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Abstract

We match the Higgs sector of the most general flavour breakintyCP violating minimal su-
persymmetric standard model (MSSM) onto a generic two-Bliggublet model, paying special
attention to the definition ofan in the effective theory. In particular nen -enhanced loop
corrections appear in the relation tan defined in theDR scheme in the MSSM. The cor-
rections to the Higgs-mediated flavour-changing amplisuslkich result from this matching are
especially relevant for the ; and B, mass differencesM 4. for minimal flavour violation,
where the superficially leading contribution vanishes. \Me @ symmetry argument to explain
this cancellation and perform a systematic study of all diggediated effects, including Higgs
loops. The corrections toM . are at most 7% for > 0andM , < 600GeV if constraints
from other observables are taken into account. Fer 0 they can be larger, but are always less
than about 20%. Contrary to recent claims we do not find nuabyilarge contributions here,
nor do we find anytan -enhanced contributions from loop corrections to the Higgtential in
B* ! * orB ! X, . We further update supersymmetric loop corrections to thkawa
couplings, where we include all possible CP-violating @sssnd correct errors in the literature.
The possible presence of CP-violating phases generateddgg ldxchange diagrams is briefly
discussed as well. Finally we provide improved values ferlihg factor® ", p ¥, andp °"*

at the electroweak scale.
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D Trilinear Higgs couplings

1 Introduction

Supersymmetry constrains the structure of the Yukawa @ogplof the minimal supersymmet-
ric standard model (MSSM) to those of a special two-Higgskdet model (2HDM). In this
2HDM of type Il one Higgs doubletj ,, only couples to up-type fermions, while the other one,
H 4, only couples to down-type fermions. As a consequenceetasr no dangerous tree-level
flavour-changing neutral current (FCNC) couplings of thatred Higgs bosons. However, the
presence of supersymmetry-breaking terms destroys ttterpat the one-loop level, permitting
couplings of both Higgs doublets to all fermions. Thus theuteng Higgs sector is that of a
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Figure 1: Leading contributions tB, B, mixing from supersymmetric Higgs bosons. The
FCNC couplings are induced by supersymmetric loops. Th#ic@at of 0 $*" = (. )tx )
vanishes, if the tree-level relations between Higgs maasesnixing angles are used.

general 2HDM, often called 2HDM of type Ill. As pointed oustiby Hall, Rattazzi and Sarid,
the loop-induced Yukawa couplings can compete with theleeel ones in the limit of a large
tan = wv,=vy, Which is the ratio of the vacuum expectation values (ve¥s) pandH 4 [1]:

in the relationship betweemn , 4-couplings and observed masses of the down-type fermians th
loop suppression factor 0:02 is offset by a factor oftan , so thato (1) corrections to the
type-Il 2HDM are possible foran 50. In such scenarios also (1) loop-induced FCNC
couplings of neutral Higgs bosons appear [2], which allow bihanching fractions of (yet un-
observed) leptonie decays to exceed their standard-model values by more thaorders of
magnitude [3]. This observation has stimulated a largesi#gtin flavour physics and powerful
constraints on the MSSM Higgs sector in scenarios with large have been derived from
B factory data [3—6]. These Higgs-induced effects in flavolysgics are very transparent in
the limit

M sysy M v (1)

whereM o, sy denotes the generic mass scale of the superpartners anéafisesn , , M 4, M 4,
andl\lgl y of the five physical Higgs bosons are taken to be of the ord#éeoélectroweak scale
v v2 + v = 246 GeV. All low-energy observables can be computed in the tyjp@-DM,
which emerges as the effective theory in the limit of E¢|. {)e new couplings can be calculated
from finite one-loop diagrams with supersymmetric parscad thus become functions of the
MSSM parameters, so that the desired constraints on thessupmetric parameter space can be
derived. The effective 2HDM Lagrangian efficiently incorates all largesan  effects, equiv-
alent to a perturbative all-order resummation of thoseatagt corrections which are enhanced
by a factor oftan  [7].

B, By Mixing (with g = d or s) plays a special role among the FCNC transitionsof
mesons. Here the leading new effect stems from effectieeléeel diagrams with neutral Higgs
bosons (see Figl 1). A priori the dominant contribution ipented from Yukawa couplings to
right-handedquarks, generating the effective = 2 operator

Qo ba hag - (2)

However, the corresponding coefficient** vanishes exactly, if one employs the tree-level rela-
tions between the Higgs masses and mixing angles [2]. Nesleds, sizeable effectsin, B,



mixing are possible even in scenarios with minimal flavouration (MFV) [8-16], in which

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17] is theyosburce of flavour violation:
keeping the strange Yukawa coupling non-zero one finds avaarshing contribution to the
coefficient of

0 kg ba ; (3)

which depletes the . B, mass differenceM . [5]. The tree-level vanishing af °-* calls for a
systematic analysis of all subleading effects. In paréicuhe contribution that stems frog"*
can a priori compete with the contribution of the operaigrt above if the one-loop corrections
to the MSSM Higgs potential [18—24] are taken into accounthilé/a lot of work has been
devoted to the analysis of the Yukawa sector [2, 3, 5—7]eld@ttention has been given to effects
from the Higgs potential. An exception is Ref. [25], whichd#nlarge contributions. We revisit
these effects in the present paper and perform a systematahing of the MSSM Higgs sector
onto the type-Ill 2HDM. The result is not only relevant foetbalculation of: $*, it also clarifies
the relationship between the definitionstah in the MSSM and the effective 2HDM. This is
important to link the constraints from flavour physics toatfields of MSSM phenomenology,
in particular Higgs physics. Our paper is organized as fadloWe derive the correctesl B
mixing amplitude in Secltl?2, including all relevant subleagtontributions. The renormalization
of tan and som further technial issues are the subject of Sect. Setn[4 we apply our new
formulae to the phenomenology 8f B mixing, analysing the mass differences , and

M . as well as CP-violation. Our results are summarized in &&ctVe list our notation and
our technical results in four appendices. Parts of our tesutre previously presented by one of
us at a conference [38].

2 Higgs-mediated effectsire B mixing

The quantity governing the,, B, mass difference is the off-diagonal element of the B,
meson mass matrix™M , = 2#M 7, j with

_Bq HeB:2 BC{
Mg,

M ;Il = (4)
The B = 2 effective weak Hamiltoniam _®=2 consists in general of eight dimension-six
operators: .

HeB_2=GgMiviéOX Cil n)Qi( n)i (5)
with o W,V,. The set of operators in Eq.| (51; 1(:omprises the standard-hopaeator,

0/""= h o b a ; (6)
the two scalar operators defined in EQs. (2) and (3), the tprera

QRF bx ba (7)



and four other operators. The complete list of operators fhe relevant evanescent operators
is given in Eq.[(13b) and Eq[(1B6) of Appendix C. We expressresults in terms of ma-
trix elements at the high scale, which we choose equal to the top massm ) = 164GeV.
In this way the other four operators do not appear in our fdamu However, some of them
are needed to connect; ( ,,) with Q ;( ) at the low scale m,, at which their matrix el-
ements are computed, because they mix with™, Q 3*% or Q3% under renormalization. We
follow the conventions of Refs. [26] and [27] for operatomslanatrix elements. In particular we
parametrize the hadronic matrix elements as

By Di( By = gMé fe P; (8)

3 q q

TheP/’s are obtained [27] by renormalization-group evolutioorfrthe conventional bag factors
B; computed at the low scale,. We calculate the ;’s from up-to-date lattice QCD results in
AppendiX T, where we fully exploit constraints from heawyatk relations. This is a new feature
of our analysis compared to previous studies of new-phyffests inB B mixing.

2.1 Effective tree-level Higgs exchange

The Higgs sector of the MSSM contains two (2) doubletsd , andH 4,

h! h) 0 1
o i Ha= oG = ; 9)
u

Hy= hg

of hypercharger 1=2 and  1=2, respectively, with vacuum expectation values (vevs) i =
v,q= 20frelative sizetan = v,=v,. Integrating out supersymmetric particles, the Lagramgia
of the resulting effective 2HDM is no longer restricted todddype I, and is constrained only
by the electroweak symmetry. Neither will it be renormaltileg with operators of dimension
greater than four encoding effects that decouple at leastias, s, for heavy superpartners.
We begin with a short review of some pertinent aspects of émel 2HDM.
Defining
cos sin H

o = sih  cos H, 4 (10)
the most general fermion-Higgs interactions up to dimem$air read
’3
Ly = TdRiM gy Qus  dri i Q/QLj
P (11)
TURiM us; Q15 A% ~15Q 1, 5 °+ h.c.;

where we have employed Egh_e notatien b Ta k By construction, the vev of® vanishes,
whereas hash i = (0;v=" 2)' and contains all three Goldstone bosons. Hence ormign
contribute to the fermion masses and onRcan have flavour-violating neutral couplings. The
flavour basis is defined such that the down-quark mass matgiis diagonal. In this basis the
FCNC Higgs couplings te-quarks are governed by, or 4, (g= dor s).



The renormalizable Higgs self-interactions are comprisede most general gauge-invariant
dimension-four two-Higgs-doublet potential [28],

V=mi{HHs+m3HH,+ m,H, H+hxc:
1 y 2 2
+ —HHg) + —
2 e 2
Hy H)

HYH, Y+ sHYH,)HH.+ HYHHHEIH,)

u

2

+ sHH)H, H HIMH,H, H-+hc : (12)

5
2
The couplingsn?,, s, ¢, and ; are in general complex, yet the vevs, can be made real

by au (1) transformation on the Higgs fields. The definitionswof, and . in Eq. (12) coincide
with Ref. [28] except for ; and ,: we associate a different operator withto eliminate it from

tree-level neutral-Higgs phenomenology and have instgad 8+ [#land , = [,
Shifting the fields in EqL(12) by their vevs, which minimizeat tree levell
1
Big= P=0unt wat iun)i (13)

determines the physical Higgs-boson mass matrices andatiiens. We write the neutral-Higgs
mass matrix in the basis 4; .; 4; o)intermsof2 2 blocks,
|
M2 M2
MZ= SR (14)

2T 2
MRI MI

withM 2, M 2, andM ? given in Eqs.[(28-26) below. In the CP-conserving casg, = 0, and
M 2 andM ? are diagonalized by rotating the CP-even and CP-odd Higlgis fierough angles
and , respectively:
¢ _  cos sin Y ¢ _  oos sin G°
. s cos h® . sh cos A% (15)
The same angle = arctanv,=v4 as defined above appears because (and only when)
minimizeV . If CP violation is present, four physical mixing angles,; and are required to
diagonalizet ?. The charged-Higgs mass matrix? is always diagonalized by,
h),  cos sin G* )
h! sh cos HY (16)
The non-standard effective operatars®, 0 5&*, andQ S* ¥ are generated at tree level via the
exchange of neutral Higgs bosons (see Hig. 1) with the Witsafficients
8 2 4 2
Clfe o M FY; e o (LF (17)

2 2 2 2
GiM i 2 GeMy &

1 “Tree level” here refers to the 2HDM. We defer a discussioqudintum corrections te, andv, to Sect[8.



andc $8® obtained fromc $** through the replacement )’ F b °F . We find that,
in the general case, the Higgs propagation factors can lressgd as follows:

2 2 ; 2 N 2
, det MZ+ M7+ M7 MIT detB (18)
B m2m2m2 m2m2m2’
123 120 3
I det M2 MZ M2, iM2T detA (19)
B m “m 2m 2 m2mZm 2’
1203 1203

where the denominators contain the product of the three erongigenvalues afl 2. In the
CP-conserving case, Eqgk.[18) and (19) reduce to the wellkrexpressions

sin? ( ) oS’ ( ) 1
F T Ty YT e M2’ (20)
H h A

whereM , denotes the CP-odd Higgs-boson mass.
The discussion so far has been completely general. Patizulg to the MSSM, a perturba-
tive matching calculation relates the two theories. At tesel this trivially results in

M= g , O _ L .
4 = P=00s Yg; M, = P=—sn Y,
2 2

©) sn Y; ~O0 = cos Y,

5(0) .2 5 2. ©) ) © 2 @\ . 21
miy =JJ+my  mi; 1= 5 = =@+ g% g=4; (21)
2(0) .2 2 2 0) 2

22 = JJt+myg, my; 4 T 9=z

2000 (0) 0) _ (0)
my, B ; 5 = ¢ = 7 =0

At this order © and~© are aligned withv |*’ andu ', respectively, so that no FCNC are in-
duced, as it must be in a model II. At one loop, all coupling&dn (12) are generated. Moreover,
the corrections to the Yukawa couplings have the more géfara

v
Mf):p—zcos Ya+ tan K ; W= sn Yy ot K ; (22

where Y 5 and K ;; parametrize the one-loop vertices:H,  ©; anddz;H YOy 5, respec-
tively. Diagonalizingv 4 rotates ©', giving rise to a flavour-violating coupling v, tan =(16 ?2),
which can be ob (1) for tan 50.

The origin of this explicitan enhancement (in addition to the mere presence of large down-
type Yukawa couplings), which can compensate the loop factglé ?2), is the replacement
of vy by v, vy in the contribution of K to M 4 [1].@ This removal of av; suppression
can happen only in dimensionful quantities. In the fermioaseiterms, only one power of

2We tacitly assume that the fermion kinetic terms in the eéffec2HDM have been made canonical. Such a
field renormalization does not contribute factorscefi  because it is determined by dimensionless couplings. Cf.
Sect[3B for a discussion of field renormalization. O#r and Y 4 correspondto .Yqand  4Yg, respectively,
in the first paper of Ref. [5].



tan can appear because there was only one powef 6 begin with. This is in agreement
with the findings in [7]. Our approach using un-shifted Hidigéds (“unbroken-theory”) makes
particularly evident that this result holds to all orders,the Yukawa Lagrangian only involves
dimensionless couplings and there are no hidden factotsrof. Although we have integrated
out only the sparticles — as we assume a hierakcivy , M sysy — the argument continues
to hold if we also integrate over the Higgs fields, keepingyardnstant background values of

;Y (spurions). The reason is that for determining the massicesatrthe relevant external
four-momenta are ob m ), providing an expansion parameter,=v or m ,=M . Hence the
Higgs contributions to the effective potential (which omgeal grounds respects the electroweak
symmetry) can be organized into a (local) effective Lagrangwithm ,-suppressed corrections
to the form Eq.[(1l1) encoded in higher-dimensional opesatath additional derivatives acting
ondg; Or Q15 The contribution from both Higgs and sparticle loopsMaq is then simply
obtained upon substituting for; “their vacuum expectation values. This mass matrix is to be
identified with a short-distance (suchias) mass in the effective QCD QED at low energies,
where the dependence on the chosen scheme cancels agaiagplicit form of the matching
(of the 2HDM onto QCD QED).

