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1 Introduction

Ttwasdemonstrated In [1]forpure N = 2 supersymm etric SU (2) gauge theory that
the m odular sym m etry, the holom orphic anom aly equation and the gap condition at
the singularities, w here dyons becom em assless, x allgravitational corrections. H ere
wew illextend this approach to asym ptotically freeN = 2 gauge theoriesw ith m atter.



T hem ethod we provide extends to several integrable system s which are connected to
N = 2 gauge theories. Let us rst review these interrelations.

W hen the gauge theory is coupled to gravity, the coupling of the selfdual curvature
tensorR, to the graviphoton el strength F, ,ie.F @ (@R ?F /9 ?,depends on the
moduli eldsa and thisdependence is exactly calculable w ithin the topological sector
of the theory. An in portant point is that in di erent regions of the m oduli there are
di erent canonically conjigated coordinates and the di erent expansion of the F @
are not just analytic continuations of each other. T hey are rather related by the wave
function transform ation of Z = exp( ;O %9 2F. (@) 2], which is cosely related to
the m odular and (an)holom orphic properties of the F @ @) [3,1]. E g. the weak
coupling regin e the F 9 (a) can be calulated from the eld theory point of view
using localization in the spacetim e instanton m oduli space [4, 5], but to obtain from
this expansion the dual expansions eg. at the m onopole points or the conform al
points, also known as A rgyresD ouglas points, one has to use the wave function
transform ation 2, 3, 1].

N = 2 gauge theories are related to T ype II string theory on non-com pact C alabi-
Y au m anifolds by geom etric engineering [6]. Tthasbeen checked that the holom orphic
gauge coupling functions and the BP S m asses of the gauge theory [7, 8] can also be
obtained from the topological sector of the T ype II string theory on this backgrounds
In a double scaling lin it which decouples - and Planck scale e ects [9, 6]. In
particular [6] discusses the geom etric engineering of non-com pact toric CalabiY au
Soaces for SU (N ) gauge theories w ith few fundam entalm atter elds. In the large
radius region of the topological string theory the F 9) (t) are higher genus w orld-sheet
am plitudes, which depend on the Kahler moduli t. The eld theory F 9 (a) can
be obtained in the lim it m entioned above [11]. A third approach is to calculate the
F 9 (a) in them atrix m odelform alisn suggested by [12,13]4n an - expansion [11,14].

The comm on m athem atical structure of N = 2 SedbergW itten theordes, topo-
Jogical string on non-com pact CalabiYau spaces and m atrix m odels is a fam ily of
R iam ann surface C equipped w ith a m erom orphic di erential , which has in general
non-vanishing residua.

In the Sedberg-W itten approach to supersym m etric gauge theoriesC is the Seiberg—
W itten curve and  the SeibergW itten di erential [7, 8]. (C; ) can be rederived
from the spacetin e nstanton calculus as was dem onstrated in [5F. In topological
string theory on non-com pact CalabiYau spaces the data (C; ) arise via m irror
symm etry in the B-m odel geom etry [6, 17]. Tn the m atrix m odel approach C is the
soectral curve and  the di erential de ning the 1ling fractions and the one point
function [12, 13, 5, 18, 16]. The calculations of [4, 5] using ST =instanton calculus,
of [1, 19]w ithin the topological B-m odel, and of [20, 18] utilizing the m atrix m odel

U sihg [15] one can construct the space—tin e instanton sum s of [5] a direct Iink to the m atrix
model [16].



recursions suggest that the higher genus inform ation can be com pletely reconstructed
from (C; ).

The B m odel approach is particularly e cient. It uses for the reconstruction the
recursion relation in the genus, known as holom orphic ancm aly equation [21]. The
latter has a kemel, the holom orphic am biguity, which is strongly constrained by the
symm etry group of theory, but certain discrete data have to be xed by additional
argum ents. For pure gauge theory the gap condition at the conifold xesthesediscrete
data com plktely [1].

In this work we consider the asym ptotically free SU (2) with N¢ = 1;2;3 hyper-
m ultiplets in the findam ental representation. Sin ilar as the topological string theory
on the canonical line bundle over a del Pezzo surface w ith m ore than one K ahler
param eter [19], gauge theories w ith m atter have m ore param eters than the com plex
m oduli space of the R iam ann surface. In gauge theory these param eters are sim ply
the m asses of the hypem ultiplets. W hile they m ake the form of the holom orphic
am biguity m ore com plicated, the requirem ent that the gap exists for all values of the
additional param eter im poses stronger conditions. W e nd that the latter overcon—
strain the system and that an unigue solution exists. T he gravitational corrections
for gauge theories w ith m atter are therefore com pletely integrable.

O ne advantage of the method [1] is that it provides the F 9’ in all regions in
the m oduli space and not just In the asym ptotically free region. A rgyres, P lesser,
Selberg and W itten found particularly interesting points in them odulispace of SU (2)
gauge theory w ith fiindam entalm atter, where di erent conform al theories arise [22].
U sing the form alism [1 ], one can analyze the full topological sector of these conform al
theories. The coordinate choice and the structure of the topological gauge theory
am plitudes near conform alpoints is very sin ilar as for topological string theory near
orbifold points [23, 24].

T he paper is organized as follow s: In Section 2,we rst consider the sin ple case of
theory w ith m assless m atter. H ere the Coulom b m odulus u is related to them odular
parameter by J( ) = R, (u), where Ry, (u) is a rational function and J is the
m odular invariant J-function. The Coulomb m oduli space is then a ram i ed nite
m ulticover of the quotient of the upper halfplane In ( ) > 0 by PSL(2;Z) and u( )
has very sin ple transform ation properties w rit. PSL(2;Z). W e review the direct
Integration, which isan e cient way to solve the holom orphic anom aly equation and
write the F 9 as polynom ials of m odular flinctions. In Section 3 we generalize the
analysis to them assive SU (2) Seilberg-W itten theory. W e provide an algorithm that is
valid for the case of fiilndam entalm atter w ith arbitrary m ass, and study theN¢ = 1
case In details. This procedure can be straightforwardly generalized to N = 2;3.
In Section 4 we discuss som e cases of special fundam ental hyperm ultjplet m asses
where two m utually non-local singular points in the u plane collide and a non-trivial
superconform al eld theory appears. Section 5 discusses the em ergence of the gauge



theory in the non-com pact Iim it of a Calabi¥Yau com pacti cation. This provides a
connection to the direct integration form alism developed in [25, 26,27, 28], which is
usefill to solve the gravitational couplings of higher rank gauge theordes entirely from
the solutions of the P icard+Fuchs equation. Tn Section 6 we tum to them atrix m odel
approach. W e nd it particularly to solve the the N = 2 theory by the approach
of [20], point out som e restrictions in the application of the open holom ophic anom aly
of [48]and discuss analytic properties of the open am plitudes.

2 SU (2) Seidberg-W itten theory w ith m assless hy-
perm ultiplets

T he SebergW itten curves’ [7,8]C; ©rN = 2 supersymm etric SU (2) gauge theory
with N¢ < 4 avors are fam ilies of elliptic curves given by >

v’ =Cx) GX); 22)

where C (x) and G (x) arede ned as

N:;=0:C(x)=x* u; Gx)= %

Ne;=1:Cx)=x* u; Gx)= *@x+mi);
Ne=2:C((x)=x> u+ ?2; GX)= “(x+my)x+m,);
Ne=3:C@x)=x" u+ g+ 0202 G(x)= (X+m )X+ my)(x+ms):

Here u is the m odulus param etrizing the Coulomb branch and m ; are the m asses
of the hypem ultiplets. T he genus one curves C; have two periods ap and a of the
m erom orphic SelbergW itten di erential over the b and the a cycle in H 1(C;;Z)

respectively. T he m erom orphic one form  can be written with %= %as

P 0
4 1y 2G (x)

Physically the periods are the vev’s of the scalar com ponent of the N = 2 vector
m ultiplet containing the photon and its dual in the infrared respectively.

Forthe N¢ = 0 we use the fam ily of curves of [29] rather than the one of [7]. T his distinction
plays a r0le In establishing the m atrix m odel connection in section 6.
30 ne can do a change of variable and w rite the SedbergW itten curve in allcases as

(x+mj) (2.1)

i=1

2 2N N ¢

[30]. Here we use the originalnotations in [8].



W e are interested In calulating the instanton expansion of the prepotential F @
and its higher genus generalization F 9’ all over the m oduli space. In the asym ptoti-
cally free region the prepotentialF ) (a) for the electric U (1) theory, w hich determ ines
the exact gauge coupling of the N = 2 SuperY ang-M ills theory, is related to the pe-
riods ap and a by rigid special geom etry

er @
Qa

A s pointed out In [7] in the dualm agnetic region where ap is an all, the theory is
(0)

m ore suitably described by am agnetic U (1), w hose prepotential is given by % _ a.

@ap

T he higher genus tem s F 9 (a) describe the exact m odulidependence of the grav—
itational corrections

=ap : (24)

29 2
25 22, (2.5)

F (q)F z
in the e ective Lagrangian, w hich encodes the coupling of the gauge theory toN = 2
supergravity. Here F, and R, are the selfdualpart of the graviphoton el strength
and of the R icci curvature respectively. In the weak coupling region u ! 1 we
can com pare F @) (a) to the localization calculations n [4]. The relation of the dual
FD(g) (ap ) to the F @ (aﬁ, Bllow s from the quantum m echanical wave finction trans-
form ation of Z = exp( ;:O 29 2F ©)) and was studied in this context n [3].

Tn this section, we st consider the sim ple case w here all the hyperm ultiplets are
m assless. In thiscaseu( ) isam odular invariant filnction under the pro fctive action
on the gauge couplng / @@T2F @) of the group . 2 PSL(2;2) [B1]. To nd the
rational function Ry, (u) discussed In section 1 one sin ply brings the curve (2.2) into
W elerstrass form

v = 4% gk gi(u): (26)
T he rational function is then determ ined by

Eg( ) g @)’
J = = =:R : 2.7
() EI() Eo( 7 Sy 2y N, (1) (2.7)
Here
=g,y 27g @) (2.8)

is the discrin inant of the curve. The group . is the quotient of PSL (2;Z) by
the group interchanging the roots of u(J ) and has been determ ned in [31]. In the
m athem atical literature the nvariant u( ) is som etin es called the ‘Hauptm odul’ of
N -
T he PicardFuchs di erential equations are fiil lled by all periods over the cycles
of C;. In them assless case  has no non-vanishing residua and the two periods ap
and a fi1l 11 a second order P icard Fuchs di erential equations?, which were derived

“In the m assive case discussed in section 3 there is also a cycle encircling the pole of  picking
up the residuum and the di erential equations are third order.



forN; = 1;2;3 in [32]

24
c
I
(@)
~
o

w here

2, 278 2 3
N =1: pu) = 4u“+ —/= N =2: pu) = 4(u 6—§)
2 (2.10)
N =3: pu) =udu =):

U sing the leading behavior of F ) and FD(O) from the 1-Joop -function and analytic

a
continuation we nd = N as lnear com bination of the solutions to (2.9).
D

W e will set the dynam ical scales ; = 2%, >, = 2, 3= 4 in order to match the
convention in the instanton counting calculations in [4, 5].

W hile in the pure SU (2) gauge there is a Z, symm etry acting on the u plane,
the discrete symm etries of the u plane n N¢ = 1;2;3 cases are Z3 symmetry, 7,
symm etry and no sym m etry regoectively [7,8]. Aswew ill see, these di erent discrete
sym m etries acting on the u plane in the three cases N ¢ = 1;2;3 play signi cant role
In detem ining the qualitative features of the solutions. W e w ill nd the structure of
N¢ = 2 solution closely resam bles that of the case of pure gauge theory In [1], while
the cases N ¢ = 1;3 have som e di erent qualitative features respectively.

In the next section we willreview the direct integration approach for solving F @',
T hereafter we discuss the N = 1;2;3 cases one by one.

2.1 Topological string am plitude F 9 as a polynom ial of E,

Themain goal is to solve the topological sector of the theory and give in particular
the F 9(u) everywhere In the C oulom b m oduli space. To thisend we rst extend the
direct Integration m ethod of the holom orphic anom aly equations to the SU (2) gauge
theory in this section to the case with m assless avors and In section 3 to the case
with massive avors. This approach was applied to N = 0 in [1] and solved the
theory com pletely using the gap condition. The point is to show this for theories
with avorsaswell
T he holom orphic anom aly equations of [21 ] read

[T N

@a@aF (1)

CaaaC:a;
(211)

P 1
C2 DD,F9 '+ Z D,FOMEp® rg> 1:

(9) —
@aFg - a g=

Here we used the coordinate a introduced in the last section, but the equations
are of course covariant. W e further Introduced the Yukawa triple coupling and the
connection D ,,whose calculation from the solutions of the P icard Fuchs equation are
discussed below and m ore generally in section (5.1). First F ) (a) follows from the



solution  to (29) via (24) up to an irrelevant constant. W e de ne then the three
point Yukawa coupling as

@3F (0) . d
aaa — F= 2 JIT10£=! (2.12)

O ur nom alization convention ism o = 2;1;1;% forthe cases of N¢ = 0;1;2;3. M ath-
em atically  is the m odular param eter and physically

1 @ZF (0)
S (213)
2 im g Qa?
a com bination® of the gauge coupling and the theta angle = - + iZ—z . Note that
> = I ( )= —- multplies the kinetic tem of the vector multiplet’. W ith the

m ethodsdescribed in Chapter 5 of [33 Jone can prove the follow ing m odular expression
for

e}
LSENY
o
ol
=
= ol
=

Nf:O: =

INEN
~

3

2
Neg=1: = = ;

2+Es) (214)

IR

NIV

2
; Neg= 3 = —%;

4 4
3 4

Nf=2: =

[RFN
ENFN

where Ey and , are the standard Eisenstein series and Jacobi  functions in the
conventions [33]. Further the W eil-Petersson m etric in the coordinate a is given by

G.n= 2Q.Q.Re(@QF )= 4m, ,: (215)

T he connection D, com es entirely’ from them etric G 4., and is

1 ia@
2= Gan) GGaa)= o (2.16)
Note that ¢, vanishes in the holomorphiclimit ! 1 ,con m ing that the period
a isa atcoordinate n this lin it. Finally we have
c:a _ GaaG aacaaa . (2.17)

In the follow ing it w illlbe Im portant to kesp track of the anti-holom orphic dependence
2 In (211) in order to recover the ull F 9( ; ) including its antiholom orphic
dependence.
T he holom orphic anocm aly equation determ ines F 9 from lower genus data up to

a holom orphic anom aly, which can be xed by m odularity and the gap condition. Let

SHere we used the nom alization of [8].

