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A bstract

W e study the avor<changing quark-graviton vertex that is induced at the one-oop
level when gravitational interactions are coupled to the standard m odel. Because of the
conservation of the energy-m om entum tensor the corresponding form factors tum out to
be nite and gauge-nvariant. Analytical expressions of the form factors are provided
at leading order in the externalmasses. W e show that avor<hanging interactions in
gravity are local if the graviton is strictly m assless w hile if the graviton hasa sn allm ass
Iong-range interactions inducing a avor-changing contribution in the New ton potential
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appear. Flavorchanging processes w ith m assive spin—2 particles are also brie y discussed.
T hese results can be generalized to the case of the lepton-graviton coupling.
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1 Introduction

G ravity is the only fundam ental nteraction which is uniersally coupled to allm atter elds.
U niversality is then guaranteed by the treelevel coupling of thegraviton eld w ith the conserved
energy-m om entum tensor. H owever, when quantum corrections are taken into account, m atter—
coupling universality could be spoiled.

Tt is known that quantum corrections to the graviton-m atter vertices (w ithout gravitons in
the Joops) are nite ifthe underlying theory ofm atter elds (in at space-tim e) isrenom alizable
1,12,3,4,5,6]. This rem arkable property is just a consequence of the W ard Identities (W I) that
result from the energy-m om entum conservation [3]. T herefore, (m atter) radiative corrections to
the graviton-m atter vertices can be consistently calculated in the fram ework of gravity coupled
to the standard m odel (SM ) theory.

Long ago, Berends and G astm ans evaluated the nite corrections to the graviton-photon
and graviton-electron vertices due to virtual quantum electrodynam ical (QED ) processes at
the one-loop ]eveﬂ [0]. In the lJatter case the corrections found lead to a m odi cation of the
Newton’s law . In particular, for an electron (or any charged particle) in a gravitational el
of a stationary mass M , they found a repulsive correction term proportional to the classical
radius of the particle, r. = =m.,or

GyMm,

V (r) - 1 T ; 1)

where Gy is the Newton constant, isthe nestructure constant, and m . is the m ass of the
electron. At m acroscopic distances (r 1) them odi cation of New ton’s law induced by the
1=r? tem in Eq.(l) is extrem ely an all, O (10 ??) at the surface of the earth [G].

The term 1=r® has an infrared origin as it can be sin ply understood by looking at the
singular behavior of the oneldoop Feynm an diagram s in the m assless %in it me ! 0). The
correction to the treelevel electron-graviton vertex is proportional to d=m 2 for negative
an allvalues of f , where g is them om entum transfer. T his is due to the fact that the photon
has a treelevel coupling w ith the graviton. T hen, the diagram where the extemal graviton is
attached to two virtualphotons in the loop containsa term w ith a pow erlike infrared singularity
asm. ! 0. Thus, after Fourier transform ing into coordinates space, this contribution gives rise
to a 1=(r’m . ) correction to the N ew ton potential. N otice that there is no counterpart of such
e ect In QED . Indeed, due to the absence of selfphoton interactions at treeJevel, the Coulom b
potential is protected against 1=r? corrections of order O ( ).

T he sam e calculation was previously done by D elbbourgo and Phocas-C oan etatos in [1l], but it was incorrect

due to the wrong Feynm an rules adopted [0].



It is rem arkable that, although derived in the fram ework of quantum eld theory, the 1=r?
term in Eq.(J) hasa pure classicalorigin and itwas rst obtained on the basis of purely classical
considerations in R ef.[/]. Tndeed thisterm arises from the fact that the totalm ass of the particle
is not concentrated at a point but is partly distributed as eld energy in the space around the
particle [1].

W hen gravity is coupled to the weak interactions the one-loop radiative corrections to the
graviton—ferm ion vertex w ill include also the virtual exchanges of the weak gauge bosons W
and Z2 . At themoment, a com plete study of these e ects is still m issing. T hese corrections
are expected to give an all contributions in the low energy lim it and furthemm ore to be nfrared
safe, being the W and Z massive. T herefore, no long-distance m odi cations in the New ton
potential are expected from the weak radiative corrections.

