrSym and Adj respectively denote the traceless
symmetric and adjoint representations, and [9]

T
(tr−s)
ΛΣ ≡ ∂2I4,N=4

∂P∂P

∣∣∣∣
(3,TrSym(SO(6,M)))

≡

≡
(
qΛqΣ −

q2

6 +M
ηΛΣ, pΛpΣ −

p2

6 +M
ηΛΣ,

1

2
(qΛpΣ + qΣpΛ)− q · p

6 +M
ηΛΣ

)
;

(4.52)

T (0) ≡ ∂2I4,N=4

∂P∂P

∣∣∣∣
(3,1)

≡ TrSO(6,M)

(
T

(s)
ΛΣ

)
≡ TrSO(6,M)

(
∂2I4,N=4

∂P∂P

∣∣∣∣
(3,Sym(SO(6,M)))

)
=

=
(
q2, p2, q · p

)
=

 q2 q · p

q · p p2

 . (4.53)
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The definition (4.53) of T (0) implies that (recall Eq. (4.16))

I4,N=4 = det
(
T (0)

)
= det

(
∂2I4,N=4

∂P∂P

∣∣∣∣
(3,1)

)
, (4.54)

in turn yielding another, equivalent SL (2,R)× SO (6,M)-invariant characterization of the
“degeneracy” condition (4.45):

det
(
T (0)

)
= det

(
∂2I4,N=4

∂P∂P

∣∣∣∣
(3,1)

)
= 0. (4.55)

Thus, Eqs. (4.48)-(4.49) can be recast as follows:

A]



T
(a)
ΛΣ = 0;

det
(
T (0)

)
= 0,


A.1] Tr

(
T (0)

)
> 0;

aut
A.2] Tr

(
T (0)

)
< 0;

aut
A.3] Tr

(
T (0)

)
= 0⇔ T (0) = 0;

(4.56)

B]

 T
(a)
ΛΣ 6= 0;

T (0) = 0.

(4.57)

As mentioned above, each set (A.1, A.2, A.3 and B) of constraints is SL (2,R)×SO (6,M)-
invariant, but formulated in terms of the symplectic charge basis P .

It is interesting to point out that, differently from N = 8, d = 4 supergravity treated
in Sect. 3, in N = 4, d = 4 supergravity there are no small doubly-critical (or with higher
degree of criticality) charge orbits independent from the small critical ones. This can be
easily seen by noticing that the solutions (4.56)-(4.57) to the “criticality” constraints (4.46)

and (4.47) can actually be rewritten in a doubly-critical fashion, i.e. through
∂2I4,N=4

∂P∂P and
related projections (according to decomposition (4.50)). For completeness’ sake, we report
here the second order derivatives of I4,N=4 with respect to the “bare” symplectic charges:

∂2I4,N=4

∂pΣ∂pΛ

= 2
(
q2ηΛΣ − qΛqΣ

)
; (4.58)

∂2I4,N=4

∂qΣ∂qΛ

= 2
(
p2ηΛΣ − pΛpΣ

)
; (4.59)

∂2I4,N=4

∂qΣ∂pΛ

= 4T (a)|ΛΣ. (4.60)

In order to determine the small orbits of the bi-fundamental representation (2,6 + M)
of the U -duality group SL (2,R)× SO (6,M) and to study their supersymmetry-preserving
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properties, it is now convenient to switch to the basis of “dressed” charges (recall Eqs. (2.22)
and (2.23))

U ≡
(
Z,Z

)T
=
(
ZAB,Z

I , ZAB, Z
I
)T

. (4.61)

From the analysis of [9], one obtains the following equivalence:

T
(a)
ΛΣ ≡

∂2I4,N=4

∂P∂P

∣∣∣∣
Adj(SO(6,M))

= 0⇔ ∂2I4,N=4

∂U∂U

∣∣∣∣
Adj(SO(6,M))

= 0. (4.62)

The SL (2,R)×SO (6,M)-invariant constraint (4.62) is common to the small critical charge
orbits determined by the solutions A.1, A.2 and A.3 of Eqs. (4.56). It also implies that
α1 = α2 [9]. Then, the further SL (2,R)×SO (6,M)-invariant constraints Tr

(
T (0)

)
R 0 can

equivalently be rewritten as (recall definition (4.12))

Tr
(
T (0)

)
R 0⇔ S1 R 0. (4.63)

Therefore, one can characterize the small critical orbits A.1, A.2 and A.3 of Eqs. (4.48)
and (4.56) as follows:

A]



∂2I4,N=4

∂U∂U

∣∣∣
Adj(SO(6,M))

= 0;

S2
1 = |S2|2 ,


A.1] S1 > 0;
aut
A.2] S1 < 0;
aut
A.3] S1 = 0⇔ S2 = 0.

(4.64)

Notice that each set (A.1, A.2, A.3 and B) of constraints is SL (2,R)×SO (6,M)-invariant
but, differently from Eqs. (4.48) and (4.56), it is also independent from the symplectic basis
eventually considered.

On the other hand, the SL (2,R) × SO (6,M)-invariant constraints (4.49) and (4.57)
defining the small critical orbit B can be recast in a form which (differently from Eqs. (4.49)
and (4.57)) is independent from the symplectic basis eventually considered, as follows:

B]


∂2I4,N=4

∂U∂U

∣∣∣
Adj(SO(6,M))

6= 0;

S2
1 = |S2|2 = 0.

