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preserving different fraction of supersymmetry. The interplay between BPS conditions and duality

properties is an important aspect of this investigation.
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I. INTRODUCTION

In d ¼ 4 extended ungauged supergravity theories
based on scalar manifolds which are (at least locally)
symmetric spaces

M ¼ G

H
; (1.1)

it is known that the classification of static, spherically
symmetric and asymptotically flat extremal black hole
(BH) solutions is made in terms of charge orbits of the
corresponding classical electric-magnetic duality group G
[1–6] (later called U-duality1 in string theory).

These orbits correspond to certain values taken by a
duality invariant2 combination of the ‘‘dressed’’ central
charges and matter charges. Denoting such an invariant by
I , the set of scalars parametrizing the symmetric manifold
M by �, and the set of ‘‘bare’’ magnetic and electric
charges of the (dyonic) BH configuration by the 2n� 1
symplectic vector

P � p�

q�

� �
; � ¼ 1; . . . ; n; (1.2)

then it holds that

@�Ið�;P Þ ¼ 0 , I ¼ IðP Þ: (1.3)

In some cases, the relevant invariant I is not enough to

characterize the orbit, and additional constraints are
needed. This is especially the case for the so-called3 small
BHs, in which case I ¼ 0 on the corresponding orbit
[3,4,9].
An explicit expression for the E7ð7Þ-invariant [10] was

firstly introduced in supergravity in [11], and then adopted
in the study of BH entropy in [12]. The additional
U-invariant constraints which specify charge orbits with
higher supersymmetry were given in [3]. The correspond-
ing (large and small) charge orbits for N ¼ 8 and excep-
tional N ¼ 2 supergravity were determined in [4],
whereas the large orbits for all other symmetric N ¼ 2
supergravities were obtained in [6], and then in [13] for all
N > 2-extended theories. Furthermore, the invariant for
N ¼ 4 supergravity was earlier discussed in [14,15].
The invariants play an important role in the attractor

mechanism [16–20], because the Bekenstein-Hawking BH
entropy [8], determined by evaluating the effective black
hole potential ([18–20])

VBHð�;P Þ � � 1

2
P TMð�ÞP (1.4)

at its critical points, actually coincides with the relevant
invariant:

SBH
�

¼ VBHj@�VBH¼0 ¼ VBHð�HðP Þ;P Þ
¼ jIðP Þj1=2ðorjIðP ÞjÞ: (1.5)

In Eq. (1.4) M stands for the 2n� 2n real (negative
definite) symmetric scalar-dependent symplectic matrix
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1Here U-duality is referred to as the ‘‘continuous’’ version,

valid for large values of the charges, of the U-duality groups
introduced by Hull and Townsend [7].

2By duality invariant, throughout our treatment we mean that
such a combination is G-invariant. Thus, it is actually indepen-
dent on the scalar fields, and it depends only on ‘‘bare’’ electric
and magnetic (asymptotical) charges (defined in Eq. (1.2)).

3Throughout the present treatment, we will, respectively, call
small or large (extremal) BHs those BHs with vanishing or
nonvanishing area of the event horizon (and therefore with
vanishing or nonvanishing Bekenstein-Hawking entropy [8]).
For symmetric geometries, they can be G-invariantly character-
ized, respectively, by I ¼ 0 or by I � 0.
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M ð�Þ � ImN �� þ ReN ��ðImN Þ�1j�� ReN �� �ReN ��ðImN Þ�1j��

�ðImN Þ�1j�� ReN �� ðImN Þ�1j��

 !
; (1.6)

defined in terms of the normalization of the Maxwell and
topological terms4

ImN ��ð�ÞF�F�;ReN ��ð�ÞF� ~F� (1.7)

of the corresponding supergravity theory (see e.g. [21,22]
and Refs. therein). Furthermore, in Eq. (1.5) �HðP Þ de-
notes the set of charge-dependent, stabilized horizon val-
ues of the scalars, solutions of the criticality conditions for
VBH:

@VBHð�;P Þ
@�

���������¼�HðP Þ
� 0: (1.8)

For the case of charge orbits corresponding to small
BHs, in the case of a single-center solution IðP Þ ¼ 0,
and thus the event horizon area vanishes, and the solution
is singular (i.e. with vanishing Bekenstein-Hawking en-
tropy). However, the charge orbits with vanishing duality
invariant play a role for multicenter solutions as well as for
elementary BH constituents through which large (i.e. with
nonvanishing Bekenstein-Hawking entropy) BHs are made
[23–25].

In the present investigation, we reexamine the duality
invariant and theU-invariant classification of charge orbits
of N ¼ 8, d ¼ 4 supergravity, we give a complete analy-
sis of the N ¼ 4 large and small charge orbits, and we
also derive a diffeomorphism-invariant expression of the
N ¼ 2 duality invariant, which is common to all sym-
metric spaces and which is completely independent on the
choice of a symplectic basis.

The paper is organized as follows.
In Sec. II we recall some basic facts about electric-

magnetic duality in N -extended supergravity theories,
firstly treated in [2]. The treatment follows from the gen-
eral analysis of [1], and the dictionary between that paper
and the present work is given.

In Sec. III we reexamine N ¼ 8, d ¼ 4 supergravity
and the E7ð7Þ-invariant characterization of its charge orbits.
This refines, reorganizes and extends the various results of
[3–5,9].

In Sec. IV we reconsider matter coupledN ¼ 4, d ¼ 4
supergravity. The SLð2;RÞ � SOð6;MÞ-invariant charac-
terization of all its BPS and non-BPS charge orbits, firstly
obtained in [3,9], is the starting point of the novel results
presented in this section.

Sec. V is devoted to the analysis of the N ¼ 2, d ¼ 4
case [3]. Beside the generalities on the special Kähler

geometry of Abelian vector multiplets’ scalar manifold,
the results of this section are novel. In particular, a formula
for the duality invariant is determined, which is
diffeomorphism-invariant and holds true for all symmetric
special Kähler manifolds (see e.g. [26] and Refs. therein),
regardless of the considered symplectic basis.
Sec. VI, starting from the analysis of [3,9], deals with the

issue of the ADM mass [27] inN ¼ 8 (Subsec. VIA) and
N ¼ 4 (Subsec. VIB), ungauged d ¼ 4 supergravities. In
general, for all supersymmetric orbits the ADM mass has a
known explicit expression, depending on the number of
supersymmetries preserved by the state which is supported
by the considered orbit (saturating the BPS [28] bound).

II. ELECTRIC-MAGNETIC DUALITY IN
SUPERGRAVITY: BASIC FACTS

The basic requirement for consistent coupling of a non-
linear sigma model based on a symmetric manifold (1.1) to
N -extended, d ¼ 4 supergravity (see e.g. [21] and Refs.
therein) is that the vector field strengths and their duals
(through Legendre transform with respect the Lagrangian
density L)

F�; G� � �L

�F�
; (2.1)

belong to a symplectic representation Rs of the global
(classical, see Footnote 1) U-duality group G, given by
2n� 2n matrices with block structure

A B
C D

� �
2 Spð2n;RÞ; (2.2)

where A, B, C and D are n� n real matrices. By defining
the 2n� 2n symplectic metric (each block being n� n)

� � 0 �1
1 0

� �
; (2.3)

the finite symplecticity condition for a 2n� 2n real matrix
P

PT�P ¼ � (2.4)

yields the following relations to hold for the block compo-
nents of the matrix defined in Eq. (2.2):

ATC� CTA ¼ 0; (2.5)

BTD�DTB ¼ 0; (2.6)

ATD� CTB ¼ 1: (2.7)

An analogous, equivalent definition of the representation
Rs is the following one: Rs is real and it contains the

4Attention should be paid in order to distinguish between the
notations of the number N of supercharges of a supergravity
theory and the kinetic vector matrix N �� introduced in Eqs.
(1.6) and (1.7).
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singlet in its 2-fold antisymmetric tensor product

ðRs �RsÞa 3 1: (2.8)

If the basic requirements (2.5), (2.6), and (2.7) or (2.8)
are met, the coset representative of M in the symplectic
representation Rs is given by the (scalar-dependent) 2n�
2n matrix

Sð�Þ � Að�Þ Bð�Þ
Cð�Þ Dð�Þ

� �
2 Spð2n;RÞ: (2.9)

A particular role is played by the two (scalar-dependent)
complex n� n matrices f and h, which do satisfy the
properties

� fyhþ hyf ¼ i1; (2.10)

� fThþ hTf ¼ 0: (2.11)

The constraining relations (2.10) and (2.11) are equivalent
to require that

Sð�Þ ¼ ffiffiffi
2

p Ref �Imf
Reh �Imh

� �
; (2.12)

or equivalently:

f ¼ 1ffiffiffi
2

p ðA� iBÞ; (2.13)

h ¼ 1ffiffiffi
2

p ðC� iDÞ: (2.14)

In order to make contact with the formalism introduced
by Gaillard and Zumino in [1], it is convenient to use
another (complex) basis, namely, the one which maps an
element S 2 Spð2n;RÞ into an element U 2 Uðn; nÞ\
Spð2n;CÞ. The change of basis is exploited through the
matrix

A � 1ffiffiffi
2

p 1 1
�i1 i1

� �
; A�1 ¼ Ay: (2.15)

The (scalar-dependent) matrix U is thus defined as fol-
lows:

Uð�Þ � A�1SA ¼ 1ffiffiffi
2

p fþ ih �fþ i �h
f� ih �f� i �h

� �
2 Uðn; nÞ \ Spð2n;CÞ: (2.16)

This is the matrix named S in Eq. (5.1) of [1].
Correspondingly, the Spð2n;RÞ-covariant vector
ðF�; G�ÞT is mapped into the vector

A�1 F�

G�

� �
¼ 1ffiffiffi

2
p 1 i1

1 �i1

� �
F�

G�

� �

¼ 1ffiffiffi
2

p F� þ iG�

F� � iG�

� �
: (2.17)

The kinetic vector matrixN �� appearing in Eqs. (1.6) and

(1.7) is given by (in matrix notation)

N ð�Þ ¼ hf�1 ¼ ðf�1ÞThT; (2.18)

and it is named �i �K in [1].
Thus, by introducing the 2n� 1 (n� n matrix-valued)

complex vector

� � f
h

� �
(2.19)

and recalling the definition (1.6), the matrix M can be
written as

Mð�Þ ¼ �i�þ 2��ð��Þy ¼ �i�� 2���y�

¼ �i�� 2
�h

f

 !
ðhy; �fy Þ

¼ �i
0 �1

1 0

 !
þ 2

hhy �hfy

�fhy ffy

 !
: (2.20)

Equations (1.4), (1.6), and (2.20) imply that

VBHð�;P Þ � � 1

2
P TMð�ÞP ¼ TrðZZyÞ ¼ TrðZyZÞ

¼ XN
A>B¼1

ZAB
�ZAB þ ZI

�ZI ¼ 1

2
ZAB

�ZAB þ ZI
�ZI

¼ 1

2
TrðZZyÞ þ ZI

�ZI ¼ 1

2
TrðZyZÞ þ ZI

�ZI;

(2.21)

where (A, B ¼ 1; . . . ;N and I ¼ 1; . . . ; m throughout;
recall � ¼ 1; . . . ; n)

Z � P T�� ¼ qf� ph ¼ ðZABð�;P Þ; ZIð�PPÞÞ;
(2.22)

m

Zy � ��y�P ¼ fyq� hyp ¼ �ZABð�;P Þ
�ZIð�;P Þ

� �
; (2.23)

ZABð�;P Þ � f�ABq� � hAB j �p�; (2.24)

ZIð�;P Þ � �f�I q� � �hIj�p�: (2.25)

Thus, Eq. (2.21) yields the ‘‘BH potential’’ VBHð�;P Þ to
be nothing but the sum of the squares of the ‘‘dressed’’
charges. It is here worth noticing that ðf�AB; �f�I Þ and
ðhABj�; �hIj�Þ are n� n complex matrices, because it holds

that5 f�AB ¼ f�½AB�, hABj� ¼ h½AB�j� (thus implying ZAB ¼
Z½AB�), and

5Unless otherwise noted, square brackets denote antisymmet-
rization with respect to the enclosed indices.
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n ¼ N ðN � 1Þ
2

þm; (2.26)

whereN stands for the number of spinorial supercharges
(see Footnote 4), and m denotes the number of matter
multiplets coupled to the supergravity multiplet, except
for N ¼ 6, d ¼ 4 pure supergravity, for which m ¼ 1.

Equations (2.24) and (2.25) are the basic relation be-
tween the (scalar-dependent) ‘‘dressed’’ charges ZAB and
ZI and the (scalar-independent) ‘‘bare’’ charges P . It is
worth remarking that ZAB is the ‘‘central charge matrix
function’’, whose asymptotical value appears in the right-
hand side of the N -extended (d ¼ 4) supersymmetry
algebra, pertaining to the asymptotical Minkowski space-
time background:

fQA
�;Q

B
�g ¼ ���Z

ABð�1;P Þ; (2.27)

where �1 denotes the set of values taken by the scalar
fields at radial infinity (r ! 1) within the considered
static, spherically symmetric and asymptotically flat
dyonic extremal BH background. Notice that the indices
A, B of the central charge matrix are raised and lowered
with the metric of the relevant R-symmetry group of the
corresponding supersymmetry algebra.