A peculiar aspect of the weak interactions is that they can induce (at one loop) avor-
changing neutral currents (FCNC ) processes In the ferm ionic sector. Since FCNC are absent
at tree-level, they arise as a pure quantum e ect. Analogously, avor<hanging (FC ) graviton
vertices are not present at the treelevel. H owever, when gravity is coupled to the weak inter-
actions, quantum weak-corrections can induce an o -diagonal contribution (in avor space) to
the energy-m om entum tensor. T hese e ects are the spin2 counterpart of the standard spin-1
FCNC contrlbution in the SM .Because of the tensorial nature of the coupling of spin—2 particles
to them atter elds we will refer to these e ects as tensorial avorchanging neutral currents
(TFCNC).

The ain of this paper is to com pute the form factors of the TFCNC and analyze their
gravitationalcouplings. W e perform the exact com putation of the one-loop FC ferm ion-graviton
vertex, ie. retaining the full dependence on all m asses and m om enta. W e Investigate under
which conditions these e ective couplings could induce m odi cations in the N ew ton potential
discussing both cases ofm assless and m assive-graviton exchange. W e consider a few applications
of these results in the case of m assive spin—2 particles. In particular, we analyze the FC decay
f1 ! £,G,and thedecay G ! fif, where G stands for a m assive spin2 particle. O ur results
can be easily generalized to the lgptonic sector with m assive D irac neutrinos, provided the
CKM m atrix of the quark sector is substituted w ith the corresponding leptonic one.

T he paper is organized as follows. In section 2 we specify the Interaction between the
SM elds and the graviton by suitably choosing a gauge that avoids the appearance of cubic
vector boson-G oldstonegraviton interactions. W e analyze the general structure of the o —
diagonalm atrix elem ent (in avor gpace) of the energy-m om entum tensor of ferm ion  elds,
derive the corresponding W ard-identities, and provide the analytical expressions of the relevant
form factors. T he analysis of the gravitational couplings of the TFCNC is carried out in Sec. 3.

In Sec. 4 weanalyze a few applications of these results. F inalky, Sec. 5 contains our conclusions.



2 Flavor-changing quark-graviton vertex

W e are going to evaluate the interaction between the graviton and two generic ferm ion states
w ith di erent avor or the o -diagonalm atrix elem ent of the energy-m om entum tensorT  (x).
In particular, working in the basis of m asseigenstates for the ferm ion  elds, we are interested
In calculating the follow Ing m atrix elem en

i piT  (0) Fui; (2)
where the lnitial and nal states are assum ed to have m om enta p; and p, respectively w ith
P = m ? and spinorial wave-functions u; (p;) (i= 1;2) while the fourm om enta p; g are de ned
asp=p+ e andg=p; p. Itisunderstood that initialand nalstateshavedi erent avor
and m ass. The relevant Feynm an rules which are necessary In order to calculate the above
m atrix elem ent, can be easily derived by looking at the graviton couplings w ith m atter elds.

T he Interactions between gravity and the SM elds are assum ed to be described by the
action integral 7
s- a'x" gl ig ] 3)
where the SM Lagrangian, L gy , is thought to be written In term s of them etrdic tensorg  and
for the ferm ionic part using the vierbein form alism . M Eq.(3) g= detg and Lgy inclides the
classical term and the gauge- xing function in the R gauge (the term w ith the ghost elds is
not relevant for our discussion). To obtain the interaction of the graviton with the SM elds
we expand in Eq.(3) themetric g around the atoneasg = + h , retaining only
the rst term i the graviton eld where = (+1; 1; 1; 1), =pm,andh is
Interpreted as the spin2 graviton eld. W e notice that, if in the gauge- xing term in L gy the
standard tH ooft gauge- xing function is taken, vertices in which a graviton el induces a
transition between a vector boson and its unphysical G oldstone boson counterpart are going to
appear [8]. In order to avoild the appearance of vector oldstonegraviton interactionswe nd

it convenient to use a m odi ed version of the "tH ooft gauge- xing function, or
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that di ers from the standard one by the tem SH proportional to . In Eq.{4) isthe gauge

param eter, g;W (gO;B ) are the coupling constant and elds of the SU (2) (U (1)) group, 2

Y Thede nition of T corresponds to the Feynm an rule for the o -diagonalm atrix elem ent of the energy-
m om entum tensor.
? The addition of a term proportional to the Christo el sym bol in the gauge- xing function of a gpin-1



are the Paulim atrices,

=-g (@g +@g Cg ) (5)
is the Christo el sym bol, and
0 1 0 1
+ 0
0_ @ 1+i2A hi= @ VA (6)
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with ; thephysicalH iggs ed, , and , theunphysical counterpartsoftheW * and Z vector
boson and v the vacuum expectation value.