(4.65)

Thus, five distinct small charge orbits (all with I4,N=4 = 0) exist:

1. The critical orbit A.1 is defined by the SL (2,R) × SO (6,M)-invariant constraints
(4.48) (or (4.56), or (4.64)). Such constraints are solved by the following flow solution
(exhibiting maximal symmetry):

z1 = z2 ∈ R+
0 , ρ1 = ρ2 = 0, θ undetermined. (4.66)
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Thus, from the reasoning performed at the end of Sect. 2 and the analysis of [9], the
considered small critical orbit is 1

2
-BPS. Along the corresponding small critical 1

2
-BPS

flow, the (maximal compact) symmetry of the skew-diagonalized central charge matrix
ZAB,skew−diag. defined in Eq. (4.19) is USp (4), whereas the one of ZI,red. defined in Eq.
(4.20) is SO (M). Therefore, the resulting maximal compact symmetry of the critical
orbit A.1 is USp (4)× SO (M).

2. The critical orbit A.2 is defined by the SL (2,R) × SO (6,M)-invariant constraints
(4.48) (or (4.56), or (4.64)). Such constraints are solved by the following flow solution,
existing for M > 1 (and exhibiting maximal symmetry)

z1 = z2 = 0, ρ1 ∈ R+
0 , ρ2 = 0. (4.67)

Thus, the considered small critical orbit is non-BPS ZAB = 0. Along the correspond-
ing small critical non-BPS ZAB = 0 flow, the (maximal compact) symmetry of the
skew-diagonalized central charge matrix ZAB,skew−diag. defined in Eq. (4.19) is SU (4),
whereas the one of ZI,red. defined in Eq. (4.20) is SO (M − 1). Therefore, the resulting
maximal compact symmetry of the critical orbit A.2 is SU (4)× SO (M − 1).

3. The critical orbit A.3 is defined by the SL (2,R) × SO (6,M)-invariant constraints
(4.48) (or (4.56), or (4.64)). Such constraints are solved by the following flow solution,
existing for M > 1 (and exhibiting maximal symmetry)

z1 = z2 =
ρ2√

2
∈ R+

0 , ρ1 = 0, θ undetermined. (4.68)

This small critical orbit is 1
2
-BPS. Along the corresponding small critical non-BPS

ZAB 6= 0 flow, the (maximal compact) symmetry of the skew-diagonalized central
charge matrix ZAB,skew−diag. defined in Eq. (4.19) is USp (4), whereas the one of
ZI,red. defined in Eq. (4.20) is SO (M − 1). Therefore, the resulting maximal compact
symmetry of the critical orbit A.3 is USp (4)× SO (M − 1).

4. The critical orbit B is defined by the SL (2,R)×SO (6,M)-invariant constraints (4.49)
(or (4.57), or (4.65)). Such constraints are solved by the following flow solution, existing
for M > 2 (and exhibiting maximal symmetry)

z1 ∈ R+
0 , z2 = 0, ρ1 = ρ2 =

z1√
2

; (4.69)

θ =
π

2
+ kπ, k ∈ Z. (4.70)

This small critical orbit is 1
4
-BPS. Along the corresponding small critical non-BPS

ZAB 6= 0 flow, the (maximal compact) symmetry of the skew-diagonalized central
charge matrix ZAB,skew−diag. defined in Eq. (4.19) is (SU (2))2, whereas the one of
ZI,red. defined in Eq. (4.20) is SO (M − 2). Therefore, the resulting maximal compact
symmetry of the critical orbit B is (SU (2))2 × SO (M − 2).
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5. The generic small lightlike case is defined by the SL (2,R)× SO (6,M)-invariant con-
straints (4.45) (or (4.55)). In this case, it is more convenient to consider the symplectic
basis of “bare” charges P and, in order to determine the maximal compact symmetry
of the flow solution(s), one can consider the saturation of the bound (4.45), namely:

p2q2 = (p · q)2 = 0. (4.71)

This is in general solved by p2 = 0, p · q = 0 and q2 6= 0 (or equivalently by q2 = 0,
p · q = 0 and p2 6= 0). It is easy to realize that the maximal compact symmetry of the
flow solution is SO (4)× SO (M − 1) in the case q2 > 0, and SO (5)× SO (M − 2) in
the case q2 < 0. In the first case the solution exists for M > 1, whereas in the second
case the solution exists for M > 2. Thus, one actually gets two generic small lightlike
orbits, both non-BPS ZAB 6= 0, with maximal compact symmetry respectively given
by SO (4)× SO (M − 1) and SO (5)× SO (M − 2).

Mutatis mutandis, the same considerations made at the end of Sect. 3 for N = 8, d = 4
supergravity also hold for N = 4, d = 4 matter coupled supergravity.

Notice that in pure N = 4, d = 4 supergravity only the small 1
2
-BPS orbit A.1 and the

large 1
4
-BPS orbit exist. Indeed, the non-BPS ZAB 6= 0 and non-BPS ZAB = 0 large orbits

and the small orbits A.2, A.3 and B cannot be realized, and the small lightlike orbit(s) of
point 5 above coincide with small orbit A.1.

Finally, it is worth noticing that the U (1) (stabilizer of the factor SL(2,R)
U(1)

of the scalar

manifold (4.1)) is broken both in large and small charge orbits, because both the central
charge matrix ZAB and the matter charges ZI are charged with respect to it.

5 N = 2

In N = 2, d = 4 supergravity one can repeat the analysis of [1, 40] (see also [41]), by using
the properties of special Kähler geometry (SKG, see e.g. [22], and Refs. therein). Indeed, in
SKG one can define an Sp (2n,R) matrix over the scalar manifold (as in Eq. (2.9)), as well
complex matrices f and h (as in Eqs. (2.10)-(2.14)), without the need for the manifold to
be necessarily a(n at least locally) symmetric space (see e.g. [21, 13]).