By denoting the ADM mass [27] of the considered BH
background byMADMð�1;P Þ, the BPS bound [28] implies
that

MADMð�1;P Þ � jZ1ð�1;P Þj � . . . � jZ½N =2�ð�1;P Þj;
(2.28)

where Z1ð�;P Þ; . . . ;Z½N =2�ð�;P Þ denote the set of skew-
eigenvalues of ZABð�;P Þ, and here square brackets denote
the integer part of the enclosed number. If 1 � k �
½N =2� of the bounds expressed by Eq. (2.28) are saturated,
the corresponding extremal BH state is named to be
k
N -BPS. Thus, the minimal fraction of total supersymme-

tries (pertaining to the asymptotically flat space-time met-
ric) preserved by the extremal BH background within the
considered assumptions is 1

N (for k ¼ 1), while the maxi-

mal one is 1
2 (for k ¼ N

2 ). See Sec. VI for further details.

We end the present Section with some considerations on
the issue of duality invariants.

A duality invariant I is a suitable linear combination (in
general with complex coefficients) of (�-dependent)
H-invariant combinations of ZABð�;P Þ and ZIð�;P Þ
such that Eq. (1.3) holds, i.e. such that I is invariant under
G, and thus �-independent:

I ¼ IðZABð�;P Þ; ZIð�;P ÞÞ ¼ IðP Þ: (2.29)

In presence ofmatter coupling, a charge configurationP
(and thus a certain orbit of the symplectic representation of
the U-duality group G, to which P belongs) is called
supersymmetric iff, by suitably specifying � ¼ �ðP Þ, it
holds that

ZIð�ðP Þ;P Þ ¼ 0; 8 I ¼ 1; . . . ; m: (2.30)

Notice that the conditions (2.30) cannot hold identically
in �, otherwise such conditions would be G-invariant,
which generally are not. Indeed, in order for the supersym-
metry constraints (2.30) to be invariant (or covariant) under
G, the following conditions must hold identically in �:

@�ZIð�;P Þ ¼ 0; 8 � 2 M: (2.31)

Therefore, supersymmetry conditions are not generally
G-invariant (i.e. U-invariant), otherwise extremal BH at-
tractors (which are large) supported by supersymmetric
charge configurations would not exist.
Nevertheless, in some supergravities it is possible to give

U-invariant supersymmetry conditions. In light of previous
reasoning, such U-invariant supersymmetric conditions
cannot stabilize the scalar fields in terms of charges (by
implementing the attractor mechanism in the considered
framework), because such U-invariant conditions are ac-
tually identities, and not equations, for the set of scalar
fields �. Actually, U-invariant supersymmetry conditions
can be given for all supersymmetric charge orbits support-
ing smallBHs (for which the classical attractor mechanism
does not hold). This can be seen e.g. inN ¼ 8 (pure) and
N ¼ 4 (matter coupled) d ¼ 4 supergravities, respec-
tively, treated in Secs. III and IV.

III. N ¼ 8

The scalar manifold of the maximal, namely N ¼ 8,
supergravity in d ¼ 4 is the symmetric real coset�

G

H

�
N¼8;d¼4

¼ E7ð7Þ
SUð8Þ ; dimR ¼ 70; (3.1)

where the usual notation for noncompact forms of excep-
tional Lie groups is used, with subscripts denoting the
difference ‘‘# noncompact generators -# compact gener-
ators’’. This theory is pure, i.e. matter coupling is not
allowed. The classical (see Footnote 1) U-duality group
is E7ð7Þ. Moreover, the R-symmetry group is SUð8Þ and,
due to the absence ofmatter multiplets, it is nothing but the
stabilizer of the scalar manifold (3.1) itself.
The Abelian vector field strengths and their duals, as

well the corresponding fluxes (charges), sit in the funda-
mental representation 56 of the global, classical U-duality
group E7ð7Þ. Such a representation determines the embed-

ding of E7ð7Þ into the symplectic group Spð56;RÞ, which is
the largest symmetry acting linearly on charges. The 56 of
E7ð7Þ admits an unique invariant, which will be denoted by

I4;N¼8 throughout. I4;N¼8 is quartic in charges, and it

was firstly determined in [11].
More precisely, I4;N¼8 is the unique combination of

ZABð�;P Þ satisfying

@�I4;N¼8ðZABð�;P ÞÞ ¼ 0; 8 � 2 E7ð7Þ
SUð8Þ : (3.2)
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Equation (3.2) can be computed by using the Maurer-

Cartan Eqs. of the coset
E7ð7Þ
SUð8Þ (see e.g. [29] and Refs.

therein):

rZAB ¼ 1

2
PABCD

�ZCD �ZCD; (3.3)

or equivalently by performing an infinitesimal
E7ð7Þ
SUð8Þ -transformation of the central charge matrix (see e.g.

[29] and Refs. therein):

��ABCD
ZAB ¼ 1

2
�ABCD

�ZCD; (3.4)

where r and PABCD respectively denote the covariant

differential operator and the Vielbein 1-form in
E7ð7Þ
SUð8Þ , and

the infinitesimal
E7ð7Þ
SUð8Þ -parameters �ABCD satisfy the reality

constraint

�ABCD ¼ 1

4!
�ABCDEFGH

��EFGH: (3.5)

As first found in [11] and rigorously reobtained in [29], the
unique solution of Eq. (3.2) reads:

I 4;N¼8 ¼ 1

22
½22 TrððZAC

�ZBCÞ2Þ � ðTrðZAC
�ZBCÞÞ2

þ 25 ReðPfðZABÞÞ�; (3.6)

where the Pfaffian of ZAB is defined as [11]

PfðZABÞ � 1

244!
�ABCDEFGHZABZCDZEFZGH; (3.7)

and it holds that (see e.g. [29])

jPfðZABÞj ¼ j detðZABÞj1=2: (3.8)

In [29] it was indeed shown that, although each of the three
terms of the expression (3.6) is SUð8Þ-invariant but scalar-
dependent, only the combination given by the expression
(3.6) is actually E7ð7Þ-independent and thus scalar-

independent, satisfying

��ABCD
I4;N¼8 ¼ 0; (3.9)

with Eqs. (3.4) and (3.5) holding true.

It is here worth commenting a bit further about formula
(3.6). The first two terms in its right-hand side are actually
Uð8Þ-invariant, while the third one, namely
25 ReðPfðZABÞÞ, is only SUð8Þ-invariant. Such a third
term introduces an SUð8Þ-invariant phase ’Z, defined as
(one fourth of) the overall phase of the central charge
matrix, when this latter is reduced to a skew-diagonal
form in the so-called normal frame through an
SUð8Þ-transformation:

ZAB !SUð8Þ
ZAB;skew-diag: � ei’Z=4

e1

e2

e3

e4

0
BBBBB@

1
CCCCCA � �;

ei 2 Rþ; 8 i ¼ 1; . . . ; 4; (3.10)

where the ordering e1 � e2 � e3 � e4 can be performed
without any loss of generality, and the 2� 2 symplectic
metric

� � 0 �1
1 0

� �
(3.11)

has been introduced (notice � ¼ � for n ¼ 1, as defined in
Eq. (2.3)). For nonvanishing (in general all different) skew-
eigenvalues ei, the symmetry group of ZAB;skew-diag: is

ðUSpð2ÞÞ4 � ðSUð2ÞÞ4. Thus, beside the 4 skew-
eigenvalues ei and the phase ’Z, the generic ZAB is de-

scribed by 51 ¼ dimRð SUð8Þ
ðSUð2ÞÞ4Þ ‘‘generalized angles’’.

Consistently, the total number of parameters is 4þ 1þ
51 ¼ 56, which is the real dimension of the fundamental
representation 56, defining the embedding of E7ð7Þ into

Spð56;RÞ.
Equivalently, ’Z can be defined through the Pfaffian of

ZAB as follows:

e2i’Z � PfðZABÞ
Pfð �ZABÞ

; (3.12)

where clearly Pfð �ZABÞ ¼ PfðZABÞ, as yielded by the defi-
nition (3.7). It is then immediate to compute ’Z from
Eq. (3.6):

cos’Zð�;P Þ ¼ ½22I4;N¼8ðP Þ � 22 TrððZAC
�ZBCÞ2Þ þ ðTrðZAB

�ZACÞÞ2�
25ðdetðZAC

�ZBCÞÞ1=4 : (3.13)

Notice that through Eq. (3.13) ðcosÞ’Z is determined in
terms of the scalar fields � and of the BH charges P , also
along the small orbits where I4;N¼8 ¼ 0. However, Eq.
(3.13) is not defined in the cases in which detðZAC

�ZBCÞ ¼
0, i.e. when at least one of the eigenvalues of the matrix
ZAC

�ZBC vanishes. In such cases, ’Z is actually
undetermined.

InN ¼ 8, d ¼ 4 supergravity five distinct orbits of the
56 of E7ð7Þ exist, as resulting from the analyses performed

in [4,5]. They can be classified in large and small charge

orbits, depending whether they correspond to I4;N¼8 � 0
or I4;N¼8 ¼ 0, respectively.
Only two large charge orbits (for which I4;N¼8 � 0,

and the attractor mechanism holds) exist inN ¼ 8, d ¼ 4
supergravity:
(1) The large 1

8 � BPS orbit [4,5]

O ð1=8Þ�BPS;large ¼
E7ð7Þ
E6ð2Þ

; dimR ¼ 55; (3.14)

is defined by the E7ð7Þ-invariant constraint
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I 4;N¼8 > 0: (3.15)

At the event horizon of the extremal BH, the solu-
tion of the N ¼ 8, d ¼ 4 Attractor Eqs. yields
[3,9,30]

e1 2 Rþ
0 ; e2 ¼ e3 ¼ e4 ¼ 0; (3.16)

implying detðZABÞ ¼ 0 , PfðZABÞ ¼ 0, and thus
’Z to be undetermined. Thus, at the event horizon,
the symmetry of the skew-diagonalized central
charge matrix ZAB;skew�diag: defined in Eq. (3.10)

gets enhanced as follows, revealing the maximal
compact symmetry of Oð1=8Þ�BPS;large:

ðUSpð2ÞÞ4 !r!rþH
USpð2Þ � SUð6Þ � SUð2Þ � SUð6Þ:

(3.17)

Indeed, SUð2Þ � SUð6Þ is the maximal compact
subgroup (mcs, with symmetric embedding [31])
of E6ð2Þ (stabilizer of Oð1=8Þ�BPS;large) itself.

(2) The large non-BPS (ZAB � 0) orbit [4,5]

O non�BPS;ZAB�0 ¼
E7ð7Þ
E6ð6Þ

; dimR ¼ 55; (3.18)

is defined by the E7ð7Þ-invariant constraint

I 4;N¼8 < 0: (3.19)

At the event horizon of the extremal BH, the solu-
tion of the N ¼ 8, d ¼ 4 Attractor Eqs. yields
[3,9,30]

e1 ¼ e2 ¼ e3 ¼ e4 2 Rþ
0 ;

’Z ¼ �þ 2k�; k 2 Z;
(3.20)

so the skew-eigenvalues of ZAB at the horizon (see
Eq. (3.10)) are complex. Thus, at the event horizon,
the symmetry of the skew-diagonalized central
charge matrix ZAB;skew�diag: defined in Eq. (3.10)

gets enhanced as follows, revealing the maximal
compact symmetry of Onon�BPS;ZAB�0:

ðUSpð2ÞÞ4 !r!rþH
USpð8Þ: (3.21)

Indeed, USpð8Þ is the mcs (with symmetric embed-
ding [31]) of E6ð6Þ (stabilizer of Onon�BPS;ZAB�0)

itself.
As mentioned above, for such large charge orbits, cor-

responding to a nonvanishing quartic E7ð7Þ-invariant
I4;N¼8 and thus supporting large BHs, the attractor

mechanism holds. Consequently, the computations of the
Bekenstein-Hawking BH entropy can be performed by
solving the criticality conditions for the ‘‘BH potential’’

VBH;N¼8 ¼ 1

2
ZAB

�ZAB; (3.22)

the result being

SBH;
�

¼ VBH;N¼8j@VBH;N¼8¼0 ¼ VBH;N¼8ð�HðP Þ;P Þ
¼ jI4;N¼8j1=2; (3.23)

where �HðP Þ denotes the set of solutions to the criticality
conditions of VBH;N¼8, namely, the Attractor Eqs. of

N ¼ 8, d ¼ 4 supergravity:

@�VBH;N¼8 ¼ 0; 8 � 2 E7ð7Þ
SUð8Þ ; (3.24)

expressing the stabilization of the scalar fields purely in
terms of supporting charges P at the event horizon of the
extremal BH. Through Eqs. (3.3) and (3.22), Eqs. (3.24)
can be rewritten as follows (notice the strict similarity to
Eq. (3.40) further below) [30]:

Z½ABZCD� þ 1

4!
�ABCDEFGH

�ZEF �ZGH ¼ 0: (3.25)

Actually, the critical potential VBH;N¼8j@VBH;N¼8¼0 ex-

hibits some ‘‘flat’’ directions, so not all scalars are stabi-
lized in terms of charges at the event horizon [32,33]. Thus,
Eq. (3.23) yields that the unstabilized scalars, spanning a
related moduli space of the considered class of attractor
solutions, do not enter in the expression of the BH entropy
at all. The moduli spaces6 exhibited by the Attractor
Eqs. (3.24) and (3.25) are [33]

M ð1=8Þ�BPSB;large ¼
E6ð2Þ

SUð2Þ � SUð6Þ ; dimR ¼ 40;

(3.26)

M non�BPS;ZAB�0 ¼
E6ð6Þ

USpð8Þ ; dimR ¼ 42: (3.27)