There is only one other place where a simitan enhancement can occur, namely in the
dimensionful self-couplings of the (shifted) Higgs fieltlsat is, their masses and trilinear cou-
plings. Indeed, at dimension two it is exhibited in the neutliggs mass matrix Eql_(1L4).
Explicitly, one has (withs sn ,c cos ,and; Rey)

NS I+ 2fsc+ & L+ 3sc+ i Ve (23)
R I+ 3sc 4+ P 5+ 2%5sc+ i L
5 5 s? sc
Mp=M, sc 2 ’ (24)
where (m 2, )* has been traded for ?, with
2 2 \r V2 r 2 r rCZ
scMyi=(m37,) E(7S+25SC+ cC): (25)

If CP is conserved, in the limit of infinitean (c ! 0) the leading mass splitting > M7 =
sv2, and the leading correction to the tree-level resut 0is determined by ;. In the former
case, an enhancement by two powersaf occurs 17 M7 = O (cos ) at tree level),
while the loop correction to is enhanced by a single power @fn  with respect to its tree-
level value. Either effect is sufficient to remove the calaten inr  in Eq. (20). Moreover, a
1=tan -unsuppressed CP-violating contribution proportionali@and ?; appears to occur:

i2 i i i
, isf+ 2tsc isc 22
i i
7

M2 = — . . . :
RI© 2 21%g 4+ lsc 2isc 2

(26)

where | m . However, as we show in Se€t. .3 below, the individual phade s and
» become unphysical in the limian ! 1 , and mixing between the CP-even and CP-odd



sectors is described by a single angfedetermined by the relative phase ofand 2. Finally,
the charged Higgs mass matrix is given by

V(a4 %)

2 _
M= 1+ 2MA2

M 12: (27)
Here notan enhancement due to loop-induced couplings occurs.

Unlike the case of the fermion mass matrix, the typical mommenflowing through the ef-
fective Lagrangian Eql(12) for an on-shell Higgs is itsélbo(v) oro (M , ). Hence Higgs-loop
contributions to the Higgs masses cannot be included in[E2), but rather the full effective
action would be needed. Higgs-loop effects ig and ., multiplying #  could, however, be
included via Eq.[(11), since again the momenta flowing thhotlng vertices are much smaller
thanv, M ,. This is not possible in Higgs boxes, where large momenta fitwaugh the FCNC
vertices. We will present a systematic method to includel@fs-loop contributions in Se¢t. 2.3.

It is instructive to consider the explicit form of the numinain Eq. [19), which is

h
detA = v* (5 4 st 20, 3 9+ 5 7)SC
+ (1 2 §+j5:]2 267"'467)3202 5
+2(s5 4 s 6+ 1 9)8C+ (15 2 e (28)

With Eq. (21),deta = v* ( ; , 2y’ = 0, reproducing the known vanishing ef
employing the tree-level MSSM Higgs sector. The cancelfeits removed already at the leading-
logarithmic level. For instance,, alone receives a large additive correctiony: due to top-
quark loops, which is also responsible for the most impartanrection to the tree-level mass
of h. The corresponding corrections could be computed by R®+mgthe tree-level couplings
in the effective 2HDM. However, as we are considering latge , we expect (and find below)
the most important effect to be due tg@ and -, which remove theo (¢ ) suppression of the
leading-log result, as anticipated above.

2.2 The case of minimal flavour violation

From the discussion so far it follows thgt * 5= 0 (124 ?) F = 0 (1=(16 M 2)),
implying 3% 3 Jtt4for generic i3 such that the motivation to consider at all is
not very strong. The situation is fundamentally differemt IFV because then the contribution
proportional tor * turns out to be suppressed by a light quark mass, introdwcingher small
parametem ,=m , comparable ta=(16 “)or1=tan for g= s(and negligible fory= d). For
simplicity, in this paper we consider the simplest versidiMéV, assuming flavour-universal
soft breaking termsxJ, m2 andm ? and trilinear SUSY-breaking terms, ., T4, which are

3In Ref. [13], an argument based @ (2) U (1) gauge invariance was used to infer that (in the present
notation)r = O (v*=M ). This statement, which clearly is respected by our Eg. (A8phjunction with Eq[(28)
(recallM 2 = 0 (v*)), is about the asymptotic behaviouras! » ! 0. The latter is not necessarily a small number
in practice. Indeed, many of the analyses in the literataxeldealt with the case , 200G ev.
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proportional to the Yukawa matrices and therefore diagamalhe super-CKM basis (denoted
with a hat): TAuij = auys, 3 and fdij = awys, 15, See AppendiX A for details of our notation.
The structure of our results, however, does not depend aethdditional assumptions. The
tan -enhanced loop-induced FCNC couplings of the neutral Higgsons in EqL(11) can be
expressed as:

p_
2m 1 1
- 2 o ; 29
M ¥ Y q}o\écos2 1+ etan 1+ otan (29)
2m 1 1
w = Y Y - ; (30)

Pyoos 1+ estan 1+ o tan

with y, = F o2m =(vsh )and 4= VyV,. The effective couplings,, , ande;, which depend
on the MSSM parameters, have been analysed in the decoliphing! oy sv v in the limit
g = ¢° = 0in Refs. [2—4] for the case that, , ande; are real. We consider the general
case allowing , the universal trilinear term. and the gaugino mass parameters to be complex.
Effects from non-zeras;g° have been taken into account in Ref. [5], where also effesyoid
the decoupling limit were considered. The correspondinyessions foM gy sy v, Suited
for our analysis, were derived in Ref. [25]. We have recalted the FCNC couplings of neutral
Higgs bosons including all CP-violating phases and foung@ement with the results for the
FCNC self-energies given in Ref. [5], but encountered aiagmt discrepancy with Ref. [25].
In our results, the phase conventions of the first five pararaetan be inferred from Eqs$. (98)
and [100) of Secf.JA. The phase convention¥os complies with that o ; , and the gluino
mass equalg ; = # ;j Of course one can choose one of these parameters4(e)geal. Now
the effective couplings of Egs. (29) and (30) read:

|

o= _n, B R
3 M3" MsF MsF ' "
@ M 2 ; ’ M 2 ’
P bL,jj2 . o, bR,jj2
96 2M M.F Ml]?' MF M.F |
@ M2 M2 2 M 2 ;
+ J 2 D T °9 —H; &L i3 ; (31)
144 2M 4 M7 j"l'lj2 32 M, MoF MoF
1a, 2ui
- ~“H, —L; Ny 32
Y 16 2 2 5375+ t vy ( )
&= o+ Viv (33)
Here
Ho(x;y)= xbgx yooy . (34)

1 xx y) @ vy x)
Numerically, the electroweak contributions incan be ofo (10% ). They improve the compar-

ison with the results computed with full chargino and squadss matrices (see Eq. (5.1) in the
second paper in [5]).
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Ref. [5] also discusses threshold corrections to the femrkinetic operators (wave function
renormalizations). While these terms are nat -enhanced, the flavour-diagonal quark wave
function renormalization constants receive sizable doutions from squark-gluino loops. One
can parametrize these loops in terms of a new quantity, which will add to , in the relation
between the MSSM Yukawa coupling, and the physical quark mass;, (see Eq.[(103) for the
case of the bottom Yukawa coupling).i:, will likewise appear in the relation between; and
va,, but it drops out once ;; is expressed in terms af 4, So that it does not appear in Eds.](29)
and [30). This cancellation of the flavour-diagonal quarkeveunction renormalization can be
verified by inserting Eq. (2.29) into Eq. (2.26) of the secqagber in [5]. This feature can be
traced back to the fact that the wave function renormalirasiffects both the tree-level and the
loop-induced Yukawa couplings with the same multiplicati&ctor.

Comparing our result with Ref. [25], we find different resufor , and ,: In Ref. [25]
the chargino-stop contribution proportional 46 is erroneously assigned te rather than .
Since this piece does not contain any Yukawa couplings (tlaegino is a pure wino here), all
three generations contribute in the same way and the negudtierall CKM structure combines
to V, Vuq + VoV + Vi Vi, Which is zero forg 6 band equal to one fogg = b This GIM
cancellation eliminates the wino-stop loop from, while this loop contributes to, twice as
much as the corresponding loop with a neutral wino-like reduto and a sbottom. The two
terms are combined into the last term in Eqg./(31). Omittirggchargino loop here would violate
SU(2) gauge symmetry, which also enforées- &, in the decoupling limit. Since, normalises
all Higgs-induced FCNC couplings, one should verify theumacy of theM o sy v limit: It
is easy to include thean -enhanced contributions tq to all orders inv=M gy 5y. To this
end one merely has to calculate the FCNG;. self-energy using the exact chargino and up-
squark mass eigenstates. This self-energy renormalisedftdiagonal pieces of the quark mass
matrix and cause the mismatch between the flavour structfrése latter with the Yukawa
couplings leading to, & 0. In higher loop-ordersan -enhanced contributions are suppressed
by products of small CKM elements (and are negligible) orfaeour-conserving and therefore
contribute to , rather than to, . Using theky o self-energy ¢ | > (with g= d;) from Ref. [5]

one finds
!

| S 3i
1 atH MEZL M:lZZR 2 IOTIIL (35)
YyM =7 -, Ho ; 7 +
16 2 it 57 VY w Yo

(Note that 9| *y v, and be aware of the different sign conventionsyfom Eq. (103) and
Ref. [5].) We stress that Ed.(B5) must be evaluated #r3, so that the GIM cancellation of the
above-mentioned wino-stop loop takes place. Numericals/fonds a marginal impact of ., :
Setting all supersymmetric massive parameters equal tonanom valueM o, v, one finds that
vy amounts to a mere 1.4% correction to for M g5y = 400GeV. Even forM gysy =
150 GeV, for which the expansion i1 sy sy formally breaks down,y ., depletes, by as
little as 8%. ., also enters, through Eq.[(3R). It can be inferred from Ref. [7] that this
procedure indeed leads to the correct all-order resummatidhe tan -enhanced corrections
involving y.. Corrections to , beyond thev gy oy v limit from g;g°andy, are considered in

Refs. [7] and [5]. We remark that no terms proportionaff@ccur in Eqs.[(31=33), because the
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corresponding loops violate hypercharge and involve a aggon factor of#=M 2, . .

We verify from Egs. [(2B) and_(30) that, ., multiplying ¥ * in Eq. (17) is suppressed
by a factorm ,=m ,, relative to 2, which multipliesF . Hencec {** is naively leading (over
CI®) from the point of view of MFV alone, and a meaningful anadysf B, B, mixing
requires a systematic investigation of all leading coroed to its vanishing “tree” value. (The
coefficientc *® both undergoes a stromgézm Z suppressioandinvolvesr , and can thus be
disregarded.) It is then useful to think of the = 2 amplitude as being a function of the four
small parameters identified so far:

1 m 1 v
(4 y my, tan M sysy

The vanishing 2HDM tree diagram far is (superficially)O ((cot ) 222 °19), i.e. 0 (1)
when treating all expansion parameters on the same fooG@ogverselyF * is nonzero at the
tree level but is suppressed by one power! gfwhich is non-negligible only fory = s. We
have already seen that vanishes exactly for tree-level matching (or upt@l=tan® )when
including leading logs), so there are no(1=tan ) corrections at first subleading order. This
leaves loop corrections (via sparticle corrections to thas well as loops in the effective 2HDM)
and possible corrections due to higher-dimensional opesahot written in Eqs[(11) an@ (12).
We now discuss these contributions in turn.

Sparticle loops One-loop contributions from higgsinos, gauginos, andrsiens correct the
values of ;3,4 in Eq. (I12) and induce non-zero couplings; ;. As a technical result of our
paper, we have computed thefor general sparticle masses and flavour structure. Thesitse
are reported in AppendixIB. At tree-level in the effectivedhny and in the leading order of
1=tan the quantitiy receives only contributions from,, 5, and -, cf. Eq. [28). The

general results of EqS.(71),(116),(120),(1 21),{1235(126), and(128) for the MFV case read
(
1

1 . ¢
7= 7=162 Zl a]{jz 2 Co (mymeme)+ g

2 d o rmomey)

+ aj Iy IDo vesmom e y)

1 . . .
Z@'Z 3ab]¥b3238 (v g;mg )+ 3atyth8 Mymo )+ ay 3238 (1 ¢ ;1 1)

+g* 3 MLD, (MLEMLET FT I v M L,B (M 257 I

} 2 G 0 TR 3 0 TR
299 MiBo(M1GJ )+ 3M2By (M237 )
AMi+M)De (M1FZM233 33D

+ g MO, M FMET FT ) y MRy M.FI I

(37)
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= 3 33Do (rajmaimg g ) + 382 73D o (g g v )

+a’d Do reimomymy)  3dM 2D o (M 23 M 235 FT ) (38)

2¢g"M 1M ,D o (M 13;M 2355 55 I ng Do M13;M13:3 539

2
g 1 3 ¢ 3 4 ¢
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2=t 10 29 o (Mre;mre) g 919 o (o y;my)

1 5 . .

59 ¢ JyvfComemuymy) 9y FCo trimame)
JyJIDo (mreime;my ;m)
1 . .
ngBo(md;de 3%F + 26°4F  § By avumy)
1

v 9 23] d  awF o 3¢ B, (mgimg)
1 . .

+ 3 3 12%F  § mewfco v g smey)

+2 ¢ 33T Ay FCo (g sy jmr ) gC?ijjoO(mQ;md;md)
1 .
> 39° + g02 J v Co mraimo imeg )

3hyefD o (g g vy ) 33 $ID o (g mgmg g )

1 . . .
+ qu 39 v FB O (mgsmo )+ Jy FBY (mesm 1) + 3Ry fBY (ry img )

1 I’ﬁ’é ¢ I’ﬂ’z ¢ m2 ¢
+ > 2log— 6log— g 8log— g
0 0 0
m 2 md
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0 0
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1, ¢
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Figure 2: Upper row: A subset of one-loop diagrams#or B, mixing in the effective two-
Higgs-doublet model. Lower row: Tree and one-loop diagraorgributing at largean when
employing the Lagrangian ,;, and tree-level couplings. The crosses denote the flavaregthg
neutral Higgs couplings and (in diagrams (f) and (g)) loopgessed Higgs mass terms. On the
lower row, arrows designate the flow of the conseruved ) charge discussed in Sect. 2.3

where the loop functions o, Co, D o, B, D5, D',, andw are defined in Appendix B.4, and the
notation ; refers to the matching scheme as explained in §éct. 3. Itisgdeg. [28), , enters
quadratically, which formally is of higher loop order. Netreeless, it can be seen that / ¢
as opposed to, . / g*y‘, which can partly offset the additional loop suppressiomeled we
find that, numerically, neglecting, is not always a good approximation (Sédt. 4).