6T he key requirem ent that the latter has to be positive suggested the occurrence of R i&m ann
surfaces in this context, where , ism anifestly positive.

"In the global CalabiYau case there is an additional K ahler connection, as explined in sec-
tion 5.1.



us start w ith genus one, which is som ew hat special. Tt ollow s from (2.12,2.15,2.17)

that the right hand side of the g = 1 equation in (2.11) is 77 %-F. This can be
2

Integrated to

1) 1 -

Fo= Sbg(z) Tgjl )T (2.18)
where ( ) ismodular form of weight %, which vanishes at the discrin lnant of the
elliptic curve. Tn the simplest cases, eg. N = 0 one ( ) can be denti ed with
the D edekind -function. N ote that the transform ation of ( ) as we:'ght% m odular

form cancels the transform ation of the %Jog( 2) term . In general the form ()
is determ ined by its m odularity and its leading logarithm ic behavior near a](jk) = 0.
Tt has been pointed out in [34] that Jog(aék) ) com es from the gravitational one-loop

function and its prefactor is entirely determ ined by the m assless spectrum at the
critical point.

F®( ; ) isan al ost holom orphic m odular fiinction or form of weight & and
its derivative, which appears in (2.11), is an aln ost holom orphic form of weight
2. M odularity im plies that this derivative contains the unique alm ost holom orphic
m odular weight two form

Ex( 7 )=EB() iz; (219)
where FE,( ) is the holom orphic quasim odular second Eisenstein form [33]. Under
m odular transform ations 7 = 2—:§wjrh 2 1= PSL(2;7)E, transform sw ith
an inhom ogeneous shift

6ic
E,( )= (c +dfE,( ) — (@ +d): (220)

T his shift cancels the shift transform ation of % , o that EAZ transfom s indeed as
a honest weight two form .
Tn calculating the right hand side of (2.11) one neads derivatives ofm odular form s
of even positive weight. T he covariant derivative D in (2.11) written in tem s of the
coordinate is the so called M ass derivative

k-
4 5

g =@ (2.21)

Here @ = idi and k is the m odular weight of the obfct acted on. The M ass
derivative D has the in portant property that it m aps alm ost holom orphic m odular
form s of weight k into aln ost holom orphic m odular form s of weight k + 2. M odular
nvariance In plies that each covariant derivative increases the leading pow er of EAZ by

one and all pow ers ofi2 must combinewith E,( ) to form the shift invariant com bi-

nationE,( ; ).From thisfollowsthe in portant fact that forg 2 allanholom orphic

8In slight abuse of notation we indicate alm ost holom orphic obfcts by writinga dependence.



dependence of F 9 is in EAZ and we can replace

d_ dE, d 31 d
d d g, 2 Z4F,

(222)

Furthem orewe nd that the anti-holom orphic derivative in (2.11) com binesw ith the
three point function as

Z@aF 9) dr 9)
— = 24m,——; forg 2: (2.23)
caa dE
a 2
o that (2.11) can be written as
drF (9) 1
24m——=DZF 9 Y+  @FURFOY 7 (2.24)
dE,

r=1

Since the period a is a quasim odular ob fct of weight 1 and E, is of weight 2 one
concludes that all F 9 have m odular weight zero. Combining the above facts it
ollow s that the F 9 are inhom ogeneous polynom ials of degree 3(g 1) in E, whose
coe cients are holom orphic form s of negative weight so that F 9’ have weight zero.
D e ning the follow ing derivatives

@aF (r): _@F(r): _]j\ F(r)
mo mo
l A N
DIFY =@ L)FY=—=0D0 (D F"Y); (225)
0

m
where we used the connection (2.16) and the fact that F ®) and @Q,F *) have m odular
welght zero and 1 respectively, we w rite the holom orphic anom aly equation as
24m;——= ‘@0 F9 Y+ —D F9 Y+ D FYDFY ) (226)
2 r=1

T his provides an unifying description of the Selbberg-W itten theory w ith various num —
ber ofm assless avors, depending only on m ; and the holom orphic m odular form of
welght 3 given in (2.14).

Tn each Integration step the coe cients of all nonzero pow ers of EAZ are determm ined
by (211), while an holom orphic am biguity of m odular weight zero can be added.
Boundary conditions and m odularity in ply that this can be always written as 29 2
timn esam odular form ofweight 6(g 1). Thisreducesproblam of xing the am biguity
to the detem ination of a nite num ber of term s. T he rem aining task is solved by an
analysis of the local form of the e ective action, which we discuss next.

A key concept In the analysis of e ective action [8] is its transfom ation property
under the m odular group , and the concept of local holom orphic coordinates in



which the e ective action is expanded near the critical points of the theory, where
particles becom ing m assless [8]. In particular in the asym ptotically free region of the
gauge theory a or m ore precisely i is the correct an all expansion param eter, while
near points where a dyon of m agnetic charge and electric charge (g, ;&) nhan N = 2
hyperm ultiplet becom es m assless, ie. close to the com ponents of the discrim inant
Jocus of (22), a](jk) = qqu)aD + qék)a is the amn all expansion param eter. Tnh m ost cases,
ie. orN: = 0;1;2theZ,,7%25 and Z2, symm etry of the theories respectively relates
the dyon points and the local expansions are the sam e, but forN¢ = 3 we nd truly
hequivalent dyon points.

A tthem agneticm onopole point, also called conifold point, the leading term of the
topological string am plitudes in the variable ap , isdeterm ined by the c= 1 string at
the selflualradius [35]. The 2g 1 sub-leading tem s are absent. T his gap structure’

& 1By
29 2
29(2g  2)a;

F P = +0 (@) : (227)

has been ocbserved iIn [1]and as explained in [36] it originates indeed from integrating
out m assless particles in the Schw Inger loop contribution to the higher derivative
e ective action. Ttwasused In [1]to x the holom orphic am biguity in the calculation

of the gravitational corrections in pure SU (2) SelbergW itten theory. Here we nd
that the gap occurs at all dyon points. U sing the gaps and the leading coe cients

weareablto xintheN¢ = 0;1;2;3 cases the holom orphic am biguity genus for all
genus, and obtain exact form ulae for the gravitational corrections F 90 that sum up
all nstanton contributions at each genusg.

Let us nish this section with som e comm ents on (2.26) and a calculation of the
Jeading term s in fz F irst we note that the equations leading to (2.26) are invariant
under the change @ HOPE. D ;EAZ, one m ay therefore as well take a \holom orphic
Iim " and replace ») ;fz with @ ;E » In equation (2.26),w ithout losing any inform a—
tion. Furthem ore the holom orphic anom aly equation (2.26) provides a very e cient
way to com pute topological string am plitudes. W hile in the Feynm an rule approach
of BCOV thenum ber ofdiagram sgrow s exponentially w ith g, in the direct integration
approach the number of temm s in F 9 grow s only w ith a power Jaw w ith the genus g.
T his is sin ilar as in the case of quintic C alabiYau three-fold studied in [25, 361.

T he leading coe cients of F 9) as a polynom ialof E, do not depend on the holo-
m orphic am biguity and can be com puted to very high orders. Suppose we denote the
leading term s by

A(q)
(@ 1)(1152m ) *

F(g)_

2(g 1)EA23(9 1) n (2.28)

Below we can always rescale ap so that ¢ = 1. The Bemoulli num bers By are de ned by

k
1 1
%,B6=Eetc.

P
1 By x x . 1
k=0 1]1! =—ex1,l.e.B2=g,B4=

10



w here denotes term s w ith lower powersEaAatf. O ne can see that the coe cients

A9 1) do not depend on the holom orphic am biguities, since there is no E, in the
holom orphic am biguities in all them odels we study. U sing the holom orphic anom aly
equation (226),we nd a sin ple recursion relation for allthe casesN ¢ = 0;1;2;3 of
Seberg-W itten theory

AR — E
36"
X 2
A9 = (g 1a9 Y4 APAL D g5 2 (2.29)
r=2
1105 ,565

@) S i
The st few coe cientsA are 36 187 120¢ Fica t

In the next three subsections we discuss themass]esst = 1;2;3 cases one by
one.

2.2 Nf =1
Forthe N¢ = 1 theory the discrim inant is according to (29)
L= 16(16u’ + 27) : (2.30)

T he solution of the P icardFuchs equation in the weak coupling Imitu ! 1 is

P 3 315 15015
a = u(l+ + + )
64u®  16384u®  1048576u’
p— 3 297 9047
ap = 3alg)+ ul + + ) (231)

32u®  16384u°  1048576u’

T he prepotential and gauge coupling  are then determ ined by @F@;o) = ap and =
1 err o) . Them odulus u can be expressed in term sof as [31]

2 i @a?

1 31 8
u = S B ) Es( )Es( ¥ ()
1
3 E/?
= Tmi—t— - (2.32)
2 E; Eg):
wherem isa onesixth rootof 1,ie.m®= 1.

T he holom orphic lin it of the genus one am plitude is [11, 1]
FY= —bg—) —bg( 1): (2.33)

This follows from F &) = 1g(G 43 37 ), which satis es (2.11), in the holom orphic

N

11



To provide m odular form ulas for all expression w e rew rite the P icard+uchs equa—
tion forN¢ = 1 1n (29) as

27 e ey Gy @y G (2.34)
4u " d 2 d d "d? d

Using (2.32) we can obtained a di erential equation for period a In term s of . Tn
theweak coupling Iimit ! il ,them odulusu goes lke u (EE E¢) %,and the
period a goes lke a P3 (Ef E,) ¢.After xing the nom alization, it ©llow s
that the solution of (2.34) that corresoonds to the period a is

r __ 1

3m E42 + E2
a= 53271 : (2.35)

E; Eg)e
A s expected the period a has form ally m odular weight one, sihce = 2_11@2@220) and

F @, 4 have m odular weight zero, two respectively.

T he holom orphic genus one am plitude F ), ie.  log( ( )) is then
1 3

FO Ebg(E42+E6)= (2.36)

W e integrate the holom orphic anom aly equation (2.26) and expand F 9’ around
the discrin inant points 1 (u) = 0, In order to use the gap structure. T he 3 discrim -
nant points (u)= 0 are related by a 23 symm etry so we only need to consider the
dual expansion around one of the 3 points. A ccording to [8] theses points should be

related to theweak coupling lim it ! +il by an S-duality transform ation ! 2.
T he Fisenstein series E, transform w ith m odular weight n, and a shift for E,, ie.
E, ! ?E,+ =2); E4 ! *E4; E¢! °E¢. In theweak coupling limit ? is

2 i
negative, so we nd that under a S-duality transform ation, E,, E¢ change sign and

E 4 doesn’t. Follow iIng the approach in [1],we can nd the dual period ap and FD(g)
byrep]acjngEz,E6wjth E,, E6]rl(2.35)

r __ 1
3m E42 E,
dp = 53571 : (2.37)
(E42 + E6)€
N ote that them odulus u transform s as

1 1

3 E} 3 E/
u= —mZéi‘l1 ! —m2§741; (2.38)

2 E7 Eg) 2 (EBI+E)

ie. the Sduality transform su indeed from u= 1 to the Z3; symm etric discrim inant
pointsu = =m?.
23
It isnow straightforward to expand the dualgenus two am plitude FD(Z) n term sof
the dualperiod ap in the weak coupling lim it of the S-dualtheory , = 1! +1il .

12



W euse the gap condition as In the case of pure gauge theory [1]to x the holom orphic
am biguity, and we nd the genus two am plitude and its S-dual

El 1
E;f Eg)s 3
F@ - E §6) [ 25EE,+ EZ( 135E; + 30E¢)
2160m 2(E] + Eg )
1 5
+E,(255E; 120E;Eg) 159E; + 140E,E¢] (2.39)
3 1
Ef + Eg) 2
F? = E, 36) R5E’E,+ E2( 13587 30E)

2160m 2(E; Eg)?