As found in [33], the general structure of themoduli spaces
of attractor solutions in supergravities based on symmetric
scalar manifolds G

H is

H nc

h
; (3.28)

whereH nc is the noncompact stabilizer of the charge orbit
G

H nc
(apart from eventual Uð1Þ factors, H nc is a noncom-

pact, real form of H), and h ¼ mcsðH ncÞ. As justified in
[29] and then in [32], Mð1=8Þ�BPS;large is a quaternionic

symmetric manifold. Furthermore, Mnon�BPS;ZAB�0 given

by Eq. (3.27) is nothing but the scalar manifold ofN ¼ 8,
d ¼ 5 supergravity. The stabilizers of Mð1=8Þ�BPS;large and

Mnon�BPS;ZAB�0 exploit the maximal compact symmetry of

the corresponding charge orbits; this symmetry becomes

6Results obtained by explicit computations within theN ¼ 2,
d ¼ 4 symmetric so-called stu model in [23,34] seem to point
out that the moduli spaces should be present not only at the event
horizon of the considered extremal BH (i.e. for r ! rþH), but also
all along the scalar attractor flow (i.e. 8 r � rH).
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fully manifest through the enhancement of the compact
symmetry group of ZAB;skew�diag at the event horizon of the

extremal BH, respectively, given by Eqs. (3.17) and (3.21).
It is now convenient to denote with �i (i ¼ 1; . . . ; 4) the

four real non-negative eigenvalues of the matrix ZAB
�ZCB ¼

ðZZyÞCA . By recalling Eq. (3.10), one can notice that

�i ¼ e2i ; (3.29)

and one can order them as �1 � �2 � �3 � �4, without
any loss of generality. The explicit expression of �i in
terms of Uð8Þ-invariants (namely of TrðZZyÞ, TrððZZyÞ2Þ,
TrððZZyÞ3Þ and TrððZZyÞ4Þ, and suitable powers) is given
by Eqs. (4.74), (4.75), (4.86) and (4.87) of [9], and it will be
used in Sec. VI to determine the ADM mass for k

8 � BPS

(k ¼ 1, 2, 4) extremal BH states.
Three distinct small charge orbits (all with I4;N¼8 ¼ 0)

exist, and they all are supersymmetric:
(1) The generic small lightlike orbit is 1

8 � BPS, it is

defined by the E7ð7Þ-invariant constraint

I 4;N¼8 ¼ 0; (3.30)

and it reads [4,5]

O ð1=8Þ�BPS;small ¼
E7ð7Þ

F4ð4Þ �s T26

; dimR ¼ 55:

(3.31)

Generally, it yields four different �i’s, and in this
case Eq. (3.13) reduces to

coss’Zð�;P ÞjI4;N¼8¼0

¼�½22TrððZAC
�ZBCÞ2Þ�ðTrðZAB

�ZACÞÞ2�
25ðdetðZAC

�ZBCÞÞ1=4
��������I4;N¼8¼0

:

(3.32)

In agreement with the results of [4,5], the (maximal
compact) symmetry of the skew-diagonalized cen-
tral charge matrix ZAB;skew�diag all along the 1

8 �
BPS small flow is the generic one: ðSUð2ÞÞ4. The
counting of the parameters of Oð1=8Þ�BPS;small con-

sistently reads: 55 ¼ 4 skew-eigenvalues �i þ 1

phase ’Z þ 51ð¼ dimRð SUð8Þ
ðSUð2ÞÞ4ÞÞ ‘‘generalized an-

gles’’ �1 defining constraint (3.30).
(2) The small critical orbit is 1

4 � BPS. It reads [4,5]

O ð1=4Þ�BPS ¼
E7ð7Þ

ðSOð6; 5Þ �s T32Þ � T1

;

dimR ¼ 45;

(3.33)

and it is defined by the following differential con-
straint on I4;N¼8 [3,9]:

@I4;N¼8

@ZAB

¼ 0; (3.34)

which, due to the reality of I4;N¼8, is actually

E7ð7Þ-invariant. Let us also notice that, due to the

homogeneity of I4;N¼8 of degree four in P , Eq.

(3.34) implies the constraint (3.30). In particular,
along the 1

4 � BPS orbit it holds that (the labelling

does not yield any loss of generality)

�1 ¼ �2 > �3 ¼ �4 � 0: (3.35)

If PfðZABÞ � 0 then

�1 ¼ �2 > �3 ¼ �4 > 0; (3.36)

and Eq. (3.13) yields ’Z ¼ k�, k 2 Z, so the skew-
eigenvalues of ZAB (see Eq. (3.10)) are real and the
(maximal) compact symmetry of ZAB;skew�diag: is

ðUSpð4ÞÞ2. On the other hand, if PfðZABÞ ¼ 0 then

�1 ¼ �2 > �3 ¼ �4 ¼ 0; (3.37)

and ’Z is undetermined. In this case, the (maximal
compact) symmetry of the skew-diagonalized cen-
tral charge matrix ZAB;skew�diag: is USpð4Þ �
SUð4Þ � SOð5Þ � SOð6Þ, which is the mcs of the
nontranslational part of the stabilizer of Oð1=4Þ�BPS,

expressing the maximal compact symmetry of
Oð1=4Þ�BPS itself. In agreement with the results of

[4,5], themaximal (compact) symmetry of the skew-
diagonalized central charge matrix ZAB;skew�diag:

along the 1
4 � BPS small flow (fully manifest in

the particular solution (3.37)) is USpð4Þ � SUð4Þ.
The counting of the parameters of Oð1=4Þ�BPS con-

sistently reads: 45 ¼ 2 skew-eigenvalues �1 and

�2 þ 43ð¼ dimRð SUð8Þ
ðUSpð4ÞÞ2ÞÞ ‘‘generalized angles’’.

(3) The small doubly-critical orbit is 1
2 � BPS, and it

reads [4,5]

O ð1=2Þ�BPS ¼ E7ð7Þ
E6ð6Þ �s T27

; dimR ¼ 28:

(3.38)

It can be defined in an E7ð7Þ-invariant way by per-

forming the following two-step procedure [9]. One
starts by considering the requirement that the second
derivative of I4;N¼8 (with respect to ZAB) projected

along the adjoint representation AdjðSUð8ÞÞ ¼ 63
of SUð8Þ vanishes, yielding [9]

@2I4;N¼8

@ZAB
�@ �ZBC

��������AdjðSUð8ÞÞ
¼ 0 , ZAC

�ZBC

¼ 1

23
�B
AZDEZ

DE: (3.39)

This is a mixed rank-2 SUð8Þ-covariant condition.
By further differentiating with respect to the scalars

� parametrizing
E7ð7Þ
SUð8Þ and using the Maurer-Cartan

Eqs. (3.3), one obtains another SUð8Þ-covariant re-
lation [notice the strict similarity to the N ¼ 8,
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d ¼ 4 Attractor Eqs. (3.25)] [9]:

Z½ABZCD� � 1

4!
�ABCDEFGH

�ZEF �ZGH ¼ 0: (3.40)

Actually, Eq. (3.40) form with Eq. (3.39) an
E7ð7Þ-invariant set of differential conditions defining
Oð1=2Þ�BPS. Indeed, as noticed in [9], Eq. (3.40) can

be rewritten as

@2I4;N¼8

@Z½AB@ZCD�
� 1

4!
�ABCDEFGH @2I4;N¼8

�@ �Z½EF �@ �ZGH� ¼ 0:

(3.41)

Thus, by using the notation Z56 � ðZ;ZTÞ ¼
ðZAB; �Z

AB �ZABÞ (recall Eqs. (2.22) and (2.23), Eqs.
(3.39), (3.40), and (3.41) can be rewritten in the
manifestly E7ð7Þ-invariant fashion

@2I4;N¼8

@Z56@Z56

��������AdjðE7ð7ÞÞ
¼ 0; (3.42)

where AdjðE7ð7ÞÞ ¼ 133 is the adjoint representa-

tion of E7ð7Þ. Notice that
@2I4;N¼8

@Z56@Z56
is a rank-2 sym-

metric true-tensor E7ð7Þ-tensor, thus sitting in the

symmetric product representation ð56� 56Þs ¼
1596 of E7ð7Þ, which in turns enjoys the following

branching with respect to E7ð7Þ [9,31]:

ð56� 56Þs ¼ 1596 ! 1463þ 133

AdjðE7ð7ÞÞ : (3.43)

It is here worth remarking that the constraints (3.39),
(3.40), and (3.41) (or equivalently ((3.42))) imply
the constraint (3.34), because in fact they are
stronger constraints.

Along the 1
2 � BPS orbit it holds that

�1 ¼ �2 ¼ �3 ¼ �4: (3.44)

Furthermore, it can be shown that ’Z ¼ 2k�, k 2 Z, so
the skew-eigenvalues of ZAB (see Eq. (3.10)) are real. In
agreement with the results of [4,5], the (maximal compact)
symmetry of the skew-diagonalized central charge matrix
ZAB;skew�diag: all along the 1

2 � BPS small flow is USpð8Þ,
which is the mcs of the nontranslational part of the stabil-
izer of Oð1=2Þ�BPS, expressing the maximal compact sym-

metry of Oð1=2Þ�BPS itself. The counting of the parameters

of Oð1=2Þ�BPS consistently reads: 28 ¼ 1 skew-eigenvalue

�1 þ 27ð¼ dimRð SUð8Þ
USpð8ÞÞÞ ‘‘generalized angles’’.

Interestingly, USpð8Þ also is the enhanced compact
symmetry of ZAB;skew�diag: at the event horizon of the large

non-BPS ZAB � 0 attractor scalar flow (see Eq. (3.21)
above). Indeed, the charge orbits Onon�BPS;ZAB�0 and

Oð1=2Þ�BPS (respectively given by Eqs. (3.18) and (3.38))

coincide, up to the translational factor T27 in the stabilizer,
and thus they have the same maximal compact symmetry.

As given by the analysis of [3], the classification of large
and small orbits of the 56 of E7ð7Þ can be performed also

considering the symplectic basis composed by the fluxes
q� (� ¼ 1; . . . ; 56). In general, the symplectic basis of
charges is useful in order to determine, through constraints
imposed on the relevant U-invariant, the number and ty-
pology of orbits of the relevant representation of the
U-duality group. On the other hand, using the manifestly
H-covariant basis of central charges and matter charges
one can achieve a symplectic-invariant characterization of
charge orbits, and also study the related supersymmetry-
preserving features.
Finally, it is worth pointing out once again that there is a

crucial difference among the various constraints defining
the two large and the three small charge orbits of N ¼ 8,
d ¼ 4 supergravity listed above:
(i) The large charge orbits Oð1=8Þ�BPS;large and

Onon�BPS;ZAB�0, respectively, given by Eqs. (3.18)

and (3.38), are in order defined by the
E7ð7Þ-invariant conditions I4;N¼8 > 0 and

I4;N¼8 < 0. Because of their E7ð7Þ-invariance, these
conditions are identities for the scalar fields � span-

ning
E7ð7Þ
SUð8Þ . However, the classical attractor mecha-

nism does hold for large extremal BHs, and the
scalars � are stabilized purely in terms of charges
P at the event horizon (r ! rþH) through the only
two independent solutions (3.16) and (3.20) to the
N ¼ 8, d ¼ 4 Attractor Eqs. (3.24) and (3.25).

(ii) The small charge orbits Oð1=8Þ�BPS;small, Oð1=4Þ�BPS

and Oð1=2Þ�BPS, respectively, given by Eqs. (3.31),

(3.33), and (3.38), are in order defined by the
E7ð7Þ-invariant conditions (3.30), (3.34), and (3.42).

Because of their E7ð7Þ-invariance, these conditions

are identities for the scalars �, which thus are not
stabilized along such orbits. Indeed, the classical
attractor mechanism does not hold for small BHs.

IV. N ¼ 4

InN ¼ 4, d ¼ 4 supergravity, unlike theN ¼ 8 case,
matter (vector) multiplets appear (see e.g. [35,36]). By
denoting their number with M, the related scalar manifold
is the symmetric coset�
G

H

�
N¼4;d¼4

¼ SLð2;RÞ
Uð1Þ � SOð6;MÞ

SOð6Þ � SOðMÞ ;

dimR ¼ 6Mþ 2: (4.1)

The Abelian vector field strengths and their duals, as
well the corresponding fluxes (charges), sit in the bi-
fundamental (2, 6þM) representation of the global, clas-
sical (see Footnote 1) U-duality group SLð2;RÞ �
SOð6;MÞ [37]. Such a representation determines the em-
bedding of SLð2;RÞ � SOð6;MÞ into the symplectic group
Spð12þ 2M;RÞ. The representation (2, 6þM) is en-
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dowed with a natural symplectic metric

� � ���	��; (4.2)

where ��� (�, � ¼ 1, 2) is the (inverse of the) SLð2;RÞ
skew-symmetric metric defined in Eq. (3.11), and 	�� (�,
� ¼ 1; . . . ; 6þM ¼ n; recall Eq. (2.26)) is the Lorentzian
metric of SOð6;MÞ. Moreover, the R-symmetry group is
Uð4Þ.

Furthermore, (2, 6þM) admits an unique invariant,
which will be denoted by I4;N¼4 throughout. I4;N¼4 is

quartic in charges, and it was firstly determined in
[14,19,38].