The form of the matching result depends on the renormatinaschemes of both the full
theory, i.e., the MSSM, and the effective theory, i.e., ttDR1. The latter cancels in physi-
cal quantities, while explicit MSSM scheme dependenceeaaragainst the one implicit in the
MSSM parameters, to ensure that the couplings in the efethtieory are independent of the
renormalization of the MSSM at any given order of perturbatiheory. The residual scheme
dependence in both cases may, however, be important as weraiglering a leading effect. We
will discuss scheme issues in Séct] 3.1, paying speciaitaiteto the definitions ofan

Higgs loops There is a considerable number of one-loop diagrams in fieetefe 2HDM that
can contribute t®8 B mixing amplitudes (Fid.[2, upper row). These give the foliagy
contributions to the Wilson coefficients multiplyirgg/ “* andQ y **:

1 m? z
CVLL-' _ - b g C MZ'MZ'O' 40
1 Jtiggsbops 41vPos (1+ etan PGIMZ 2 oM 5 M 5507 (40)
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2 2
C VRR g 1 my, ab
1

Pogsbers T 320 (1+ etan PGIMZ 2

CoM 2M Z;0): (41)

In these expressions, we have neglected the small Yukawaiogw, and employed tree-level
MSSM mass relations, in agreement with our approximatiomnaking to leading order in small
parameters (in the present case, the loop factore #)). C YR is suppressed by two powers of
m 4=m , inside _’in the MFV case, hence beyond our accuracy. The results EGsand [(41)
involve a great deal of cancellations, which can be undedsio terms of symmetry arguments,
as explained in Seci. 2.3 below. We note the absence of ah#figgs contributions in the
approximation considered here.

v=M -suppressed effects All of the couplings given in Eq[(11) correspond to the zkrotder
in the vaM 4y 5y €xpansion, or equivalently to the level of dimension-foperators. Gauge
invariance forbids dimension-five operators built from duand Higgs fields, so the leading
higher-dimensional operators have dimension six. Thislead to more general Higgs-fermion
couplings than those deriving from Ed. {11) and, in consagagthe cancellation leading to
c 7t = 0might be broken. To see that this is indeed the case, cortsid@perator

1

2
M SUSY

6
0© =

HYH )RHEYOL); (42)

which gives rise, inter alia, to effective dimension-thasel -four couplings

P—
2 2V 2v2

— s, + ——(xsyhy + 2k sphy e (43)
MSUSY MSUSY

The first term is removed by a rediagonalization of the quaalssmmatrices, but the two remain-
ing terms, in general, are not. The appearance’ah addition toh? leads to a contribution to
c 7%+ proportional to ., C ©’. However, because & -parity, SUSY particles do not contribute
to tree graphs with external standard particles only, sbhattt ®’ (or any other higher-dimension
operator) is only induced at the loop level, and this looppsassion factor is not compensated
by factors oftan . (Recall that thed (1) FCNC couplings at dimension four are nothing but
rotated tree-level Yukawa couplings.) Hence any sy corrections that break the cancella-
tioninF involve an additional loop suppression, and can be negldotehe present analysis.
On the other hand, as Ed. (43) shows, the higher-dimensap®htors do have an impact on
the rediagonalization of the quark mass matrices and, comesely, on the size of the FCNC
couplings .. These effects preserve the cancellations indiscussed above but have a mild
impact on the FCNC couplings multiplyirg* in ¢ iR (cf Eg. (35) and the discussion around

it).

2.3 U (1)po and effective Lagrangian for large tan

To better understand the various types of cancellatioss imand in the Higgs-loop contributions
to c /", as well as the suppressionof , we now introduce an effective 2HDM Lagrangian at
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largetan . This will allow us, on the basis of simple symmetry argunsetd clarify the role of
the parameters; and -, the structure of Eqd. (18), (1L9), and|28), as well as théstamg of
for tree-level Higgs couplings at leading orderliatan . It also provides a tool for computing
loop diagrams involving Higgs bosons efficiently and cotesily, which may be useful in other
contexts such as collider processes with Higgses in thialioit final state.

As before, we eliminaten 2, m %,, and m 7, )" by the minimization conditions and trade
m2,)" forM 7 via Eq. [25). We then take the limit

vy ! 0; w ! v; M [7fixed; | fixed; (44)

of the Lagrangian(12) in the broken ph&@/\/e also keep the Yukawa couplings fixed when
considering the couplings to fermions. In this limitwe have 1 ,, °= H,, and

1 1
h = P(vr v i6%); hy= P=(a ia’); hi=G6*; hi=H': (45)
If there were no mixing among neutral Higgses, we would haye- h® and 4 = #° and
A° would be a mass eigenstate. The mass matrices are compgatgssed by the quadratic

potential

h r i
Vel = mle 2V HH G —Vhi T 2P 2
2 2 , 2
h i
+ ZS(hS1 )2 + p% .hd + h.c. v*; (46)
valid up to corrections of ordetos 1=tan 1. The trilinear terms are given in Appendix

D} the quartic terms follow trivially from those in the symirie Lagrangian Eq.(12). Note that
the first line of Eq.[(46) is symmetric under thgl) Peccei-Quinn (PQ) transformation

hy! e *hi;hi ! e "hl; orequivalently H,! e Hgy; (47)

while the second line is not. In the MSSM, the non-invariantrts appear only at the loop level.
We note that thes (1) symmetry is not spontaneously broken in the latge- limit, so there

IS no massless boson, in agreement with our keemirﬁgfixedﬁ Next, a PQ transformation
makes s real, such that the first term on the second line of Egl (46)rimries with opposite
sign to the massterms for,and 4, = 2, + O (cos ), splitting the two. There are only two
independent mixing angles that do not vanish: they can batifel with the CP-conserving
angle = o ( 5)and a CP-violating °= 0 ( ?%); a third angle present in the general 2HDM is
suppressed by (cot ;v=M ). All of these are symmetry-breaking effects. To lowest oiide
the PQ-breaking couplings, the mass matrices are diageuokiiy

0 . 1
0 1 1 v’ v 0 1
H 1 B , MAZ 2V2 M: 2\/2 8 u
R 1 o e A, (48)
H Iv? A0
3 2 7 — 0 1

4This procedure will be justified in Se¢f._8.2
5 Also at finite (but large}an , there is no (pseudo-) Goldstone bosonpas M 2 > 0 contributes to the
mass terms of both, anda ° (see also Sedi. 3.2).
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m?= ,v; mi=M7+ 3s53°; mi=M/: (49)
In a general basis, CP-violating Higgs mixing is presenni anly if 2= 5 is complex. Note
that there is no mixing for the charged scalars accordinggo(&8), i.e. no mixing between
charged-Higgs and Goldstone bosons due to sparticles lapetan  limit.
These considerations can be extended to the Higgs-fermieractions. The operators up to
dimension four follow from[(1l1), which, in the limit of infité tan , becomes
p_
. 2
Ly,= —d&iMg,HIQL; dri 535015 H
o (50)

2 Y
TURiM uijQLj H+ uRiNindQLj"' h.C.:

This can be made approximately invariant by extending thersgtry transformation (47) to
fermions. One judicious PQ charge assignment is

dei ! e dri; Qri! Quy7 Urk ! Urk; (51)

which commutes with the SM gauge group, implying that néwtrad charged gauge boson
couplings respect the symmetry. It has been previously mddd] to classify the Higgs-fermion
couplings in MFV. However, since for MFV one has one more $pameter 4= ., / m=my
for g= sorq, itis useful to consider the following variant of EQ. (51):

k! e &k ! ki Q! Qry; Urk ! Ugk: (52)

Now idzxiQ15 Hin EQq. (50) breaks the symmetry unless; = dz; = k. However, all
U (1) breaking is still proportional to one of the small parametef Eq. (36): ,; = O (!)
and~; = O (1). The modified symmetry Ed. (52) forbids all operators in threaHamiltonian
Eqg. (4) (Tablé 1), including the would-be leading oé}-*, except for the standard-model oper-
atorQ 7 and forg f%*. The last two are, however, forbidden by the original charggignment
in Eq. (81). Hence the Wilson coefficients of these operaoessuppressed by = m ,=m ,, or
by factors of loop-induced effective couplings, respesdtiv

At the tree level (in the 2HDM)g *, which induces ;*, is multiplied by a factor _,, which
is a PQ-breaking coupling. On the other hagmd,, which induces) 3™, is multiplied by the
unsuppressed factof,. Hencer  must be proportional to PQ-breaking couplings in the Higgs
potential (up tal=tan -suppressed terms). This also seen from the fact that imthrgte tan

limit, it is given by VA D E

d*x T hix)hj0) ;

which vanishes if the PQ symmetry is unbroken. Explicithythe largetan limit one has:

Ft oo 2 M2+ (58 G0 , 2 (53)
MET (L F JoFWwM2 (A (. )+ 21, 2yt MET

S (25 4V ;s g
M+ (5 j7]2)V2M§ (%En(57)+%2é2)v4 M ’
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Suppression of leading

Operator [field content] U (1) charge Higgs-mediated contribution Remark
Q9 lrglxa ] 2 5 (sparticle loop) new

Qs lrg k] 1 [0] ! known

OV bhabq ] 0 2HDM loop SM operator
Q7*F vl i ] 2 [0] 12 2HDM loop tiny

0 bk ] 0[-2] 12 sparticle loop tiny

Table 1: Charges of the operators in the weak Hamiltoniareuttte approximat& (1) sym-
metry discussed in the text, see Hq.](52). The number in btaaenotes the charge under the
“unmodified” charge assignment of EQ. (51).

where the rightmost expressions hold up to higher ordersrdliscouplings. Forr , this is
identical to the sum of the two leading diagrams in a “masgiition approximation”, where the
PQ-breaking contributions to the Higgs mass terms areddeas interactions (Fi@l 2 (f) and (g)).

At the loop level (in the 2HDM), up to doubly suppressed citions one can employ the
PQ-conserving parts of Eq$. (50) andl(46), i.e.set = - = 0, as well asignore 4, and
~i5. The matching onto the weak Hamiltonian can be organizedrdow to one-light-particle-
irreducible chirality amplitudes. There are three amplés

D E

Arr = T by (x)h (X2)s0 (x3)s1 (x4) 5 (55)
D E

Ary = T by (x)b (x3)s (X3)8: (X4) (56)
D E

Avir, = T b ()b (%)s) (%3)s, (X4) 5 (57)

plus the parity conjugates af.r anda ;. (We have omitted amplitudes that cannot match
onto Lorentz-invariant local dimension-six operators.hYOa ., is invariant undeiu (1),
(both versions) and can be generated from a symmetric Lggmanit matches onto the standard-
model operatoQ V™. There is a single diagram contributing, see Fig. 2 (h). ¢taa (i)
matches ont@ Y*¥ and would be allowed for the unmodified PQ assignment of[EL). )5

The present discussion could be extended to other procasse® higher loop orders, by
systematically treating the PQ-breaking couplings asraatéons and working to a fixed total
order in the small parameters; in practice, at such higheeigion, one might want to extend the
effective 2HDM by higher-dimensional operators to accdont/=M SUSY corrections.

Finally, let us remark that because our choice of shift patansv, andv; minimize the po-
tentialv in the Lagrangian of our effective theory and not necesgsthé full effective potential,
the one-point functions for the (shifted) Higgs fieldsh; Pi (h; = .; 4;A°) will, in general,
not vanish. Hence also “tadpole” diagrams involving quarkdmgs loops would have to be
considered at the outset [Fig. 2 (e)]. That they cancel in B mixing in our approximation
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follows from the fact that no such diagrams are present wherkiwg with a complexa) field
and the Lagrangian,,. Tadpoles may, however, be relevant in other contexts. \&fuds our
renormalization ofz,, v4, andtan in detail in the following section.

3 Systematics of the largeszan MSSM

The present section is devoted to certain technical aspétie largetan limit. The first con-
cerns the definition (i.e. renormalization) @fn  in the MSSM and in the effective two-Higgs-
doublet-model description of low-energy (i.e., Higgs ctleweak, and flavour) phenomenology,
and the matching between the two. This is of phenomenolbgigaortance, agan  defini-
tions used in the literature on the MSSM are known to diffepayametrically large expressions
O (tan loop factor). This can lead to ambiguities in the valuewwh of 10-15 in certain
regions of the MSSM parameter space between schemes tleabblam extensively used in the
study of radiative corrections to the MSSM Higgs sector [29aving clarified the connection
between our “full” and “effective’tan , we justify the systematic expansioniatan at the
Lagrangian level employed in Sect. 2.3.

3.1 Renormalization oftan

In the MSSM,tan = wv,=v, is defined as a ratio of vacuum expectation values. This is an
unambiguous notion at tree level, because a preferred isasisvided by the chiral Higgs su-
permultiplets of definite hyperchargesi=2. Beyond tree level, a scheme dependence arises as
the bare parameters (p;= m?;m 2;B  ;g;q", etc.) are renormalizeg = p;+ p,aswellasin

the normalization of the fields and in defining renormalizeit parameterss;, v,. To formalize

the renormalization program, we first define bare shifts thiaimize the bare effective potential
including radiative corrections, which is equivalent tgu&ing vanishing one-point functions

for the shifted fields, i.e.,

1 !
Hh? p—ivgii 0; (58)

such that thes{ are indeed vacuum expectation values. Identifying (for defynition of renor-
malized shift parameters)

vi=72; (v v; i=d;u; (59)

scheme dependence arises through, and only through, fietdnnalization and the counter-
terms w. Ref. [30] argued that for a stable perturbation expandigdesirable to define the
renormalizedv; such as to minimize the renormalized effective potential, i v = 0, and
implemented this proposal farr field renormalization and Landau gauge. The same condition
and gauge fixing was imposed in the computation of one-loogections to the MSSM Higgs
masses in [18-21]. Refs. [22,23] chose to work with on-dietls and irR  gauge instead, and
their shifts do not strictly minimize the one-loop effedipotential. In fact, in general gauges,
for v = 0 the effective action is not finite and the are both divergent [22, 31] and gauge
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dependent [31, 32] (as are the bare vegl)s@ Hence to have finite renormalized and tan
v & 0, containing a gauge-dependent divergence, is requiredaro , we have
1 loop 1 1 \ 4

= tan 1+ - Z, = Zg + — tan + tan (60)
2 2 vy Vy

tan °

Qo|c<'lo

Minimal subtraction forz,;Z,, w=v,, <w=v, definestan °% [21]. It also follows from
Eq. (60) that a change between two schemeasdr °can be calculated from

tan *  tan ® = tan B tan ¥ ;

hence any scheme wheretan is a pure divergence hasn = tan °F regardless of any
nonminimal field renormalizations as those employed in.[B9{he latter case, howevery,,
are nonminimal and the counterterm f@n has no simple relation to the field renormalization
constants.

tan P® is gauge dependent [34], but to one-loop order, the gaugerakence drops out for
theR gauges. In spite of its gauge dependencepthescheme fortan  has been shown to
lead to a well-behaved perturbation expansion [29] andsig ased in the most recent version of
the publicly available computer programs FeynHiggs [35] @®superH [36].

A second issue is that a fully minimal subtraction schemegrelin particular v"** = 0,
generally entailss; that do not minimize the (renormalized) tree potential hsti@t the renor-
malized Lagrangian contains linear terms

L fa+t (61)

for the shifted (real parts of the) Higgs fields. On the othemndy from Eq.[(58) and Ed. (59) it
follows that
(1)

=g+ [+ £=0 (62)

1

always holds, if only , and  are included in t. The presence of,, t, is perfectly fine,
but tadpole diagrams then have to be retained in the caicnlafin particular, they appear in
the expressions relating Higgs and gauge boson mass pararteethe Lagrangian parameters.
If all renormalization constants are minimal, EQ.](62) det@est in terms of the bare proper
one-point functions ) [21].) Yet it may be more convenient to perform additionaitérrenor-
malizations to work in a scheme whete= 0. This can be achieved either by suitable finite
termsin « or by finite renormalizations of the mass and coupling patamseThe former shifts
tan fromitsDR value according to

w_ g, oF o,
V4 Vu

tan (63)

6 This is in particular true iR gaugesif & 0. The apparent contradiction to the results in [33], whotbans
are able to renormalize the effective action with purelyrfsgetric” counterterms, is resolved by noticing that in
the Lorenz gauge employed in [33] the gauge-fixed Lagrangfilmespects an invariance under constant (“global”)
gauge transformations. This is sufficient to forbid diverges that cannot be removed by symmetric counterterms.
Conversely, th& gauges break also this global invariance, for instanceautjiidGoldstone and ghost mass terms,
which are indeed responsible for the “non-symmetric” dijg@rces at one loop [31]. The exception is the Landau
gauge = 0, which has the invariance.
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The latter option does not modifyn

Going from the MSSM to a general 2HDNsn  becomes — strictly speaking — an ill-defined
notion as there is no preferred basis. Identifying = H, andH, = H,, ansSU (2) rotation
H; ! UyH 5 removes the vacuum expectation value of one doublet; thi®gponds to the
( ; 9 basis introduced in Sedtl 2. Onlyreceives a vev, provides for the Higgs mechanism,
and has flavour-conserving couplings, whiléis an ordinary scalar with FCNC couplings. To
make contact with MSSM phenomenology, however, it is usefldeep the notion ofan in
the effective theory. In principle, we could fix a basis to@oétan *F* tan PR, but find
it technically simpler to allow for a parametrically smallle( nottan -enhanced) shift, as we
discuss in the following.