Atthe rstorder in the expansion, the interaction Lagrangian for the treelevel graviton
coupling to SM  elds, is

Liwt= —T h (7)

where T  is the energy-m om entum tensor of m atter elds obtained from the Lagrangian in
Eq.(3) w ith the gauge- xing function given n Eq.(4). Them assscale M » appearing in Eq.(1)
is the reduced Plank mass de ned as M, 2= . From Eqlll), the Feynm an rules can be
derived. The ones, in the R gauge, relevant for our calculation are collected in Appendix A .
Feynm an rules for graviton interactions w ith vector bosons, in the unitary gauge, can be found
in Refs.[9,10,11].

Because of the VA nature of the charged weak currents, the exact expression of the o —
diagonalm atrix elem ent (in avor gpace) of energy-m om entum tensor T has the Hllow ng
Sstructure

. Gy *
! =Fp_§i=1fi(p;q)uz(pz)oi Uy (Pr) ®)
w ith
0O, = ( p+ p)P
0, = ( g+ g)by
0, = M,
0, = ppM,
Os = ggqM,
O¢ = (Pg+ap)M,
0, = M

m assive particle was considered in Ref.9]. However in that work the m echanian of m assgeneration for the
spin-1 particle was not addressed.



Og = ppM

Oy = gaqM

OlO = (pq +dp )M
mqm

Op = — ( p+ p)Pr
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Op = 2 g+ g)Pr 9)
my

wherePp g = (1 5 )=2 and M m Py m,Py, .

T he form factors appearing n Eq.({8) are not all ndependent. Indeed, due to the conserva—
tion of the energy-mom entum tensor@ T (x)= 0 (orequivalently @ T (x)= 0 ), a subset of
Independent form factors arise. In m om entum gpace, this relation is transhted into

g 3T (0) ji= 0; (10)

w hich reduce the num ber of form factors f; (p;q) n Eq.{8) Into an iIndependent subset. A pplying
Eq.(I0) into the righthand side (rh.s) of Eq.(8), we get the follow ing set of W ard dentities
W I)

e afip;a)+ I = 0;
(
f2(pia) + Cfs(Pia) + (p afip;q) + ;2 C’Plz(p;q) = 03
W
(
(o aMip;a)+ oL (Piq) + p—2€¥u(p;q) = 0;
2‘InW
2+
£+ £1;a)+ L E;a)+ ©®  AfPEiQ) Wflz(p;q) = 0y
W
2+
f1(p;a)+ (o a¥ip;a)+ Lo (p;a) %fll(p;q) = 0;
W
e qf@E;a)+ L) = 0: (11)

T hese relations provide a strong check of our calculation in term s of Feynm an diagram s.

In the case of Iight extemal states, the dom inant contribution to T comes from the O 1
and O, structures. Indeed the O 5{0 15 structures have a single chiral suppression while O 1; and
01, are double chirally suppressed.

T he interaction of the graviton with two di erent ferm ion  elds is described at the lowest
order by the one-loop diagram sdraer h Figl. Tobede nite we assum e the external ferm ion
states to be quarks of di erent generation, then them ixing m atrix entering in theW * and *
vertices is the CKM m atrix. W e evaluated exactly, nam ely kesping the com plete dependence

¥*Feynm an diagram s have been drawn using JaxoD raw [12]



Figure 1: The onedoop Feynm an diagram s contributing to the avor<hanging quark-graviton vertex
in the unitary gauge. In the R gauge there is also the contribution of diagram s where the W boson
is replaced by its unphysical counterpart.

on the p;gm om enta and on the Intermal/extermal m asses, the Feynm an diagram s n Fig.l to
obtain the form factors f;(p;q) appearing in Eq.(8). The calulation has been perform ed in
the "t Hooft¥Feynm an gauge ( = 1) and crossc<hecked in the unitary gauge. W hile in the
"t H ooftFeynm an gauge the result is nite before the application of the G M m echanisn , in
the unitary gauge the G M is needed to cancel som e residual divergent termm . From our result
we explicitly veri ed all the W I reported in Eq.(11). It should be pointed out that to satisfy
theW Ithe -dependentterm in theW *W graviton vertex (see Eq.(42) in Appendix A ) was
necessary.