More precisely, I4;N¼4 is the unique combination of

‘‘dressed’’ charges ZAB ¼ Z½AB�ð�;P Þ (central charge ma-
trix, A, B ¼ 1; . . . ; 4) and ZIð�;P Þ (matter charges, I ¼
1; . . . ;M) satisfying

@�I4;N¼4ðZABð�;P Þ; ZIð�;P ÞÞ ¼ 0;

8 � 2
�
G

H

�
N¼4;d¼4

: (4.3)

Equation (4.3) can be computed by using the Maurer-

Cartan Eqs. of the coset SLð2;RÞ
Uð1Þ � SOð6;MÞ

SOð6Þ�SOðMÞ (see e.g.

[29], and Refs. therein):

rZAB ¼ 1

2
P�ABCD �ZCD þ PABI

�ZI; (4.4)

rZI ¼ 1

2
PABI

�ZAB þ P	IJ
�ZJ; (4.5)

or equivalently by performing an infinitesimal SLð2;RÞ
Uð1Þ �

SOð6;MÞ
SOð6Þ�SOðMÞ -transformation of the central charge matrix

and of matter charges (see e.g. [29], and Refs. therein):

�ð�;�ABjIÞZAB ¼ 1

2
��ABCD �ZCD þ �ABjIZI; (4.6)

�ð�;�ABjIÞZI ¼ ��	IJ
�ZJ þ 1

2
�ABjI �ZAB; (4.7)

where r stands for the covariant differential operator in
SLð2;RÞ
Uð1Þ � SOð6;MÞ

SOð6Þ�SOðMÞ . P and PABI respectively are the

Vielbein 1-forms of SLð2;RÞ
Uð1Þ and SOð6;MÞ

SOð6Þ�SOðMÞ , with PABI sat-

isfying the reality condition:

PABI ¼ 1

2
	IJ�ABCD �PCDJ: (4.8)

Moreover, � is the infinitesimal SLð2;RÞUð1Þ -parameter and �ABjI
are the infinitesimal SOð6;MÞ

SOð6Þ�SOðMÞ -parameters, satisfying the

reality condition

�� ABjI ¼ 1

2
	IJ�ABCD�CDjJ: (4.9)

As found in [14,19,38] and rigorously reobtained in [29], in

terms of ZAB and ZI the unique solution of Eq. (4.3) reads:

I 4;N¼4 ¼ S2
1 � jS2j2; (4.10)

where one can identify S1 � L0, S2 ¼ L1 þ iL2, with
L � ðL0; L1; L2Þ being an SLð2;RÞ � SOð1; 2Þ-vector
with square norm

L2 ¼ L2
0 � L2

1 � L2
2 ¼ S2

1 � jS2j2: (4.11)

S1 and S2 are defined as [29]

S 1 � 1

2
ZAB

�ZAB � ZI
�ZI 2 R; (4.12)

S 2 � 1

4
�ABCDZABZCD � �ZI

�ZI 2 C: (4.13)

In [29] it was indeed shown that I4;N¼4 given by

Eq. (4.10) is the unique combination of
SOð6;MÞ-invariant and scalar-dependent quantities, which
is actually also SLð2;RÞ-independent and thus scalar-
independent, satisfying

��I4;N¼4 ¼ 0; (4.14)

��ABjII4;N¼4 ¼ 0; (4.15)

with Eqs. (4.6), (4.7), and (4.9) holding true.
On the other hand, the expression of I4;N¼4 in terms of

the ‘‘bare’’ charges P reads [14,15,18,19]

I4;N¼4 ¼ p2q2 � ðp 	 qÞ2

¼ 1

2
ðp�q� � p�q�Þðp�q� � p�q�Þ	��	��

¼ 1

2
TðaÞ
��

TðaÞj��; (4.16)

where

p2 � p 	 p � p�p�	
��; q2 � q 	 q � q�q�	

��;

p 	 q � p�q�	
��; (4.17)

and the tensor

TðaÞ
��

� p�q� � p�q� ¼ TðaÞ
½��� (4.18)

has been introduced (the upperscript ‘‘(a)’’ stands for
‘‘antisymmetric’’).
The classification of charge orbits, in particular, the BPS

ones, was performed in [3,9]. By performing a suitable
Uð1Þ � SOð6Þð�Uð4ÞÞ-transformation, the central charge
matrix ZAB can be skew-diagonalized in the normal frame
(recall definition (3.11)):

ZABUð4Þ ! ZAB;skew�diag � z1
z2

� �
� �; z1; z2 2 Rþ;

(4.19)

where the ordering z1 � z2 does not imply any loss of
generality. Furthermore, by performing a suitable
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SOðMÞ-transformation, the vector ZI ofmatter charges can
be reduced to have only two nonvanishing entries, one real
positive and the other one complex, say (without loss of
generality, with the subscript ‘‘red.’’ standing for ‘‘re-
duced’’)

ZI !SOðMÞ
ZI;red � ð
1e

i�; 
2; 0; . . . ; 0Þ;

1; 
2 2 Rþ; � 2 R:

(4.20)

For nonvanishing (in general different) skew-eigenvalues
z1 and z2, the symmetry group of ZAB;skew�diag: is

ðUSpð2ÞÞ2 � ðSUð2ÞÞ2. Analogously, for nonvanishing (in
general different) 
1 and 
2 (and nonvanishing phase �)
the symmetry group of ZI;red is SOðM� 2Þ. Thus, beside
z1, z2, 
1, 
2 and � the generic ZAB and ZI are described by

7þ 2M ¼ dimRð Uð4Þ�SOðMÞ
ðSUð2ÞÞ2�SOðM�2ÞÞ ‘‘generalized angles’’.

Consistently, the total number of parameters is 2þ 2þ
1þ 7þ 2M ¼ 12þ 2M, which is the real dimension of
the bi-fundamental representation (2, 6þM), defining the
embedding of SLð2;RÞ � SOð6;MÞ into Spð12þ 2M;RÞ.

In N ¼ 4, d ¼ 4 matter coupled supergravity three
distinct large charge orbits of the (2, 6þM) of SLð2;RÞ �
SOð6;MÞ (for which I4;N¼4 � 0, and the attractor

mechanism holds) exist, as resulting from the analysis
performed in7 [13]:

(1) The large 1
4 � BPS orbit

Oð1=4Þ�BPS;large ¼ SLð2;RÞ � SOð6;MÞ
SOð4;MÞ � SOð2Þ ;

dimR ¼ 11þ 2M; (4.21)

is defined by the SLð2;RÞ � SOð6;MÞ-invariant
constraint

I 4;N¼4 > 0: (4.22)

Thus, the corresponding horizon solution of the
N ¼ 4, d ¼ 4 Attractor Eqs. yields [3,9,13]

z1 2 Rþ
0 ; z2 ¼ 0;


1 ¼ 
2 ¼ 0; � undetermined;
(4.23)

S 1 ¼ z21 > 0; S2 ¼ 0: (4.24)

Therefore, at the event horizon, the symmetry group
of ZAB;skew�diag: defined in Eq. (4.19) does not get

enhanced, while the symmetry group of Zi;red de-

fined in Eq. (4.20) gets enhanced as follows:

SOðM� 2Þ !r!rþH
SOðMÞ: (4.25)

As a consequence, the horizon attractor solution
exploits the maximal compact symmetry SUð2Þ �
SUð2Þ � SOðMÞ � SOð2Þ, which is the mcs [31] of
the stabilizer of Oð1=4Þ�BPS;large itself.

(2) The large non-BPS ZAB ¼ 0 orbit (existing forM �
2) [13]

Onon�BPS;ZAB¼0;large

¼ SLð2;RÞ � SOð6;MÞ
SOð6;M� 2Þ � SOð2Þ ;

dimR ¼ 11þ 2M; (4.26)

is defined by the SLð2;RÞ � SOð6;MÞ-invariant
constraint

I 4;N¼4 > 0: (4.27)

Thus, the corresponding attractor solution of the
N ¼ 4, d ¼ 4 Attractor Eqs. yields (for M � 2)
[3,9,13]

z1 ¼ z2 ¼ 0;


2
1e

2i� þ 
2
2 ¼ 0 , 
1 ¼ 
2 2 Rþ

0 ;

� ¼ �

2
þ k�; k 2 Z; (4.28)

S 1 ¼ �2
2
1 < 0; S2 ¼ 0: (4.29)

Therefore, at the event horizon, the symmetry group
of ZAB;skew�diag: defined in Eq. (4.19) gets enhanced

as follows:

ðSUð2ÞÞ2 !r!rþH
SUð4Þ; (4.30)

and the symmetry group of Zi;red defined in Eq.

(4.20) does not get enhanced. Consequently, the
horizon attractor solution exploits the maximal
compact symmetry SUð4Þ � SOðM� 2Þ � SOð2Þ,
which is the mcs [31] of the stabilizer of
Onon�BPS;ZAB¼0;large itself.

(3) The large non-BPS ZAB � 0 orbit (existing forM �
1) [13]

Onon�BPS;ZAB�0;large

¼ SLð2;RÞ � SOð6;MÞ
SOð5;M� 1Þ � SOð1; 1Þ ;

dimR ¼ 11þ 2M; (4.31)

is defined by the SLð2;RÞ � SOð6;MÞ-invariant
constraint

I 4;N¼4 < 0: (4.32)

At the event horizon of the extremal BH, the solu-
tion of theN ¼ 4, d ¼ 4 Attractor Eqs. yields (for
M � 1) [3,9,13]

7Consistent with the analysis of [13], Eqs. (4.21), (4.26), and
(4.31), fix a slightly misleading notation for the large charge
orbits ofN ¼ 4, d ¼ 4matter coupled supergravity, as given by
Table 1 of [39].
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z1 ¼ z2 ¼ 
1ffiffiffi
2

p 2 Rþ
0 ; 
2 ¼ 0;

� ¼ �

2
þ k�; k 2 Z;

(4.33)

S 1 ¼ 0; S2 ¼ 3z21 > 0: (4.34)

Thus, at the event horizon, the symmetry group of
ZAB;skew�diag: defined in Eq. (4.19) gets enhanced as

follows:

ðSUð2ÞÞ2 !r!rþH
USpð4Þ; (4.35)

and the symmetry group of Zi;red defined in Eq.

(4.20) gets also enhanced as

SOðM� 2Þ !r!rþH
SOðM� 1Þ: (4.36)

As a consequence, the horizon attractor solution
exploits the maximal compact symmetry USpð4Þ �
SOðM� 1Þ which, due to the isomorphism
USpð4Þ � SOð5Þ, is the mcs [31] of the stabilizer
of Onon�BPS;ZAB�0;large itself.

As mentioned above, for such large charge orbits, cor-
responding to a nonvanishing quartic SLð2;RÞ �
SOð6;MÞ-invariant I4;N¼4 and thus supporting large

BHs, the attractor mechanism holds. Consequently, the
computations of the Bekenstein-Hawking BH entropy
can be performed by solving the criticality conditions for
the ‘‘BH potential’’

VBH;N¼4 ¼ 1

2
ZAB

�ZAB þ ZI
�ZI; (4.37)

the result being

SBH;
�

¼ VBH;N¼4j@VBH;N¼4¼0 ¼ VBH;N¼4ð�HðP Þ;P Þ
¼ jI4;N¼4j1=2; (4.38)

where �HðP Þ denotes the set of solutions to the criticality
conditions of VBH;N¼4, namely, the Attractor Eqs. of

N ¼ 4, d ¼ 4 matter coupled supergravity:

@�VBH;N¼4 ¼ 0; 8 � 2 SLð2;RÞ
Uð1Þ � SOð6;MÞ

SOð6Þ � SOðMÞ ;
(4.39)

expressing the stabilization of the scalar fields purely in
terms of supporting charges P at the event horizon of the
extremal BH. Through Eqs. (4.4), (4.5), and (4.37),
Equations (4.39) can be rewritten as follows [13]:�

�ZAB þ 1

2
�ABCDZCD

�
ZI ¼ 0;

ZIZJ�IJ þ 1

4
�ABCD �ZAB �ZCD ¼ 0:

(4.40)

Actually, the critical potential VBH;N¼4j@VBH;N¼4¼0 ex-

hibits some ‘‘flat’’ directions, so not all scalars are stabi-
lized in terms of charges at the event horizon [39]. Thus,
Eq. (4.38) yields that the unstabilized scalars, spanning a
related moduli space of the considered class of attractor
solutions, do not enter in the expression of the BH entropy
at all. The moduli spaces exhibited by the Attractor Eqs.
(4.39) and (4.40) are [39]

Mð1=4Þ�BPS;large ¼ SOð4;MÞ
SUð2Þ � SUð2Þ � SOðMÞ ;

dimR ¼ 4M; (4.41)

Mnon�BPS;ZAB¼0;large ¼ SOð6;M� 2Þ
SUð4Þ � SOðM� 2Þ ;

dimR ¼ 6ðM� 2Þ; (4.42)

Mnon�BPS;ZAB�0;large ¼ SOð1; 1Þ

� SOð5;M� 1Þ
USpð4Þ � SOðM� 1Þ ;

dimR ¼ 5ðM� 1Þ þ 1: (4.43)

As justified in [29] and then in [39], Mð1=4Þ�BPS;large is a

quaternionic symmetric manifold. Furthermore,
Mnon�BPS;ZAB�0;large given by Eq. (4.43) is nothing but

the scalar manifold of N ¼ 4, d ¼ 5 matter coupled
supergravity. The stabilizers of Mð1=4Þ�BPS;large,

Mnon�BPS;ZAB¼0;large and Mnon�BPS;ZAB�0;large exploit the

maximal compact symmetry of the corresponding charge
orbits; this symmetry becomes fully manifest through the
enhancement of the compact symmetry group of
ZAB;skew�diag: and ZI;red at the event horizon of the extremal

BH, respectively, given by Eqs. (4.25), (4.30), (4.35), and
(4.36).
Let us now analyze the small charge orbits of the (2, 6þ

M) of SLð2;RÞ � SOð6;MÞ, associated to I4;N¼4 ¼ 0, for
which the attractor mechanism does not hold. The analysis
performed below completes the one given in [3,9].
While in N ¼ 8, d ¼ 4 supergravity all three small

charge orbits are BPS (with various degrees of
supersymmetry-preservation), in the considered N ¼ 4,
d ¼ 4 theory there are five small charge orbits, two of them
being 1

2 � BPS one 1
4 -BPS, and the other two non-BPS (one

with ZAB ¼ 0 and the other with ZAB � 0). Such an abun-
dance of different charge orbits can be traced back to the
factorized nature of the U-duality group SLð2;RÞ �
SOð6;MÞ. Furthermore, it should be remarked that in
N ¼ 4, d ¼ 4 supergravity the 1

ðN¼Þ4 -BPS charge orbit

exists only in its large version, differently from the d ¼ 4
maximal theory, in which both large and small 1

ðN¼Þ8 �
BPS charge orbits exist.
It is now convenient to denote with �1 and �2 the two

real non-negative eigenvalues of the matrix ZAB
�ZCB ¼

ðZZyÞCA . By recalling Eq. (4.19), one can notice that
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(i ¼ 1, 2)

�i ¼ z2i : (4.44)

and one can order them as �1 � �2, without any loss of
generality. The explicit expression of�i in terms ofUð4Þ �
SOðMÞ-invariants (namely of TrðZZyÞ, TrððZZyÞ2Þ, and
suitable powers) is given by Eqs. (5.108) and (5.109) of [9].