In complete analogy with the MSSM case dicussed above, ifm@a@y a general gauge and
M S everywhere in the effective theory, andv, will not minimize the tree-level (nor the effec-
tive) potential. This would require a modification of therfalism in Sect[ 2. In particular, in
writing the mass matrices Eg6. (23425) and the flavour straaif the scalar-fermion couplings
in Eq. (11) we assumed the minimization conditians t, = 0. To avoid such modifications, as
well as changed expressions for neutral meson mixing, weetthar perform renormalizations
on the parameters 7, andm 2, such that,, andv, minimize the 2HDM potential, or achieve this
through nonminimal v ,. We pursue the latter option, keeping the symmetric parerseif the
2HDM minimally subtracted. This has the added virtue thattthh  such defined is gauge in-
dependent at the order considered, as it is fully determiryed s mass and coupling parameters.
These are gauge invariant at one loop, which is clear fronegplicit matching calculation. We
presume this to hold also at higher orders, at least if thecggp@te wave-function renormaliza-
tion is employed. The v are determined entirely in terms of “light™-particle loopad, at least
at one loop, do not lead to parametrically large shiftsan®* —-, as can be verified from the
explicit expressions for the tadpoles in [23] or by consiagtadpole diagrams in the largen
effective Lagrangian. o

To find the precise connection betweem P* and our effectivecan , consider the total
tree plus one-loop contribution of the superpartners tqM&SM) effective action for the gauge
and Higgs fields,

WAW P+ 1+ Z )

+(y5+ Z )0 HY(D Hy) miHH; "Ox+ 11 1 (64)
k=1

Here 0 ; are the quartic terms constructed from the Higgs fields ajpgan Eq. [12), and the
dots denote higher-dimensional local terms. The precidgesdor the coefficients depend on
the MSSM renormalization scheme. We assume the MSSM hagégelarized by dimensional
reduction while the Higgs fields angn are minimally subtractedd(®). The corresponding
expressions, are reported in Eq(21) (tree level) and in Appendices BB (one loop).

Eq. (64) can be identified with the classical action (igngrBHDM loops) for an effec-
tive two-Higgs-doublet model with noncanonically norrzalil fields. To obtain from this the
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M s-renormalized Lagrangian in the presence of light-patiobops one simply has to add the
contributions (which are local) due to loops »f scalars present in DREDand subsequently
rescale the fields, |

iR _ Zgaa Zau H
HER Zud Zuu H

; (65)

subject to the condition ¥ (1 + Z )z = 1. This provides the relation between the fields of
the MSSM and one out of an infinite choiceofs fields in the effective theory, labeled .
We fix the freedom to choose the Higgs basis in the effectieethby settingz,, = 0 and
zl = 71, = 0. The relation between the shifts ansh of the MSSM and of the 2HDM are
now determined according to

wi) wl( F =V e Gave + o
vi( ) w( ) =Y Zew+ ¢ (66)
_ - d d
tan ( )°® = tan PF 1 o + 13 +  Zag Zou Zoq COL
V1 Vo
Here we have expandetl,,_sq = 1+ Zy,q¢ @NdZ.q = Zuq, and the z;; are related to
the z yvia Z 130,= 2 Zyqand Z 4, = Z.4» With the explicit expressions given in

AppendixB.1. The shifts %' are defined implicitly as discussed above. In summary, we hav
constructed aan  which is appropriate for effective weak interactions, gedigdependent and,
up to an ordinary (i.e., notan -enhanced) loop correction, coincides with the widely used
tan PF. It means that thean measured in flavour physics, for instance throegh (B !

* ), and employed in our analysis, can be identified with theesponding DCPR parameter
at largetan , up to small corrections.

We note that our framework leads to a transparent expressidine relation between ther

scheme and the so-called DCPR scheme employed in [22, 28 imtitv M 555y . Inthe lat-
ter scheme, finite but, unlike in our effective 2HDM, “diagdinwave function renormalizations
of H ., H 4 are performed, i.e., in our notationz.q, = 74, = 0. Moreover, the renormalization
conditions include

\

—%z ; Re Aozo(M§)= 0; (67)
Vi Va

where 0,0 (k?)parameterizes the’-z ° mixing according to k)=k aog0(k?). Now,

the sparticle contribution to ., 0 (k?) reads

AOZO(

2

nogo (k)= sin®  Z g+ s cos ( Zuy Za)+ i (68)

where the dots denote terms proportionakte but not involving the wave-function renor-
malization constants. This follows either by considerihg mixed gauge boson-Higgs boson

“Integrating over the2 scalars leaves a path integral over light fields that is idahto that in the DREG-
regularized effective theory, including the: divergence structure. We recall that the scalars should be thought
of as having a nonzero mass®fiM sy sy ) [37].
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bilinear terms resulting from the covariant kinetic operdor the Higgs fields in Eq[(64), or via
the Ward identity

k (K?)+ My goao(k?)= 0 (k* M7) (69)

a0z0
(which is trivially satisifed in oursu (2)-invariant formalism) from the terms bilinear in the
gauge fields in the same term. The two conditions in Ed. (6at) tletermine

tan P°FR = tan  ( Zuu Zg)= tarf Re Z g+ :::; (70)

where the omitted terms are nain -enhanced. This explains the large numerical differences
betweentan P® andtan P¢F® found in [29] as a parametrically large effect. Heneey
measured in flavour physics should not be identified with tireesponding DCPR parameter at
large tan

As with the Higgs fields, we explicitly decouple the conttibas of heavy particles to the
gauge field wave functions (henced) by a finite renormalization®” = g + g© ¢9, can-
cellingthetermsz ; and z , in Eq. (64) of the gauge fields,® = ZB%B andw © = ZE W
For D R -subtracted MSSM couplings, this givigss-renormalized 2HDM gauge couplings.

We denote the quartic couplings in our 2HDM scheme hy The finite renormalizations
leave . invariant, - = ", while the other guartic coupling constants transform like

N : 1 A - 1
1= 1+ & Zha* ¢ g+d & ; 2= 2+ Zut 5 ¢ g+d & ;
2
A g r r 1 N r r
3= 3 E( de+ Zuu) 5 g2 g+g§ 90; 4 = 4+g2( de+ Zuu)+g2 g
2 2
A q A q
6= 6 4 Zoai 7= 7+Z Zug i (71)

wherex® and x* denote the real and imaginary part:ofespectively. The couplings; areM S
couplings from the viewpoint of the effective theory.

The modification of the dimensionless couplings by the fiwide function renormalizations
affects theB B mixing amplitudes as a formally higher-order effect, asdt®e scheme
dependence ofan . Unlike the latter, however, the former is newan enhanced unless the
wave function renormalization constants themselves are.

Invariance of B B mixing under field renormalization

The effects of EqL(85) on the Higgs-mediated FCNC Eg. (14 jwaofold: (i) the values fotos
andsin in Eq. [10) are modified. This cancels the contributions tofrom the redefinition of
the mass matrices up to a global factor:

V .
F'( uaMa)! FO( v My )= g Jletz FE(iivuaiMa); (72)
P . . | 0.0 g Oy v 2 i i i
( i/Vu;d/MA) L F ( ilvu;drMA)— V@ (detz ) F ( ilvu;d/MA)- (73)
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(i) the v, 4 renormalization in (i) comes with a modification of;:

0 v 1
5loG=o@etz )ty (74)
The above factors cancel each other out in the prodygts and , ., F*, as they should.
In particular, our choice of wave-function renormalizati@cting on the leading FCNC coupling
Eq. (29) produces an extra term:

M= o S Zh sc Zh o+ Zh o (75)

Considering Eqs[(29)[_(80),_(71), arid75) gives the samisdficoefficientsc 7* andc $:*
as does considering Eq5.(29),1(30), and (71) with the firarespof z;; set to zero. While in
practice, wave-function renormalization has to be perfxirto relate the parameter, to the

physical Higgs boson masses and to take pEG P 2 246GeV beyond leading-order
precision, such renormalizations are not the source of avaoishing of thed $** amplitude, to
be found instead in the corrections to Higgs masses and gaxvia the self-couplings;, in
particular 5); wave-function-renormalization effects enter that aitaple only at higher orders
(as might have been expected). In this regard our findinggydée with the conclusions of [25].

3.2 Health of the large+an limit and fine-tuning

In Sect[2.B we took the limitan ! 1 (w ! 0,M 7 = constg v + v = const, ;= const,

v, andvy defined as minima of the tree potential) at the Lagrangiaalle®ne might wonder
whether this procedure is valid at the quantum level. Tafyt we show that thes; = 0 case
and thev,; & 0 case are analytically connected, i.e. one can be reachedtfre other without

a phase transition. It then follows that amplitudes are gme neighbourhood of a parameter
point with vy = 0) analytic functions of the parameters (either “symmetoc™broken”). The
renormalizability of the effective Lagrangian,, then follows by standard arguments from the
fact that it is equivalent to the symmetric Lagrangian E&) (for a certain choice of parameters),
which is renormalizable.

We first note that the number of independent minimizationdétons is unchanged in the
vq = 0 limit. First, for general values of the parameters, out @ thur real (two complex)
minimization conditions, at most three are independenis fidilows from theu (1), invariance
but is easy to verify explicitly. Fixings, to be real and positive, three polynomials of degree
three determining three unknowns, v, v; remain. The system has a solutien= 0 if

2 2 2m 52

omi,+ sm3, = 0; v = : (76)
2

Here the second equation determirgs- v as a function ofn 2, and , similarly to the case of
a single doublet, while the first equation can be viewed aseatfining condition between 2,
and -. The dimensionless, complex parameter

2 2
m 7m

= 22 T _—52 (77)
mo, oM
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parameterizes the deviation from the fine-tuning limit; wayntradem 2, in favour of . Clearly,
at the limiting point = 0we indeed have three independent equations. Now, it is eassrify
that, writing the four real minimization conditions in therin

£i( umiiveiva) = 0; (78)

the Jacobian matrix

@ (£, ;52;55;5,)

@ (v 7V ivy)

has maximal rank (3) at any point with = 0. (Physically, this just means that the neutral Higgs
mass matrix has three nonzero eigenvalues there.) Henctebiynplicit function theorem,
we may solve for(v, ;v;) in a neighbourhood of it, where the solutions will be (reatglytic
functions of . In particular,y; behaves analytically (and is strictly positive) around 0, i.e.
no phase boundary is encountered. Explicitly and to lineden the real and imaginary parts of
vy are determined by

(79)

+0(%); (80)

suchthatan = O (1=j j). The nonsingular linear term allows us to change varialstas fa?,
to a complexyy. Of course, we may always perform a field redefinitiomgfsuch thats, is real.
Then, the mass parameters besidées are power series in=tan , which read

, 1 . 1 . 1 ,
24 i_2 i 2 i
mi, = — (Vi+ =V g+ =V, 3;
12 5 6va T SVus 5 u
2
Vg m 1 1
2 dittl r 2 r 2__2
mo,=——+ =VVg( 3+ )+ =v; 5+ O (vj=v]);
Vy 2
3 r
2 2 5 _ .
My=mi + Vi + O (vg=wy); (81)
2 2
M7= ,vV+0(35; );
3t %
2 2 5 2. .
MH—m11+ 5 \/'2""0(7/ )i
5 3t 4

M£+=m11+ v+ O (Vag=wy):

We see explicitly that we can continuously change the dimoafsl parameters in the Higgs
potential from a situation where & 0to one wherey; = 0, keeping 7 (and the dimensionless
couplings) fixed, as was assumed in Secl. 2.3. The last tiresttions illustrate that the large-
tan case is characterized by a “primary” doubtet which receives a large vev, and a
“secondary” doubleti ; with a positive gauge-invariant mass;, that receives corrections of
0 (v*)ando ( ), respectively, due to its dimensionless and dimensiomfuptings toH,,. Those
corrections differ among the physical components of thebteiuapproximately to be identified
with H %, A° H , due to electroweak symmetry breaking. In principi€, could be negative,
but in that casey; 0 will typically not be the global minimum of the potential.
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We close this section by considering the fine-tuning whicteisessary to obtain a largen
while keeping the mass , fixed. Forv; real, Eq.[(80) implies

5 r 3+ r
T _ 7.2 2 5
mi, = —mj, + cot (mi;+

2 2

v2); (82)

which illustrates the tuning that is known to be necessatyatee largetan  in the MSSM. For
the generic situatiom 7, M2 ., M 7, the right-hand side is dominated by the, term:
£ is down by a loop factor relative to,, andm 3, ¥ M 2 ., (the little hierarchy). Hence,

2
m ;=M SZU SY l=tan ; (83)

which implies an extra tuning beyond the one to achieve tmeecbweak scale. For smaller
m? ~M7? M2, whichisinteresting from the point of view @&f-physics phenomenology, the
required tuning gets even worse — unless, of course, thean#1d5Y scale is lowered to the weak
scale, which is, however, problematic since tief ,v* is generally below the experimental
lower limit. On the other hand, as we have seerf, m?,, such that no extra tuning is required
to keepM ? finite, while one might have expected otherwise from the Wathwn tree-level
formula

MZ= (tan + cot )mZ,; (84)

which is generalized by Ed._(25). Also, while a smal, is indeed sensitive to radiative correc-
tions, those are automatically correlated with shifts;pénd in consequence afn in such a
way thatM ? receives only mild corrections.