T he com plete result is too long to be reported, however; since we are m ainly interested in
analyzing thee ectsofthe TFCNC in low energy processes, we report here the leading termm of
the form factors fi(p;q) ha?=mZ and (p qg)=f expansion of the m atrix elem ent, keeping
the dependence on the Intemal ferm ion m asses exact. In this approxin ation, the nonvanishing

factors are given by

£, (p;q) g £ (X¢ )

e = @ 9 9 &)
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where x; = m 2=m ? with m ¢ them ass of the form ion running into the Ioop and ¢ K¢ K7,
(the external quarks are assum ed to be of the down type), w ith K ;5 the corresponding CKM
m atrix elam ent. T he functions g; (x) appearing in Eq.(I2) are given by

1 h
ga(x) = ————— 44  194x + 243%  98% + 5x’
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It is easy to check that, in this approxin ation, the form factors in Eq.(12) satisfy the W I in
Eq.{d). From Egs.{I2), (I3) one sees that the leading contrbution to T isgiven i term s of
two functions, nam ely g, (x) and g, (x). Indeed the explicit expression of the leading tem s in

T is
A JGF X n
T = P35 ) ( P+ IR e+ ( g+ q)Pil  aidxe)
£
h i
AqM . Gplxe ) + 20 M. (xe)+ oM L gy (xe)
o]

+ P9 +pPg )M Gxe) upEl); (14)

and gauge invardiance,q T = 0, iseasily verd ed using g u(pe;) Pru(E )= u(@E@M u(p).

Tn Appendix B we present T in the approxination (p q) = o+ ¢ = 0 kesping the full

dependence on ¢ and the internalm asses.



3 Flavorchanging gravitational couplings

Tn this section we analyze them atrix elem ent ofthe TFCNC coupled to an extermalgravitational
source at the treedevel. W e consider the follow Ing gravitational scattering

fie)+ T f(py) + TF (15)

where T " indicates the energy-m om entum tensor of the external source, assum ed to be con—
served (@ T** = 0), and f12(P12) are two ferm jons of di erent  avor and m asses, w ith as-
sociated fourm om enta py, respectively. In m om entum  space, the corresponding one-graviton
exchange am plitude is given by

M = %TA P, ()T (16)

M P

where P (f) is the graviton propagator in m om entum space, with g = p; e, and Text
is the Fourder transform of T (x). It is understood that all indices are contracted with the
M inkow skim etric . In the Enstein theory, the graviton propagator, in a covariant gauge,
is given by

i 1

P, <q2>=qz 5 + +0 @ (17)

w here the last term Q (q),which isgauge dependent, isa tensorm ade by linear com binations
of an even num ber of g m om enta w ith open indices, such as for Instance g g orqqqgqq .
It is also possible to s=t Q = 0 by a particular gauge choice [13]. Nevertheless, due to
the conservation of the energy-m om entum tensor, the contrdbution of Q (g) vanishes when
contracted with T or T =, leading to a gauge-invariant result. By using the energy-m om entum
conservation, we can w rite
i h N R A i
M = ——_ 2 Tt ctT T . (18)
@ imM

w here we Introduce, for later reference, the num erical factor C that in the present case (m assless
graviton) is equal to one. Because of the fact that the rhs. of Eq.(I8) is not vanishing, the
scattering of a farm ion on an extemal gravitational eld can induce a FC transition.

D espite the presence of the 1= polk in Eq.(18), the FC gravitational transition tums out

to be Jocal. Indeed by using the leading contributions from Eq.(14) n Eq.(18) we nd

Gy X 3
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The second line in Eq.(19) is zero if C=1 (m assless graviton) show ing that in the Einstein
theory of general relativity the 1=¢f pole cancels out. This is a general result that holds also
in the exact case, as can be easily proved using the W I in Eq.(11).

Aswe can see from Eq.{19), gravity and weak interactions induce at one loop an e ective
Icalinteraction forthe F = 1 avor transitions. T he leading contribution to the correspond-—
ng e ective Ham iltonian isgiven by localoperators of dim ension eight. T he characteristic scale
of this e ective theory is = P Mpmy  10° Gev,which is 6 orders of m agnitude below the
grand uni ed theory (GUT ) scale. However, w ith respect to the known din ension six operators
In the F = 1 e ective Ham iltonian of weak interaction the TFCNC gravitational operators
induce negligble e ects because the scale  ismuch higher and m oreover it enters in Eq.([19)
at the fourth power.