The basic identities of SKG applied to the (covariantly holomorphic) N = 2, d = 4
central charge section

Z ≡ eK/2
(
XΛqΛ − FΛp

Λ
)

(5.1)

of the U (1) Kähler-Hodge bundle (with Kähler weights (1,−1)) read as follows [20] (i, j =
1, ..., n − 1, with n − 1 denoting the number of Abelian vector multiplets coupled to the
supergravity one)

DiZ = 0; (5.2)

DiDjZ = iCijkg
kkDkZ; (5.3)

DjDiZ = gijZ, (5.4)
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where
(
XΛ, FΛ

)
are the holomorphic symplectic sections of the U (1) Kähler-Hodge bundle

(with Kähler weights (2, 0)), and K denotes the Kähler potential of the Abelian vector
multiplets’ scalar manifold, with metric gij = ∂j∂iK. Cijk is the rank-3 symmetric and
covariantly holomorphic C-tensor of SKG (see e.g. [22], and Refs. therein):

DlCijk = 0; (5.5)

D[lCi]jk = 0. (5.6)

Thus, in N = 2, d = 4 supergravity coupled to n− 1 Abelian vector multiplets, the “BH
potential” is given by [18, 19]

VBH (φ,P) = ZZ + gij (DiZ)DjZ, (5.7)

and the Attractor Eqs. read [20]

∂iVBH = 0⇔ 2ZDiZ + iCijkg
jjgkk

(
DjZ

)
DkZ = 0. (5.8)

1. The (1
2
-BPS) supersymmetric solution to Attractor Eqs. (5.8) is determined by

(DiZ) 1
2
−BPS = 0, ∀i, (5.9)

and therefore Eq. (5.7) yields

VBH, 1
2
−BPS = |Z|21

2
−BPS , (5.10)

and the corresponding Hessian matrix of VBH has block components given by [20]

(Di∂jVBH) 1
2
−BPS = (∂i∂jV ∂BH) 1

2
−BPS = 0; (5.11)(

∂i∂jVBH
)

1
2
−BPS = 2gij, 1

2
−BPS |Z|

2
1
2
−BPS , (5.12)

showing that there are no “flat” directions for such the (1
2
-)BPS class of solutions to

Attractor Eqs. (5.8) [33].

2. Non-supersymmetric (non-BPS) solutions to Attractor Eqs. (5.8) have DiZ 6= 0 (at
least) for some i ∈ {1, ..., n− 1}. Generally, such solutions fall into two class [6], and
they exhibit “flat” directions of VBH itself [33]. The non-BPS, Z = 0 class is defined
by the following constraints:

DiZ = ∂iZ 6= 0, for some i, Z = 0, (5.13)

thus yielding (from Eqs. (5.8))[
Cijkg

jjgkk
(
∂jZ

)
∂kZ

]
non−BPS,Z=0

= 0. (5.14)

Thus, Eqs. (5.7) and (5.13) yield

VBH,non−BPS,Z=0 =
[
gij (DiZ)DjZ

]
non−BPS,Z=0

=
[
gij (∂iZ) ∂jZ

]
non−BPS,Z=0

.

(5.15)
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3. The non-BPS, Z 6= 0 class is defined by the following constraints:

DiZ 6= 0, for some i, Z 6= 0. (5.16)

It is worth remarking that Eqs. (5.8) and the non-BPS Z 6= 0 defining constraints
(5.16) imply the following relations to hold at the non-BPS Z 6= 0 critical points of
VBH [13]:[
gij (DiZ)DjZ

]
non−BPS,Z 6=0

= − i
2

[
N3

(
Z
)

Z

]
non−BPS,Z 6=0

=
i

2

[
N3 (Z)

Z

]
non−BPS,Z 6=0

,

(5.17)
where the cubic form N3

(
Z
)

is defined as [13]

N3

(
Z
)
≡ CijkZ

i
Z
j
Z
k ⇔ N3 (Z) ≡ CijkZ

iZjZk. (5.18)

For an arbitrary SKG, it is in general hard to compute

SBH
π

= VBH |∂φVBH=0 = VBH (φH (P) ,P) , (5.19)

where φH (P) are the horizon scalar configurations solving the Attractor Eqs. (5.8). However,
the situation dramatically simplifies for symmetric SK manifolds

G4

H4

, (5.20)

in which case a classification, analogous to the one available for N > 2-extended, d = 4
supergravities (see e.g. [13] and Refs. therein; see also Sects. 3 and 4) can be performed [6].

In the treatment below, we are going to give a remarkable general topological formula for
VBH (φH (P) ,P) for symmetric SKG, which is manifestly invariant under diffeomorphisms
of the SK scalar manifold, and which holds for any choice of symplectic basis of “bare”
charges P and of special coordinates (see e.g. [22] and Refs. therein) of the SK manifold
itself. Indeed, such a formula by no means does refer to special coordinates, which may not
even exist for certain parametrizations of G4

H4
itself.

It should be pointed out that a general formula for the G4-invariant I4,N=2 is known for
the so-called d-SK homogeneous symmetric manifolds [26], and it reads (a = 1, ..., n− 1) [4]:

I4,N=2 (P) = −
(
p0q0 + paqa

)2
+ 4

[
q0I3,N=2 (p)− p0I3,N=2 (q) + {I3,N=2 (p) , I3,N=2 (q)}

]
,

(5.21)
where

I3,N=2 (p) ≡ 1

3!
dabcp

apbpc; (5.22)

I3,N=2 (q) ≡ 1

3!
dabcqaqbqc; (5.23)

{I3,N=2 (p) , I3,N=2 (q)} ≡ ∂I3,N=2 (p)

∂pa
∂I3,N=2 (q)

∂qa
, (5.24)
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in which the constant (number) rank-3 symmetric tensor dabc has been introduced (and dabc

is its suitably defined completely contravariant form). However, such a formula holds for a
particular symplectic basis (namely the one inherited from the N = 2, d = 5 theory, i.e.
the one of special coordinates), in which the holomorphic prepotential F (X) of SKG can be
written as

F (X) ≡ 1

3!
dabc

XaXbXc

X0
. (5.25)

In such a symplectic basis, the manifest symmetry is the d = 5 U -duality G5, under which
G4 branches as G4 → G5 × SO (1, 1). Indeed, I3,N=2 (p) and I3,N=2 (q) are nothing but
respectively the magnetic and electric invariants (both cubic in P) of the relevant symplectic
representations of G5.