4 Phenomenology

In Sect.[2, we performed a detailed study of the supersynienedntributions to M 4 and

M ,inthe generic framework of an effective 2HDM. The corresgiog matching coefficients
were computed at the one-loop level in Séctt. 3 and AppdndinBhis section, we assess the
maximal size of the various types of effects identified in M€V case taking into account the
existing constraints on the supersymmetric parameterspaparticular fromthes ;! * |
B* ! * ,andb! s branching fractions. For convenience, we start with a cardpen of
the formulas derived in Se¢t. 2.2:

SM LR LL HL : SM
M = M + MU+ M M T+hiM 5 (85)
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where the standard-model, the left-right and left-left gligpole, and the neutral Higgs-loop
contributions read

G2 2
SM 2 £2 VLL F-" W 2 2
M g = j/tqvtbj quM Bqu - Som=M 5 ) ;
Im ym
2 — 2
M ;R = j/thtbj fBZqM BqPZLR ? V2 4 77 F+ H
5 (86)
LL 2 £2 SLL lmb—z
M q = j\/thtbj quM Bqu ?? F H

=
Q m
=
|
=<k
g
<
g
-
38
=<
(o]
v,
=<
=
=

respectively. The Inami-Lim funcgo_so isgivenbys, (x)= (x 11£=4+ x*=4)(1 x)°?
(3%’ bgx)=2)(1 x)*andv= ( 2Gy) ™2 = 246GeV. The flavour-changing and flavour-
conserving quark-Higgs couplings were defined in Séctsafd2.2:

P p-
_ qu qbV _ yt 2 % i Zmb 1
’

- - = ; 87
M b @ a ¢ (1+et) 1+ ot) ¥ ve 1+ &t (87)

with ,; ande; given in Egs.[(3[{-33) and. in AppendiXA. Ther factors describing the prop-
agation of the neutral Higgses were defined in Hqs. (18)[a8d ith the effective couplings;
entering the neutral Higgs mass matrix computed in $edaldlAppendixB. For largean
we have in very good approximation:

i ( 5+ 72= Z)VZ

sz; F T (88)

F*7

(exact formulas were used in our numerical analysis thau@xplicit expressions for s, -,
and , in the MFV case were given in Eq$. (B9137). Altogether, cougt, ;F (16 %) *
andM , 120 GeV to get an idea of the naive size of the various effects énalhsence of
constraints, we obtain:

m ¢=my pR=p /Lt

0053=2:75  32=0:71
16 °( o+ ;%= ,)(120 GeVye' ~ pjrt=ptt

h, = 240

+ 035 i, (89)
M 2 1:36=0:71
PO Mp, 2 q62,f@0Gevy t ‘Pt
T+ et) 40 275 i+etFi+ tfM2 40 275
wherem  is in GeV and —  arg({ ). h is given by the same expression with, replaced by

m g4, SO that the first term becomes subleading.
A first obvious remark is thatM 7= cannot compete withM % or M '* unlessy, be-
comes non-perturbative. This is rather accidental (natieesmall loop factor in EqL(86) as well
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as the smallness af’“* with respect top;* andp-*). Further, the contribution ofm >*
seems somewhat limited. However, the loop functionand - could be enhanced for large
or a.;, see Eqs[(38,37). A more quantitative analysis is thugalasi. In the next two sections,
we perform a random scan of the MFV-MSSM parameter spaceddtiinmaximal M - and

M J* values allowed by current experimental data. EqS[(85-8%)lidw for new CP-violating
phase@ yet these will be set to zero in the scan. CP-violating ¢ffedgthin the MFV scenario
will be shortly discussed in Se€t. 4.3.

4.1 Scan of the parameter space

The values of the various input parameters used in the seacofiected in Table]2. Note that

only the product®,;®m, andP,;*m 4, or alternativelyp*m ; andm 4=m ;, are needed, see

Eqg. (86). We scan over,*m . but keepm 4=m ; fixed as M ¥ is doomed to be small any-

way. The decay constanfs, and CKM factorsj/.;v,, jare not specified. Instead, outputs are

formulated in terms of ratios free from these rather pooripkn parameters. Finally, we take
= 1=1279, sin® y = 0231, andM , = 91:1876 GeV.

For simplicity, the gaugino mass parameters are assumeaviothe same sign (which we
can choose positive), as well as the trilinear terms (pasiir negative). Note that the absolute
scale ofM 5y 5y plays no role as supersymmetric parameters egteiland ; by means of ratios.
Only the spread of the interval chosen for; s, matters. StillM <5y should not be taken too
large to help satisfy the ! s constraint in the case < 0. We will come back to this point
later. We allow for rather large values ®f, , close to the lower end of the interval chosen for
M gy sy - Still, the matching performed in Sett. 3 and Appendix B rereaalid as the corrections
from higher dimension operators at the electroweak scaleued by the ratio=v 5y 5y and not
M »=M gysv. The formulas for the various observables atzhmass scale are thus unaffected.

Quark masses and, | Bag factors SUSY parameters

m.= 164 GeV P/t 2 [066;0:76] tan 2 [10;60]

m,= 2:75GeV Pfm g2 [0:12;022]1GeV | M, 2 [120;6001GeV

mg=mg = 1=19 PSEE 2 [ 148; 124] Myysy 2 [600;1800]1GeV
s= 0:108

Table 2: Input values. Hene 5,5, stands for any of the supersymmetric parametersM - ,
Mg, Mg M~ ,M~, Bd B B JM1, Mo M AS explained in Sect. 3.1, the renormalized
parameters! , andtan are identical in the MSSM and effective 2HDM far; sy v. The
quark masses and, are defined in ther s scheme at the scate.. The bag factors, defined at
the scalemn . as well, are discussed in Appendik C.

The constraints imposed on the points generated insidedihneaanges are summarized in
Table[3. We now discuss them in turn:

8Let us recall that in that case 2, defined as the non-zero eigenvalue of the CP-odd mass miafrir Eq.(13),
is no more an eigenvalue of the full Higgs mass matrix.
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i) The bottom Yukawa coupling, is maintained small enough, say,< 2, to guarantee the
validity of perturbation theory. This condition removesspible fine-tuned points in parameter
space for which the denominators in EHg.|(87) are close to.zero

i) The lightest Higgs boson mass,, has to come out large enough to comply with the LEP
Il experimental lower bound ,, is obtained from the CP-even Higgs mass matrix in Eq. (23),
with the effective couplings ; computed at the one-loop level. Higher order corrections to
, are known to be important [18-20]. However, comes up in the FCNC vertices; of
Eq. (11) along with aot suppression factor. Thein -enhanced effects considered here are
thus largely uncorrelated with ,,. For this reason we do not correct the one-loop formulas and
simply imposev ,, > 115GeV.
iii) The following bounds are imposed e@n anda;, to avoid the occurence of color symmetry-
breaking vacua at tree-level [39]:
B < 3MZ +MZ 4+ mby);
Bf < 3M %+ Mi +mZ):

(90)

The corresponding bound far is not imposed as sleptonic parameters have very little anpa
on the quark FCNC considered here anyway.

iv) The most stringent constraint on the FCNC couplingomes from thes, ! *
branching fraction, which we normalize to! . to avoid the occurence of the parametéers
andv,V,. This time the Higgs-pole contribution overcomes the stadanodel and Higgs-loop
pieces. In addition these last two interfere destructiwaywe will neglect them. The counterpart
of Eq. (86) then reads (with < 7 = 0for simplicity):

m? 7§ Fo5+ FoF
BB,! * )= Vo F £2M 2 - :
(B gy ) Bg ViV J Ba " Ba gh A oL a1+ t7F (91)

RqB(Bq | + )SM ;

whereF . andFr g refer to the Wilson coefficients of the effective operators = (s )(“ 5*)
andQs = (& s, )(“*)arising from neutral Higgs exchanges and

" ! L #
_ gOZ 1 MEL J]z MER J]z
= — -H, ’ + Hy ’
16 2M 2 M.F j"l'lf MF M.F '
® M2 MZ 2 M 2 .2
9y, MR MA 39, MR 3T ()
16 M, MiF M.F 32 M, MoF MLF

This result agrees with [40] but disagrees with [41]. ThepfunctionH , was defined in Ed.(34)
andM ~, g, = M~ ,In our MFV scenario. In the largean limit and at tree-level in the
Higgs potential, we haver, = F; = F'=2= 1M 7, sothatB(@®, ! * )is tightly
correlated with M >* [5]. Going beyond the tree-level and largen approximations we
obtain:F, = s (F* F )=2, withr givenin Egs.[(IB) and_ (19). This formula is actually
valid in any 2HDM, including arbitrary CP-violating phag@ésthe CP-conserving case it reduces
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to the usual identitf » = s =M 7). We did not find such a general and simple formfar, yet

it is straightforward to write it in terms off ,, tan , and the ;s (alternatively one can of
course express it in terms of the neutral Higgs masses andgraxgles). Note that one still has
Fs= (F"+F )=2uptocot -suppressedterms. Sparticle loop corrections to the Higlis
energies turn out to be relevant in the case of they can be as large as 15% for smal| after
all constraints are taken into account, as we will see in.8eg2t Numerically, Higgs-mediated
effects can easily be very large:

Ly %= WP 6 2,5 (120 GeV)! £ °
R,= 9930 1+ j;f 2V 312 :J 12 ! — (93)
M2 d+etFid+ ot i+ tFM; 40

andR, ’ R.. The first correction factor above captures the bulk of thieot$ from the Higgs
self-energies, yet the exact formula for should be used for better precision. In practice, the
looser constrainB (B, ! * )=M ,< 5:7 10° ps, obtained fromB (B, ! * BP<
10 "[42]and M &P = 17777 021 0:07ps' [43], is built-in in the scan procedure, then
the current 95% C.L.bound B, ! * )=M ;< 33 10 ° pscorresponding t® (B, !

* )P < 58 10 °[44] isimposed. We also checked the bom@, ! * =M 4<
36 10 ® ps, correspondingt® B, ! * PP < 18 10°[44]and M P = 0507
0005ps ' [45]. This provides no additional constraint. Neithergl® ., ! * )and M .4

taken separately due to the large parametric uncertaifntiess; _ .

v) Theb ! s branching fraction with the energy cat > 1:6GeV is computed using
the fortran code SusyBSG [46]. Higgs-mediated effects nppear at loop-level with smaller
powers oftan , so that purely supersymmetric loop corrections (scalsig=al 5y sy ) are com-
paratively more important. Fos. < 0 and relatively lightM 5,5y, chargino and charged-
Higgs loops can interfere destructively and more room isflaf New Physics. This interplay
is welcome when < 0 as the charged Higgs contribution then tends to overshaoeia
perimental branching fraction. On the other hand, in thaecdhe discrepancy between the
(g 2) standard-model prediction and its present measuremehtrjdieases (for a recent
discussion, see e.g. [40] and references therein). Thefisemce of this discrepancy, how-
ever, is questioned by the neste | * BABAR data [48]. We therefore still include
the situation < 0in our considerations. ThB (b ! s )experimental world average reads:
Bb! s PP= (352 023 0:09) 10 [49]. The standard-model central value of the
SusyBSG program agrees well with the next-to-next-toile@drder predictiorB (b ! s )=
(315 023) 10*[50]. We combine the experimental error with the unceriamtiscussed in
Ref. [46] and obtain the following two-sigmarange7l  10*< B(({m! s )< 433 104

vi) TheB* ! * branching fraction is given by
G2 m2 ?
BB ! ' )= o VI Mem? 1 5 i g7; (94)
8 M2
where
M2t
9 = (95)
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parametrizes Higgs-mediated effects. is obtained from in Eq. (92) by the replacement
M-~ &)! M-~_g) Corrections to the Higgs potential merely change the vafue . , which
becomes a function af ,, tan , and the various supersymmetric parameters. Again, we in-
clude these corrections in our numerical analysis. Givenldige theoretical and experimental
uncertainties, we impose, < 036 [ 164 < g < 2:73. The constraint fronB (8 ! D )
allows to reduce the second interval, and we end up itk 036 [ 164< g < 1:79[51].

Built-in constraints Additional constraints

BBs;! * =M <57 10°ps| BBs! * )=M o< 33 10°%ps
Vo < 2 271 10*<B(Mm! s )< 433 10°
My > 115 GeV g < 0360rls4< g < 1:79

Stability bounds, see Ed. (90)

Table 3: Constraints built-in in the scan procedure (lefi) anposed afterwards (right).

4.2 Size of the new contributions

The various Higgs-mediated contributions %, M '“and M [* normalized to the Standard-
Model prediction M 2 are displayed in Fid.]3(a-c) as a function of the FCNC couptinAs
expected from Eq[(89), Higgs-loop effects are very smh# (iottom Yukawa coupling actually
does not reach its upper bouggd= 2 in the presence of the other constraints, seelFig. 3(d). The
upper and lower branches correspondte 0and > 0, respectively). Further, the contribution
of M " appears to be much smaller than thatiof >* despite the fact that . can compete
with m _F *, see Fig[B(e,f). This suppression is a consequence afthe *  constraint.
Indeed, large values af are obtained for small values of ., to whichB B, ! * )is
particularly sensitive. As a result, the recent CDF bound] @hly leaves room for very small

~ couplings, killing practically all effects inM >* (and actually also inM >* for such small

M , values). In Fig[B(g), we illustrate this decrease of the imak— value allowed by the
B, ! *© constraint withm , . Blue/magenta/red (dark grey / light grey / grey) points-cor
respond tav , = 550=350=150 GeV (the constraints in the right column of Table 3 were not
imposed to keep the focus @, ! * ). As one can see, for , fixed, the largest possible
— first increases withran 2, as expected from Eq._(B7), saturatesth@. ! * ) exper-
imental upper bound for some&n value, and is then forced to decrease. For smatlgr
thep, ! ° constraint is more stringent and only a smaifer,, can be achieved. This
growth of =, ., with M , is sufficient to overcome the= 7 suppression factor inM ® but

not thel=1 { onein M **. Overall, Higgs-mediated effects iv1  are of the LR type and the

room for such effects increases with,. The correlation betweerm andB®B, ! * )
pointed out in Refs. [5] is thus preserved, up to the relétiseall Higgs self-energy corrections
toB, ! * mentioned above Eq._(P3). These are only relevant for 0, tan . 25,

smallM ., and large s, though (see Fid.14). The mass difference in thesystem, on the
other hand, remains unaffected. These results seem tadiritthose of Ref. [52], where large
LL-type effects were claimed. Without attempting a closeneudcal comparison (the sign of
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M =M ®in[52]is actually reversed with respect to ours), let usnpoiut that, as shown
by Figs. 3(e,f), a largeM "= M [F ratio does not automatically lead to large non-standard
effectsin M ,duetotheB(®B,! * )constraint.

Being of the LR type, the maximal effect allowed i® . is essentially determined by the
currentB B, ! * ) experimental upper bound for a fixed (but large enough) vafube
ratio tan =M ,. This is illustrated in Figl_13(h) for a slightly larger bourcf. left-hand side
columnin TabléB). The correlation itself is displayed ig /4, where each diagonal corresponds
to a fixed value of the ratiaan =M ,. We distinguish the cases > 0 and < 0 as the
latter leads to larger effects due to smaller denominatisq. [87) but is disfavoured by the
measurement ofg  2), as mentioned previously. The sign of the variedterms, on the
other hand, has only little impact. Still, in the case< 0, a. > 0 helps satisfy the> ! s
constraint. Note that the effectofti®e® | * constraintis particularly transparent on Hig. 5:
it removes the points with largean =M, ratios, i.e., the steepest diagonals. Altogether, for
M, < 600 GeV, Higgs-mediated effectsimm ;canreach 7% ( 20%)for > 0( < 0).
These findings agree with those of Ref. [53]. They merelyofelfrom ther 3, ! * )
constraint, as one can see from F[gs. 3(g,h)[dnd 5.

Finally, for completeness (or out of curiosity), we dispiayig.[8 the dependence of various
guantities on effective couplings or supersymmetric patans. In particular, in the last four
plots, we illustrate how the loop functiorts, ",, " , and 5 increase with the range chosen for
M susy (More precisely, they increase with the trilinear angtrms and decrease with the squark
and slepton mass parameters: andM = with £ = tjb; ).

4.3 CP-violating effects

The Higgs-mediated B mixing amplitudes studied here can in principle generate cantri-
butions to the CP-violating phases measured irethe J= K g time-dependent CP asymme-
tryandtheB, ! J= time-dependent angular distribution. The coefficienthefdn( M  t)
terms are

Sye k. =sh@ + L);

96
S;— = sh( 2.+ _); (96)

where argl (Ve )=V _Ve)l s argl  (We)=(V_Ve,)] and
g = argM 3M ") armg(l+ hy): (97)

InB, ! J= an angular analysis separates the different CP comporibetsign quoted for
S;- in Eq. (96) refers to the dominant CP-even component. Thbassgs have received a
lot of attention recently. In particular, the new measureta®f 2.+ _ by the CDF and
DO collaborations [54], both more than 1.5 sigma above its@&tliction [55], have triggered
speculations about the validity of the SM [56]. A possiblesien between the value ain 2
obtained froms,_ x . and the amount of CP violation in the kaon system was alsotgabin
out [57].
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Figure 3: Study of Higgs-mediated contributions to , (see text). Black dots denote the points

in parameter space that satisfy all constraints, while gietg refer to those that only satisfy
the initial constraints (see Tahlé 3).