T he fact that the 1= pole cancels out in the am plitideM i Eq.{18) for a m assless gravi-
ton, can be sin ply understood In term s of angularm om entum conservation. Let us suppose
that the num erator of M does not vanish in the® ! 0 lim it. If this would be the case, then
TFCNC could be directly coupled to a on-shell m assless graviton (¢ = 0). In particular, a
nonvanishing m atrix elem ent for the ferm ion decay f; ! f,G would be possible, where G is
an on—shellgraviton and m¢, > my¢,. However, thedecay £; ! £,G is forbidden by angular-
m om entum conservation as can be easily understood looking, in the rest fram e of the decaying
particle, at the conservation of the angular m om entum along the m om entum direction of the
two nalstates. In this fram e one can see that angularm om entum conservation is unbalanced
along thisdirection, since a m assless graviton carries only helicity states 2,whilke ferm ionscan
only have helicity states 1=2. T herefore, In the case of m assless graviton, only contact term s
In the amplitude M are allowed. Instead the ferm ion decay f; ! £,G does not vanish if the
graviton has a smallm ass. Indeed, the soin content of a m assive graviton contains ve inde-
pendent polarization states, including, am ong the spin2 and spin-1 polarizations, also a spin-0
one. T hen, the onshell transition f; ! f,G isallowed by angularm om entum conservation due
to the presence of the spin-0 graviton polarization.

W e consider now a scenario in which the graviton has a very anallmassm ¢ . In this case,

the corresponding graviton propagator In the unitary gauge is given by [13]

P ()= : = + ’ (20)
© ¢ mi im 3
where ~ aq =mé . The termm s proportional to g=m ¢ , that in principle can be very

enhanced, actually vanish when contracted with T and therefore do not contribute to the
analogous transition am plitidde M in EqQ.(18). W e assum e here that m ¢ is an all enough that
the corresponding N ew ton potential (V (r) %e e ) isnota ected by itse ect. This is clearly
true for distances r l=m; ,where V (r) 1=r.



W e recall that, apart from tem s proportional to the m om entum g, the m assive-graviton
propagator in Eq.(20) di ers from the one of the Einstein theory in Eq.(I7) by a nite tem
proportional to which does not vanish in the Iimitmg ! 0. This is a consequence of
the fact that the spin-0 com ponent of the graviton eld doesnotdecouple in thelmitm 4 ! O,
giving rise to a realgraviton-m ass discontinuity. T his phenom enon was discovered by van D am ,
Veltm an [13] and Zakharov [14] (vDV Z), by analyzing the onegraviton exchange am plitude.
Tn particular, they found that if the graviton has a sn allm ass, no m atter how anall, a nite
di erence In the de ection angle for the lightiending from the sun would be predicted w ith
regpect to them assless case. T hen, since this prediction is out of 25% from them easured value
(which is In agreem ent w ith the general relativity predictions), they concluded that them assive
gravity theory can be ruled out by solar systam observations. T his conclusion relies on the fact
that the term s singular In m ¢ vanish in the onegraviton approxim ation. H owever, there are
criticiam s on the valdity of this approxin ation based on the obsarvation that higher order
corrections can be singular In the graviton m ass and therefore cannot be neglected [15,[16]].

Here we show that there exists another aspect of the vDV Z discontinuity, to our know ledge
not considered so far, conceming the avor-changing contribution to the New ton potential in
them assive gravity theory. In order to see that, Jet us consider the am plitude in Eq.(1d) in the
case of one m assive-graviton exchange. It can be easily obtained from Eq.(19) with C = 2=3

giving
(
L I < ¥ . 2 M (x: )
162 M2, U2 @ M i P p 3 +  Ga Xt
)
2 © 9 A
+ - M X u Text . 21
3 @ 1 )qa( £) u(pr) (21)

A rem arkable aspect of Eq.(2]]) is that the 1= pole in the last tem does not vanish in the
Imitmg ! 0. Asa conssquence it generates an o -diagonal contribution (in avor space) to
the New ton potential. Tn order to see that, one has to rst look at the nonrelativistic lm it of
Eq.(21l) in the case of an external heavy gravitational source. T his should be com pared w ith
the Bom approxin ation to the corresponding scattering am plitude in nonrelativistic quantum

m echanics written in temm s of the potential function V (r). Then, the m atrix elem ent of the
New ton potential V (r) (generated by a heavy m assive particle M ) between initial and nal
ferm Jons states is