1 5
E,(255E2+ 120E/E) 159E; 140E,E¢] (2.40)

T he genus tw o space-tim e Instanton expansion and the S-dualexpansion are as follow s

P @ 1 N 9 16749 N 187215
160a2  1024a®  262144a'4  1048576a20 '
6536606985 s o 1 ) 2.41)
17179869184a26 a3 )
1 221a, 76289a2 1082609a>
F® - D D " + 0 () :

2408 3262208m3  2310077696m 4 23 37 45349632m 5
(2.42)

W e obtain the genus three am plitude using the gap condition at the conifold point

wno

3
E; E s
Fe = E, j) f525ESE; 350E;(19E; 5E,Eg)
544320m 4(E? + Eg)*

+ 35E 1 (1225E ; 694EfE6 + 16EZ) 280E§(637E4% 546E ‘E ¢ + 51E4%E62)
+ TE 2 (67221E ; 75400EfE ¢+ 14540E ,E7)

14E2(49821E§ 68867E ,E ¢ + 20960EfE§ 560E ;)
+ (440325E 7ZOOO6E4%E6 + 308700 ;E; 224OOE4%E63) ;g (2.43)

which yields to Iowest order In the asym ptotically free region and near the conifold

5) 5 3 96453 6065417
F = +

2688a%  1024al®  524288al6  4194304a%

, 213776429067 o 1 ) 2 .4)

34359738368a28 a¥ )
PO _ 1 197ap 54542723a3
b 1008a)  2%37165888m5 19591041024
15986273110%a2

+—— O (ap ) : (2.45)
2737 9873884676096m

T he instanton expansion (2.44) agreesw ith N ekrasov’s calculations (A .190) and m akes
predictions at higher instanton num bers.

13



2.3 Nf =2
T he discrim inant is
o= (4® 1) : (2.46)

That it is of fourth order in u can be seen from (3.89) in a Jater section, where we
provide the expression of the conifold divisor for generic avorm asses. T he solution
of the P icardFuchs equation at weak coupling Imitu ! 1 is

o_ 1 15 105
a = u(l + )
64u®  16384u* 1048576u°
P 1 13 163
ap = 2alg(u)+  u( + ) (247)

32u?  16384u*  3145728u°

CFY a5 [31]

Them odulus u can be expressed in term sof = 2—11 a2

1 6P 1 1
SN DA SR L (2.48)
6 25 2  5() 2
W e verify the genus one am plitude satisfy the holom orphic anom aly equation
)= }bg(%) ibg( ) : (2.49)
277 du’ 12 2 '

T he period a can also be written in tem s of theta functionsof . W e notice that
the P icardFuchsequation forN ¢ = 2 isvery sin ilarto theone ofN ; = 0 pure Seberg—
W itten theory studied in [1]. In particular, if we change the nom alization u ! %,
but leave and a xed, then the P icardFuchs equation (2.9) and the expression of
u (2.48) are exactly the sam e as that of pure SU (2) theory. So the expression of the
period a In tem sof  should be the sam e as that of [1]up to m ultiplicative constant.

We nd

- - 4 4 .
a=———(E2( )+ 30 )+ 4,0 )): (2.50)
350)

However since , is the square of the N; = 0 discrim lnate ;. T herefore the genus
one am plitude isnot smply F &' =  log( ( ))asin theN: = O case [1]but rather
1 2 2
FOZ _M(M)): (2.51)

3 2( )

In the follow ing we use the notation in [1]and de ne
b= 5(); c=5()=b+td; d= ;(); (2.52)

h = Db+ 2dand X = Wb&dz'
Under a S duality transform ation, the theta fiinctions have m odular weight two,

and transform asb ! ’d,c! 2c,d ! ’b. The Eisenstein E, isweight two

14



and transform s w ith a shift (220). The period a contains E, aswellas 5 and is
therefore not m odular nvariant under (2). By a duality transform ation followed by
a holom orphic 1im it it is rather related to the dual period

ap = E, b o: (2.53)

o)

U sing the gap condition from dualexpansion,we x the genus two am plitude and
nd the space-tim e instanton expansion

2
F %= =X f25E7  TSEZh+ 15E, (130 + 22ad) h(1376 + 8cd)g ;  (2.54)

e _ 7 1425 15717
4802 1024a°  262144a'®  8388608al*
8623029 1

O (

+ —) 2.55
1717986918448 a2 ) ( )

The SdualofF ? and its dual expansion fiil 1ling the gap condition are

@) _

2
Fo = T2Xo f25E; 75Ehp + 15E,(13d% + 22kc)  hp (137d° + 8ko)g @ (2.56)

@) 1 3iap,  33ai  2147ia] .
F,” = ~+ + 0 (ap ) ; (257)
120a2 512 1024 20480

wherehD = d 2b,XD = Wd}f&.

W e push the analysis to genus three using the gap condition. The genus three
am plitude is
(3) 2 6 5 4 2 323 2
F = X “f80E, 480E;h+ 48E, (41 + 104cd) ?Ezh(646b + 685cd)
16
+—EZ(6503b" + 234105°cd + 7637c7d?)
5
32
EEZh(5867b4 + 116055°cd + 671d%)

1_6 6 4 2242 393y .
+ o8 (177293 + 787182b-cd + 619233k°c"d” + 40232c°d’)g : (2.58)

T he space+tin e Instanton expansion and the S-dual expansion are given below

31 5 8843 140721
FO = r + +
8064a* 2048a8  524288al2  8388608alf
N 318316439 Lo 1 ) 2.59)
34359738368a22 as
1 45ia 279a? 7459331a3
Foo= + > D P +o(@): (2.60)

504a; 16384 8192 3670016

The instanton expansion (2.59) agree with (A 191) and m ake predictions at higher
instanton num bers.
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2.4 Nf = 3
T he discrim inant is
u
3= 1(1611 1): (261)

T he solution of the P icardFuchs equation at weak coupling Imitu ! 1 is

o 1 3 5
a = u(l + )
64u  16384u?  1048576u3
[ 1 1 1
ap = abg(u)+ u( + + ) ¢ (2.62)

32u  16384u?  3145728u’®

In the case N¢ = 3, it tums out to be convenient to de ne the gauge coupling as

= 4@2@2;0)+l.Themoduhsucanbeexpressedjntemsof as [31]

( 1).8 (\8
B e St A R DA (2.63)
256 @2( 19 256 2 5 16

W e verify that the genus one am plitude satisfy the holom orphic anom aly equation

1 da
FO = ~ Jog(

1 1
> g) 1—2309( 3)  —log): (2.64)

4

W e note an additional singqularity at u = 0 besides the ;= 0.

W e can also use the results from pure SU (2) case [1] to write period a and F )
as theta functions of . W e notice that under a change of variable u = “;21 , the
PicardFfuchs equation (2.9) and the formula (2.63) becom e the sam e as the pure

gauge theory case, nam ely we have

2

4(a? 1)E+a = 0
du? B
O -2 (P L 0
8 (2§ 50

A= @)+ H+ L)) (2.65)
12 2( ) 3 ‘
and the genus one am plitude
1 S0 )a()
FY = Zg——): 266
310@1( 20) ) ( )

In the case of N¢ = 3, there are two di erent dual expansions: one at u = 0 and

one atu = 1—16 Unlke thecase n N¢ = 0 and N = 2, the two expansions are not

related by a Z, symm etry. T he Sduality transform ation transformsu =1 tou= %6
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oreu= 1,whilkaT and S duality transformsu =1 tou= Oorw= 1. The
corresponding actions on aj;b and c are

S-duality : b! ’d;c ! “c;d ! b
T Sduality : b! 2ol;c ! 2b;d ! ’c:

and yield the dual periods as

i

Sduality : api = s(E2 b ©)
12 ;
) 1

T Sduality : ap o = - (E2 b o:
12

It tums out there are gap structures in the dual series expansions at both u = 0 and
u= +,where the rst sub-Jeading tem s of the dualseriesatu= 0 and u= 7= go
like constant and ag respectively. W e are able to use this structure to  x the genus
two am plitude

F@ = LEOE; 90E Z (b+ 4d)+ 30E, (25  4kd+ 35d%)
810c2d2
(16’ + 515°d  1428kd” + 443d°)] : (2.67)

T he spacetim e instanton expansion and the dual expansions are

2) 11 5 109 83
F = + +
480a%  1024a* 262144a°  4194304a8
13361 o 1 ) 2 58)
+ —); d
1717869184410 al?
1 1 271lia 3811a? 50781ia2
Fpf = ——5+ =+ i 0l 210 @) (2:69)
24082, 2 16 16 20
1 4a3 75a2 2155a>
(2) D2 D2 D 2 6
= + + 0 (a : 2.70
b2 1522, 5 4 8 @2) (2-10)

The vanishing of the subleading coe cients in both of the dual series expansions
up order &) | and &}, respectively yield independent conditions. T hese enable us to
precisely to x the unknowns in the ansatz for the holom orphic am biguity, which is
Increased w rt. tothe Nf = 0 and N¢ = 2 case, because there isno 72, symm etry
u! u in theN¢ = 3 theory.
W e push the analysis to genus three
21

F G = eI 1050ES  1050E; (Sb+ 13d)+ 210E; (80" + 233kd + 374d%)

70E 5 (529 + 17527d + 1731kd* + 3764d°) + 42E 5 (11721 + 3985k°d+
4563Fd?  9299kd’® + 12818d%) 42E, (844l + 31090'd + 47650°d*+
1240417d°  63022kd* + 9554d°) + (107188 + 44304d + 81507'd+
19406°d° + 26745067d*  2382348kd° + 117557d°)

(2.71)
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T he spacetim e instanton expansion and the two dual expansions are

o) o Y L, 769 1595
8064a% 512a® 534288a%  8388608all
. 506627 Lo 1 . oo
34359738368al2 e’ ! .
1 293271ia 413345a2
FD(31) = ———+ 10+ D1l D1+O(a§1); 2.73)
1008a} , 32 1
4 90a), 4183a), 354833
(3) D2 5o >, ]
- " +0(@5,); 274
o 63a’, 7 S 3 @5,) ; (274)

w here the spacetin e instanton expansion (2.72) again agrees w ith Nekrasov’s cal-
culations (A 192) and m akes predictions at higher instanton numbers. Note that
the non-zero sub-leading term of the two dual series appear at order &l , and a2,
respectively, as the genus two case.

3 SU (2) SeibergW itten theory w ith m assive hy-
perm ultiplets

In this section, we will show that the gravitational couplings F 9’ for the m assive
SelbergW itten theory can be soled as a polynom ials of generators of the relevant
m odular functions, whose coe cients are rational functions of the C oulom b m odulus
u aswell as the m ass param eters m ;. The equation J( ) = Ry, (u;m ) still govermns
the occurrence of the m odular fiinctions and relevant group is again the quotient of
PSL (2,7 ) by the pem utation group acting on the rootsu(J;m ). M athem atically the
m ass param etersm ; are known as isom onodrom ic deform ation param eters.

3.1 The prepotentialF ©

For the m assive case the P icardFudhs equation is m uch m ore com plicated than the
m asskess case. There is a standard though tedious way to derive the Picard-Fuchs
equations from the SedbergW itten curve [37]. T he P icard+uchs equation for SU (2)
SelbergW itten theory w ith m assive hyperm ultiplets were derived in [38, 39]and for
the case of one m assive hypem ultiplet (N = 1) it is given by

a3 3 1+ (4m? 3u)§m—1 g2
+
du’ 1(dm?  3u)  du?
8[4(2m? 3u)(dm? 3u)+ 33 im; 4u?)ld

2
1 _
1(4m{  3u) du

0: (3.75)

Herem ; isthem ass of the hyperm ultiplet and ; is the discrim inant of the Seiberg-
W itten curve

1= 256u  256miu® 288 ‘miu+ 256 Jm;+ 27 S : (3.76)
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T he di erential equation 3.75 has a second singularity at the vanishing locus of
,=4m? 3u: (3.77)

Tn order to m atch with Nekrasov’s convention [4], we again set the dynam ical scale
L= 25.
In the weak coupling region nearu ! 1 , the PicardFuchs equation (3.75) hasa
constant solutions and two other solution corresponding to the periods a and ap . It
was found in [38]

L pa(1 m, 3 15m§+ 35m; 105(3+ 64m ;)
4u? 64U 64u*  256u° 16384u°
+3465m§+o 1.
8192u’ @)
2 4 3 6
ELE LT R (3.78)
64 8 8 'u* u’

W e solved the prepotential using & L = ap and checked it against N ekrasov’s result

e
summ arized In (A .186).

There are relations between the period a, Coulomb m odulus u and the gauge
coupling , which becom e useful for solving the m odel. A ftera PG L (3;C ) transfor-
m ation, the m assive Seilberg-W itten curve can brought into W elerstrass form (2.6).
ForN¢ = 1 one has

u?  4m,

%m u 1: (3-79)

U sing the fact that the period equation is solved In tem s of m odular form s [40]

Wl

Qumq)=
gs(umy)=  Fu’+

(see [33] for an elem entary review ), thede nition of = Z—Il@g‘af’ and the J function
(2.7) one can show that the period a satis es the equation [41]
S
du u;mq)E
au _ 1893( m)E4( ): (3.80)
da Qumi)Eq( )

N ote that this equation isuniversal forN¢ = 0;1;2;3 in the sense that it depends on
the gpeci cs of the curve only via g, (U;m ) and gz (u;m ).