Firstly, let us observe that from Eqs. (4.16) and (4.11) the
SLð2;RÞ � SOð6;MÞ-invariant ‘‘degeneracy’’ condition
can be written in the ‘‘dressed’’ (R-symmetry- and
SOðMÞ- covariant) and ‘‘bare’’ (symplectic-, i.e. Spð12þ
2M;RÞ- covariant) charges’ bases, respectively, as follows:

I 4;N¼4 ¼ 0 , S2
1 ¼ jS2j2 , p2q2 ¼ ðp 	 qÞ2 � 0:

(4.45)

Then, in order to determine the number and typology of
small orbits, it is convenient to start differentiating I4;N¼4

in the symplectic ‘‘bare’’ charges’ basis P � ðp�; q�ÞT
(recall definition (1.2)). Equations (4.16) and (4.18) yield
the constraints defining the small critical orbits to read

@I4;N¼4

@p�

¼ 2½q2p� � ðq 	 pÞq�� ¼ 2TðaÞj��q� ¼ 0;

(4.46)

@I4;N¼4

@q�
¼ 2½p2q� � ðq 	 pÞp�� ¼ �2TðaÞj��p� ¼ 0:

(4.47)

Because of the definition (4.18), or equivalently to the
homogeneity (of degree four) in charges of I4;N¼4, it is

worth noticing that the ‘‘criticality’’ constraints (4.46) and
(4.47) imply the ‘‘degeneracy’’ condition (4.45).

Beside the trivial one (p� ¼ 0 ¼ q�8�), all the solu-
tions to the ‘‘criticality’’ constraints (4.46) and (4.47) list as
follows:

A�

8>>>>>><
>>>>>>:

TðaÞ
��

¼ 0;8>>>><
>>>>:
p2q2 ¼ ðp 	 qÞ2 > 0:

8>><
>>:
A:1�p2 > 0; q2 > 0;
aut
A:2�p2 < 0; q2 < 0;

A:3�p2q2 ¼ ðp 	 qÞ2 ¼ 0: p2 ¼ 0; q2 ¼ 0;

(4.48)

B�
�
TðaÞ
��

� 0;

p2 ¼ q2 ¼ p 	 q ¼ 0 , Tð0Þ ¼ 0
: (4.49)

Notice that each set (A:1, A:2, A:3 and B) of constraints is
SLð2;RÞ � SOð6;MÞ-invariant, but formulated in terms of
the symplectic charge basis P .

The solutions (4.48) and (4.49) can be rewritten by

noticing that
@2I4;N¼4

@P@P , i.e. the tensor of second derivatives

of I4;N¼4 with respect to P , sits in the symmetric product

representation ðð2; 6þMÞ � ð2; 6þMÞÞs of theU-duality

group SLð2;RÞ � SOð6;MÞ, which decomposes as follows
[9]:

ðð2; 6þMÞ � ð2; 6þMÞÞs
���!SLð2;RÞ�SOð6;MÞ ð3; 1Þ

Tð0Þ þ ð3; TrSymðSOð6;MÞÞÞ
Tðtr�sÞ
��

þ ð1;AdjðSOð6;MÞÞÞ
TðaÞ
��

: (4.50)

The antisymmetric tensor

TðaÞ
��

� @2I4;N¼4

@P@P

��������ð1;AdjðSOð6;MÞÞÞ
(4.51)

was already introduced in Eq. (4.18). TrSym and Adj
respectively denote the traceless symmetric and adjoint
representations, and [9]

Tðtr�sÞ
��

� @2I4;N¼4

@P@P

��������ð3;TrSymðSOð6;MÞÞÞ

�
�
q�q� � q2

6þM
	��; p�p� � p2

6þM
	��;

1

2

� ðq�p� þ q�p�Þ � q 	 p
6þM

	��

�
; (4.52)

Tð0Þ � @2I4;N¼4

@P@P

��������ð3;1Þ
� TrSOð6;MÞðTðsÞ

��
Þ

� TrSOð6;MÞ
�
@2I4;N¼4

@P@P

��������ð3;SymðSOð6;MÞÞÞ

�

¼ ðq2; p2; q 	 pÞ ¼ q2 q 	 p
q 	 p p2

� �
: (4.53)

The definition (4.53) of Tð0Þ implies that (recall Eq. (4.16))

I 4;N¼4 ¼ detðTð0ÞÞ ¼ det

�
@2I4;N¼4

@P@P

��������ð3;1Þ

�
; (4.54)

in turn yielding another, equivalent SLð2;RÞ �
SOð6;MÞ-invariant characterization of the ‘‘degeneracy’’
condition (4.45):

detðTð0ÞÞ ¼ det

�
@2I4;N¼4

@P@P

��������ð3;1Þ

�
¼ 0: (4.55)

Thus, Eqs. (4.48) and (4.49) can be recast as follows:

A�

8>>>>>>>><
>>>>>>>>:

TðaÞ
��

¼ 0;

detðTð0ÞÞ ¼ 0;

8>>>>><
>>>>>:

A:1�TrðTð0ÞÞ> 0;
aut
A:2�TrðTð0ÞÞ< 0;
aut
A:3�TrðTð0ÞÞ ¼ 0 , Tð0Þ ¼ 0:

(4.56)
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B�
�
TðaÞ
��

� 0;

Tð0Þ ¼ 0:
(4.57)

As mentioned above, each set (A:1, A:2, A:3 and B) of
constraints is SLð2;RÞ � SOð6;MÞ-invariant, but formu-
lated in terms of the symplectic charge basis P .

It is interesting to point out that, differently from N ¼
8, d ¼ 4 supergravity treated in Sec. III, inN ¼ 4, d ¼ 4
supergravity there are no small doubly-critical (or with
higher degree of criticality) charge orbits independent
from the small critical ones. This can be easily seen by
noticing that the solutions (4.56) and (4.57) to the ‘‘criti-
cality’’ constraints (4.46) and (4.47) can actually be rewrit-

ten in a doubly-critical fashion, i.e. through
@2I4;N¼4

@P@P and

related projections (according to decomposition (4.50)).
For completeness’ sake, we report here the second-order
derivatives of I4;N¼4 with respect to the ‘‘bare’’ symplec-

tic charges:

@2I4;N¼4

@p�@p�

¼ 2ðq2	�� � q�q�Þ; (4.58)

@2I4;N¼4

@q�@q�
¼ 2ðp2	�� � p�p�Þ; (4.59)

@2I4;N¼4

@q�@p�

¼ 4TðaÞj��: (4.60)

In order to determine the small orbits of the bi-
fundamental representation (2, 6þM) of the U-duality
group SLð2;RÞ � SOð6;MÞ and to study their
supersymmetry-preserving properties, it is now convenient
to switch to the basis of ‘‘dressed’’ charges (recall
Eqs. (2.22) and (2.23))

U � ðZ; �ZÞT ¼ ðZAB;Z
I; �ZAB; �Z

IÞT: (4.61)

From the analysis of [9], one obtains the following equiva-
lence:

TðaÞ
��

� @2I4;N¼4

@P@P

��������AdjðSOð6;MÞÞ
¼ 0

, @2I4;N¼4

@U@U

��������AdjðSOð6;MÞÞ
¼ 0: (4.62)

The SLð2;RÞ � SOð6;MÞ-invariant constraint (4.62) is
common to the small critical charge orbits determined by
the solutions A:1, A:2 and A:3 of Eqs. (4.56). It also
implies that �1 ¼ �2 [9]. Then, the further SLð2;RÞ �
SOð6;MÞ-invariant constraints TrðTð0ÞÞ0 can equivalently
be rewritten as (recall definition (4.12))

Tr ðTð0ÞÞ0 , S10: (4.63)

Therefore, one can characterize the small critical orbits
A:1, A:2, andA:3 of Eqs. (4.48) and (4.56) as follows:

A�

8>>>>>>>><
>>>>>>>>:

@2I4;N¼4

@U@U jAdjðSOð6;MÞÞ ¼ 0;

S2
1 ¼ jS2j2;

8>>>>><
>>>>>:

A:1�S1 > 0;
aut
A:2�S1 < 0;
aut
A:3�S1 ¼ 0 , S2 ¼ 0:

(4.64)

Notice that each set (A:1, A:2, A:3 and B) of constraints is
SLð2;RÞ � SOð6;MÞ-invariant but, differently from Eqs.
(4.48) and (4.56), it is also independent from the symplec-
tic basis eventually considered.
On the other hand, the SLð2;RÞ � SOð6;MÞ-invariant

constraints (4.49) and (4.57) defining the small critical
orbit B can be recast in a form which (differently from
Eqs. (4.49) and (4.57)) is independent from the symplectic
basis eventually considered, as follows:

B�
8<
:

@2I4;N¼4

@U@U jAdjðSOð6;MÞÞ � 0;

S2
1 ¼ jS2j2 ¼ 0:

(4.65)

Thus, five distinct small charge orbits (all with
I4;N¼4 ¼ 0) exist:
(1) The critical orbit A:1 is defined by the SLð2;RÞ �

SOð6;MÞ-invariant constraints (4.48) (or (4.56), or
(4.64)). Such constraints are solved by the following
flow solution (exhibiting maximal symmetry):

z1 ¼ z2 2 Rþ
0 ;


1 ¼ 
2 ¼ 0; � undetermined:
(4.66)

Thus, from the reasoning performed at the end of
Sec. II and the analysis of [9], the considered small
critical orbit is 1

2 � BPS. Along the corresponding

small critical 12 � BPS flow, the (maximal compact)

symmetry of the skew-diagonalized central charge
matrix ZAB;skew�diag defined in Eq. (4.19) is USpð4Þ,
whereas the one of ZI;red defined in Eq. (4.20) is

SOðMÞ. Therefore, the resulting maximal compact
symmetry of the critical orbit A:1 is USpð4Þ �
SOðMÞ.

(2) The critical orbit A:2 is defined by the SLð2;RÞ �
SOð6;MÞ-invariant constraints (4.48) (or (4.56), or
(4.64)). Such constraints are solved by the following
flow solution, existing for M � 1 (and exhibiting
maximal symmetry)

z1 ¼ z2 ¼ 0; 
1 2 Rþ
0 ; 
2 ¼ 0: (4.67)

Thus, the considered small critical orbit is non-BPS
ZAB ¼ 0. Along the corresponding small critical
non-BPS ZAB ¼ 0 flow, the (maximal compact)
symmetry of the skew-diagonalized central charge
matrix ZAB;skew�diag defined in Eq. (4.19) is SUð4Þ,
whereas the one of ZI;red defined in Eq. (4.20) is

SOðM� 1Þ. Therefore, the resulting maximal com-
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pact symmetry of the critical orbit A:2 is SUð4Þ �
SOðM� 1Þ.

(3) The critical orbit A:3 is defined by the SLð2;RÞ �
SOð6;MÞ-invariant constraints (4.48) (or (4.56), or
(4.64)). Such constraints are solved by the following
flow solution, existing for M � 1 (and exhibiting
maximal symmetry)

z1 ¼ z2 ¼ 
2ffiffiffi
2

p 2 Rþ
0 ; 
1 ¼ 0; �undetermined:

(4.68)

This small critical orbit is 1
2 -BPS. Along the corre-

sponding small critical non-BPS ZAB � 0 flow, the
(maximal compact) symmetry of the skew-
diagonalized central charge matrix ZAB;skew�diag: de-

fined in Eq. (4.19) is USpð4Þ, whereas the one of
ZI;red defined in Eq. (4.20) is SOðM� 1Þ. Therefore,
the resulting maximal compact symmetry of the
critical orbit A:3 is USpð4Þ � SOðM� 1Þ.