Eq. (5.21) excludes the so-called quadratic (or minimally coupled [42]) sequence of sym-
metric SK manifolds (particular complex Grassmannians)

SU (1, n− 1)

SU (n− 1)× U (1)
, n ∈ N (5.26)

(not upliftable to d = 5), for which F (X) is given by (in the symplectic basis exhibiting the
maximal non-compact symmetry SU (1, n− 1))

F (X) = − i
2

[(
X0
)2 −

n−1∑
i=1

(
X i
)2

]
, (5.27)

and the invariant of the symplectic representation of G4 = SU (1, n− 1) reads as follows
(notice it is quadratic in P) [29]:

I2,N=2 (P) =
(
p0
)2

+ q2
0 −

n−1∑
i=1

((
pi
)2

+ q2
i

)
= |Z|2 − gij (DiZ)DjZ. (5.28)

Due to the quadratic nature of the G4-invariant I2,N=2 (P) given by Eq. (5.28), the quadratic
sequence of symmetric SK manifolds (5.26) exhibits only one small charge orbit, namely the
lightlike one, beside the two large charge orbits determined in [6].

The symmetric SK manifolds whose geometry is determined by the holomorphic prepo-
tential function (5.25) and the minimally coupled ones determined by Eq. (5.27) are all
the possible symmetric SK manifolds. After [43], from the geometric perspective of SKG,
symmetric SK manifolds can be characterized in the following way.

In SKG the Riemann tensor obeys to the following constraint (see e.g. [22] and Refs.
therein):

Rijkl = −gijgkl − gilgkj + CikmC ljng
mn. (5.29)

The requirement that the manifold to be symmetric demands the Riemann to be covariantly
constant:

DmRijkl = 0. (5.30)
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Due to the SKG constraint (5.29) and to covariant holomorphicity of the C-tensor (expressed
by Eq. (5.5)), Eq. (5.30) generally implies (for non-vanishing Cijk)

DlCijk = D(lCi)jk = 0, (5.31)

where in the last step Eq. (5.6) was used. Thus, in a SK symmetric space both the Riemann
tensor and the C-tensor are covariantly constant. Eq. (5.31) implies the following relation
[6]

Cj(lmCpq)kCijkg
jjgkk =

4

3
C(lmpgq)i, (5.32)

which is nothing but the “dressed” form of the analogous relation holding for the d-tensor
itself [44, 43]

dj(lmdpq)kd
ijk =

4

3
d(lmpδ

i
q). (5.33)

The quadratic sequence of symmetric manifolds (5.26) whose SKG is determined by the
prepotential (5.27) has

Cijk = 0, (5.34)

whereas the remaning symmetric SK manifolds, whose prepotential in the special coordinates
is given by Eq. (5.25) (with dabc constrained by Eq. (5.33)), correspond to

Cabc = eKdabc. (5.35)

By using Eqs. (5.31) and (5.32), as well as the SKG identities (5.2)-(5.4) (which, for
symmetric SKG, are equivalent to the Maurer-Cartan Eqs., as Eqs. (3.3) and (4.4)-(4.5) for
N = 8 and N = 4, d = 4 supergravities, respectively; see e.g. [29, 21]), one can prove that
the following quartic expression is a duality invariant for all symmetric SK manifolds :

I4,N=2,symm (φ,P) =
(
ZZ − ZiZ

i
)2

+

+
2

3
i
(
ZN3

(
Z
)
− ZN3 (Z)

)
+

−giiCijkCilmZ
j
Z
k
Z lZm, (5.36)

where the matter charges have been re-noted as Zi ≡ DiZ, Zi = gjiZj, and definition (5.18)
was recalled.

As claimed above, I4,N=2,symm given by Eq. (5.36) is φ-dependent only apparently, i.e. it
is topological, merely charge-dependent:

∂I4,N=2,symm (φ,P)

∂φ
= 0⇔ I4,N=2,symm = I4,N=2,symm (P) . (5.37)

Thus, by recalling Eq. (1.5), the general entropy-area formula [8] for extremal BHs in N = 2,
d = 4 supergravity coupled to Abelian vector multiplets whose scalar manifold is a symmetric
(SK) space reads as follows:

SBH
π

= VBH |∂φVBH=0 = VBH (φH (P) ,P) = |I4,N=2,symm (P)|1/2 . (5.38)
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Let us briefly analyze Eq. (5.36).

As for the case of N = 8, d = 4 supergravity treated in Sect. 3, one can introduce a
phase ϑ as follows (recall definitions (5.18)):

e2iϑ ≡ −
ZN3

(
Z
)

ZN3 (Z)
=

iZCijkZ
i
Z
j
Z
k

−iC lmnZ
lZmZn

. (5.39)

Thus, ϑ is the phase of the quantity iZN3

(
Z
)
: ϑ ≡ ϑiZN3(Z). It is then immediate to

compute ϑ from Eq. (5.36):

cosϑ (φ,P) =

3

[
I4,N=2,symm (P)−

(
ZZ − ZiZ

i
)2

+ giiCijkCilmZ
j
Z
k
Z lZm

]
22
∣∣ZN3

(
Z
)∣∣ . (5.40)

Notice that through Eq. (5.40) (cos)ϑ is determined in terms of the scalar fields φ and of
the BH charges P , also along the small orbits where I4,N=2,symm = 0. However, Eq. (5.40)
is not defined in the cases in which ZN3

(
Z
)

= 0. In such cases, ϑ is actually undetermined.
It should be clearly pointed out that the phase ϑ has nothing to do with the phase of the
U (1) bundle over the SK-Hodge vector multiplets’ scalar manifold (see e.g. [22] and Refs.
therein).