In plots (g) and (Hiebmagenta/red (dark grey / light

grey / grey) points correspond t0, = 550=350=150 GeV, respectively. Plain lines indicate
) constraint. In plot (h), the dashed line corresponds to theenstringent
) constraint in the right column of Tablé 3.
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Figure 4: Correction factor t® 8, ! * ) arising from supersymmetric loop effects in

the Higgs self-energies as a function of the effective dogpl s (left) and the total Higgs-
mediated effectsim, ! *  (right), for > 0. On the left-hand side, the upper (lower) line

corresponds tol , = 120 (600) GeV, assuming the approximate formula of Eq.l(93) for the
correction factor.
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Figure 5: Correlation betweerm ,andB®B,! * ) (@g=s < 0, (b)a=1s > 0

(©0g=4d, < 0;(d)g= d, > 0. The descending lines correspond to a fixed value of
the ratiotan =M .. From left to right:tan =M, = 0:05;0:075;0:10;0:13;021 GeV *. The
ascending lines refertothe(®, ! * )= M . constraints, see Tablé 3. These lines do not
take into account the uncertainties on the quark masses agdabtors, nor the effects from
spatrticle loop corrections to the Higgs potentialin ., B®, ! * ), and to the lepton

Yukawa couplingsire 8, ! * ), so that the actual points do not follow them exactly but
are somewhat scattered.
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Looking back at Eqs[(17-19), it is clear that the new phasgswhen associated with the
0 3* effective operator, have to be brought up by the quark-Higmsplings :; asF * cannot
develop an imaginary part. When associated Wit or 9 $*¥, on the other hand, they can
arise from both the Yukawa sector and the Higgs potentialtvia Within MFV, =, =
j F Zmqm=v* and onlyc 7** can produce a new phase (vig; or s;). However, thes; !

* branching fraction is barely affected by CP-violating effe so that its constraints on
j jare still very well approximated by the plain lines in HiggB(for some representative ,
values). As a result, just like in the CP-conserving case nit effect of the suppression 9f;
and enhancement af for smallM , is quite small. The MSSM with largean  and MFV is
thus not able to account for a large non-standard phase inB; (orB4 By ) mixing, if the
evidence for such a phase were confirmed. Let us emphasieyhg that the formulation of
MFV adopted here does not coincide exactly with the full syetmprbased definition of Ref. [13].
In the formalism of Ref. [13], it was shown recently that nelapes could appear in the;*’
sector, in addition to those in the?, )**#* sector [16]. The possible impact of these MFV
phasesvia , . inC;* is a priori rather limited due tothe. ! *  constraint, yet a more
guantitative analysis is desirable.

Beyond MFV, thep 5* contribution is expected to dominate. As said before, sypemetric
loop corrections to the Higgs propagatotr do not bring in any new phases. These can only enter
via the quark-Higgs couplings, and .. The possible size of CP-violating effects generated
in this way without violating the existing constraints dess a study on its own. We will not
discuss this further here.

5 Conclusions

We have studied supersymmetric loop corrections to the M$8@4s sector. While the tree-
level Higgs sector of the MSSM is a 2HDM of type II, the soft stgymmetry-breaking terms
lead to new loop-induced couplings which result in a gen2HOM with FCNC couplings of
neutral Higgs bosons to quarks, even if the supersymmeggking sector is minimally flavour-
violating. The strength of these couplings grows with and precision observables of flavour
physics are known to severely constrain large- scenarios of the MSSM. The appropriate
tool for such studies is an effective Lagrangian, which isveel by integrating out the heavy
supersymmetric particles. The abundant literature on titgest has primarily focused on the
flavour-changing Yukawa couplings [1-7]. Among the FCNCjitees,B B mixing plays a
special role, because the apparently dominant contributid=ig.[1 vanishes. Therefor B
mixing is sensitive to subleading effects, whose systenstidy was the main motivation for
this paper. Pursuing this goal we have derived several ganakand analytic results which can
be applied well beyond this topic. They can be classifiedtimtee categories:

1. MSSM Higgs sector

We have matched the complete MSSM Higgs sector, i.e. botlyukawa interactions and the
Higgs potential, onto an effective 2HDM. Our results for #féective Yukawa couplings are
valid for arbitrary CP phases of, a., and the gaugino masses; and EQgsl|. (31) and (32) correct the
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gaugino contributions to, and , quoted in Ref. [25]. The complete one-loop matching correc-
tions for the quartic Higgs couplings for the most general9WEare explicitly listed in one place
for the first time. This result goes beyond minimal flavourlatmn and beyond the largemn

limit. It is well-known that improper choices of the MSSM mmalization scheme can lead to
radiative corrections which grow witten  rendering perturbative results unreliable [29]. At the
heart of this problem is the feature that is an ill-defined parameter in the general 2HDM,
which permits arbitrary rotations among the two Higgs detshl In the matching of the MSSM
onto the 2HDM this feature enters through the wave functemormalization, and we propose an
MS renormalization ofan in the 2HDM which is stable in the limit of largein . The relation

to aDR-renormalizedtan  in the MSSM is discussed including electroweak correctiong
identify the places in the effective Higgs potential whelhggicaltan -enhanced effects occur.
The coefficients ,, s and 5, which are important fos B mixing, are explicitly specified
for the MFV case in Eqs[ (38=B7). Some loop corrections taHlwgs potential at largeéan

and theirimpact onan itself and the Higgs-fermion couplings have also been damnsd in an
effective-field-theory framework in Ref. [58], which apped during completion of this paper.
Part of the results therein overlap with Section 3 of thisgrapVe disagree with [58] in some
points (cf. Sectiof]3), notably in that we findtan -enhanced term in the relation of ther.
and DCPRtan parameters. We stress that, in general, only the formernsenigally close to
thetan parameter extracted from-physics observables.

2. Largetan phenomenology

The prime application of our resultsis B mixing. We have identified a global (1) symme-
try of thely g, Higgs-mediated FCNC transitions and the tree-level Higgstial in the large-
tan limit which suppresses the superficially leading contiidmubf Fig.[1. A systematic study
of B B mixing has required the analyses of four subleading camivhbs, which are governed
by the small parametets 4.=m ,, 1=tan , v=M 5ysy and the loop factoi=(4 Y. These pa-
rameters either provide a breaking of the1) symmetry or allow for a contribution proportional
to theU (1)-conserving standard-model effective operator. Priotis work, only corrections
involving m 4 s=m , had been studied [5] (with the exception of Ref. [25]). Th& 5,5y COrrec-
tions are found numerically small. The new loop contribntiinclude all non-decoupling SUSY
corrections to the quartic Higgs interactions- ; and the contribution of neutral Higgs box di-
agrams in the effective theory. In the complex MSSM the tsdok ¥ comprising the neutral
Higgs propagators become cumbersome. We have expressaad terms of sub-determinants
of the neutral Higgs mass matrix. These expressions areteasyplement and clearly reveal
the invariance of the Higgs-mediated amplitudes undetioota of the basigH ,; "Hy). The
results for the Higgs sector are also used to refine the MSSiigtions for thes * | *
and theB.; ! *  branching ratios. In this context we stress that loop cdtiwes to the
Higgs potential do not give rise to additionrah -enhanced contributions to the charged-Higgs-
fermion couplings beyond those known before Ref. [25] apgkaHence no modification of the
charged-Higgs contributions®* ! * orB ! X, relativeto Ref. [5] occurs.

While the MSSM corrections t8 B mixing in the largetan  scenario could be dominated
by the contribution of s and -, the size of this piece is limited by the experimental up i
onB@B, ! * ). After performing an exhaustive analysis of this quanttyp ! X ),
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B®" ! * )andthe mass of the lightest neutral Higgs bosen we find that the impact of
the corrections to the Higgs potential an , is always weaker than that of the.=m ,, correction
identified in Ref. [5]. Assessing the total Higgs-mediateB3M corrections toM . we find
an upper limit of 7% of the SM contribution for > 0andM , < 600GeV. If is negative,
the upper bound is around 20%. This is in contrast with R&2] &nd Ref. [25], which claim
large effects of the Higgs potential @ B mixing. The correctionst@ (8, ! * ) from
the Higgs potential are typically also small, but can reas%1n some corners of the parameter
space. In summary, the correlation between an enhancefeig ! * )anda(moderate)
depletion of M ¢ found in Ref. [5] remains essentially intact.

We finally note that our new contributions can alter the CPsghaf theB B mixing
amplitude, while the previously known Higgs contributioroportional tom ;m ,F * has the
same phase as the SM term (in MFV scenarios). While the mayiassible CP phase is clearly
below the sensitivity of the current Tevatron experimeiitis an open question whether future
B B mixing experiments can help to unravel the CP structure ®MISSM Higgs potential.

3. Heavy-quark relations and bag parameters

We have transformed the NLO anomalous dimensions compuiRdfi [26] to an operator basis
and a renormalization scheme typically used in latticeludatoons. The according anomalous
dimensions are needed to evaluate the ‘bag’ parametershylrametrise the hadronic matrix
elements, at the electroweak scale. We further employecayhguark relation to improve the
numerical prediction of the bag parametef‘-° entering the SUSY contributions ® B
mixing. The heavy-quark relation essentially determipé-°in terms of the bag parameter
By ™", which is needed for the SM prediction [55]. We fourd" = 2B{""’m.)= 136
0:12.
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A Notations and conventions

To state our phase conventions foandM , we quote the chargino mass matrix:

0 gvsn
g Mo L.
Mo =8 Gy x (98)
2

with v = 246 GeV and the chargino mass term in the Lagrangian
L™= ( G8IM . (FEH: (99)

For the case of a general flavour structure of the squark massces we define the trilinear
couplingsfuij andTAOlij (with flavour indicesi; §) such that the squark mass matrices read

0 . h il
M 2 TS fY fYoot
g, = u u O
Ao B . 2 C .
Mi = € yan B . + ~2 A
_pé— u Y, cot TR
0 il
M2 \gee Ay Ay
=~ = a Yd tan
vz B no L2 S (100)
i = € yos By A + Ao A i
_pé— Ty Y4 tan MaR

in the super-CKM basis, where the §-renormalized) Yukawa matrices are diagonal; =
diag (vy, ivq, iVe »» 9= u;d. The mass matrices in Eq.(100) correspond to the squark teamss

m ass
L3

T S VO (101)

u u d d d
with 5= (e, ;e ;8 jerj& /&) and ;= & ;o ;8 ;& s &)
Our sign convention for the MSSM Yukawa couplings implies thllowing relations be-
tween 2HDM quark masses and MSSM Yukawa couplings in the ctorse
P_
2
Yu; = My, 2 (102)

v sin

In general, the analogous relations in the down sector wa&vobmplex phases associated with
the tan -enhanced threshold corrections in Eq.l (22). In particuRaf. [24], which discusses
the complex MSSM for the case without flavor mixing, relatesi Yukawa coupling to thé
guark mass as

Yo = ; (103)
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renderingy, complex for complexe; in Eqg. (33). Our approach of matching the MSSM to an
effective 2HDM permits different phase conventions, beedihe quark fields in the MSSM and
the 2HDM can be chosen to differ by a phase factor. We can septieel; super-field of the
MSSM in such a way tha{, is real and positive and + e; tan in Eq. [103) is replaced by
i + estan 7§ The (physical) phase af + e tan will then, however, appear explicitly in
the Higgs and higgsino couplings to bottom (s)quarks. thimng3 3 flavour mixing, the
relation betweerf; andm 4, m 5, m 4, is found from Eq.[(2R). Now the quark fields in the 2HDM
differ from those in the MSSM by a complex rotation in flavopase and a particular choice
for the phases of MSSM fields appears less obvious. In péatjcane could render aif,, real
and positive by suitable rephasings of the right-hande@sigids. Note that within MF\, is
still related tom ,, via Eq. [108) in good approximation without such rephasirige analogous
relation for the first two generations reads

7 ma

Yas = i (104)

veos 1+ tan

while in the lepton sector, we have
P_
2 m .
.= with ‘= ¢; ; : 105

Y voos 1+ .tan © ( )
In (most of) the paper we express our results in terms of fenmnasses (i.e. avoiding, ;) to
achieve formulae which are independent of such phase ctiaasen Note that the phases of
and y are physical and no phase convention other than that of thd @latrix matters for ;;
in Egs. [29) and(30). While the phase conventiog.penters the phases i, it drops out from
the MFV parameters, in Eq. (109).

Finally, the quadratic squark soft-breaking terms are eeffias follows:

0 v° sin?
ME = Vigw MEVeyy Jis+ ——— 5T+ M, oos2 (1=2 2sif 4 =3);

2
A 2 v? cog”
+ -

M2 )= ] ) e T+ 5M;oos2 ( 1=2+ sif y =3);

a 2
N2 2 V2 SJ.I'I2 5 )
Mg )= g)+ 5 T+ 2 M [ cos2 sin® y =3;
2
N v? cos” . _
(M d%R )1] = (mé)ij + > ijydijz ijM Z2 cos? SJI'12 . =3;

(106)

wherev?, ,, corresponds to the relative rotation of left-handetype andd-type quark fields
performed when diagonalizing the Yukawa matrices. It d#from the actual CKM matrix,
defined by the rotations that diagonalize the 2HDM mass pestriather than the MSSM Yukawa
couplings, by loop-suppressed (luh  -enhanced) corrections. In particular, within MFV, we
have:

8
1+ otan .
< == 0= y? or (i;9) = @;b);(c;b); (t;d); (t;s);
1 CKM j5 ’ 4 ’ ’ r\“r r\“r ’
Vexu, = S0 j (107)
T vo otherw ise:

CKM jj
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The relations Eq[(107) take a particularly compact formhim texact) Wolfenstein parametriza-
tion, where one has
1+ o tan

A = m AO; = O; = O,’ = O: (108)

Whenever we consider the case of MFV we write

~ Lo . o2 _ o2 . 2 _ _2 . 2 _ 2
Tuy = au, 157 Tay = apYa, 57 Mg =g g7 My =y g; Mg =mg 5 (109)

The SU(2) relation betweemff andMAﬁZL then implies for the third generation:

2
m .
M: = Mﬁ + mi —jl+e3b §+ MZ2C082 1 sif 4 ): (110)

In the strict SU(2) limit (i.e.y=M sy ! 0) One haSMEZL = M i, but for smaIIMfL the term

involving m 2 can be relevant. Also FCN& -e, ; loops vanish (for universat £ ) by the GIM
mechanism up to the Z term in Eq. [11D).

Finally, it is convenient to define the so-called superflavoasis, obtained from a generic
electroweak interaction eigenstate basis by rotating tipesnultiplets) ;, ux anddz such that
the quadratic squark soft-breaking terms are diagonal. @t the corresponding entries by
ms ,ml,andm?. FOrM o5y v, these are just the squark masses, and the computation of
the effective couplings ; induced by heavy squark loops for arbitrary flavour and Cécstire is
greatly simplified. The Yukawa matrices and trilinear teimghis basis are simply written, 4
andT, 4, respectively. They are given in termsf, and T, . as follows:
Y! = U Vo, VY = Uy T = Ul v VY TS = uatavy; o (111)

u u

where the matrices,, U, andU, are defined such that

diagm; )= vamvy; diagm )= U.m UY; diagm] )= UsmiU3: (112)
Assuming MFV, one is allowed to choosg = U, = Uy = 1.