(4) The critical orbit B is defined by the SLð2;RÞ �
SOð6;MÞ-invariant constraints (4.49) (or (4.57), or
(4.65)). Such constraints are solved by the following
flow solution, existing for M � 2 (and exhibiting
maximal symmetry)

z1 2 Rþ
0 ; z2 ¼ 0; 
1 ¼ 
2 ¼ z1ffiffiffi

2
p ;

(4.69)

� ¼ �

2
þ k�; k 2 Z: (4.70)

This small critical orbit is 1
4 -BPS. Along the corre-

sponding small critical non-BPS ZAB � 0 flow, the
(maximal compact) symmetry of the skew-
diagonalized central charge matrix ZAB;skew�diag: de-

fined in Eq. (4.19) is ðSUð2ÞÞ2, whereas the one of
ZI;red defined in Eq. (4.20) is SOðM� 2Þ. Therefore,
the resulting maximal compact symmetry of the
critical orbit B is ðSUð2ÞÞ2 � SOðM� 2Þ.

(5) The generic small lightlike case is defined by the
SLð2;RÞ � SOð6;MÞ-invariant constraints (4.45)
(or (4.55)). In this case, it is more convenient to
consider the symplectic basis of ‘‘bare’’ charges P
and, in order to determine the maximal compact
symmetry of the flow solution(s), one can consider
the saturation of the bound (4.45), namely:

p2q2 ¼ ðp� qÞ2 ¼ 0: (4.71)

This is in general solved by p2 ¼ 0, p 	 q ¼ 0 and
q2 � 0 (or equivalently by q2 ¼ 0, p 	 q ¼ 0 and
p2 � 0). It is easy to realize that the maximal com-
pact symmetry of the flow solution is SOð4Þ �
SOðM� 1Þ in the case q2 > 0, and SOð5Þ �
SOðM� 2Þ in the case q2 < 0. In the first case the
solution exists for M � 1, whereas in the second

case the solution exists for M � 2. Thus, one ac-
tually gets two generic small lightlike orbits, both
non-BPS ZAB � 0, with maximal compact symme-
try, respectively, given by SOð4Þ � SOðM� 1Þ and
SOð5Þ � SOðM� 2Þ.

Mutatis mutandis, the same considerations made at the
end of Sect. III for N ¼ 8, d ¼ 4 supergravity also hold
for N ¼ 4, d ¼ 4 matter coupled supergravity.
Notice that in pureN ¼ 4, d ¼ 4 supergravity only the

small 1
2 -BPS orbit A.1 and the large 1

4 -BPS orbit exist.

Indeed, the non-BPS ZAB � 0 and non-BPS ZAB ¼ 0 large
orbits and the small orbits A.2, A.3, and B cannot be
realized, and the small lightlike orbit(s) of point 5 above
coincide with small orbit A.1.
Finally, it is worth noticing that the Uð1Þ (stabilizer of

the factor SLð2;RÞUð1Þ of the scalar manifold (4.1)) is broken both

in large and small charge orbits, because both the central
charge matrix ZAB and the matter charges ZI are charged
with respect to it.

V. N ¼ 2

InN ¼ 2, d ¼ 4 supergravity one can repeat the analy-
sis of [1,40] (see also [41]), by using the properties of
special Kähler geometry (SKG, see e.g. [22], and Refs.
therein). Indeed, in SKG one can define an Spð2n;RÞ
matrix over the scalar manifold (as in Eq. (2.9)), as well
complex matrices f and h (as in Eqs. (2.10), (2.11), (2.12),
(2.13), and (2.14)), without the need for the manifold to be
necessarily a (n at least locally) symmetric space (see e.g.
[13,21]).
The basic identities of SKG applied to the (covariantly

holomorphic) N ¼ 2, d ¼ 4 central charge section

Z � eK=2ðX�q� � F�p
�Þ (5.1)

of the Uð1Þ Kähler-Hodge bundle (with Kähler weights
ð1;�1Þ) read as follows [20] (i, �j ¼ 1; . . . ; n� 1, with n�
1 denoting the number of Abelian vector multiplets
coupled to the supergravity one)

�D �iZ ¼ 0; (5.2)

DiDjZ ¼ iCijkg
k �k �D �k

�Z; (5.3)

�D �jDiZ ¼ gi �jZ; (5.4)

where ðX�; F�Þ are the holomorphic symplectic sections of
the Uð1Þ Kähler-Hodge bundle (with Kähler weights (2,
0)), and K denotes the Kähler potential of the Abelian
vector multiplets’ scalar manifold, with metric gi �j ¼
�@ �j@iK. Cijk is the rank-3 symmetric and covariantly hol-

omorphic C-tensor of SKG (see e.g. [22], and Refs.
therein):

�D �lCijk ¼ 0; (5.5)
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D½lCi�jk ¼ 0: (5.6)

Thus, in N ¼ 2, d ¼ 4 supergravity coupled to n� 1
Abelian vector multiplets, the ‘‘BH potential’’ is given by
[18,19]

VBHð�;P Þ ¼ Z �Zþ gi
�jðDiZÞ �D �j

�Z; (5.7)

and the Attractor Eqs. read [20]

@iVBH ¼ 0 , 2 �ZDiZþ iCijkg
j �jgk

�kð �D �j
�ZÞ �D �k

�Z ¼ 0:

(5.8)

(1) The ( 12 � BPS) supersymmetric solution to

Attractor Eqs. (5.8) is determined by

ðDiZÞð1=2Þ�BPS ¼ 0; 8 i; (5.9)

and therefore Eq. (5.7) yields

VBH;ð1=2Þ�BPS ¼ jZj2ð1=2Þ�BPS; (5.10)

and the corresponding Hessian matrix of VBH has
block components given by [20]

ðDi@jVBHÞð1=2Þ�BPS ¼ ð@i@jV@BHÞð1=2Þ�BPS ¼ 0;

(5.11)

ð@i �@ �jVBHÞð1=2Þ�BPS ¼ 2gij;ð1=2Þ�BPSjZj2ð1=2Þ�BPS;

(5.12)

showing that there are no ‘‘flat’’ directions for such
the ( 12 � BPS class of solutions to Attractor

Eqs. (5.8) [33].
(2) Nonsupersymmetric (non-BPS) solutions to

Attractor Eqs. (5.8) have DiZ � 0 (at least) for
some i 2 f1; . . . ; n� 1g. Generally, such solutions
fall into two class [6], and they exhibit ‘‘flat’’ direc-
tions of VBH itself [33]. The non-BPS, Z ¼ 0 class is
defined by the following constraints:

DiZ ¼ @iZ � 0; for some i; Z ¼ 0; (5.13)

thus yielding (from Eqs. (5.8))

½Cijkg
j �jgk

�kð �@ �j
�ZÞ �@ �k

�Z�non�BPS;Z¼0 ¼ 0: (5.14)

Thus, Eqs. (5.7) and (5.13) yield

VBH;non�BPS;Z¼0 ¼ ½gi �jðDiZÞ �D �j
�Z�non�BPS;Z¼0

¼ ½gi �jð@iZÞ �@ �j
�Z�non�BPS;Z¼0:

(5.15)

(3) The non-BPS, Z � 0 class is defined by the follow-
ing constraints:

DiZ � 0; for some i; Z � 0: (5.16)

It is worth remarking that Eqs. (5.8) and the non-

BPS Z � 0 defining constraints (5.16) imply the
following relations to hold at the non-BPS Z � 0
critical points of VBH [13]:

½gi �jðDiZÞ �D �j
�Z�non�BPS;Z�0 ¼ � i

2

�
�
N3ð �ZÞ

�Z

�
non�BPS;Z�0

¼ i

2

� �N3ðZÞ
Z

�
non�BPS;Z�0

;

(5.17)

where the cubic form N3ð �ZÞ is defined as [13]

N3ð �ZÞ � Cijk
�Zi �Zj �Zk , �N3ðZÞ � �C�i �j �kZ

�iZ
�jZ

�k:

(5.18)

For an arbitrary SKG, it is in general hard to compute

SBH
�

¼ VBHj@�VBH¼0 ¼ VBHð�HðP Þ;P Þ; (5.19)

where�HðP Þ are the horizon scalar configurations solving
the Attractor Eqs. (5.8). However, the situation dramati-
cally simplifies for symmetric SK manifolds

G4

H4

; (5.20)

in which case a classification, analogous to the one avail-
able for N > 2-extended, d ¼ 4 supergravities (see e.g.
[13] and Refs. therein; see also Secs. III and IV) can be
performed [6].
In the treatment below, we are going to give a remark-

able general topological formula for VBHð�HðP Þ;P Þ for
symmetric SKG, which is manifestly invariant under dif-
feomorphisms of the SK scalar manifold, and which holds
for any choice of symplectic basis of ‘‘bare’’ charges P
and of special coordinates (see e.g. [22] and Refs. therein)
of the SK manifold itself. Indeed, such a formula by no
means does refer to special coordinates, which may not

even exist for certain parametrizations of G4

H4
itself.

It should be pointed out that a general formula for the
G4-invariant I4;N¼2 is known for the so-called d-SK
homogeneous symmetric manifolds [26], and it reads (a ¼
1; . . . ; n� 1) [4]:

I4;N¼2ðP Þ ¼ �ðp0q0 þ paqaÞ2 þ 4½q0I3;N¼2ðpÞ
� p0I3;N¼2ðqÞ
þ fI3;N¼2ðpÞ; I3;N¼2ðqÞg�; (5.21)

where

I 3;N¼2ðpÞ � 1

3!
dabcp

apbpc; (5.22)
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I 3;N¼2ðqÞ � 1

3!
dabcqaqbqc; (5.23)

fI3;N¼2ðpÞ; I3;N¼2ðqÞg � @I3;N¼2ðpÞ
@pa

@I3;N¼2ðqÞ
@qa

;

(5.24)

in which the constant (number) rank-3 symmetric tensor
dabc has been introduced (and dabc is its suitably defined
completely contravariant form). However, such a formula
holds for a particular symplectic basis (namely the one
inherited from the N ¼ 2, d ¼ 5 theory, i.e. the one of
special coordinates), in which the holomorphic prepoten-
tial FðXÞ of SKG can be written as

FðXÞ � 1

3!
dabc

XaXbXc

X0
: (5.25)

In such a symplectic basis, the manifest symmetry is the
d ¼ 5 U-duality G5, under which G4 branches as G4 !
G5 � SOð1; 1Þ. Indeed, I3;N¼2ðpÞ and I3;N¼2ðqÞ are

nothing but, respectively, the magnetic and electric invar-
iants (both cubic in P ) of the relevant symplectic repre-
sentations of G5.

Equation (5.21) excludes the so-called quadratic (or
minimally coupled [42]) sequence of symmetric SK mani-
folds (particular complex Grassmannians)

SUð1; n� 1Þ
SUðn� 1Þ �Uð1Þ ; n 2 N (5.26)

(not upliftable to d ¼ 5), for which FðXÞ is given by (in the
symplectic basis exhibiting the maximal noncompact sym-
metry SUð1; n� 1Þ)

FðXÞ ¼ � i

2

�
ðX0Þ2 � Xn�1

i¼1

ðXiÞ2
�
; (5.27)

and the invariant of the symplectic representation of G4 ¼
SUð1; n� 1Þ reads as follows (notice it is quadratic in P )
[29]:

I 2;N¼2ðP Þ ¼ ðp0Þ2 þ q20 �
Xn�1

i¼1

ððpiÞ2 þ q2i Þ

¼ jZj2 � gijðDiZÞ �D �j
�Z: (5.28)

Because of the quadratic nature of the G4-invariant
I2;N¼2ðP Þ given by Eq. (5.28), the quadratic sequence

of symmetric SK manifolds (5.26) exhibits only one small
charge orbit, namely, the lightlike one, beside the two large
charge orbits determined in [6].

The symmetric SK manifolds whose geometry is deter-
mined by the holomorphic prepotential function (5.25) and
the minimally coupled ones determined by Eq. (5.27) are
all the possible symmetric SK manifolds. After [43], from
the geometric perspective of SKG, symmetric SK mani-
folds can be characterized in the following way.

In SKG the Riemann tensor obeys to the following
constraint (see e.g. [22] and Refs. therein):

Ri �jk�l ¼ �gi �jgk�l � gi�lgk �j þ Cikm
�C�l �j �ng

m �n: (5.29)

The requirement that the manifold to be symmetric de-
mands the Riemann to be covariantly constant:

DmRi �jk�l ¼ 0: (5.30)

Because of the SKG constraint (5.29) and to covariant
holomorphicity of the C-tensor (expressed by Eq. (5.5)),
Eq. (5.30) generally implies (for nonvanishing Cijk)

DlCijk ¼ DðlCiÞjk ¼ 0; (5.31)

where in the last step Eq. (5.6) was used. Thus, in a SK
symmetric space both the Riemann tensor and the C-tensor
are covariantly constant. Equation (5.31) implies the fol-
lowing relation [6]

CjðlmCpqÞk �C�i �j �kg
j �jgk

�k ¼ 4

3
CðlmpgqÞ�i; (5.32)

which is nothing but the ‘‘dressed’’ form of the analogous
relation holding for the d-tensor itself [43,44]

djðlmdpqÞkdijk ¼ 4

3
dðlmp�

i
qÞ: (5.33)

The quadratic sequence of symmetric manifolds (5.26)
whose SKG is determined by the prepotential (5.27) has

Cijk ¼ 0; (5.34)

whereas the remaining symmetric SK manifolds, whose
prepotential in the special coordinates is given by
Eq. (5.25) (with dabc constrained by Eq. (5.33)), corre-
spond to

Cabc ¼ eKdabc: (5.35)

By using Eqs. (5.31) and (5.32), as well as the SKG
identities (5.2), (5.3), and (5.4) (which, for symmetric
SKG, are equivalent to the Maurer-Cartan Eqs., as
Eqs. (3.3), (4.4), and (4.5) for N ¼ 8 and N ¼ 4, d ¼
4 supergravities, respectively; see e.g. [21,29]), one can
prove that the following quartic expression is a duality
invariant for all symmetric SK manifolds:

I4;N¼2;symmð�;P Þ ¼ ðZ �Z� Zi
�ZiÞ2

þ 2

3
iðZN3ð �ZÞ � �Z �N3ðZÞÞ

� gi
�iCijk

�C�i �l �m
�Zj �ZkZ

�lZ �m; (5.36)

where the matter charges have been renoted as Zi � DiZ,

Z
�i ¼ gj

�iZj, and definition (5.18) was recalled.