1. For 1
2
-BPS attractors (defined by the constraints (5.9)), Eq. (5.36) yields

I4,N=2,symm| 1
2
−BPS =

(
ZZ
)2

1
2
−BPS = |Z|41

2
−BPS , (5.41)

as in turn also implied by Eqs. (5.10) and (1.5) (or equivalently (5.38)). Notice that
Eqs. (5.10) and (5.41) are general, i.e. they hold for any SKG, regardless the symmetric
nature of the SK vector multiplets’ scalar manifold. Furthermore, the constraints (5.9)
imply that at the event horizon of 1

2
-BPS extremal BHs it holds[

N3

(
Z
)]

1
2
−BPS = 0⇒ ϑ 1

2
−BPS undetermined . (5.42)

2. For non-BPS Z = 0 attractors (defined by the constraints (5.13) which, through Eqs.
(5.8), imply Eq. (5.14)), Eq. (5.36) yields

I4,N=2,symm|non−BPS,Z=0 =
(
ZiZ

i
)2

non−BPS,Z=0
=
[
gij (∂iZ) ∂jZ

]2

non−BPS,Z=0
. (5.43)

Notice that Eqs. (5.15) and (5.43) are general, i.e. they hold for any SKG, regardless
the symmetric nature of the SK vector multiplets’ scalar manifold. Furthermore, the
constraints (5.9) imply that at the event horizon of non-BPS Z = 0 extremal BHs it
holds

Znon−BPS,Z=0 = 0⇒ ϑnon−BPS,Z=0 undetermined . (5.44)
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3. For non-BPS Z 6= 0 attractors (defined by the constraints (5.16) as well as by Eqs.
(5.8)), Eqs. (5.36) and (5.17) yield

I4,N=2,symm|non−BPS,Z 6=0 = −16 |Z|4non−BPS,Z 6=0 , (5.45)

thus implying, through Eq. (5.7) [45, 30, 6, 13]

ZiZ
i
∣∣∣
non−BPS,Z 6=0

= 3 |Z|2non−BPS,Z 6=0 ⇔ VBH,non−BPS,Z 6=0 = 4 |Z|2non−BPS,Z 6=0 . (5.46)

By plugging Eqs. (5.8), (5.16), (5.17) and (5.45) into Eq. (5.40), it follows that at the
event horizon of non-BPS Z 6= 0 extremal BHs it holds that

ϑnon−BPS,Z 6=0 = π + 2kπ, k ∈ Z. (5.47)

It should be remarked that, differently from the results (5.10)-(5.12), (5.41)-(5.42)
(holding for 1

2
-BPS attractors) and from the results (5.14)-(5.15), (5.43)-(5.44) (hold-

ing for non-BPS Z = 0 attractors), Eqs. (5.45)-(5.47) are not general : i.e. they
hold at the event horizon of extremal non-BPS Z 6= 0 BHs for symmetric SK man-
ifolds, but they do not hold true for generic SKG. However, when going beyond
the symmetric SK case (and thus encompassing both homogeneous non-symmetric
[26, 46] and non-homogeneous SK spaces), one can compute both VBH,non−BPS,Z 6=0 and
I4,N=2,symm|non−BPS,Z 6=0, and express the deviation from the symmetric case considered
above in terms of the complex quantity [13]

∆ ≡ −3

4

EijklmZ
i
ZjZkZ lZm

N3 (Z)
, (5.48)

where the tensor Eijklm was firstly introduced in [26] (see also [13]). The results of
straightforward computations read as follows:

VBH,non−BPS,Z 6=0 = 4 |Z|2non−BPS,Z 6=0 + ∆non−BPS,Z 6=0; (5.49)

I4,N=2,symm|non−BPS,Z 6=0 =

[
−16 |Z|4 + ∆2 − 8

3
∆ |Z|2

]
non−BPS,Z 6=0

. (5.50)

Notice that, as yielded e.g. by Eq. (5.49), ∆ is real at the non-BPS Z 6= 0 critical
points of VBH . For symmetric SK manifolds Eijklm = 0 globally, and thus Eqs.(5.49)
and (5.50) respectively reduce to Eqs. (5.46) and (5.45). On the other hand, the results
(5.45)-(5.46) hold also for those non-symmetry SK spaces (Eijklm 6= 0) such that

∆non−BPS,Z 6=0 = 0⇔
(
EijklmZ

i
ZjZkZ lZm

)
non−BPS,Z 6=0

, (5.51)

where in the implication “⇒” the assumption
[
N3 (Z)

]
non−BPS,Z 6=0

6= 0 was made. The

condition (5.51) might explain some results obtained for generic (d−)SKGs in some
particular supporting BH charge configurations in [45] (see also the treatment in [13]
and [39]).
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Consistently, for the quadratic minimally coupled sequence (5.26), for which Eq. (5.34)
holds, Eq. (5.36) formally reduces to

I4,N=2,symm|Cijk=0 =
(
ZZ − ZiZ

i
)2

;

m∣∣∣I4,N=2,symm|Cijk=0

∣∣∣1/2 = |I2,N=2| , (5.52)

where I2,N=2 is given by Eq. (5.28).

Remarkably, Eq. (5.36) turns out to be directly related to the quantity −h given by Eq.
(2.31) of [26] (see also the treatment of [47]). This is seen by noticing that Eq. (4.42) of [26]
coincides with Eq. (5.21) (along with definitions (5.22)-(5.24)). Note that the mapping of

quaternionic coordinates
(
AΛ, BΛ

)T
into the charges PT =

(
pΛ, qΛ

)T
(in special coordinates)

is related to the d = 3 attractor flows (see e.g. [48, 49, 50]).