3.2 G ravitational couplings

W e chall follow the approach in [1] and treat the period a as a at coordinate in
the holom orphic lin it. T he singular locus of the P icard-Ffuchs equation (3.75) is at

1= 0and , = 0. 7 = 0 is the the conifold divisor, ie. one hypem ultiplet
becom es m assless for these values of the m oduli. A ccording to [34] each hyperm ulti-
plet contributes 1—12 to one-loop gravitational function,which yields a logarithm ic
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running of the coupling of RZ . Thisgives rise to an 75 Iog( 1)R? contribution in
the one loop e ective action, com pare (2.5). O n the other hand the conform al locus
lieson 5, = 0,asdiscussed further In section 4, and here the  function and hence
the Jog( ) contrbution to F ) vanishes. This xes the am biguity at genus zero and
the holom orphic 1in it [11]
PO- ZugE) Ligl 1) (3.81)
2 du 12
agrees w ith N ekrasov'’s calculation (A J187) up to an am biguous constant. T he form
of (3.81) hasbeen already noted in [42].
U sing (3.80) the genus one gravitational correction F ) can be also written as
i _ ibg(gi (@ 279)E?

3.82
12 % E; o2

A sdiscussed in section (2.1) the F @) (g 2) of SebergW itten theory are m od-
ular invariant with weight zero. A s we have seen the covariant derivatives in the
recursion lead to an an-holom orphic dependence, which can be com pletely absorbed
Into pow ers of the non-holom orphic E isenstein series EAZ (). Theirm odular transfor—
m ation must be com pensated by holom orphic m odular form s. W e clain that that
all an-holom orphic dependence can be absorbed into the weight zero an-holom orphic
m odular form

_ER( B )
Ee( )
T his can be established by rew riting the holom orphic anom aly equation (g 2) as

X ( (3.83)

QF () (X ;u) E¢ (d2F (g 1) X!t dr (r) dr g o
= +
@x 24E, da? da da

r=1

(3.84)

U sing the relations of a, u and n (2.7) (3.80), and induction one can easily show
the right hand side of the above equation isa polynom ialof X ofdegree 3g 4 whose
coe clents as rational function of u, consistent w ith the Induction. It follow s that
the higher genus F 9 (g 2) are polynom ials of X ( ) of degred® 3g 3, whose
coe cients are rational functions of them odulusu and m .

G ven (3.82) it is easy to Integrate (3.84) up to the holom orphic am biguity. E g.
forgenus wo we nd

3
F@ = - 2880(3u  4m 1) gg—x 96(252u®  648m Zu®+ (352m [+

(u) 2

2
S4miju+ 27(8m;  9)) Z* 2[324u*  528miu’ + 4my(76m;  27)u’

36(26m J + 27)u+ 3mZ(128m ; + 729)] gg—x g+ £@;
(3.85)

1°A swe explained in them assless cases in Sec. 2.1, there is an isom orphism between E, and E,.
So one treat the above equations as in the holom orphic lim it by replacing E, with E,.
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where £? is the holom orphic am biguity, which is again a rational fiinction of u and

mi.

3.3 Fixing the holom orphic am biguity w ith dual expansions

In order to x the holom orphic ambiguity, we use the gap structure in the dual
expansion at a discrim lnant point u = u;, where (u:) = 0. The formule are
essentially the sam e as the seam iclassical Iimitu ! 1 ,and we just nead to use the
dual coupling and period p and ap iIn plhces of ,a. The mule (2.7), (3.80)

becom e
g )’
J(p)= (3.86)
? < Q) 27g;)?
du _ 1893(U)E4( p) (3.87)
daD gZ(u)E6( D)

From the above form ulae we see that around the discrim inant pointu  u;, the dual
theory is ndeed weakly coupled in tem s of the dual coupling p, ! il , and the
asym ptotic behavior of the dual period is ap u up).

W e can now replace 1In thegenustwo formula (3.85) w ith dualcoupling p ,and
expand F “® i tem s of the dualperiod ap .

The am biguity £9’ can a priorihave poles at the singular points of P icard-Fuchs
equation (u)= 0Oand , = 0. However , = 0 does not appear as a pole in the
holom orphic am biguity. This is because there is a conform alm assless spectrum at
that locus In the m oduli space, sin ilar to the situation encountered In [36] for the
G epner point in the CalabiYau m oduli space. The singular behavior of £9) at the
conifolds in plies then that £@ = 228 where p, (u) is a polynom &1 1 u of degree

1

n. Sihce £f9 must be regularatu ! 1 and ; u’ wegetthatn 6g 6.
In fact it tums out thatn = 6g 7. Using the 2g 1 1rst coe cients In (227)

at the three nequivalent conifold points, we see that the equations follow ing from

the gap condition overdetermm ine the coe cients ofp , (u). This xes the holom orphic
am biguity forallg. E g. for genus two we get

£@ = iz [ 684u° + 3192mfu®  2m o (656m 7 + 4293)u’ + 378(8m ] + 45)u’

54m 7(80m ; + 183)u+ 27(664m; 729)]:

(3.88)

Unlke the m assless case, here the constant term in the dual expansion does not

vanish. A lthough it is too com plicated to write down the constant temm , we have
checked it indeed vanishes in them assless lin itm ; = 0.

T he holom orphic am biguity (3.88) together with (3.85) gives the exact form ula

orgenus two F ¥ in themassive N¢ = 1 SebergW itten theory. W e have checked

the agream ent w ith N ekrasov’s Instanton calculation in sem iclassical 1im it. W e can

21



furthem ore obtain predictions for higher instanton resultsatgenustwo. Forexam ple,
the 6-instanton and 7-nstanton results are

ey _ 1497720a° 3972065la’m { + 131881442a’m |  96877135m ?

6 dnstanton 8388608a2°

@) 3(6542298a°m;  73190615a’m; + 181612908a’m ;  117503791m ;)
F7 mstanon ~ 838860820 '

34 Commentson the N¢ = 2;3 cases and integrability

W ecan transform the Seiberg-W itten curve forN £ = 2;3 w ith generic hyperm ultiplet
m asses into W elerstrass form . The conibd divisor = g5 2795 = 0 fortheN; = 2;3
cases are (here we use the convention orthe QCD scale y,-2= 2, y,-3= 4)

Ne=2 = 16u* l6(mf+m§)u3+(l6mfm§ 80m 1m , 8)u2
+B6mZ+ m2)+ 72mm,m i+ m)h
+1 12mim, 6m’mZ 64mim; 27mi+ml);

N.-3 = 16u’+ (1+ 16m?+ 16mj+ 16m 5)u’
+Bm7+ms+m3) 16mmi+mim:+ mim3)+ 88m m,m ;)u’

+fo(m 1 ;moms)u’+ fmymo;ms)u+ + fofmo;mo;ms) ; (3.89)

where f,;f; ;T are som e sym m etric polynom ialofm {;m ,;m 3.

T he num ber of conifold point isn = 3;4;5 for N¢ = 1;2;3 and these points are
distinct for generic hyperm ultiplet m asses. T he am biguity at genus g is a rational
function whose denom fnator is 29 2, whil reqularity at u = 1 constrains the
num ber of unknown constants in the holom orphic am biguity to be n(2g 2). The
gap boundary conditions at each of the n distinct conifold singularities provide 2g 2
conditions. This is exactly enough inform ation to x the holom orphic am biguity.

W e have also checked the genus one form ula

1) 1 da 1
FU= Sog(—) bg() (3.90)

agrees w ith N ekrasov’s instanton counting formulae for N¢ = 2;3 cases for generic
masseswhen we expand itatu= 1 .

4 SU (2) Seidberg-W itten theory at superconform al
points

O ne of the m ost interesting agpect of the SelbergW itten solution of N = 2 gauge

theories is that it allow s to study regions in the param eter spaces w here previously

unknow n types of four din ensional interacting eld theories have been discovered. O £
particular interest are the points where several dyons becom e m assless, which have
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electric as well as m agnetic charges. It is well known that no e ective action w ith
only local interactions can be written down in that case and one says the m assless
dyons are m utually non-local. G eom etrically the situation is characterized by the
fact that pairs of cycles which m utually non-vanishing intersection num bers vanish.
It also in plies that the divisors, w here m utually non—-localdyons vanish, intersect in
the m oduli space.

In the previous Section 2 we studied the case where the bare m asses of hyperm ul-
tiplets are zero. It this case the extra m assless particles at the colliding singularities
are m utually local. In [22], som e special cases of hyperm ultiplet m asses are studied
w here two m utually non-local singular points in the u plane collide. In the case there
is a non—trivial Interacting superconform al eld theory at the colliding singularity
In the u plne. Besides the known N¢ = 4 superconform al eld theory, three new
N = 2 superconform al eld theorieswere found [22]from SU (2) SedbergW itten the-
ory with N¢ = 1;2;3 avors, and are denoted as (N ¢ ;1) superconform al eld theory
respectively .

A technically interesting aspect is that the equation (2.7), which is for general
m asses, com pare (3.79), not easily solvable foru( ),lbecom es sin ple and solvable at
the conform alpoints, which allow sbelow to nd explicit form ulas for the am plitudes
n term s of m odular form s.

41 Ne=1,m;= 32

We ﬁ)]Jow our previous notation ; = 25 . In the goecial case of them ass of the avor

mq = , there is a non—trivial (1;1) superconform al eld theory atu = —g where
23

wom utua]ly non—-localm assless dyons collide, and there is another dyon smgu]arm

atu = é . The (1;1) superconform al eld theory atu = —g is equivalent to the
4 23

A rgyresD ouglas point originally found in pure SU (3) SebergW itten theory in [431].
T he discrim inant is

5 15
u —)yu+ =) (491)
23 4 2
Eqg. (2.7) sin pli es to
g+ 1Y@ 1 E;
( ) ( ): i 2 y (4.92)
da+ 5 E E;

2
23u

where & = . The equation for u has 4 solutions and 3 of them have the correct
asym ptotic behaVJoru !' 1 in theweak coupling Iimit ! il . These 3 solutions
are related by a Z; transform ation and we jist nead to consider one solution

S

3 P 2E¢
u= — 1+ x+ 3 X+ —5——3P= (493)
23 Ef EJ) x
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withx= 1+ Ei > Ba |
€ ED3S @ EDS
The formula (3.80) becom es
da 25 (w+ 1) Eg &
i — (4.94)
du 6(2e2+ 2v 1)E,
and the genus one am plitude becom es
PO = CogC) bgl)
2 J du 12 J
B 1kg(mu+-5xu+14%u 1FE§)_ 4.95)
12 w2+ 20 173 E2

which can be written entirely in term s of  using (4.93).

W e study the gravitational couplings of the theory at the superconform al point
u = - in more details. The Picard-Fuchs equation has a constant solution around
this f)i)jnt and two power series solutions. The two power series serve as the at

coordinate a and the derivative of prepotential @%;O) around this point. D enoting

z=u u ! 0,we nd the solutions are

s 10 - 128 ., 6272 .
a = zi(l ——2z+ 27 ———27+ 0 (2"));
891 111537 36669429
erF © : 28 2 400 _: , 4096 .
= zi (1 iz + 3 ———2°+ 0 (z')) : (496)
ea 1053 124659 7971615

T he scaling behavior of the period of the P icardFuchs equation asa 77 agreesw ith
the analysis presented In [22]. W e can invert the series and solve the prepotential n
tem s of the at coordinate

12 28 2 18 63872 118
FO= 5% 2335 + ———— 2335

11006912 y
——————-4a
3861 142457535 256086163575

+ O @s): (497)

Here we have not x the nom alization for prepotentialand the at coordinatea.As
usual the prepotential is determ ined up to a quadratic polynom ial of a due to the
am biguity in choosing the basis of P icard+uchs equation.

For the genus one free energy, we nd

18

25a% +0@s): (4.98)

wlrn

0 1 s 5732
FP= —bg@) ——2as+ ———
10 891 22493295

For genus two free energy, we can use the result we derive for generic m ass pa-—
ram eter m 1, and specialize to the superconform al point. U sing form ulae (3.86) we
can derive the expression for the E isenstein serdes

Ey( )= 12 (%)“- Es( )= 216 &)6-
4 - @du I 6 - %du 7
E,( )E 2B ( )Ee( ) 3E,( §(El)(Eel)y
% ()= 2 (0 )Eq4( )= 4 6 4 dEi() dEcl() . (4.99)
Ee( ) 2E4( )Es( ) 3Es( F(ER)=(El)
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W e nd that the leading shgularity at genus two is ¥ ? = 0 (2), even though for
a generic holom orphic am biguity £% one has a leading sihqular behavior of £ @) =
@) (Z—l4 ). The expansion In at coordinate is

133 19 79793  at 4310932  w» 1

F(Z)z 6+ T —2+ a5+O(a
388802 360855 & 165632445057 332775068175

) ¢4.100)
Thiskind of sihqularity behavior is very sim ilar to the situation at the orbifold singu-—
larity in com pact CalabiY au spaces encountered in [36], where the F 9 tums out to
be less singular than naively expected. H ere them assless particles scale as the period
a ziinthelmitz! 0andweknow F 9 shoud be nom ore shgulr than a? %
from the usualG opakum arVafa argum ent of integrating out charged particles in the
graviphoton background. This explains the leading singularity in the expression of
F ) above.