Our conventions comply with the Les Houches accord [59]. drtipular, oury, 5, and T, 4
matrices correspond to a particular choice of the generi¢ and T, 5 matrices of Ref. [59].
Our conventions also agree with those of Ref. [60], excegtttie sign convention of ouf, in
Eq. (I03) is opposite. Besides, alirequals 2, and ourf, equalsa 4 of Ref. [60], respectively.

B Matching of the MSSM on a 2HDM

The notation of Seckl 3 distinguishes between the coeffigierand .. The former quantities
contain the results from the supersymmetric loop correstio the quadrilinear Higgs couplings,
whose tree-level values are given in Hg.[(21). The latteffiodents also include the effect of the
wave function and gauge coupling renormalization constamSect[ B.11.
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In the following we summarize the one-loop matching corget for the quartic Higgs-
coupling constants in the general MSSM. While the calcotatf loop corrections to the Higgs
sector of the MSSM has a long history, see for example [18-&%] a determined reader could
extract part of the matching coefficients below from thesekapthe results collected in this
appendix as a service to the reader are more complete thae tithe literature, capturing the

effects of the full set of mass, flavour-violation, and CBlation parameters of the most general
MSSM.

The general results are quite lengthy hence we start witly,, where all renormalization
constants are included, in the approximation of third gati@n dominance and degenerate soft-
breaking parameterﬁﬁw el = m?andM ., = M ,_,. The quartic coupling constant, is
already present at tree level and as such depends on thenaization scale , at one-loop. It
reads:

:§+ 1 EE-T55 Rt s e % 55 RS s e ‘A
274 16 2 m 4
6y 19 BT+ I TT+ i T T
m2 !
¢ 2
3. . 59 L 3¢ . . m
+ g Pt =+ 6] 2 wF g —
2 3 2 2
ogM )13 3M )M 11 ' M (5M + 14)+ 1
e g jf ‘ ) (113)
4 M 19 12 2 8 (M
, ¢ 2lbgM )M 4)M* M + 5)M i 7
t99 2y —
™ 1) ™ 1¥ 0
¢ 15 5 7 M (1M + 158)+ 5
+ — +
° 4 b9 2 24 (M 17 )
ogM™M )M ((141 43M )M 12)+ 4)
12 M 1) ’

where we have defined the mass ratio = # §_,=j 7. Its renormalization-scale dependence
is cancelled by the inclusion of electroweak correctionthm effective 2HDM. The other cou-
pling constants important in the largen limit are

1 2 (3af ' + 3dital + ¥ F'a?)

> 16 2 6y 4
4 ¢ 2 ¢ ) (114)
g +29°9°+3g° (og™M )+ (og™M ) 2)M + 2)




43

and

(
1 1 o4 1 2 L2 .2 2
62 m2 S@¥) 759 6] 3¥jat+2yJa

t— 3pFawds i f sawdr ¥ Ja
¢ ¢ ¢ ¢ Mz (115)
+ g+ 4P+ 35" —+8 g+ 29°g7+ 35 —=
J 3
)
M2+ 2logM )M + 1

8 M 1y

In the following subsections we quote the results fom the general MSSM. The effective
potentialv in Eq. (I2) must be used with, = ; and the relation between; and ", is given

in Eq. (71); the renormalization constants needed in tHetiom are given in Secf. B.1. We
decomposé; - as

Mooy BT 4 (116)

The tree-level values ™ are given in Eq.[(21). *° and $*, given in Sect B2 and B.3,
contain the contributions from higgsino and gaugino loapsfaom sfermion loops, respectively.
Finally we also list the relevant loop functions in Sect.|BAll these results are given in the
superflavour basis including the most general soft-brepterms.

B.1 Renormalization constants

The renormalization o is related only to the field renormalization af andB, zZ, 5 =

1+ Zy s, if we decouple the sfermionic, higgsino and gaugino cbntions: ¢ = % =2
and g = % =2. The finite part of the one-loop wavefunction renormaliazatconstants of
the gauge bosons are
g 1 " j 5 Mz X m | m g '
o= o5 49T 8log—= + Iog— + N¢ og—2* 4
" 0 0 1 0 0
¢ . X3 2 2
g 1 j 3 mg 1 my 117
zg = - 2bg— + bog—+ - log—+ ( )
16 23 2 6 2 8

4N. _ m2 Ne . mi No . m}
1+_ l+_ 1 .
5 log 2 5 log 2 18Jog 2 ;

where , is the renormalization scale and the soft-breaking terrasaitten in the superflavour
basis (see Appendix A).
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The sfermionic contributions to the wavefunction renorizeation constants of the Higgs
bosons are

1 X h 0 . 0
Zaq = 32 2 3By Mg, Mg, dedeji+ 37 j?BO My, /g Yutiuji
ij .
i
+ Bg Mg vy TepTe,
1 X n 0 0
Zypg = ¢ 2 3 By mqmg, Ty Yo, + 3 By mymg, T, Yy
i X (118)
+ Bg Moy To Yey
1 x b
Loy =

0 . : 0 .
32 2 3By My g, Tu Ty + 33 fBO Mg Mg, Ya;Yg,
ij .
1
i #B° . .
+ JJBg memy Yo Ve 7

while the respective contributions of the gaugino and higgkops read:

11 5 . , o
Za= Tpzg 9W MiFI I+ 3gW (3233 )
Zoa = 153 o'M B 153 I+ 3°M ,BO(M 25T I (119)

1 N Lo
2= 152G oW (#1133 D+ 30 (3,53 9

B.2 Higgsino-gaugino contributionsto — 4

The situation of s = " is particularly simple: The matching correction only inve$ the box
function and ° can be written in a compact form:

o =3¢ M Do M M 553 T P+
29°g% M 1M ,Do (M 1M 555§ P+ (120)
g® MDDy MM FT )

if we use the loop functions defined in Séct.|B.4.

We find for ° = 1°;::: °; 2o, e

o =gt agt @D, MM oF FF Pt Al MM o3 F3 P+
g al+ alr, M 1M 45 FF P+ a0, M M L5 FT ) + (121)

gOA aio+ aED% ™ ;M ;3 33D+ 3?54 ™ ;M3 353D



where the coefficients, ; : : :af depend on the indedabeling ;in Eq. (116), which we suppress

throughout this appendix. The coefficielag‘f” are given in Tablel4, while

8 3 8 1 8 1
< 3 < 3 < 3 10 5
as = 0 ; a2= 1 ag)= 0 for 4
0 0 0 sto 4

a, ay aJ al a? a?
1 M T 2 (MM, + M M) 1 ML 2
2 M7 2 TM M, + M M) 1 M7 5
3 3j32+§®4232 % 2jf+%(M1M2+M1M2) 1 ijf%j"llf %
4 333 25| 2 237 MM, MM, 3% 0
6 3 M, 0 ™M1+ M,) I 0
7 3 M, 0 ™M1+ M,) I 0

Table 4: Coefficients entering™— °, ° and ¥°in Eq. (121).

B.3 Sfermion contributionsto — 4
The sfermion contribution to, - are products of loop functions and flavour dependent coeffi-
cients if we sum over the generation index of the internaisfens. For” s our results then take
the simple form

sfem _ qijkl v e ijk1 e . .
- =d;" Dy I, Mt o, ;T Ty + d, Dy Mg, Mg, Mg, iMrg, +

(123)

ijkl, . . . .
dy Do mo, Mo, My My ;

where the slepton contribution is containeddp*" listed in Table[b andi), comprises the

2 4
ijkl
dl

1 IﬁkiTeleeijeh‘
2 j ﬁYeijeﬁYekiYelj
3 j ﬁTehYekj Teleeki + TekiYelj
4 j :j?TehTekiYeijelj

2
5 T, Te, Yo, Yo,

Te, Te,To, Yo,

j fTeleekiYeijeh

Table 5: Slepton contribution toi== — == in Eqgs. [128),[(125), and (IR8).
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- o

L 3Ty, Tay Ty, , T, 33 H¥u, Y, Y, Yo,

2 3] é_‘]deijhdeinlj 3T TuleunTUjk

3 37 ﬁTthdkj leijki + Tdkinlj 33 ﬁTujlYuik TUjkYuil * TuilYujk
4 37 ;’erthkinijdlj 37 fTuleuﬂYuikYujk

; 3 2Ty, Ta ¥y, Yq. 3 P T, Tu Yo, Yoy,

c 3 Ta,.Ta, Ty, Yo, 35 fTuﬂYujkYuikYujl

7 3 3Ta,Ya, Yy Yo, 3 ToaTuy Tuy Yu,

Table 6:D , squark contribution to $*™ — =™ in Eqs. [12B),[(126), and (1P8).

squark contribution (Tablg 6). Only, receives a contribution frorm;’*:

dijkl= 3(TdkiTukl ] adeiYukl)(Tuledji j %]‘Yujleji) fOI’ 47 (124)

while a;* = ofor with i& 4. The contributions to the matching coefficients depend en th
Yukawa couplingsr..,, 5 of the charged leptons, the up-type quarks, and the dowa-dquarks
as well as on the trilinear soft breaking terms, 4, defined in the superflavour basis (see Ap-
pendix A).

We write sferm= st 4+ %9 “and find for the slepton contribution

1 4 = b]. ij + bZYeeii ij + ijeeij Yeeji B 0 14 e; ;m €5 +
Q ij + b5Yeeii ij + b6Yeeij Yeeji B 0 14 lj_ ;m lj +
aj fYe Yo 55+ @Te. To, 15+ &I FYe ¥ Yeoi+

Ski~Teps Sk i Sk 5

(125)

C4TekiTeijeeij CO mei;m'ej;mlk +

&3 FYe Yo, o+ GTe T, 5+ &3 FYe Y Yoo+

C8TejiTekiYeekj CO m'ei;m'lj RO ’
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while the squark contribution reads

sq .
1 4= g+ BYaq, 5+ ®Yaq,;Yaa;, Bo Mg g, +

QOYduinudjiBO mdi ;muj +
b].l ij + QZYuuii ij + b_L3Yuuinuuji BO mui ;muj +
by 35+ bisYaa, 15+ DieYuuy 15+ D7¥ag; Yaa, +
b_L8Yuuinuuji+ Q9Yddinuuji BO in;mQj +
CoJ szdkinki i+ CoTa Ty, 5+ Gl jZdeinijddiﬁ

C12Ta, Ty, Yaay; Co Mg iMrg Mo, +

C3J szdtidji ik + Ca]J j?Ydtidkindkj + CsTay Ty, skt
Ce6Ta;, Ty, Yaa; + @7Ta;, Ty You, Co Mg iMoo, + (126)
@8Ydtiujdeuikj f @8Yujdetiudkij f+

+ Ty, deiYUdki + clgdeiTujdeuik Co Mrg jMrg, My, +

God FYuy Yo, 5+ G03 FYu, Yy, Yau, + 0aTu, Ty, 5+

Cop Ty, T Yuuji+ 3Ty, T Yddji Co in;mQj;muk +

Uik U5k Uik U4k
4] jZYuinuij K+t &s5] jZYujkYuinuukj + CeTuy Ty, st

C27TuijTuikYuujk Co in;mUj My, +

i3k 1 . . . ijk1 . . .
d;" Do Mo, e jIY g jY) + d, Dy Mg, Mg, Mo, iMrg, +

ijkl . . . ijkl . . .
dy Do Mo, Mo,y My, + dy Do Mg g, Mg, iy,

Here we introduced shorthand notations for the producteroffukawa coupling matrices:

Yay, Yy 7 Yayy xcﬂYy{j ; (127)

wherex;y = e;u;d and we sum over the internal indexThe coefficient,, c,, andd** for
each ;;::: ,are givenin TableS|5] 6] 8, ahd 9.
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6 7

o 2
0
c = 51
S 1 0
g 2o g L d
o 1 0

o 2
0
< 3 =
J 3 0
S| 4 3¢ |1 oF+ 3P
J 3 0
gl i3 ¢ |:9d 34
&, 0 3
C?l 902 é?
&, 0 3

Table 7: Coefficients of =™ and &= in Eq. (128).

We finally give the slepton and squark contributions tg:

Zf,:m = C? TekiYeki ij + %0 TekiYeijeeij Co It o, ;m'ej it +
& TeyYe, s+ G TeyY Yoo, Co Mreimymy +
< To Yq, 157+ < TaYa, Yaa; Co Mg jmray o, +
Cg dei djs &+ Cg deinkindkj Co Mg, Mg Mg, +

(128)
0 0
S Tuj.kYUj_k ij * Cpo TUjkYujkYUUji Co Mg, Mo, My, +

0 0 . .

Ci Tuy Yoy skt G2 Tuy Yy, Yuuy Co Mg My My, +
ijk 1 . . . ijk 1 . . .

d "Dy I o, MY o jI jI0F Y, + d,; Dy Mg, Mg Mrg, jMrg, +

ik . . .
d; lD 0 Mg, /Moy /Iy, 7Yy,

where the coefficients’ andd’’** are given in Tablels| 5] 6, afdl 7.
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1 2 3 4
o” o” o”
b T T B 0
¢
b g 0 = 0
b 1 0 0 0
et & |2 4 & | g+ <
2
b| 2P d 0 A S =
Iy 1 0 0 0
@
o 0 g 9702 0
(o) g% 0 = 0
3 0 0 1 0
Cy 2 0 0 0
% 0 RCHIEC S S S A
2
| g d 0 Lo og | 2
(6] 0 0 1 1
G 2 0 0 0
Table 8: Slepton loop contributions tg™™ ::: $=™ in Eq. (I25).

B.4 Loop Functions

In the UV-divergent loop functions we set= (4

_i
(4 y

i
WBO (mq;my)

Ag(mq)

i
5Co (m1;mo5m3)

4 )
i
WDO (mq;m,;ms;myg)
i

(4 )2W

(mq;m3)

[ on ™ ol ™ oul ™ onl
onN O N o N O N O N

0}

@

0}

0}

@

D )=2. The loop functions are defined as

& q 1
, 2 P mf

& q 1 1
; 2 PP mgf m

d g 1 1 1
, @ PP mig migf mi

& q 1 1 1 1

2 )D%Z miff mif mig mj
d d’ g Tri@ k)gl
dk? ., (2 P (@ k¥ mi) md)



50

1 2 3 4
¢ ¢ ¢
b £ £ 1, 0
o8 ° 0 = 0
o 3 0 0 0
big 0 0 0 3
g g g
b 5 5 = 0
by, 0 2g” g 0
b3 0 3 0 0
ba| 5 o & |4 o F | 4 9%t+ 2g*
bs | 1 32+ o 0 13§ | i
b 0 13 4 Lo 3¢ | 2P
by 3 0 0 0
big 0 3 0 0
big 0 0 0 3
?
s 0 < %02 0
Cio g° 0 o 0
Ci1 0 0 3 0
Cr2 6 0 0 0
Ci3 0 1 39%+ g02 % 39° + géZ %g2
Cia 0 0 3 3
Cis % 39° + 902 0 % 39 9§ %gz
Cis 9 0 0 0
17 0 0 0 3
Cig 0 0 0 3
2
as | 3 9% 34 0 13 ¢ Z
<0 0 0 3 3
C1 0 % 397 é? % 902 39 %gz
2 0 6 0 0
&3 0 0 0 3
Coa 24 0 g% 0
s 0 0 3 0
e 0 29° g 0
27 0 6 0 0
Table 9: Squark loop contributions tg™ ::: $=™ in Eq. (126).
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These functions read:

Ag(mq)= —+ml+mfbg

1 i m 3
Bopmimyo)= —+ 1+ 5 5
my m3
2
4 4 2 2 m
; mj; m,+ 2mim?log m?
Bo(ml;mz): 3
2 (m? m2)
1 2
2 2
m’mslbg —% +mimilg =5 +m?milg -+
N - M ne it (130)
CO(mllm21m3)_ 2 2 2 2 2 2
(m1 m2)(m1 mg)(mz mg)

fmimimimig
+ cyclicpermutations
b a

. ) ’bclog 2 aBclbg 2 + bed’log £
m{;Moma3;my) =
o e @ b@a o@ dbd b d d)
faprcdg
2 2
0
W mymz)= - 2lbg —
m 7
mg (ZmS 6m%m§) m‘ll 6m§m§+m§
bgp m? mi) m?2 m2)
1 1 2 1 2

2
Dymimomamyg)=CoMmyma;myg)+ miDgm;my;ms;my)

2 2
Dymimomsmg)=Bomsmy)+ mi;+m35 Compmsimag)+ (131)

4
m ;Do ;my;ms3;my)

A further loop functionH ,, is defined in Eq.(34).