For symmetric SK manifolds, small charge orbits of the symplectic representation of G4

are known to exist since [4] and [5].

• small lightlike charge orbits are defined by the G4-invariant constraint

I4,N=2,symm = 0; (5.53)

m(
ZZ − ZiZ

i
)2

+
2

3
i
(
ZN3

(
Z
)
− ZN3 (Z)

)
= giiCijkCilmZ

j
Z
k
Z lZm. (5.54)

In this case, Eq. (5.40) reduces to

cosϑ (φ,P)|I4,N=2,symm=0 = −
3

[(
ZZ − ZiZ

i
)2

− giiCijkCilmZ
j
Z
k
Z lZm

]
22
∣∣ZN3

(
Z
)∣∣

∣∣∣∣∣∣∣∣
I4,N=2,symm=0

.

(5.55)

• Beside the constraint (5.53)-(5.54), small critical charge orbits are defined by the fol-
lowing G4-invariant set of first order differential constraints, as well:

∂I4,N=2,symm

∂Z
= 0 =

∂I4,N=2,symm

∂Zi
. (5.56)

• Beside the constraints (5.53)-(5.54) and (5.56), small doubly-critical charge orbits are
also defined by the following set of second order differential constraints, as well:

DijI4,N=2,symm = 0 = DiI4,N=2,symm, (5.57)
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where the second-order differential operators Dij and Di have been introduced:

Dij ≡ R l
ijk

∂

∂Zk

∂

∂Z
l
; (5.58)

Di ≡ Cijk
∂

∂Zj

∂

∂Zk
. (5.59)

Notice that, through the definitions (5.58) and (5.59), the constraints (5.57) are G4-
invariant, because they are equivalent to the following constraint:

∂2I4,N=2,symm

∂Zsympl(G4)∂Zsympl(G4)

∣∣∣∣
Adj(G4)

= 0, (5.60)

where
Zsympl(G4) ≡

(
Z,Zi, Z, Zi

)T
, (5.61)

and the change of charge basis between the manifestly H4-covariant (in “flat” local
coordinates) basis Zsympl(G4) and the manifestly Sp (2n,R)-covariant basis P (defined
by Eq. (1.2)) is expressed by the fundamental identities of the SKG (see e.g. [51, 22]
and Refs. therein). Indeed, by considering the Cartan decomposition of the Lie algebra
of G4:

g4 = h4 + k4, (5.62)

and switching to “flat” local coordinates in the scalar manifold (here denoted by capital
Latin indices), it holds that DI (“flat” version of the operator defined in Eq. (5.59)) is
k4-valued. Furthermore, in symmetric manifolds R L

IJK
is a two-form (in the first two

“flat” local indices) which is Lie algebra-valued in h4, and thus DIJ (“flat” version of
the operator defined in Eq. (5.58)) turns out to be h4-valued. Notice that Eq. (5.60),
G4-invariantly defining the small doubly-critical charge orbit(s) of the N = 2, d = 4
vector multiplets’ symmetric SK scalar manifolds, is the analogue of Eq. (3.42), which
defines in an E7(7)-invariant way the small doubly-critical charge orbit of N = 8, d = 4
pure supergravity. It should be also recalled that in N = 4, d = 4 matter coupled
supergravity small doubly-critical (or higher-order-critical) charge orbits (independent
from the small critical ones) are absent. As treated in Sect. 4, all small critical charge
orbits of the N = 4 theory actually are doubly-critical, and the analogues of Eqs. (3.42)
and (5.60) are given, through Eq. (4.50) and definitions (4.51) and (4.53), by the rich
case study exhibited by Eqs. ((4.48)-(4.49) and) (4.56)-(4.57).

The classification of small charge orbits of the relevant symplectic representation of G4

for N = 2, d = 4 supergravity coupled to Abelian vector multiplets whose scalar manifold G4

H4

is (SK) symmetric, performed in accordance to their “order of criticality” (lightlike, critical,
doubly-critical), will be given elsewhere.
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6 ADM Mass for BPS Extremal Black Hole States

For BPS BH states in d = 4 ungauged8 supergravity theories, the ADM mass [27]MADM (φ∞,P)
is defined as the largest (of the absolute values) of the skew-eigenvalues of the (spatially
asymptotically) central charge matrix ZAB (φ∞,P) which saturate the BPS bound (2.28).
The skew-diagonalization of ZAB is made by performing a suitable transformation of the
R-symmetry, and thus by going to the so-called normal frame. In such a frame, the skew-
eigenvalues of ZAB can be taken to be real and positive (up to an eventual overall phase).
By saturating the BPS bound (2.28), it therefore holds that

MADM (φ∞,P) = |Z1 (φ∞,P)| > ... >
∣∣Z[N/2] (φ∞,P)

∣∣ , (6.1)

where Z1 (φ,P) , ...,Z[N/2] (φ,P) denote the set of skew-eigenvalues of ZAB (φ,P), and square
brackets denote the integer part of the enclosed number. As mentioned at the end of Sect.
2, if 1 6 k 6 [N /2] of the bounds expressed by Eq. (2.28) are saturated, the corresponding
extremal BH state is named to be k

N -BPS. Thus, the minimal fraction of total supersymme-
tries (pertaning to the asymptotically flat space-time metric) preserved by the extremal BH
background within the considered assumptions is 1

N (for k = 1), while the maximal one is 1
2

(for k = N
2

).

The ADM mass and its symmetries are different, depending on k.