4.2 Nf=2,m1=m2= 72

W e follow our previous notation , = 2. There isa (2;1) superconform al el the-
ory at u = % where a double singularity collides w ith a m utually non-local dyon
singularity, and there is another dyon singularity at u = g . The discrim inant is

3 5

u 5>3u1+ ) (4101)

W e solve a cubic equation foru,and there are 2 solutionsw ith the correct asym ptotic
behavior in weak coupling lim it. A s before they are related by a 2, symmetry. W e
consider one solution

3 3e B, ([Eq+ UE] E2)):
u = -+ -
2 2(E; E2):
3etiE,(Es iEZ EZ2))
+ EE (4.102)
2(B; EZ2):

From (3.80) one gets

da 1 (2u+ 3) Ee( )1
da_1 7, (4103)
du 2 (2u 3)u+ 3)EL( )

which allow s to w rite the genus one am plitude as

PO - g Zipg()
2 du 12
_ ikqog((2u'+ 3)’ (2u + 5)515) ) (4104)
12 (u+ 3) E; ’

O ne can use the expression of u in equation (4.102) to obtain a form ula for genus one
am plitnde F ) purely in tem s of gauge coupling
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T here are two other dentical (2;1) superconform al el theoriesatm ;= m, =
i72. T hese are the sam e theories as theonesatm; = m, = 72,towhjch they are
related by the transform ation u ! u.

Asin theN¢ = 1 case, we can solve the at coordinate a and express the pre-
potential F ©) and genus one free energy F ) in term s of it. The best way to solve
the at coordinate is to use the P icardFuchs equation, since at the superconform al
point it is not convenient to do perturbative expansion the E isenstein serdies. The

Picard-Fuchs equation for the massive N¢ = 2;3 SebergW itten theory were found
3

In [39]. W e specialize to the case of massm = m, = 72 Denotez = u 3 we
found the solutions of P icard-Fuchs equation around z = 0 as the follow ings
3 25
a = zi(1 —z+ 2 z’+ 0 (z'));
224 22528 65536
eF © s 5 147 847 .
= zi(1l —z+ z z7+ 0 (z)) : (4.105)
@a 96 26624 1114112
T he genus zero and one free energy up to a constant are
) 8 5 4 3197 1 6883 2 8
F = a3 —a + ——a3 —— a3 + 0 (@)
252 2690688 65680384
) 1 5 4 1409 11873 16
F = —log@a) —a’+ —a3 ——a + 0 (@3 ) :(4.1006)
6 672 1655808 92725248

43 Nf=3,ml=m2=m3=§

W e follow our previous notation ;= 4. In this case there isa (3;1) superconform al
eld theory atu = % where a triple singularity collides w ith a dyon singularity, and
there is also a dyon point at u = %2 T he discrim inant is

1 4
w =)+ —): (4.107)

O ne can solve an algebraic equation and obtain an expression of u in term s of gauge
coupling . Herewe w il use the nom alization =2—i @Z@Fa;m ,which is one half of the
T dual of the gauge coupling we use In N = 3 m assless case previously in Section 2.

T here are two branches of solutions [41], and we take the branch where In the weak

coupling Iim it ! i1 ,themodulusgoeslkeu ! 1 .The expression foru is [41]
3
2TEGE}Z + 23E 7 + 4E 2
U= 64 - 43 6 (4.108)
8(EZ E})

and there are also form ulae for the derivative of period a

da k¢ v
—_ — )2 2
du 27 Eg
3
da 27 Ee+Ef
3
d 128 &, £i)



W e have not found an explicit form ula for period a( ). However, to write an exact
form ula for the topological string am plitude of the F 9 in term s of m odular form s,
we only need the derivative of period a. T he genus one am plitude is

1) 1 da 1
o= Slg(—) gl )

= —bg(———=%) (4.109)

where as usualwe are not carefiil about an am biguous additive constant in ¥ ).

Asin the N¢ = 1;2 case, we can solve the at coordinate a and express the
prepotential F ) and genus one free energy F V) in term sof it. Denotez = u 3, we
found the solutions of P icardFuchs equation around z = 0 as the follow ings

2 8 49 18928 4
a = z:(1 —z+ z zo+ 0 (z"));
405 13122 17537553
er © 4 80 242 , 254320 .
= z3(1 —z+ —2z — 727+ 0 (z)) : (4.110)
@a 567 6561 20726199
T he genus zero and one free energy up to a constant are
) 5 64 o 401 885232 s 9
F = a —az + ——a —— a2z + 0 (@)
945 36450 351833625
) 1 4 3 3403 4 225869 €
F = - log@a) ——a?z + a —az+ 0 @’): (4.111)
4 135 437400 81192375

5 The non-com pact lim it of C alabi-Y au com pact-
1 cations

A good way to solve the holom orphic anom aly equations for the R iam ann surface is
In term s of rings of an-holom orphic m odular fom s, as we have seen in sections 2 and
3.

H ow ever even w ithout know ing anything about the structure of them odular form s
w r.t. them odular group of the fam ily of curves, one can derive the necessary alm ost
holom orphic ob fctsdirectly In term s of the periods, which are solutions of the P icard-
Fuchs equations. This has been done for com pact CalbiYau spaces using special
K ahler geom etry [21 ]and the anholom orphic ob Ectsare the BCOV propagators. T he
derivatives that appear in the holom orphic anom aly equation close w ithin a nitely
generated polynom ial ring of ain ost holom orphic m odular functions and the F @
are them selves such polynom ials [25]. T he ring structure has been further analyzed
n [26,27,28].

Asexplained In [9, 6] extracting 4d N = 2 non-perturbative gauge theory from
type II string theory com pacti ed on a CalabiYau spaceW can bedone geom etrically
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by taking a lim it in the geom etrical param eter of the C alabiY au space In which part
of the geom etry decom pacti es. Since we aredealing w ith the vectorm oduli space the
Iim it is taken in the A -m odel in the com plexi ed K ahler space and in the B-m odel
on the m irror m anifold the lm it is is taken in the com plex structure space. For
CalbiYau manifolds W embedded in toric am bient spaces a w ide class of 1im iting
con gurations in the B-m odel has be described as the 3-d total space of a conic
bundle over C C Dbranched at a Riem ann surface Cg 2 C C [6]. For the
relevant geom etries the com pacti cation of C, is then the Seberg#W itten curve Cy.
A general feature of the lim it is that the periods of the (3;0)form  over 3—cycles
In W ,which stay nite becom e the periods of a m erom orphic form over 1cycles
on C; Ol The form  on C, can be obtained by ntegrating over the non-com pact
directions in the lm iting con guration ofW [10].

T he non-com pact lim it relates the CalabiYau rings of [21, 25, 26, 27, 28] to the
classical rings of alm ost holom orphic m odular form s of subgroups of SL (2;Z) for
SU (2) gauge groups [7]or SP (2g;Z) for SU (g + 1;Z) gauge groups® [1, 3]and it
m ust be possible to w rite the generators of the an-holom orphic rings that are needed
to solve the holom orphic anom aly equation for gauge theordes in temm s of solutions of
the P icardFuchs equations. For exam ple for SU (3) in termm s of the solutions for the
Appeldi erential systam [37]. Below we discuss the properties of the 1 it and how
the ring structure behaves In the non-com pact lim it, extending the work of [19, 45].

5.1 Specialgeom etry and rigid special geom etry

T he origin of the an-holom orphicity com es from them etric on them oduli space of the
N = 2 vector m ultiplets, which determ ines their kinetic term in the e ective action.
The htterisan N = 2 supergravity action for the com pact case and an N = 2 super
sym m etric (gauge theory) action w ithout gravity in the non-com pact case. T he vector
m ultiplet m oduli spaces are denti ed w ith the com plex structure m oduli space M
of the CalabixYau W and the R iam ann-surface C; respectively. The m etrics are the
W eilPetersen m etrics on these geom etric m oduli spaces. In both cases they derive
from a realKahler potential K as G = @;@,K , but there is additional structure.
For the CalabiYau case this isusually form ulated as specialK ahler geom etry in the
an all phase space, ie. In the inhom ogeneous coordinates discussed below , and for
the R iam ann-surface the structure is always rigid special geom etry. However in the
hom ogeneous coordinates, also called the big m oduli space, the N = 2 supergravity
action for the com pact case can also be form ulated in term s of rigid special geom etry,
which sin pli es the Iim it to the localcase.

HsedbergW itten curves are by now known for any gauge group. In general they are special
fam ilies of com plex curves, w hose deform ation param eters correspond to vev of elds in the Cartan
subalgebra of the group, see [44] for a review .
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T he splitting of them iddle de Rham cohom ology of the com pact CalabiYau W

H3(W ;Z): H3;0 H2,‘1 Hl;Z HO;3

' { ; i:{= 1;:::;h 2 (5.112)

ticular we indicated the basis ; i, (, ,i;{= 1;:::;h? of the ndidual Hodge
cohom ology groups that changes w ith the com plex structure. O ne Introduces a xed

topological and sym plectic basis (A ;Bx ) of H5(W ;Z) and a dual sym plectic ba-
sis (g ; ¥ )RofH3(W ;2). Here K = 0;:::;hy; and Hle non v%i]jshjng pairings are

AL\BK:W k ~ " =hg; "= ht; gi= AL K T g b= . Ifone
expand =X ' ; F; 'and ;= | 11 T In temn s of perdods
Z Z Z 7
X' = i Fi= ; i= ¥ 1= i (5.113)
Al B AT B:

the X T becom e hom ogepeous coordinates of the m oduli space of com plex structures.

ThedualperibdsF; = ,  and the 17 11 are not independent but related to X *
by special geom etry. It is convenient to de ne Yﬁ = X1, I = 0;:::;hy; and
@ = @y Itiseasy to see that @il 2 oxH 3 W Transversality, ie.

ha;bi = | a” b= 0 unlessboth Hodge indices (p;q) ofa and badd up to 3,m eans
that h ;@; 1 = h ;@ ;@; i = 0 and that Im plies the existence of a holom orphic

prepotential F (Y ) = £ ?Y'F;. The Jatter is a hom ogeneous function of degree

two In Y!, such that F; = @@FY(? . In the big m oduli space, param etrized by the

hom ogeneous coordinates Y !, one de nes a K ahler potential

i

K = 2(YKFK Y5 Fg); Gr; = @;Q;K = Tn 15 ; (5.114)

a symm etric welght zero tensor 15 = @Y@:—@FyJ and a symm etric weight 1 triple cou-
pling Cryx = @:@;@ F = h ;@:@;@ 1. Themetric G 1y has signature (1;h,;). The
connection is ¥, = G¥@;G;, = 2CJ, and one has the 5o called special geom etry
relation 1

D:iDsk =@ Jx = 7CoxeCl" 5 (5.115)

which can be viewed as integrability condition for the existence of the holom orphic
prepotential F , such that Cyx and Gi; can be obtained from it by di erentiation.
Tt was shown in [26] that the holom orphic anom aly equation of [21]reads In the big
m oduli space

1

i
@ F @)= éCIJK DJ@KF(g Py @JF(h)@KF(g i : (5.116)

h=1

Since D ;Cy 4, = D;Cqyy and D Gy, = 0 one can integrate

i
@ s™ = ZCIJ (5.117)

K
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The S are an-holom orphic tensors, called the propagators'?, they ply a sin ilar ol
that fz plays for the elliptic curve. From (5.115) one can solve

S*F=4C, V(o +HER (5.118)

Here I isnot simmed over and H* * is a holom orphic ambiguity. The Jatter must
be chosen so that S** is a tensor. The precise choice a ects the form of the total
am biguity £9, but is otherw ise arbitrary. O ne convenient choice is to require that
@F M= 2CroS**.