As claimed above, I4;N¼2;symm given by Eq. (5.36) is

�-dependent only apparently, i.e. it is topological, merely
charge-dependent:
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@I4;N¼2;symmð�;P Þ
@�

¼ 0 , I4;N¼2;symm

¼ I4;N¼2;symmðP Þ: (5.37)

Thus, by recalling Eq. (1.5), the general entropy-area
formula [8] for extremal BHs inN ¼ 2, d ¼ 4 supergrav-
ity coupled to Abelian vector multiplets whose scalar
manifold is a symmetric (SK) space reads as follows:

SBH
�

¼ VBHj@�VBH¼0 ¼ VBHð�HðP Þ;P Þ
¼ jI4;N¼2;symmðP Þj1=2: (5.38)

Let us briefly analyze Eq. (5.36).
As for the case ofN ¼ 8, d ¼ 4 supergravity treated in

Sec. III, one can introduce a phase # as follows (recall
definitions (5.18)):

e2i# � �ZN3ð �ZÞ
�Z �N3ðZÞ

¼ iZCijk
�Zi �Zj �Zk

�i �C�l �m �nZ
�lZ �mZ �n

: (5.39)

Thus, # is the phase of the quantity iZN3ð �ZÞ: # � #iZN3ð �ZÞ.
It is then immediate to compute # from Eq. (5.36):

cos#ð�;P Þ ¼ 3½I4;N¼2;symmðP Þ � ðZ �Z� Zi
�ZiÞ2 þ gi

�iCijk
�C�i �l �m

�Zj �ZkZ
�lZ �m�

22jZN3ð �ZÞj
: (5.40)

Notice that through Eq. (5.40) ðcosÞ# is determined in
terms of the scalar fields � and of the BH charges P ,
also along the small orbits where I4;N¼2;symm ¼ 0.
However, Eq. (5.40) is not defined in the cases in which
ZN3ð �ZÞ ¼ 0. In such cases, # is actually undetermined. It
should be clearly pointed out that the phase # has nothing
to do with the phase of theUð1Þ bundle over the SK-Hodge
vector multiplets’ scalar manifold (see e.g. [22] and Refs.
therein).

(1) For 1
2 � BPS attractors (defined by the constraints

(5.9)), Eq. (5.36) yields

I 4;N¼2;symmjð1=2�BPS ¼ ðZ �ZÞ2ð1=2Þ�BPS

¼ jZj4ð1=2Þ�BPS; (5.41)

as in turn also implied by Eqs. (1.5) and (5.10) (or
equivalently (5.38)). Notice that Eqs. (5.10) and
(5.41) are general, i.e. they hold for any SKG,
regardless the symmetric nature of the SK vector
multiplets’ scalar manifold. Furthermore, the con-
straints (5.9) imply that at the event horizon of 1

2 �
BPS extremal BHs it holds

½N3ð �ZÞ�ð1=2Þ�BPS ¼ 0 ) #ð1=2Þ�BPS

undetermined: (5.42)

(2) For non-BPS Z ¼ 0 attractors (defined by the con-
straints (5.13) which, through Eqs. (5.8), imply
Eq. (5.14)), Eq. (5.36) yields

I 4;N¼2;symmjnon�BPS;Z¼0¼ðZi
�ZiÞ2non�BPS;Z¼0

¼½gi �jð@iZÞ �@ �j
�Z�2non�BPS;Z¼0:

(5.43)

Notice that Eqs. (5.15) and (5.43) are general, i.e.
they hold for any SKG, regardless the symmetric

nature of the SK vector multiplets’ scalar manifold.
Furthermore, the constraints (5.9) imply that at the
event horizon of non-BPS Z ¼ 0 extremal BHs it
holds

Znon�BPS;Z¼0 ¼ 0 ) #non�BPS;Z¼0

undetermined:
(5.44)

(3) For non-BPS Z � 0 attractors (defined by the con-
straints (5.16) as well as by Eqs. (5.8)), Eqs. (5.17)
and (5.36) yield

I 4;N¼2;symmjnon�BPS;Z�0 ¼ �16jZj4non�BPS;Z�0;

(5.45)

thus implying, through Eq. (5.7) [6,13,30,45]

Zi
�Zijnon�BPS;Z�0 ¼ 3jZj2non�BPS;Z�0

, VBH;non�BPS;Z�0

¼ 4jZj2non�BPS;Z�0: (5.46)

By plugging Eqs. (5.8), (5.16), (5.17), and (5.45) into
Eq. (5.40), it follows that at the event horizon of
non-BPS Z � 0 extremal BHs it holds that

#non�BPS;Z�0 ¼ �þ 2k�; k 2 Z: (5.47)

It should be remarked that, differently from the
results (5.10), (5.11), (5.12), (5.41), and (5.42) (hold-
ing for 1

2 � BPS attractors) and from the results

(5.14), (5.15), (5.43), and (5.44) (holding for non-
BPS Z ¼ 0 attractors), Eqs. (5.45), (5.46), and (5.47)
are not general: i.e. they hold at the event horizon of
extremal non-BPS Z � 0 BHs for symmetric SK
manifolds, but they do not hold true for generic
SKG. However, when going beyond the symmetric
SK case (and thus encompassing both homogeneous
nonsymmetric [26,46] and nonhomogeneous SK
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spaces), one can compute both VBH;non�BPS;Z�0 and

I4;N¼2;symmjnon�BPS;Z�0, and express the deviation

from the symmetric case considered above in terms
of the complex quantity [13]

� � � 3

4

Ei �j �k �l �m
�ZiZ

�jZ
�kZ

�lZ �m

�N3ðZÞ ; (5.48)

where the tensor Ei �j �k �l �m was firstly introduced in

[26] (see also [13]). The results of straightforward
computations read as follows:

VBH;non�BPS;Z�0 ¼ 4jZj2non�BPS;Z�0 þ�non�BPS;Z�0;

(5.49)

I 4;N¼2;symmjnon�BPS;Z�0 ¼
�
�16jZj4 þ �2

� 8

3
�jZj2

�
non�BPS;Z�0

:

(5.50)

Notice that, as yielded e.g. by Eq. (5.49), � is real at
the non-BPS Z � 0 critical points of VBH. For sym-
metric SK manifolds Ei �j �k �l �m ¼ 0 globally, and thus

Eqs. (5.49) and (5.50) respectively reduce to Eqs.
(5.45) and (5.46). On the other hand, the results
(5.45) and (5.46) hold also for those nonsymmetry
SK spaces (Ei �j �k �l �m � 0) such that

�non�BPS;Z�0 ¼ 0

, ðEi �j �k �l �m
�ZiZ

�jZ
�kZ

�lZ �mÞnon�BPS;Z�0;

(5.51)

where in the implication ‘‘)’’ the assumption
½ �N3ðZÞ�non�BPS;Z�0 � 0 was made. The condition

(5.51) might explain some results obtained for ge-

neric (d)-SKGs in some particular supporting BH
charge configurations in [45] (see also the treatment
in [13,39]).

Consistently, for the quadratic minimally coupled se-
quence (5.26), for which Eq. (5.34) holds, Eq. (5.36) for-
mally reduces to

I 4;N¼2;symmjCijk¼0
¼ ðZ �Z� Zi

�ZiÞ2;
jI4;N¼2;symmjCijk¼0

j1=2 ¼ jI2;N¼2j;
(5.52)

where I2;N¼2 is given by Eq. (5.28).

Remarkably, Eq. (5.36) turns out to be directly related to
the quantity �h given by Eq. (2.31) of [26] (see also the
treatment of [47]). This is seen by noticing that Eq. (4.42)
of [26] coincides with Eq. (5.21) (along with definitions
(5.22), (5.23), and (5.24)). Note that the mapping of qua-
ternionic coordinates ðA�; B�ÞT into the charges P T ¼
ðp�; q�ÞT (in special coordinates) is related to the d ¼ 3
attractor flows (see e.g. [48–50]).
For symmetric SK manifolds, small charge orbits of the

symplectic representation of G4 are known to exist since
[4,5].
(i) Small lightlike charge orbits are defined by the

G4-invariant constraint

I 4;N¼2;symm ¼ 0; (5.53)

m

ðZ �Z� Zi
�ZiÞ2 þ 2

3
iðZN3ð �ZÞ � �Z �N3ðZÞÞ

¼ gi
�iCijk

�C�i �l �m
�Zj �ZkZ

�lZ �m: (5.54)

In this case, Eq. (5.40) reduces to

cos#ð�;P ÞjI4;N¼2;symm¼0 ¼ � 3½ðZ �Z� Zi
�ZiÞ2 � gi

�iCijk
�C�i �l �m

�Zj �ZkZ
�lZ �m�

22jZN3ð �ZÞj
��������I4;N¼2;symm¼0

: (5.55)

(ii) Beside the constraint (5.53) and (5.54), small critical
charge orbits are defined by the following
G4-invariant set of first order differential constraints,
as well:

@I4;N¼2;symm

@Z
¼ 0 ¼ @I4;N¼2;symm

@Zi

: (5.56)

(iii) Beside the constraints (5.53), (5.54), and (5.56),
small doubly-critical charge orbits are also defined
by the following set of second-order differential
constraints, as well:

D i �jI4;N¼2;symm ¼ 0 ¼ DiI4;N¼2;symm; (5.57)

where the second-order differential operators Di �j

and Di have been introduced:

D i �j � R
i �jk

l @

@Zk

@
�@ �Zl

; (5.58)

D i � Cijk

@

@Zj

@

@Zk

: (5.59)

Notice that, through the definitions (5.58) and (5.59),
the constraints (5.57) are G4-invariant, because they
are equivalent to the following constraint:

@2I4;N¼2;symm

@ZsymplðG4Þ@ZsymplðG4Þ

��������AdjðG4Þ
¼ 0; (5.60)
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where

ZsymplðG4Þ � ðZ; �Z�i; �Z; ZiÞT; (5.61)

and the change of charge basis between the mani-
festly H4-covariant (in ‘‘flat’’ local coordinates) ba-
sis ZsymplðG4Þ and the manifestly Spð2n;RÞ-covariant
basis P (defined by Eq. (1.2)) is expressed by the
fundamental identities of the SKG (see e.g. [22,51]
and Refs. therein). Indeed, by considering theCartan
decomposition of the Lie algebra of G4:

g 4 ¼ h44 þ k4; (5.62)

and switching to ‘‘flat’’ local coordinates in the
scalar manifold (here denoted by capital Latin in-
dices), it holds that DI (‘‘flat’’ version of the opera-
tor defined in Eq. (5.59)) is k4-valued. Furthermore,
in symmetric manifolds R

I �JK
L is a twoform (in the

first two ‘‘flat’’ local indices) which is Lie algebra-
valued in h4, and thus DI �J (‘‘flat’’ version of the
operator defined in Eq. (5.58)) turns out to be
h4-valued. Notice that Eq. (5.60), G4-invariantly
defining the small doubly-critical charge orbit(s) of
the N ¼ 2, d ¼ 4 vector multiplets’ symmetric SK
scalar manifolds, is the analogue of Eq. (3.42), which
defines in an E7ð7Þ-invariant way the small doubly-

critical charge orbit of N ¼ 8, d ¼ 4 pure super-
gravity. It should be also recalled that in N ¼ 4,
d ¼ 4 matter coupled supergravity smalldoubly-
critical (or higher-order-critical) charge orbits (in-
dependent from the small critical ones) are absent.
As treated in Sec. IV, all small critical charge orbits
of the N ¼ 4 theory actually are doubly-critical,
and the analogues of Eqs. (3.42) and (5.60) are given,
through Eq. (4.50) and definitions (4.51) and (4.53),
by the rich case study exhibited by Eqs. [(4.48),
(4.49), (4.56), and (4.57)].

The classification of small charge orbits of the relevant
symplectic representation of G4 for N ¼ 2, d ¼ 4 super-
gravity coupled to Abelian vector multiplets whose scalar

manifold G4

H4
is (SK) symmetric, performed in accordance to

their order of criticality (lightlike, critical, doubly-critical),
will be given elsewhere.