C Renormalization group and bag parameters

The standard-model contributionto B mixing involves the operat@’** = (b, o )k o)
of Eq. (8). The main new supersymmetric contributiorBto B mixing presented in this paper
comes with the four-quark operatQrs™ = (g )l q ) with g = dorg= s, see Eq.[(R).
O 7 mixes under renormalization with

&= W )Kg) (132)

wherei;jare colour indices. The operataps™" and@&;"" are widely studied in the context of
the width difference among the two mass eigenstates inghe B mixing system and the CP
asymmetryag in flavour-specific decays [61, 62].

Yet the next-to-leading-order (NLO) anomalous dimensibase been calculated for an
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equivalent operator basis in Ref. [26]. These operators,

o= gl 9);

b g)x *R);
xa, )l k)

oSt = lma )la,)
SLL _ .
Q5 = & a, ) (x a )

ORR = b @)l @)

QSRR= I )l )
oSfR= B &)l &);

LR
Q1

LR
Q

(133)

are split into five sectors (VLL, LR, SLL, VRR, SRR) which segi@ly mix under renormaliza-
tion — note that we define = 2 [ ; 1 The anomalous dimensions of the VRR and SRR
sectors are the same as those of the VLL and SLL sectors,atdésge. To define the renormal-
ization scheme for the NLO we first note that we useMh&scheme with anticommuting; as

in [26]. Then we must specify the definition of the evanesogm@rators which enter the NLO
results as counterterms. In particular for the SLL secterdlianescent operators of Ref. [26]
read:

EPY = ma mq v 300 05
Y- B @ &g @i o 134)
EStt- 1 g b g + ( 64+ 96 Q3+ ( 16+ 8 Q3 (
EfLL: 8 g B g 60t 4 ( 16+ 16 QS
where we use (4 D)=
The operator basis
QWL — Wit
0 =017
o5% =05
qu_: QfLL;
ot =" = g g); (135)
QVRR _ o VRR .
Q?RR Q?RR,

QSFR= @F% = W W)

which we adopt in this work agrees with the one of Eq. {133eexkdor the SLL sector and the



53

SRR sector. The evanescent operators are defined as in R&f61]:

g0 g+ 81 &

o=
- g g+ sa gt

SLL
= (

B
(136)
B

The hadronic matrix elements in this basis are parametiizeédrms of ‘bag’ parameters
BT, BFMEO and®itt Odefined as

_ o2
BRI ()Pai= JM L £ B ();

— 5

BRI (IBel= M e E2BIOC); (137)
— 1

BB 97 () Bai= Mg, LB

Here is the renormalization scale at which the matrix elemenbisjguted ands, is theB
meson decay constant. Whiig, exceeds; , by 10-30%, no non-perturbative calculation finds
any dependence of a bag parameter on the flavour of the lighhe& quark. In the vacuum
insertion approximation the bag parameters equat™ ( ) = 1 andB7*2% )= BL0( ) =

M =m,( )+ mq( )F. Lattice computations determine the matrix elements awadcale
around 1 GeV and results are quoted foe m, @ ). In order to use the lattice results in our
calculation we need the renormalization group (RG) evotutf the bag parameters to the high
scale ,, which is set by the masses of the Higgs bosons exchanged in oBr mixing diagrams.
The matrix elements computed on a finite lattice are considdeontinuum QCD by a match-
ing calculation. This lattice-continuum matching is onlgamingful beyond the leading order
of perturbative QCD. Thus the dependence of the bag parasnetethe chosen (continuum)
renormalization scheme must be addressed: The NLO anomédimension matrices entering
the RG evolution must be defined in the same renormalizattberae as the bag parameters,
so that the scheme dependence properly cancels from phgbsarvables. The NLO anoma-
lous dimensions have been calculatedddr-" in Ref. [63]. As said previously, in the case of
(©$tF ;&5 ) the NLO anomalous dimensions have been calculated for thigagnt operator
basis(Q 5 ;0 5 ) with the evanescent operators of Hq. (134) [26].

The purpose of this section is twofold: First, we presentttaesformation of the results of
Ref. [26] to the(Q $&* ;&7"" ) basis and the scheme corresponding to the evanescentarparht
Eq. (136), for which lattice groups quote their results. 3&rmulae are useful beyond the need
to evolve the bag parameters given at m,upto =  : In particular lattice groups need to
evolveB 7% )and®st- 9 ) from a scale around 1 GeV up to= m . Second, we exploit a
heavy-quark relation among the bag factors in EqQ.(137) &osn the numerical prediction for
B SLLO( ) entering the SUSY contribution® B mixing. While constraints from the heavy-
quark limit of QCD have been used to improve the predictiams f anda & [55, 61, 62], they
had escaped attention in studies of new physics contribsitoB physics observables so far.
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C.1 NLO scheme transformation formulae

We decompose the anomalous dimension matrix in the usuahway

2

s( ) (0) s( ) 1) 3
: 1
1 1 + 0 (3) (138)

The NLO correction *’ has been computed for the basiss " ;0 5“*) in Ref. [26]. In four
dimensions it is related to the badis (1.35) by a simple Fibentity:
SLL SLL
g - 2 zeg 910 LRy, (139)

SLL SLL
@1 Q 2

whereK is given in Eq.[(1411) below.

Yet in D dimensions our change of basis involves a rotation of theatpebasis — including
the evanescent operatais= (£ 7" ;ES"")" —and a change of the renormalization scheme. We
follow Ref. [64] and write the rotation

h i
g=R §+WE ; =M U§+ 1+ UOW B ; (140)
with
a 1 0 A 0 0 A L1 A 8 0
R = ; W o= H = 4 & ; M = : 141
s 2 8 0 v 8 4 1 (141)

The information on the definition of the evanescent opesaioiEgs. [13¥) and_(186) is con-
tained in the matrice§ andM . Now Eq. [14D) corresponds to a finite renormalization with
renormalization constants [64]

A (1;0) N N10)

Zog =K Wz

A (1) A
EO Zog +WZ

:I_ AN\ A N\
2 O g ROt (142)
While the one-loop anomalous dimension matrix is just exathe two-loop anomalous dimen-
sion matrix undergoes an additional scheme transformation

A

o _ g o 1,
14

h i y (143)
A AN A A
(1):R (1)R 1 ZQ(Q,)I. (0) 2(0)ZC§Q,);

with the one-loop operator renormalization constants

A7) 0o 2 A1) 2 = A1) 3z 2

) 2 . ) 6 . N 12 48 .

Zon = g g Zop = 16 % i Zpg = % 0 (144)
3 3 3 12

9Two more evanescent operators (calleg" andE$*" in Ref. [26]) must be specified to fully define the
scheme of the calculated®’. This information enters the matri% in Eq. (I41). We choose to adti* and
E 3" also to the evanescent operators of Eg.1134), so that wengaadtice work with the change of basis defined

in Egs. [140) and (141).
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We can now calculate the new two-loop anomalous dimensiatmixma from the NLO
anomalous dimension matrix of Ref. [26],

0 1 0 1
o L 1459 74 3% 1.
ng 6 & (1) :E 9 ? 6 54 & (145)
34 A [26] 6332 584 2065 394 A
40 = 00t 0 2T ¢
3 9 9 9 27
We obtain
0 g 4t O 260 g8 4 g 1
B 3 3¢ B 53 Tt 3T 5fc
o_ B 3036 w_ B 3 27 3021 & (146)
16 32 A 242 76, Lo 332, A
3 27 27

Here £ denotes the number of active flavours an@ coincides with the result in [61]. As a
check we have calculated the result of £q. (146) also in amdifft way: It is possible to define
evanescent operators such that the Fierz identity holdth@®oone-loop matrix elements. This
choice fixes the definitions of both?“* andk 5“* in Eq. (136) and of the evanescent operators
on the (Q {** ;0 5"") basis. (One of the latter operators equalémes a physical operator. Its
impact is equivalent to a finite multiplicative renormatioa of 0 $"".) In this approach one can
simply rotate  in the same way as® in Eq. (I43). Finally the result is transformed to the
scheme of Ref. [26] using the scheme transformation forrolRef. [65].

Next we calculate the matrices governing the RG evolutiothén(Q 5" ;&5 ) basis. The
bag factors at the scale, are obtained from those at the low scale= 0 (m ) via

0 L1 0 .
SBMEO( ) 5B O 1)

@ A = U(p n)t € A (147)

B ) B )

In the spirit of [27] we write the evolution matrix as

U(p;n) = U@ + U ; (148)

whereU @ is the LO evolution matrix and the NLO correction reads
Uu() = J:09() U () (149)

The2 2 matrix & is calculated from the anomalous dimension matrij66]. We only need
Js, since we run with 5 active flavours to the scale For applications in kaon physics one also
involvesJ, andJ;. We quote all three matrices here, so that the formulae of [R&f can be
easily extended to the - ;&$"" ) basis:

5 - 1474  0:707 R 0964  1:452 R 0652  2:597 €150)
> 0306 5350 " % 0375 4982 " Y 0421 4:804 ¢
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We quote handy formulae for the five-flavour evolution matsixnilarly to Ref. [27]:

(0) 0:9831 O:2577 0:6315 n 020169 O:2577 0:7184 .

Upes () = 00644  0:0169 0:0644 0:9831 (151)
The NLO correction reads:
. (- 14040 13707 03680 2:0731 06315
£=5 06454 + 0:0898 0:1692 + 0:1358
0:0704 0:1037 1:0746 + 1:3665 0T L (152)
03395 0:3958 5:1807 + 52141 )

In our numerical analysis we drop the terms which are linearin the two matrices in Ed._(152),
because they are scheme-dependent. The scheme depenidérese terms cancels with that of
the NLO QCD corrections to the B mixing diagrams with SUSY Higgs exchange. Yet these
QCD corrections are unknown.

C.2 Hadronic matrix elements and heavy-quark relations
The three bag factors} =%, B $%=°( ), and&$“*°( ) obey a heavy quark relation [62]:

2( )BT+

()BT 4 0 9L (153)

BfLLO( L) =
mp

Gl
ol

Here ,( )and ,( )comprise NLO QCD corrections [55, 61]:

s( b) l6log—b+8 , Jo)= 1+ s( b)
4 my 4

26
8Ig—2+ =— :(154)
my 3

1(p)=1+

These values are specific to the definition of the evanesgamators as in EqL(186). As men-
tioned in Sectl_Cl1, this definition allows to maintain thédity of Fierz identities at the loop
level. Such a definition is preferred, if the bag factors aemant to parametrize the deviation
of matrix elements from the vacuum insertion approxima(igtA), because the calculation of
matrix elements in VIA approximation involves a Fierz triorenation. In particular the choice
in Eq. (136) is crucial for EqL(153) to hold in the limit of ai¢ge numben . of colours [61].

The bag factoB ;' "" is very well studied in lattice QCD, so that it is worthwile study the
constraint on the other bag factors when Eqg. {153) is contbwni¢h lattice results fors Y -*.
Indeed, one can use Ef. (153) to pinpoint the ratio

BfLL O(mb) :@TLL O(mb) 1

—— = 093 023 ————— 023 005)y————"— 155

B (my,) ’ By M (my) Ho BYM (my) (159)
quite precisely, even ;=" is only poorly known, because its coefficient in Hq. (155)s8.
The last term in EqL(155) quantifies thecp=m ,, corrections, see [55] for details. The lattice
results of [67] have been combined in Ref. [55] to

BY"my, = 085 006 and B""°m,) = 141 0:12: (156)
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Inserting these values into E. (155) yields

BME ’m 1)

which is consistent with the direct determination
B O%my) = 134 0:2 (158)
from the lattice [67].
We are now in the position to accurately predict the bag faabthe high scale,. Choosing

h=m. @)= 164GeV, M ;)= 0:118%andm,@m,)= 42GeV and using Eqs._(157) and
(158) we find

B %m ) = 162B"°m )+ 00185 %m )
= (254  0:43)B/""(my)+ 001
B2 0%m ) = 129BS%m )+ 05485 Om )
= (203 040)B/"*@m)+ 077 007 (159)

Here we have omitted the scheme-dependent terms propalrtion in Eq. [I52). The small
(2;1) element ofu”. in Eq. (I51) ensures tha'" °m ,,) is inessential foB $** °m ). One
realises from Eq[(159) that the uncertainty of the higHesbag factors stems almost completely
from the error of the lattice result fa& " (m ,,).

Switching finally to thep’s defined in Eq.[(B) we get

5
Pt = éBfLLo(mt)= (159 0:08)B""my,) 001 = 136 0:12

P/t = BYYm,) = 083BY*my) = 071  0:05: (160)

In the last line the full NLO result of [63] has been used. Wa'tlbeedE " = B3 Om )=8 for
our analysis. Parity ensures thiai™" and the chirality-flipped operatari*® defined in Eq.[(I7)
have the same matrix element, iEg"* = pSth,

Finally we compute> >* using the formulae of Ref. [27] with the bag factors of Betit et
al. [67]. This time the conversion between the bases of Ré{.dnd Ref. [67] is straightforward,
since the renormalization scheme used in Refs. [26, 27krsthe Fierz symmetry and lattice
results are already quoted for this scheme. The result is

P," =32 02: (161)
The number in EqL(161) is significantly larger thef® = 2:46 quoted in Ref. [27], because our

value form ,, is smaller and the lattice bag factors are larger than one.€fitor in Eq.[(16/1) does
not include the systematic error from the quenching appnaxion.
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D Trilinear Higgs couplings

The trilinear terms of the effective Lagrangiantah = 1 introduced in Seck. 213 read
(

+ b
Vi = P p—éru(r§+ G+ 2h F)+ 2 snHHg

©
<
N

|
+ 4 2rnh,F+ hih,hl + h.c.

. (162)
0 0 :~ 0 + y 0
+  shy p—éhd (rn+1G7) hh, + cHIHg)hy

#)
3 1 p_
+ g g Crie+inGl+ S@OP+ F O 2mhih, +he

Again, the first two lines respect the(1) symmetry introduced in Se¢t. 2.3, while the last two
lines break it, and the breaking is proportional to looptioeld couplings. Finally, the quartic
Lagrangian is obtained from the quartic terms in Eq] (12) ddys$itutings , ! (n ;91—5 9yand
Hq! () ; &) Alsothere,only 5, sand ;break the symmetry.
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