The idea of direct integration is based on the fact that all anholom orphic de-
pendence of the m odular invariant scalar F 9’ is in the S . Therefore by (5.117)
@F @ = 2CJ* =25 and C{* cancels from equation (5.116), which can then be di-
rectly integrated w rit. to SY¥ up to holom orphic tem s £9’, which must also be
m odular invariant. To proceed in the iteration in g one must show that the anholo-
m orphic generators S close under the covariant derivative up to holom orphic term s.
By considering @;D ;S7¥ ,using (5.115) and integrating w rt Y ' one gets

DS7% =CpysS"ts"I+ HIT ¢ (5119)

Let usnow com e to goecial geom etry In the an all phase space, w hose coordinates
are the inhom ogeneous variables t = % ,i= 1;:::;h, . The Kahlr potentialK in
the an all phase space is given by*>

7
ef¥ =i & Zix'F; X'Fp=if HEFO+eF ) 2@ F):
W

(5120)
Herewede ne (X °?’F @ (t) = F (X ) usihg the degree 2 hom ogeneity of F ©) and
the third equality holds up to a K ahler transform ation.
The connection [, splits nto a metric connection, w rt. G; = @@K , and
a Kahler connection. The covariant derivative becomes D; = @ . kK, for
obfcts in L T M , with an analogous de nition for D ;. Holom orphic sections
A (t) of L* transform lkeA (t) ! A (t)e ® underK ahler transform ations K (t;t) !
K (t;t)+ h(t)+ h(t). In particular the holom orphic (3;0)om 2 L andF 9 2 1.2 29,
T he covariant derivative elin inates the (3;0) part in the derivative of and hence
i=D; ( (= Dy{). Applying this under the integral yieds { = D;X ' and
13 = DF1, which sarve as propctors from the big to the am all phase space. In
particular the triple coupling in inhom ogeneous variables C iy 2 L? Sym’T M are

Y21

Cix = h ;@050 1= (X '@i@58Fr  Fr@:E;6X )= | J [ Crx : (5121)
I=0

12Indeed the F 9) can be reconstructed w ith the propagators and vertices @r ;2@ F (r<9) py

Feynm an rules of an auxiliary eld theory [21] for the am all phase space. For the form alisn in the
big phase space see [26].
13W e ollow the conventions of [26].
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Tt ©lows that Ci5 = DD D F P (t). Ushgh j; di= e ¥Gy from (5.120) and
transversality one gets w ith the de nition (5.121)

DXT=: I; D: ;= iCipuG™ 1€ Di = G:X " ¢ (5.122)

Wih Di;Dydx = Gy x + Ri{kl 1 one arrives at the special K ahler relation in
Inhom ogeneous coordinates

D:iD =Ry =@ 5= 565+ 56y CuCl : (5123)

T he profction of the S is staightforw ard

S St XY

. . 3
st s¥ ;

sY=x" 1) (5.124)
Here the relations D (C ;= D |C; are integrated to C {jk = @S¥*,G 4 S* = @S7 and
GySi= %@(S . Thepotentials $Y;57;S , also called the propagators, allow to solve the
anom aly equation, by partial integration, see for details [21], up to an holom orphic
am biguity. One can propct the propagators from the big phase space or rederive
them from the profcted special K ahler relation (5.123). Eg. SY is solved from
(5123)

f= f@K + S@K  CyS i+ M (5125)

T he analogs of the statem ent about the closing of the propagators (5.119) under D ;
are [25, 27]

D;S* = s'+ iS¥ Cypp SIS+ hit;
. . N ,
D;SI =27 CypiS¥+ WK+ h!;
(5.126)
DiS = CyaS*S'+ Zhi'K K1+ hiK 1+ hy ;
Din = Kj_Kj Ciijk + Ciijle 1+ hij

and are derived from special geom etry sim ilarly as (5.119). E g. from @, (D ;S*) =
Q ( ¥st+ 18¥  Cyp S s™) ollows the rst of the closing relations (5.126), etc.

One nds from the properties under K ahler transform ations [21, 25, 27] that
s9 = g9;89 =85! SYKjand S =S S'™Ki+ iSUKK; are a complete set of
an-holom orphic generators of a polynom ial ring that contains the F 9 as polynom i~
als with holom orphic coe cients. Indeed one can write the holom orphic anom aly
equation as |

QF 9) X!

1
as5 ~ 5 DDF @Y+  DFE9PpF® (5127)

h=1
and integrate if up to holom orphic term s as a polynom ial. N ote that the derivatives
of F 9 w rt. $3;S and K ;, which naively occur at the left hand side, cancel. This
cancellation is equivalent to the statem ent that the dependence of F 9’ is through the
com binations $9;37 and S.
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5.2 The non—com pact Ilm it
N on-com pact Calabi¥Y au are m irror to
uv=H (x;vy;2); (5.128)

whereu;v2 Z,x;y 2 C and z arem oduliof the geom etry. T he geom etry is that of
conic bundle, which branches over the locus

H (x;y;z)= 0; (5129)

which isa fam ily R dam ann surfaces C; ofgenusg. Let = Jog(x)% be m erom orphic
di erentialand (a*;b) a sym plectic basis of H * ( g+2 ) then the rigid e ective action
has a K ahler potential **
i,
K = E(tlF{ tFy) ; (5.130)

wheret'= | andF;= ., - Notethat the fom ofK is ke in (5.114), but the t
are directly appropriate at local coordinates. T he m etric reads
1
Giy=G@@K = (5 q) (5.131)
21

_ e’
where i3~ eded -

In the local case one has the follow ing sim pli cations. T he K ahler connection in
D ; becom es trivial, and the Staswellasthe S (see [46]) vanish, ie. the rst equation
n (5126) and the equation (5.119) becom e equivalent and read

DiS*'= CyppnS™s™+ £ (5132)

The SV are the generators of the ring of anholom orphic ob fcts Since the K ahler
connection @K in (5.125) drops out, so the S are solved from
}-<- = C ile ki + fk

1]

(5.133)

as h 1

s9= Co)" (pi+ () ; 8p=1;yr: (5.134)
Here r is the num ber of K ahler param eter in them irror to 5.128. Tt hasbeen pointed
out eg. in [19] that there are in general alyebraic relations between the S¥. If C;
has genus g = 1 there will be only one independent SY, for g = 2 there should be
3 independent S¥. Again p isnot summ ed over in (5.134) and this over determ ined
system requires a suitable choice of the am biguity £¥. This choice is sin pli ed by the
fact [47]that d;F; can be expressed through the propagator as

1 )
@:F; = Ecijksjk + Ay (5.135)

MW e use here conventions, which di er by a factor im ultiplying the prepotential from the ones
used in (2.15) and callthe atcoordinates t};F; instead ofal;ap . .
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with an ambiguity A, which can be detemm ined by the ansatz A; = dij(alog +

b; Iogz;). M oreover the universal behavior of F; near the conifold locus [35] in plies

1

a= 17 *

5.3 M onodrom y action

The m onodromy acts for the com pact CalkbiYau manifold W as a subgroup of
SP (hs(W );Z2)on theCY periods (F; = @;F;X '), ie. as

F ALY B Fy
T T ¢ opi yo (5136)
with allentries of A7 ;B 1;;C ™ and D ', integers and
| | | |
ASK (CT )SK O KI AIP BIP 0 Sp
(BT)SK DTK KI 0 CIP DIP SP 0
(5.137)

O ne clear advantage of the big phase space is that the m onodrom y acts sim ply on
the tensors in the hom ogeneous coordinates. E g. transfom s as

~y= @A +B}(C +D)'F, (5.138)

and m odularob fctsoftensorweight N transform lkeCyp .0 = (C +D &11K1;:::;(C

1Ky
D)y " Cxoypugy -

R The mﬁnodromy ﬁ%gthe non-com pact cases acts on the periods ' = (F; =
by ;t1= oMo = )wherea,bllsasymp]ect:cbaSJsofH (Cy;2) and

are cycles encircling the points where  has a pole w ith non-vanishing residua. A s
m entioned above T can be obtained as the periods of W which stay nite in the
non-com pact lim #°. W e callC, = Cy nfpyg. The m onodromy acting on H (Cg;2Z ) is
a subgroup of SP (2g;7 ). The action on is

0 1 0 . 10 1
Fy a/ by X Fy

@ ¢ A-@ Ji g BAE ¢ A (5.139)
m O 0 I mq,u

and analogous to (5.137) we have from the pressrvation of the intersection form

a'c= cfa,Pd = d'band a'd Jc'b= I, wih all entries of a;bjc;d and 1L ;I

integer. IfC, is obtained by a non-com pact lim it from W the m onodromy group of

C, generated by 5.139 is a subgroup of the m onodromy group of W . The action on
ij Isgiven sim ilarly as n (5.138) by

~5= (@ +bh(c +d) e

(5.140)

3T ypically the filndam ental period X ° in the large radius lin it becom es one of the constant
periods m see eg. the discussion of Iocal O ( 3) ! P? i the large ber lin it of the elliptic
bration over P? realized as X 15(1;1;1;6;9), see [19].
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An important di erence is in the properties of the matrix . In the global case
In ( 1y ) has signature (1;h,), ie. one negative eilgenvalue. O n the other hand as it
was m entioned in section (2.1) it is a key property of the solution of [7, 8, 37] that
I (4),1= 1;::imank(G ), with 4 = 5@u@uF @ is positive de nite. M athem at-
ically ;5 de nes the Siegel upper half space associated to Cy. In the non-com pact
Iim it them atrix Im ( 15 ) is therefore profcted a positive de nite subm atrix.

The Hodge star operator on W de nes a natural com plex structure on H* (W ),
which is+ion H?® H'? and 1on H?' H%,. This leads to the so called
W eil Interm ediate Jacobian, which com es w ith a natural pairing given by the an-
holom orphic m atrix

Tn (g ) (gp )X PX K

Ny = 21 : 5141
17 17 T (2 XX E ( )

It iswell know in supergravity that this de nes the m atrix of theta angles and the
gauge couplingsasN 1y = : =22 + 8 i(g ?)r; and that In (N 17 ) is positive. In the non—
com pact Iim it certain a subm atrix of the anholom orphicN 157 becom es the holom orphic

1 of the rigid gauge theory. The G ri th com plex structureon H ° (W ) isde ned by
+ionH®® H?'and 1lonH!? H" and the paring is given by 17, which as
m entioned above has one negative eigenvalue. W e note that :; and N ;; transform

In the sameway under SP (h; (W );R ) transform ations.

6 M atrix m odel approach

T he study of the gravitational couplings of SU (2) SelbergW itten theory has been a
fruitful setting to explore various approaches for solving topological expansions. A s
review ed in the introduction one can obtain the gravitationalcoupling F 9’ by geom et—
ric engineering from toric CalabiYau 3-folds and by Nekrasov’s instanton counting
calculations. Both approaches, the form er via the vertex form aliam , Jlead to sum s
over partitions, which are valid in one region In the m oduli space. In the geom etric
engineering approach one has in addition to take a Iim it. T he direct integration of
holom orphic anom aly equation [1]studied in the previous sections yields an analytic
description of the higher genus am plitudes, which is recurse in the genus, but vald
throughout the m oduli space.

Tn this section we w ill tum to another approach , nam ely them atrix m odelm ethod.
Them atrix m odel is in principle a fram ework that encodes exact perturbative infor-
m ation and possible non-perturbative com pletions. Ttwaspioneered by D ikgraafand
Vafa in particular in [13]. Follow ing these suggestions the authors of [11] com puted
the gravitational couplings of N = 2 Seiberg-W itten theory by a lin it from the Her—
m itian m atrix m odel describing the glueball superpotential of N = 1 gauge theory.
However, only the genus one am plitude F ) has been cbtained in thisway, and it is
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not clear how to com pute higher genus am plitudes in this approach, because F @) is
not gauge nvariant forg > 1 [111].

A m icroscopic m atrix m odel was recently derived in [16] from the partition fiinc—
tion [4, 5]using the m atrix m odel descriptions of in nite partitions [15]. M otivated
by the recent works of [20, 48], we w ill apply the form alian in [20] to the topological
expansion of SU (2) Sedberg-W itten theory. T he form alisn of [20 Jhas been developed
from the study of loop equations in m atrix m odels. It also proceads recursively genus
by genus. One advantage of the form alisn is that one no longer need to refer to
a m atrix m odel In this set up. The de ning date are the spectral curve C and the
di erential ,which yields the 1ling fraction and the open one point function. T he
SelbergW itten curve hasbeen shown to be the spectral curve of the m icroscopicm a—
trix m odelconsidered in [16]. Ttalso follow s from a double scaling 1in it of the spectral
curve of G rossW itten m atrix m odel considered by D ikgraafand Vafa in [13].

O ne obvious advantage of them atrix m odel approach is that it gives also the open
am plitudes. G iven the localm irror curve C and the m erom orphic di erential for
topological string theory on local CalabiY au m anifolds them atrix m odel predictions
for the open am plitudes have been checked against the topological vertex results [18,
23]. The interpretation of these am plitudes in the gauge theory context is less clear.

6.1 Review of the form alism

Here we review the form alisn developed by Eynard and O rantin for integrating the
Joop equation. Form ore details and references see [20].

The algorithm is particularly elegant for elliptic curves In W elerstrass form . W e
w ill therefore focus on Seiberg-W itten curves in the W elerstrass form

yvi= 4%’ gu)x  gs(u): (6.142)

Here is u is the Coulom b m odulus of the Seberg-W itten theory. For the m assless
N¢ = 2 theory we nd by transform ing (2.2) into W elerstrassform
8u ,

4 2
Gu)= U+ 3); g3(u)= (u

— 9); 6.143
3 > ) ( )

w here the three rootsof (6.142) arex = 21;1 2; 1 Y respectively. W e note that is
also the W elerstrass form for the Sedberg-W itten curve for pure SU (2) gauge theory
asquoted in [7], while ifwe transform theN¢ = 0 case [29]in (22) Into W elerstrass
form we obtain

4? )

O (@) = 1+?, gs (u) = 1(91& 8u’) : (6.144)

27
The two curves speci ed by (6.142) with (6.143) or (6.144) respectively are known
to be isogeneous. That m eans in particular that the Picard-Fuchs equation are the
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sam e, but a carefull analysis of the Integral basis of H; (C; ;Z ) reveals the b periods
di er by a factor of two. The relation between w and u from the com parison of the
J-function (2.7) isu = 1@% , le. it exchanges the asym ptotic free region and the
m onopole region [37]. At genus zero it is di cult to distinguish the curves. Since
the P icardFuchs equations are the sam e the holom orphic prepotential can be derived
from any of them . However at genus one there is an in portant di erence. W e know
that or N¢ = 0 the conifold factor is u? 1),while forthemasslessN; = 2
case it is u? 1), see (249) and (3.89). By cakulatihg from (2.8), we
see that (6.142,6.143) is the Ny = 2 curve. Now an In portant sim pli cation for
the application of the [20] form alisn ardses if them erom orphic di erential is simple
rationalfunction oftheW elerstrass P -function for the curve w ritten In theW elerstrass
form b;t tums out that for the W elerstrass curve ofN ¢ = 2 the form ofthedi erential

= 2y used In [7] for the cubic curve quoted there asN¢ = 0 curve has this
property, see (6.158). On the other hand if we transform the m erom orphic (2.3) for
N¢ = 0 to the W elerstrass representation we cannot express it as a rational filnction
of the W elerstrass P function. A s we m ention above for genus zero prepotential it
is not relevant to m atch precisely the correct pair of curve and di erential, but for
higher genus it is crucial. Below we stick to the technically sin plest case nam ely the
N¢= 2 case.