VI. ADM MASS FOR BPS EXTREMAL BLACK
HOLE STATES

For BPS BH states in d ¼ 4 ungauged8 supergravity
theories, the ADM mass [27] MADMð�1;P Þ is defined as
the largest (of the absolute values) of the skew-eigenvalues
of the (spatially asymptotically) central charge matrix

ZABð�1;P Þ which saturate the BPS bound (2.28). The
skew-diagonalization of ZAB is made by performing a
suitable transformation of the R-symmetry, and thus by
going to the so-called normal frame. In such a frame, the
skew-eigenvalues of ZAB can be taken to be real and
positive (up to an eventual overall phase). By saturating
the BPS bound (2.28), it therefore holds that

MADMð�1;P Þ ¼ jZ1ð�1;P Þj � . . . � jZ½N =2�ð�1;P Þj;
(6.1)

where Z1ð�;P Þ; . . . ;Z½N =2�ð�;P Þ denote the set of skew-
eigenvalues of ZABð�;P Þ, and square brackets denote the
integer part of the enclosed number. As mentioned at the
end of Sec. II, if 1 � k � ½N =2� of the bounds expressed
by Eq. (2.28) are saturated, the corresponding extremal BH
state is named to be k

N � BPS. Thus, the minimal fraction

of total supersymmetries (pertaining to the asymptotically
flat space-time metric) preserved by the extremal BH
background within the considered assumptions is 1

N (for

k ¼ 1), while the maximal one is 1
2 (for k ¼ N

2 ).

The ADM mass and its symmetries are different, de-
pending on k.

A. N ¼ 8

In N ¼ 8, d ¼ 4 supergravity (treated in Sec. III), the
E7ð7Þ U-duality symmetry only allows the cases [3] k ¼ 1,
2, 4. By recalling the review given in Sec. III, the maximal
compact symmetries of the supporting charge orbits, re-
spectively, read [3,4,13,30,32,33]

k ¼ 1: SUð2Þ � SUð6Þ; (6.2)

k ¼ 2: USpð4Þ � SUð4Þ; (6.3)

k ¼ 4: USpð8Þ; (6.4)

and they hold all along the respective scalar flows. While
cases k ¼ 2 and 4 are small (thus not enjoying the attrac-
tor mechanism), case k ¼ 1 can be either large or small.
In the large k ¼ 1 case, the attractor mechanism makes

the maximal compact symmetry SUð2Þ � SUð6Þ of the
supporting charge orbit Oð1=8Þ�BPS;large fully manifest as a

symmetry of the central charge matrix ZAB through the
symmetry enhancement (3.17) at the event horizon of the
considered extremal BH.
Furthermore, the 1

4 � BPS saturation of theN ¼ 8 BPS

bound (all along the 1
4 � BPS scalar flow) has the following

peculiar structure [recall Eq. (3.35)] [3]

jZ1ð�;P Þj ¼ jZ2ð�;P Þj> jZ3ð�;P Þj ¼ jZ4ð�;P Þj;
(6.5)

where it should be recalled that in Sec. III the notation ei �
jZij (i ¼ 1; . . . ; 4) was used.

8In the present paper only ungauged supergravities are treated.
It is here worth remarking that the definition of the ADM mass
for (eventually rotating) asymptotically nonflat black holes in
gauged supergravities is a fairly subtle issue, addressed by
various studies in literature (see e.g. [52,53], and Refs. therein).
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As done in Sec. III, let us denote with �i (i ¼ 1; . . . ; 4)
the four real non-negative eigenvalues of the 8� 8
Hermitian matrix ZAB

�ZCB ¼ ðZZyÞCA � AC
A . Their relation

with the absolute values of the complex skew-eigenvalues
ei of ZAB is given by Eq. (3.29). As mentioned, the ordering
�1 � �2 � �3 � �4 does not imply any loss of generality.
After [9] (see, in particular, Eqs. (4.74), (4.75), (4.86), and
(4.87) therein), the explicit expression of �i in terms of
Uð8Þ-invariants (namely of TrA, TrðA2Þ, TrðA3Þ, and
TrðA4Þ, and suitable powers) is known, and it can be thus
be used in order to compute the ADM mass of k

8 � BPS

extremal BH states of N ¼ 8, d ¼ 4 supergravity.
The �i’s are solution of the (square root of) character-

istic equation [9]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA� �IÞp ¼ Y4

i¼1

ð�� �iÞ

¼ �4 þ a�3 þ b�2 þ c�þ d ¼ 0; (6.6)

where [9]

a � � 1

2
TrA ¼ �ð�1 þ �2 þ �3 þ �4Þ; (6.7)

b � 1

4

�
1

2
ðTrAÞ2 � TrðA2Þ

�
¼ �1�2 þ �1�3 þ �1�4 þ �2�3 þ �2�4 þ �3�4;

(6.8)

c � � 1

6

�
1

8
ðTrAÞ3 þ TrðA3Þ � 3

4
TrðA2ÞTrA

�
¼ �ð�1�2�3 þ �1�2�4 þ �1�3�4 þ �2�3�4Þ; (6.9)

d � 1

4

1
96 ðTrAÞ4 þ 1

8 Tr
2ðA2Þ þ 1

3 TrðA3ÞTrAþ
� 1

2 TrðA4Þ � 1
8 TrðA2ÞTr2A

" #

¼ ffiffiffiffiffiffiffiffiffiffi
detA

p ¼ �1�2�3�4: (6.10)

The system (6.7), (6.8), (6.9), and (6.10) can be inverted,
yielding

�1;2 ¼ �a

4
þ s

2

 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
� 4b

3
� ða3 � 4abþ 8cÞ

4s
� u

3w
� w

3

s
;

(6.11)

�3;4 ¼ �a

4
� s

2

 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
� 4b

3
þ ða3 � 4abþ 8cÞ

4s
� u

3w
� w

3

s
;

(6.12)

where

u � b2 þ 12d� 3ac; (6.13)

v � 2b3 þ 27c2 � 72bd� 9abcþ 27a2d; (6.14)

w �
�
vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4u3

p

2

�
1=3

; (6.15)

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� 2b

3
þ u

3w
þ w

3

s
: (6.16)

Notice that the positivity of quantities under square root
in Eqs. (6.11), (6.12), (6.15), and (6.16) always holds.
Furthermore, Eq. (6.6) is at most of fourth order (for k ¼
1), of second-order for k ¼ 2, and of first order for k ¼ 1.
(1) k ¼ 1 ( 18 � BPS, either large or small). The 1

8 �
BPS extremal BH square ADM mass is

M2
ADM;ð1=8Þ�BPSð�1;P Þ ¼ �1ð�1;P Þ; (6.17)

where �1 (> �2 > �3 > �4, since a < 0 and s > 0)
is given by Eq. (6.11). In the large k ¼ 1 case �2 ¼
�3 ¼ �4 ¼ 0 at the event horizon of the extremal
BH, as given by Eq. (3.16).

(2) k ¼ 2 ( 14 � BPS, small). As given by Eq. (3.35), the

eigenvalues are equal in pairs. By suitably renaming
the two noncoinciding �’s, one gets

�1;2 ¼ 1

8
TrA
 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðA2Þ � 1

16
ðTrAÞ2

s
: (6.18)

As mentioned above, the maximal (compact) sym-
metry is manifest when �2 (in the renaming of
Eq. (6.18)) vanishes (see treatment in Sec. III).
Equation (3.35) implies [9]

c ¼ 1

2
a

�
b� 1

4
a2
�
; (6.19)

d ¼ 1

4

�
b� 1

4
a2
�
2
: (6.20)

In [9] Eqs. (6.19) and (6.20) were shown to be
consequences of the criticality constraints (3.34).
Thus, the 1

4 -BPS extremal BH square ADM mass is

M2
ADM;ð1=4Þ�BPSð�1;P Þ ¼ �1ð�1;P Þ; (6.21)

where �1 (> �2) is given by Eq. (6.18):

M2
ADM;ð1=4Þ�BPSð�1;P Þ

¼ 1

8
TrAð�1;P Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðA2Þð�1;P Þ � 1

16
ðTrAð�1;P ÞÞ2

s
:

(6.22)

(3) k ¼ 4 ( 12 � BPS, small). This case can be obtained

from the 1
4 -BPS considered at point 2 by further
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putting �1 ¼ �2 in Eq. (6.18). Thus, all eigenvalues
of the Hermitian 8� 8 matrix A are equal:

AC
A ¼ 1

8
ðTrAÞ�C

A; (6.23)

which implies

Tr ðA2Þ ¼ 1

8
ðTrAÞ2: (6.24)

Therefore, 12 � BPS extremal BH square ADMmass

is given by

M2
ADM;ð1=2Þ�BPSð�1;P Þ¼1

8
TrAð�1;P Þ

¼ 1

16
ZABð�1;P Þ �ZABð�1;P Þ:

(6.25)

B. N ¼ 4

In N ¼ 4, d ¼ 4 supergravity (treated in Sec. IV), the
SLð2;RÞ � SOð6;MÞ U-duality symmetry only allows the
cases [3] k ¼ 1, 2. By recalling the treatment of Sec. IV,
the respective maximal compact symmetries read
[3,4,13,39]

k ¼ 1: ðSUð2ÞÞ2 � SOðMÞ � SOð2Þ; (6.26)

k ¼ 2: USpð4Þ � SOðMÞ; (6.27)

and they hold all along the respective scalar flows. While
case k ¼ 1 is large, case k ¼ 2 is small (thus not enjoying
the attractor mechanism).

In the large k ¼ 1 case, the attractor mechanism makes
the maximal compact symmetry ðSUð2ÞÞ2 � SOðMÞ �
SOð2Þ of the supporting charge orbit Oð1=4Þ�BPS;large fully

manifest as a symmetry of the central charge matrix ZAB

through the symmetry enhancement (recall Eq. (4.25))

ðSUð2ÞÞ2 � SOðM� 2Þ � SOð2Þ !r!rþHðSUð2ÞÞ2 � SOðMÞ
� SOð2Þ (6.28)

at the event horizon of the considered extremal BH.
As done in Sec. IVand in the treatment of caseN ¼ 8,

d ¼ 4 above, let us denote with �1 and �2 the two real non-
negative eigenvalues of the 4� 4 Hermitian matrix
ZAB

�ZCB ¼ ðZZyÞCA � AC
A . Their relation with the absolute

values of the complex skew-eigenvalues ei of ZAB is given
by Eq. (3.29). As mentioned, the ordering �1 � �2 does
not imply any loss of generality. After [9], the explicit
expression of �1 and �2 in terms of ðUð4Þ �
SOðMÞÞ-invariants (namely of TrA, TrðA2Þ and ðTrAÞ2) is
known, and it can be thus be used in order to compute the
ADM mass of k

4 � BPS extremal BH states of N ¼ 4,

d ¼ 4 supergravity.

Indeed, �1 and �2 are solutions of the (square root of)
characteristic equation [9]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA� �IÞ

p
¼ Y2

i¼1

ð�� �iÞ

¼ �2 � 1

2
ðTrAÞ�þ ðdetAÞ1=2 ¼ 0; (6.29)

whose solution reads

�1;2 ¼ 1

2

�
1

2
TrA


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA2Þ � 1

4
ðTrAÞ2

s �
: (6.30)

Notice that the positivity of quantities under square root
in Eq. (6.30) always holds. Furthermore, Eq. (6.29) is at
most of second-order (for k¼1) and of first order for k¼
2.
(1) k ¼ 1 ( 14 � BPS large). The 1

4 -BPS extremal BH

square ADM mass is

M2
ADM;ð1=4Þ-BPSð�1;P Þ

¼ �1ð�1;P Þ
¼ 1

2

�
1

2
TrAð�1;P Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA2Þð�1;P Þ � 1

4
ðTrAð�1;P ÞÞ2

s �
; (6.31)

where �1 > �2. Notice that �2 ¼ 0 at the event
horizon of the extremal BH, as given by Eq. (4.23).

(2) k ¼ 2 ( 12 � BPS, small). This case can be obtained

from the 1
4 � BPS considered at point 1 by further

putting �1 ¼ �2 in Eq. (6.30). Thus, all eigenvalues
of the Hermitian 4� 4 matrix A are equal:

AC
A ¼ 1

4
ðTrAÞ�C

A; (6.32)

which implies

Tr ðA2Þ ¼ 1

4
ðTrAÞ2: (6.33)

Thus, the 1
2 � BPS extremal BH square ADM mass

is

M2
ADM;ð1=2Þ�BPSð�1;P Þ ¼ �1ð�1;P Þ

¼ �2ð�1;P Þ

¼ 1

4
TrAð�1;P Þ: (6.34)

It should be here remarked that the R-symmetry of the
k
N � BPS extremal BH states, i.e. the compact symmetry

of the solution in the normal frame (determining the auto-
morphism group of the supersymmetry algebra in the rest
frame) gets broken as follows:
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R ! USpð2kÞ � . . . : (6.35)

This is precisely the symmetry of the k
N � BPS saturated

massive multiplets of the N -extended, d ¼ 4 Poincaré
supersymmetry algebra [54].

We end this section by finally commenting about the
ADM mass for non-BPS extremal BH states.

In non-BPS cases, ADM mass of extremal BH states is
not directly related to the skew-eigenvalues of the central
charge matrix ZAB. For some non-BPS extremal BHs a fake
supergravity (first order) formalism [55] can be consis-
tently formulated in terms of a fake superpotential
W ð�;P Þ [56–59] such that (also recall Eq. (1.5))

W 2
non�BPSð�;P Þjðð@W Þ=ð@�ÞÞ¼0

� W 2
non�BPSð�H;non�BPSðP Þ;P Þ

¼ VBHð�;P Þjðð@VBHÞ=ð@�ÞÞ¼0

� VBHð�H;non�BPSðP Þ;P Þ ¼ SBH;non�BPSðP Þ
�

; (6.36)

with W non�BPS varying, dependently on whether ZAB ¼ 0
or not. In such frameworks, the general expression of the
non-BPS ADM mass reads as follows [56–58]

MADM;non�BPSð�1;P Þ ¼ W non�BPSð�1;P Þ: (6.37)
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