6.1 N = 8

In N = 8, d = 4 supergravity (treated in Sect. 3), the E7(7) U -duality symmetry only allows
the cases [3] k = 1, 2, 4. By recalling the review given in Sect. 3, the maximal compact
symmetries of the supporting charge orbits respectively read [3, 4, 30, 13, 32, 33]

k = 1 : SU (2)× SU (6) ; (6.2)

k = 2 : USp (4)× SU (4) ; (6.3)

k = 4 : USp (8) , (6.4)

and they hold all along the respective scalar flows. While cases k = 2 and 4 are small (thus
not enjoying the attractor mechanism), case k = 1 can be either large or small.

In the large k = 1 case, the attractor mechanism makes the maximal compact symmetry
SU (2) × SU (6) of the supporting charge orbit O 1

8
−BPS,large fully manifest as a symmetry

of the central charge matrix ZAB through the symmetry enhancement (3.17) at the event
horizon of the considered extremal BH.

Furthermore, the 1
4
-BPS saturation of the N = 8 BPS bound (all along the 1

4
-BPS scalar

flow) has the following peculiar structure (recall Eq. (3.35)) [3]

|Z1 (φ,P)| = |Z2 (φ,P)| > |Z3 (φ,P)| = |Z4 (φ,P)| , (6.5)

8In the present paper only ungauged supergravities are treated. It is here worth remarking that the defini-
tion of the ADM mass for (eventually rotating) asymptotically non-flat black holes in gauged supergravities
is a fairly subtle issue, addressed by various studies in literature (see e.g. [52, 53], and Refs. therein).
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where it should be recalled that in Sect. 3 the notation ei ≡ |Zi| (i = 1, ..., 4) was used.

As done in Sect. 3, let us denote with λi (i = 1, ..., 4) the four real non-negative eigen-

values of the 8 × 8 Hermitian matrix ZABZ
CB

=
(
ZZ†

)C
A
≡ ACA. Their relation with the

absolute values of the complex skew-eigenvalues ei of ZAB is given by Eq. (3.29). As men-
tioned, the ordering λ1 > λ2 > λ3 > λ4 does not imply any loss of generality. After [9]

(see in particular Eqs. (4.74), (4.75), (4.86) and (4.87) therein), the explicit expression of
λi in terms of U (8)-invariants (namely of TrA, Tr (A2), Tr (A3) and Tr (A4), and suitable
powers) is known, and it can be thus be used in order to compute the ADM mass of k

8
-BPS

extremal BH states of N = 8, d = 4 supergravity.

The λi’s are solution of the (square root of) characteristic equation [9]

√
det (A− λI) =

4∏
i=1

(λ− λi) = λ4 + aλ3 + bλ2 + cλ+ d = 0, (6.6)

where [9]

a ≡ −1

2
TrA = − (λ1 + λ2 + λ3 + λ4) ; (6.7)

b ≡ 1

4

[
1

2
(TrA)2 − Tr

(
A2
)]

=

= λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4; (6.8)

c ≡ −1

6

[
1

8
(TrA)3 + Tr

(
A3
)
− 3

4
Tr
(
A2
)
TrA

]
=

= − (λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4) ; (6.9)

d ≡ 1

4

 1
96

(TrA)4 + 1
8
Tr2 (A2) + 1

3
Tr (A3)TrA+

−1
2
Tr (A4)− 1

8
Tr (A2)Tr2A

 =

=
√
detA = λ1λ2λ3λ4.

(6.10)

The system (6.7)-(6.10) can be inverted, yielding

λ1,2 = −a
4

+
s

2
± 1

2

√
a2

2
− 4b

3
− (a3 − 4ab+ 8c)

4s
− u

3w
− w

3
; (6.11)

λ3,4 = −a
4
− s

2
± 1

2

√
a2

2
− 4b

3
+

(a3 − 4ab+ 8c)

4s
− u

3w
− w

3
, (6.12)
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where

u ≡ b2 + 12d− 3ac; (6.13)

v ≡ 2b3 + 27c2 − 72bd− 9abc+ 27a2d; (6.14)

w ≡
(
v +
√
v2 − 4u3

2

)1/3

; (6.15)

s ≡
√
a2

4
− 2b

3
+

u

3w
+
w

3
. (6.16)

Notice that the positivity of quantities under square root in Eqs. (6.11), (6.12), (6.15)
and (6.16) always holds. Furthermore, Eq. (6.6) is at most of fourth order (for k = 1), of
second order for k = 2, and of first order for k = 1.

1. k = 1 (1
8
-BPS, either large or small). The 1

8
-BPS extremal BH square ADM mass is

M2
ADM, 1

8
−BPS (φ∞,P) = λ1 (φ∞,P) , (6.17)

where λ1(> λ2 > λ3 > λ4, since a < 0 and s > 0) is given by Eq. (6.11). In the large
k = 1 case λ2 = λ3 = λ4 = 0 at the event horizon of the extremal BH, as given by Eq.
(3.16).

2. k = 2 (1
4
-BPS, small). As given by Eq. (3.35), the eigenvalues are equal in pairs. By

suitably renaming the two non-coinciding λ’s, one gets

λ1,2 =
1

8
TrA± 1

2

√
1

2
Tr (A2)− 1

16
(TrA)2. (6.18)

As mentioned above, the maximal (compact) symmetry is manifest when λ2 (in the
renaming of Eq. (6.18)) vanishes (see treatment in Sect. 3). Eq. (3.35) implies [9]

c =
1

2
a

(
b− 1

4
a2

)
; (6.19)

d =
1

4

(
b− 1

4
a2

)2

. (6.20)

In [9] Eqs. (6.19)-(6.20) were shown to be consequences of the criticality constraints
(3.34). Thus, the 1

4
-BPS extremal BH square ADM mass is

M2
ADM, 1

4
−BPS (φ∞,P) = λ1 (φ∞,P) , (6.21)

where λ1(> λ2) is given by Eq. (6.18):

M2
ADM, 1

4
−BPS (φ∞,P) =

1

8
TrA (φ∞,P) +

1

2

√
1

2
Tr (A2) (φ∞,P)− 1

16
(TrA (φ∞,P))2.