G iven a curve Cy the associated B ergm ann kemel isde ned as the unique bilinear
m erom orphic form with a single pole of degree 2, whose Integral over the A <ycles
vanish, see [20] for details. For the fam ily of genus one curves (6.142), the associated
Bergm ann kemel B (p;q) is sin ply the W elerstrass P -function plus a constant X

Ba= (J@E g+ X )dpdg : (6.145)

The W elerstrass P function is a double periodic, even function on C

P+ 2a1)= 1) Y+ 2a)=1FE); }(p=10E; (6.146)
which has a double pole around the origin and the series expansion

1 92 2 Jds 4 6
=+ ZpP+ =+ 0 : 6.147
}(p) > 2Op 28p ©) ( )

In particular the P function is wellde ned on the two torusC; = C= ,where is
the Jattice spanned by the periods (2a; ;2a,). The com plex structure of C; is = £

air
and (a;;ay) are half periods.

The constant X can be xed by the A <ycle integral
Z

2ai
Bpa)= ( 2 &)+ 2a:X )dp ; (6.148)
0

where (p) is the W elerstrass zeta function, and its value at half period is related to

the second E isenstein series of as
2

(&a)a; = EEz( ) : (6149)
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U sing the relations between W elerstrass nvariants and the E isenstein series

4 4 8 6
(2a;)'g; (0) = < Bl )i (2a)°g3 (1) = —7Ee() (6.150)

and the vanishing of (6.148),we determ ne X in (6.145)

X = 3gz(WE ( )Eq4( ): (6.151)
20, (W)Eg( )

Because of (2.20) the Bergm ann K emel transform sw ith a shift underm odular trans-
form ations. One can de ne the m odular invariant m odi ed Bergm ann kemel by
replacing E, In (6145) with EAz, asde ned In (2.19). This replacem ent induces an
isom orphian between ring of quasim odular form s and the ring of alm ost holom orphic
m odular form s. In the m anipulations below we can work with E, and replace it at
the end of calulations w ith E,, if we w ish to consider truly m odular ob Fcts.

The Eisenstein series are related to Jacobi theta functions by the wellknown
form ulae

Es( ) = B+ d+ d?
1 3 2 2 3
Es( ) = S+ 3" 39d 20 ; (6.152)

where b;c;d arede ned In (2.52). Them odulus u and half period a; can be w ritten
in tem s of Jacobi theta finction using (6.152) and (6.150) as *°
2d b

_p A ol F 6153
b i T g (6.153)

T herefore the constant In (6.151) can be written in term s of m odular form s

x = 220, (6.154)
3b

In the W elerstrass form (6.142) the SebergW itten curve is param eterized by the
W elerstrass function and its derivative via the denti cation

v=1%); x= 1} : (6.155)

T he branching points of the algebraic curve (6.142) are the points of dx = 0, which
are sim ply the halfperiods a; ;a,;az = a; + a; In the case of W eferstrass function. T he
values of W eferstrass function at half periods are the roots of W eierstrass equation

160 ne can solve oru by elin inating a; in (6.150). T here are other solutions besides the solution

u= 1+ 2—5 we use. They correspond to various special points In the Coulomb m oduli space as

! il ,orare related theoneweuse by Z, symm etry. W ithout loss of generality we w ill jist use
2d

the solution u = 1+ <* in order to com pare w ith large u, ie. weak coupling lin it.
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4x> g,x g3 = 0. The ordering will not be in portant or us, so w ithout loss of
generality we can take

2u u
@)= —; t@)=1 —=; }@)= 1

6.156
3 3 ( )

u .
3
T he derivative of W ejerstrass fiinction vanishes at the half periods }%a;) = }%a,) =
}%as) = 0. For a point p near each branching point a;, there is an unique in age
denoted as p such that } (p) = } (p). Since the W elerstrass function satis es } (2a;
p)= } (p),we can easily determ ine

p=2a; p (6157)

H igher derivatives of W elerstrass function can be related to W elerstrass function and
its derivative algebraically, for exam ple we have the form ula for the second derivative
as}Pp)= L+ 6} (p),etc.

T he periods of Seiberg-W itten theory should correspond to the \ lling fraction"
de ned In [20]. In the N¢ = 2 masslkss theory it is the Integral of the follow ing
m erom orphic di erential

©) = 1 y (P)dx (p)
27 2P }a)xE) }@s)
1 0 2

= —P= } brdp (6.158)

2 20@®E t@)lpE }@Es)

R

over the cycles of algebraic curve, ie. a = i . (p). Herewe have chosen a nom al-
ization for which the derivative of the prepotentialis £E~ = 2 i . Thiswillbe

Qa
convenient later on.

A set of diagram m atic rules are provided in [20] to construct the topological ex—
pansion F 9 associated w ith the algebraic curve. Below we list the basic com ponents

and their expansions around the branching points a;;i= 1;2;3:

1. The vertex ! (p). This can be constructed from the di erential oneform in
(6.158) as the follow ing,

o) = 1 (y(®) vy(p))dx(P)
' 272 (x(P) }(@)xp) }(@s))
1 } %(p)*dp
- _ 6.159
P00 J@nie @) (6-159)

Tt is straightforw ard to com pute the series expansion near the branching points.
For the branching point a;, the vertex ! (p) goes lke ! (p) P a1 )%, while
the other two points a, and as, the vertex goes like ! (p) O (1).
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2. Theroot (p). This is sin ply the integral of the di erential oneform  (p) In
(6.158) from any base point on the algebraic curve

(P) = (P) : (6.160)

T he Integration constant will not appear in nal answers and w ill not be in -
portant.

It is straightforw ard to com pute the series expansion of (p) near the branching
points and perform the integral. At the branching point a; the root (p) has
the leading behaviour (p) P a;: >, while at the other two points a, and
az, it behaves Ike () (P aji).

3. The Inepropagator is sim ply the Bergm ann kemel B (g;p). W e expand it in
the rstvariable g around a branching point a;,

B (gip)

= }J@ p)+X+ 1% pa a)
dpdg P p)q

1
+§}C0(ai p)a a)’+ 0 (g ai)): (6161)

W e then expand In the second variable p around another branching point a5. If
a; = aj, therewillbe polesasp ! a;. Fora; 6 aj, there willbe no pole. In
both cases it is straightforward obtain the series expansions.

4. T he arrow -propagator dE 4 (p) is an integral of the Bergm ann kemel and can be
expanded around a branching point a; in the follow Ing way

dE 17 d
Eqlp) _ 1 B ( ;p)
dp 2 4
1 @ 3
= (}(a; p)+ X)a a;) g} (a; p)a ai)
1w G
120} (s piag a) + (6.162)

Again,ifa; = aj,therewillbepolesasp ! a;,othewise fora; & ay, therewill
be no pole. T he necessary series expansions are straightforward to obtain.

From thesebasic com ponentsone can construct the correlation functionsWw k(g) (ers K BP
and free energy F 9 orallg 2 in tem s of som e residue om ulae. For exam ple,
T he genus one onepoint function is

dE 4 (p)
W, (p)= Res—2 Py (a;9) (6.163)

aa ()
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and the genus two free energy F @) is

F@ = }ResResResResf (P)dE 4(p)dE: (@) dEs Q)
2plagq!ar! as!a '(q) ' (r) 1 (s)

(p)dE q(p)dEr(Q)dEs(r)B ()R (8;5) + (P)AE 4 (P)dE . (@) dE ¢ (r)

(e ) ! (s) (ep) ') ! (s)
B (r;g)B (s;js)+ B (s;9)B (s;r)+ B (s;9)B (s;r)l ; (6.164)

B (r;r)B (s;8)

w here the residues are taken around the three branching points a; ;a,;as.

6.2 Calculations of open and close am plitudes

W e calculate the genus one onepoint function W 1(1) (p) and the genus two free energy
F @) for the SebbergW itten curve (6.142). Aswe m entioned it describes the SU (2)

SelbergW itten theory with two m asslkess avors. T he genus one onefpoint function
@

W, ' (p) iscalculated from (6.163),we nd
X dE
W, o) = Res Ea®)y (@;9)
_ gl aj '(q)
d
- =" g 6X)( a)+X)+ 6 1 a)+ X)
48 2(u? 1)

+6u+ 1) a)+x) 1% a)l: (6.165)

T he genus one free energy F ) is not directly constructed from the diagramm atic

rules, but the derivative of it w ith respect to the SebergW itten period is the integral
1)

ofW ;' (p) over the B-cycle

QF (1) Z 2ay )
= W, (p): (6.166)
@a 0
U sing the form ulae for W elerstrass zeta function 2a, (&) 2a; (@)= iand (6.153)
we can com pute the integral
QF (1) Z 2ap o ip_b
= W = — (E b 2d): 6.167
s ; 1 () 6od( 2 ) ( )

This m atches w ith our earlier calculations for SelbergW itten theory with N = 2
m assless avors, using (2.50), (2.51) 7.

YT here is an extra factor of i com paring with (2.50), (2.51). This is because the m atrix m odel
should describe the expansion of F (9) around the conifold point for which the 1lling fraction is real
and goes to zero, instead of thepointu ! 1 . The formulae (6.153) we have used are for the point
atih nityu! 1 ,and should becomeu = 1+ %,af = % for the conifold point. The extra
factor of i is then cancelled due to the extra m inus sign of af . Since this problem w ill not appear
athighergenusg 2,wewill stilluse the convention atu ! 1 for convenience in com paring w ith
instanton counting.
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Now we com e to genus two free energy, we com pute the various term s in (6.164)
and the totalresult is
675X 1350uX 2+ (990u®+ 1350)X  16u® 1080u

(2) _ .
U= 6480 (2 1) ) (6.168)

Substituting nu = 1+ 2—3 and X = % ,we nd the agreem entw ith earlier calculations
(2.54) for SedbergW itten theory with N = 2 massless avors using holom orphic
anom aly.

Sim ilarly, we can com pute the genus two onepoint function

W) = p_5 %5, 6u} (p)+ 3 7112X4
320 2@? 1) 2u 3} (p)
N 9(75+ TTu?)} ()  12u(75+ 77u?)} (p)+ 2(405 660U° + 559u4)x 5
45(2u 3} (p))?
+bhX %+ bX + by (6.169)

where Iy ;b ;I are som e very com plicated functions of the W elerstrass function } (p)

and u'®. Som e em pirical ram arks can be m ade about a genus g onepoint am plitude
(9)

W, (p):

1. W 1(9)(p) isa polynom ialof X ofdegree 3g 1.

2. The coe cients of the polynom ial are rational functions of } (p) and u. They
are regular at p = 0 (or equivalently } (p) = 1 ). They are sihgular at the
halfperiods p = ajjaz;as. Thedegree of polkesof } (p) }(ai1), } (P) 1} (az),
} () }(az)areg+ 3,2,2 respectively. Forexam ple, the coe cientby In (6.169)
as a rational function } (p) can be written as

2o @ Y@)rgme }@))PGe  }(@s))?

A (} (p))

6.170
(3B} () 2uy @} () + 6ul (P)+ u* 9y ( )

where A (} (p)) is a polynom ialof } (p) of degree 9.
T he boundary behavior of close string m oduliu especially at the conifod pointu ! 1
is discussed m ore details In section 6 4.

6.3 Holom orphic anom aly equation for open am plitudes

W e see that we can use the m atrix m odel form alian to com pute higher genus topo-
logical am plitude for them assless N ¢ = 2 SebergW itten theory. But the form alian

T hey are too cum bersom e to w rite dow n here, but are available upon request.
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gets quite com plicated at higher genus, and for the close topological am plitude F 97,
them ost e cient way of calculation is still through the use the holom orphic anom aly
equation plus boundary conditions at the conifold point. O nem ight wonder w hether
thism ethod of \direct integration" can also be applied to the open topologicalam pli-
tude. In order to explore this idea, we consider a version of the holom orphic anom aly
equation for the open topological am plitudes proposaed in [48] based on the m atrix
m odel form alism .

An extended open holom ophic anom aly equation has been applied to the calcu-—
Jations of open am plitudes on the the real quintic CalkbiYau m anifold [49]. This
form alisn was recently applied to localO )( 3) ! P? [50]. Tt di ers from the discus—
sion here, as it encorporates no open m oduli.

T he open holom orphic anom aly equation of [48]is

(9) 1 1J (g 1) X X (h)
@KWk =5CK (DIDJWk + DIWl

h L K

D,wW 2" ; (6.171)

where the I;J;K areclose stringm oduli. Forourtoym odelofN ¢ = 2 SU (2) Seberg-
W itten theory, the only anti-holom orphic dependence com es from the function EAZ (),
which appears In the variable X we de ned in (6.154). The close string m oduli in

this case can be param etrized by the period a, and since it isa at coordinate in the

holom orphic Iim it, the covariant derivatives In the RHS of (6.171) can be replaced

by just ordinary derivatives. A fter xing the nom alization correctly, the equation

(6.171) becom es for the case at hand

16 ew X X
O @; = @w 0V ew ew 7 (6172)
2

h L K

Consider the sin plest case of the above open holom orphic anom aly equation,
nam ely the caseg= 0 and k = 3. The equation becom es

16 @W 5 (p;qir)
20 @x

= 20w " e 0

(@) + 26,0, (@e.w . (p;r)

(0)

+20@,W ©

(X)W, (p;q) : (6.173)

To test the equation, we can use the residue form ulae to com pute directly the genus
zero 3-point fiinction
dE s (p)
w4 (pigir) = Res— B (/B (si7) + B (3;0)B (s;7)]

sta ! (s

_ O a)+X)0a a)+X)}r a)+X)
T2 1)

:(6.174)

On theRHS, the genus zero onepoint fiilnction isunde ned in them atrix m odel for—
m alisn ,and thenotation of @, W 1(0) (p) sin ply m eans the contour IntegralofW 2(0) (p;q) =
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B (p;g) over the Bcycle. W e nd
p_

Z
2az i 22
()= B (pjq)dg= — = — (6.175)
0 ay 2( )

0
ew |

W e see an Inm ediate problem wih (6.173). The LHS hasa poleatp ! a;,but the
RHS involves the W elerstrass Zeta function from @Q,} (p g) and doesnot have a pole
atp ! a;. The discrepancy com es from the fact that in the derivation of the open
holom orphic anom aly equation [48], the contour integral is converted into covariant
derivative of the close string m oduli. However, it seam s that this procedure is not
vald in the presence of open string m oduli, so we have to do the contour integral
directly instead of jast taking derivative. N am ely,
2 2a,

@.B (p;q) & w " (gjr;s)ds (6.176)
0

So the correct version of the open holom orphic anom aly equation (6.173) should be

Z
16 @w " (p;q;r 222

T 3@;p’q’ ) _ 2e.w " (p) W " (qg;r;s)ds + pemutation: (6177)
2 0

W e check this is indeed satis ed by plugging in the expression for genus zero 3-point

function (6174). However, this is not much usefill for the purpose of com puting
0)

W 5 ' (p;g;r) as it appears In both RHS and LHS.
W e also consider thecaseg= 1l and k= 1.Using (6.165). W eget
) P
16 &, (®) ‘2 [ 3X +2u  3(}( )+ X )] (6178)
= u a .
() ex 35)@ 1) b

A gain the naive equation

(1)
16 W, (p)_ e © o)+ 20w ©
- W

20) ex at 1

p)e,F (6.179)

is not correct, as it can be seen that the RHS is independent of the open string
m odulus p while the LH S is dependent on p. T he correct equation is

Z 2a2 Z 2a2
(0)

16 @w "’
: L) W " (pigir)dadr + 26,1 (P)&F @ (6180)
2( ) @x 0 0

where them inus sign In the rsttem ofRH S is justdue to thedi erent conventions of
using m odular form s around conifold or in nity,and in the second term the derivative
Q. F Y is equal to the contour integral of genus onepoint fiinction since there is no
open string m oduli.

W e summ arize the ndings in a few rem arks.
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1. The holom orphic anom aly equation (6.171) is oversin pli ed and the In proved
version does not seam to be too usefiil in com puting higher point function W k(g)
when k  2,because W k(q) appears in both sides of the equation as exem pli ed
by (6.177).

2. The reason for this subtlety in (6.176) is because we are using a non-standard
di erential oneform (6.158) necessary for our calculations in SU (2) Seiberg-
W itten theory. If we used the standard di erential one-fom = ydx as the
[20], the open holom orphic anom aly equation would be vald, but this would
not be the right di erential oneform to com pute the gravitational coupling of
Seberg-W itten theory.

3. Forthe freeenergy F @) and one-point function W ;%' (p), the holom orphic anom aly
equation can be usad to determm ine the am plitudes up to a holom orphic anom aly.
Only lower genus open am plitudes appear in the RHS of the holom orphic
anom aly equation. For exam ple, in order to com pute the genus two onepoint
am plitude W 1(2) (p) thisway, we rst have to determm Ine lower am plitudes up to

(1)
F2,W 5 (p1;p2ips)-

6.4 Boundary condition for open topological am plitudes

W e now tum to another im portant issue of boundary conditions. W e consider the
Iim iting behavior open topologicalam plitudes around the conifold point, which is the
pontwhereu! 1, , = ! il ,and
= o Eio) o) 2ot 0: (6.181)
D — 2 2\ D 3\ D 2\UD . . .
34(p)

W e now expand genus one onepoint function (6.165) around the conifold point
In term s of the at coordinate ap . Firstly it is convenient to rew rite the expression
In temsofonly } = } (p),u,and X

, 3 3u? 1
= X+ X +
2 2 1) 2u 3} 36(2u 3} )2(9}%2+ 6u} + u?r 9)
4050 1701)1%+ (216u’+ 648u)}’+ (594u” + 1620u® 486)}°
+ (384u°  4896u° + 2592u)} + 65u’ + 501u’+ 675U  729] : (6.182)

W e notice the W elerstrass function } (p) is also dependent on the underlying elliptic
curve. H ow ever, for generic value of the open string m odulus p, the function } (p) has
a nite generic value at the conifold point of the close string m oduli space. So we
can rstexpand u and X in the expression (6.182),and treat } (p) as an independent
param eter. N aively, we should expect the singular behavior as

P)= 0 (—): (6.183)



Surprisingl/, we nd that the leading singular term vanishes, and the conifold expan-—
sion is regular. T he series expansion result is
) 3 2 9 EF+ 24 ) 8)
8

W, (p)= —P= B ap + 0@ ): (6.184)
8 23} (p)+ 4) 23} (p)+ 4)

T hus the regularity of the conifold expansion in this case In posesboundary conditions
for the open holom orphic am biguity. For the genus one onepoint function (6.182),
the tetm s In the rstlineare xed by the open holom orphic anom aly equation (6.180),
and the rest is the am biguity which can be param etrized by 14 constants in this case.

U nfortunately, for generic holom orphic am biguity, the coe cient of the shhqular —-

ap
term in the conifold expansion of W 1(1) (p) tums out to be a rational function of } (p)
w hose num erator isa degree 4 polynom ialof } (p). So the conifold boundary condition
only xes 5 of the 14 unknown constants in the holom orphic am biguity of W 1(1) (P).
M ore Ingenuity m ay be needed to com pletely xes the holom orphic am biguity.

W e also sim ilarly test the conifold expansion of the genus tw o onepoint am plitude
W, (p) In (6.169). The keading sihgular tem w ith generic holom orphic am biguity is
0 (é ),but we again nd that the actual serdes is not singular

2) 273}  2) s 9i(27}3+£16}2+ 288}  224)

W@ p)= — S =
e T T 1024 2(3) (p) + 4)°

ap + 0 (@) :

(6.185)

7 Future directions

W e have solved the topological sector of the N = 2 SU (2) gauge theordes w ith
N¢ = 0;1;2;3matterm ultiplets in the fuindam ental representation. N ear the asym p-
totic free region in the vector m ultiplet space our results agree w ith the instanton
calculation of Nekrasov. At the conifold points and the confom al points our glob—
ally de ned expressions predict the topological sector of these theories in canonical
holom orphic coordinates.

E specially the analysis at the conform al points relies on the m ethod proposed
In [1]. Tt would be challenging and interesting to nd a m icroscopic description
especially at these points, at which the theory doesnotallow foran action form ulation.
T he structure of the F 9 isvery sin ilarasat orbifold singularities in topological string
theory [36,19,45],which suggests that a dualstring description isa serdous candidate.

W e described the construction of the m odular ob fcts entirely from the P icard-
Fuchs system 1n a form that generalizes straightforwardly to N = 2 theories with
higher rank gauge groups and does not require know ledge of m odular form s w r.t.
subgroups of SP (2g;7 ). E g. the solutions for the periods of [37]for SU (3) could be
used to study the topological theory at A rgyresD ouglas conform al points in SU (3)
theory.
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W e nd additional evidence that the sim ple boundary conditions nam ely the gap
at the conifold and regqularity of the am plitudes at the conform al points x the entire
am biguity of N = 2 topological theories associated to R iem ann surfaces. However
one should prove integrability of these type of topological theories in general.

Note that for them assless N¢ = 4 case the F 9 can be w ritten as quasim odular
orm s of welght 2g 2 of PSL(2;Z ) [26] sin ilar as the F 9) for the asym ptotic free
cases here, but there is no gap structure in the conform alcases. It seam s possible but
tediousto x the am biguity here by considering m ass perturbations and the associate
Iim its to the cases that are treated in this paper.

In the global case the above m entioned boundary conditions are not su cient.
W e hope that this can be overcom e by the study of various lin it in m ultim oduli
com pact Calabi¥Yau m anifold. For this reason we described the lin it of rigid special
K ahler geom etry in great detail. Enough eld theory lim its, which are integrable,
could m ake the global theory eventually also solvable.

W e also com pared our calculation with the m atrix m odel, respectively spectral
curve approach of Eynard and Orantin. This yields an altemative way to solve
these theordies, which gives additional inform ation about certain open m atrix m odel
am plitudes, whose m eaning has not been studied in the context of gauge theory yet.

In [16] a m icroscopic m atrix m odel for the SebergW itten theory was derived
starting from the Instanton sum s In asym ptotic free regions. Here we go the oppo—
site way and derive from the Im proved recursive form alism of [20] the global higher
am plitudes, w hose expansion in the asym ptotic region checks with [4]. G ven the by
now well established relation of Selberg-W itten gauge theory w ith the m atrix m odel
m akes the gauge theory a m ost interesting laboratory to test the physical in plica—
tions of the non-perturbative deas that were recently put forward in them atrix m odel
context [52, 51 1.

A cknow ledgm ents:
W e thank Thomas G rinm , Babak Haghighat, M arcos M arino, N icolas O rantin
and M arco R auch for fruitfizl discussions.

A N ekrasov’s calculations

In [4]Nekrasov com pute the SelbergW itten prepotential and its gravitational cor-
rections by instanton counting. T he results are represented by partition of instanton
num ber into Young tableau. The results for SU (2) theory with one m assive hyper—
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multiplet, ie. N¢ = 1, up to 5-nstanton and genus 2 are *°

0)_2 (0)

FO = 4a’bgla)+ (a?+ ¢a+ o
1 1
§(a+m1)2bg(a+m1) St a+m,) bg( a+m;)

m; 3a° 5m? 7Ja’m; 9m; 153a* 1430a’m?+ 1469m ]

— + +
2a? 64a® 192410 32768at!
1131a’m, 5250a’m 7 + 4471m3 & 186)
81920a1® ’
D _ i]og( (2ay Ve o) 3a° 4mi  27a’m, 32m7
12772 m? 128a° 384a'?
9(73a* 733a’m?Z+ 732m{) 1899%’m; 9259%a’m; + 7848m 3
+ + (A 187)
32768a't 16384a%
1 1 1
F@ Z

+ +
480a?  240(@+ m1)?  240( a+ m;)?
9a? 11m? 103a’m,; 117m; 3(5583a* 58186a’m?+ 57067m ;)

+
1024at° 1024a'4 262144a'®
451719a*m;  2273690a’m 5 + 1919923m ]
(A 188)
65536022

Herem ; isthem ass of the hyperm ultiplet and for convenience we have set theN = 2
dynam ical scale = 1, which can be easily recovered by dim ensional analysis. T he
constants Cf) are not in portant for us. In the above form ulae we have also included
the leading perturbative term s. In SU (2) case the leading perturbative term at genus
g is [4,5]

X X
Foe= o(2a)+ 4( 2a) @+ m;) (a+m;) (A 189)
=1 i=1
w here
1 2 2
o(x) = 2% Ig(x) -x
1
1(x) = Ebg(X)
) — 11
2= Sa0R?
1)°B 1
g(X) _ ( ) 29 ; g> 1
2g(2g 2)x%9 2

W e w ill also consider the m uch sim pler case where the hyperm ultiplets are m ass-

190 ur convention has a sign di erence from that of [4, 5]at odd genus.
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Jess. W e list the results for N = 1;2;3 and up to 5-instanton, genus 3. ForN¢ = 1

3 153
PO 322p0@ 4 @22+ Va4 &4 N
bla)+ | @At 9t G 32768a0
Lo _ o 3,651
128a° 32768al?
o) 1 9 16749
F 2 = + +
160a? 1024a8 2621444
. 5 3 96453
F = + +
2688a4 1024410 5242883l
ForN¢ = 2 we have
1 1 5
FO = 23%bg@)+ (a%+ Va+ &y = +
R @At o) 3 Gz 32768
F (1) _ }]Og(a) + C(l) + 1 + 23 +
6 64a* 16384a°
o 7 7 1425
F@ = +
480a2 1024a° 262144310
. 31 5 8843
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8064a* 2048a8 524288312
ForN¢ = 3 we have
FO = abg@)+ a?+ Ma+ g 2,
X! 32768a%
1 1 3
FO = Zhg@)+ oV + +
;9@ 1282 32768
o 11 5 109
F @ = + +
480a2 1024a4 262144a°
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