(6.22)
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3. k = 4 (1
2
-BPS, small). This case can be obtained from the 1

4
-BPS considered at point

2 by further putting λ1 = λ2 in Eq. (6.18). Thus, all eigenvalues of the Hermitian
8× 8 matrix A are equal:

ACA =
1

8
(TrA) δCA , (6.23)

which implies

Tr
(
A2
)

=
1

8
(TrA)2 . (6.24)

Therefore, 1
2
-BPS extremal BH square ADM mass is given by

M2
ADM, 1

2
−BPS (φ∞,P) =

1

8
TrA (φ∞,P) =

1

16
ZAB (φ∞,P)Z

AB
(φ∞,P) . (6.25)

6.2 N = 4

In N = 4, d = 4 supergravity (treated in Sect. 4), the SL (2,R) × SO (6,M) U -duality
symmetry only allows the cases [3] k = 1, 2. By recalling the treatment of Sect. 4, the
respective maximal compact symmetries read [3, 4, 13, 39]

k = 1 : (SU (2))2 × SO (M)× SO (2) ; (6.26)

k = 2 : USp (4)× SO (M) , (6.27)

and they hold all along the respective scalar flows. While case k = 1 is large, case k = 2 is
small (thus not enjoying the attractor mechanism).

In the large k = 1 case, the attractor mechanism makes the maximal compact symmetry
(SU (2))2×SO (M)×SO (2) of the supporting charge orbit O 1

4
−BPS,large fully manifest as a

symmetry of the central charge matrix ZAB through the symmetry enhancement (recall Eq.
(4.25))

(SU (2))2 × SO (M − 2)× SO (2)
r→r+

H−→ (SU (2))2 × SO (M)× SO (2) (6.28)

at the event horizon of the considered extremal BH.

As done in Sect. 4 and in the treatment of case N = 8, d = 4 above, let us denote with

λ1 and λ2 the two real non-negative eigenvalues of the 4 × 4 Hermitian matrix ZABZ
CB

=(
ZZ†

)C
A
≡ ACA. Their relation with the absolute values of the complex skew-eigenvalues ei

of ZAB is given by Eq. (3.29). As mentioned, the ordering λ1 > λ2 does not imply any loss
of generality. After [9], the explicit expression of λ1 and λ2 in terms of (U (4)× SO (M))-

invariants (namely of TrA, Tr (A2) and (TrA)2) is known, and it can be thus be used in
order to compute the ADM mass of k

4
-BPS extremal BH states of N = 4, d = 4 supergravity.

Indeed, λ1 and λ2 are solution of the (square root of) characteristic equation [9]

√
det (A− λI) =

2∏
i=1

(λ− λi) = λ2 − 1

2
(TrA)λ+ (detA)1/2 = 0, (6.29)
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whose solution reads

λ1,2 =
1

2

(
1

2
TrA±

√
Tr (A2)− 1

4
(TrA)2

)
. (6.30)

Notice that the positivity of quantities under square root in Eq. (6.30) always holds.
Furthermore, Eq. (6.29) is at most of second order (for k = 1) and of first order for k = 2.

1. k = 1 (1
4
-BPS large). The 1

4
-BPS extremal BH square ADM mass is

M2
ADM, 1

4
−BPS (φ∞,P) = λ1 (φ∞,P) =

=
1

2

(
1

2
TrA (φ∞,P) +

√
Tr (A2) (φ∞,P)− 1

4
(TrA (φ∞,P))2

)
,

(6.31)

where λ1 > λ2. Notice that λ2 = 0 at the event horizon of the extremal BH, as given
by Eq. (4.23).

2. k = 2 (1
2
-BPS, small). This case can be obtained from the 1

4
-BPS considered at point

1 by further putting λ1 = λ2 in Eq. (6.30). Thus, all eigenvalues of the Hermitian
4× 4 matrix A are equal:

ACA =
1

4
(TrA) δCA , (6.32)

which implies

Tr
(
A2
)

=
1

4
(TrA)2 . (6.33)

Thus, the 1
2
-BPS extremal BH square ADM mass is

M2
ADM, 1

2
−BPS (φ∞,P) = λ1 (φ∞,P) = λ2 (φ∞,P) =

1

4
TrA (φ∞,P) . (6.34)

It should be here remarked that the R-symmetry of the k
N -BPS extremal BH states, i.e.

the compact symmetry of the solution in the normal frame (determining the automorphism
group of the supersymmetry algebra in the rest frame) gets broken as follows:

R −→ USp (2k)× ... . (6.35)

This is precisely the symmetry of the k
N -BPS saturated massive multiplets of theN -extended,

d = 4 Poincaré supersymmetry algebra [54].

We end this Section by finally commenting about the ADM mass for non-BPS extremal
BH states.
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In non-BPS cases, ADM mass of extremal BH states is not directly related to the skew-
eigenvalues of the central charge matrix ZAB. For some non-BPS extremal BHs a “fake
supergravity (first order) formalism” [55] can be consistently formulated in terms of a “fake
superpotential” W (φ,P) [56, 57, 58, 59] such that (also recall Eq. (1.5))

W2
non−BPS (φ,P)

∣∣
∂W
∂φ

=0
≡ W2

non−BPS (φH,non−BPS (P) ,P) =

= VBH (φ,P)| ∂VBH
∂φ

=0
≡ VBH (φH,non−BPS (P) ,P) =

=
SBH,non−BPS (P)

π
, (6.36)

with Wnon−BPS varying, dependently on whether ZAB = 0 or not. In such frameworks, the
general expression of the non-BPS ADM mass reads as follows [56, 57, 58]

MADM,non−BPS (φ∞,P) =Wnon−BPS (φ∞,P) . (6.37)
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