. Gy M m
hjjv (r)jii= e ¢ m; yyt+ My my) i) (22)
w ith
Gpmi mi)x ,
5= WE— ) KeiKeiGaxe)s (23)



where Gy istheNew ton constant for them assive-graviton case [13]and ;5 is the delta-function
In avor space, the indices i and j standing for the ingoing and outgoing ferm ion states respec—
tively. The discontinuity n m ¢ ismanifest in the fact that n the Imitmg ! O the 45 tem

does not vanish, while the i is strictly zero in the case of m assless graviton. N otice that the
FC contribution to the New ton potential vanishes In the case of equalm asses (m ; = m 4) and its
attractive or repulsive nature is related to the sign of the F £ KK f?j Ja (X¢ ) quantity. It should
be recalled that the result of Eq.(22) has been derived in the one-graviton approxin ation and
therefore all the criticiam s w ith regpect to the vDV Z discontinuity apply also to it [15,[16/].

4 Flavor-changing processes w ith m assive spin—2 parti-

cles

Tn this section we analyze a few applications of the results derived In Secs. 2 and 3 related
to processes that are characterized by the kinem atical regin es of an all and large values of
i Fm 2 . Atthisain ,we consider a scenario containing an elem entary m assive spin-2 particle
In the spectrum coupled to a conserved energy-m om entum tensor T (x) via the interaction

Lagrangian
Le = —T )G (x); (24)

where G (x) represents the m assive sph2 eld and is a m assscale free param eter having
no relation with the Plank mass M p . For the spin2 free Lagrangian we take the Paulit jerz
action which is the ghost—free linearized action for a m assive spin2 particle [13]. Sihce we will
consider here only the rst order in the 1= expansion, self-nteractions of the spin2 eldscan
be neglected and the T (x) is reduced to the energy-m om entum tensor ofm atter eldsin at
space-tin e. Then, the o -diagonal one-loop correction to the Lagrangian in Eq.(24) can be
easily generalized from the gravitational case by replacing M p !

W e consider st the case of a decay process

fHie) ! £2(02)G @) (25)

that can be considered as the spin—2 counterpart of the wellknown ferm ion radiative decay
£, ! £, . In Eq.29) f; and £, stand for two generic di erent femm ions of the sam e charge
w ith p; » the correspondingm om enta,g= p; R and all the external particles are assum ed to
bemuch lighter than theW boson and the ferm ons running into the loop. T he corresponding
decay am plitude can be w ritten as:

miGr X h i

MAf ! £6)= —p—— sGkeul) PP Pim) @) (26)
f
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where ' (q) is the polarization tensor of the spin-2 particle ofm assm ¢ with the index i= 1;5
labeling the ve independent polarizations and the function g, (x) is de ned in Eq.(13). In
obtaining Eq.(2d) we have used the fact that for an on-shell spin-2 particle one hasq (=20
and (q)= 0.

W e point out that .n the linitmg ! 0 the am plitude in Eq.(2d) sean s to vanish, being

proportional to m é . However, the sum over polarizations of a m assive spin2 particle [13,[11/]

@@ = 5 ~ ~ +~ o~ S~ (27)

=1
contains term s sihgularasm g ! 0. Thus, after sum m ing over all the polarizations, averaging
over the initial ones, and integrating over the phase space, the decay width, assum ing f,
m assless, reads:

11 56) GZmf(xg) X : )2 28)
! = £ = - X
1 2 1922 p 2 . £9 Xe
wherex; =mZ=m{,and f(x)= (1 x)(1 %(x+ %%+ xM)+ %xﬂabsoﬂosthema‘a::ixe]snent

and phase space corrections.

T hese results can have an application in the fram ework of quantum gravity propagating
In larmge extra din ensions [17,118]. In [17,118], it was pointed out that if com pacti ed extra
din ensions exist, w ith only gravity propagating in the bulk, the fundam ental scale of quantum
gravity could be much lower than the Plank scale M p . Tn this scenardo, the standard N ew ton
constant Gy In (3+ 1)-din ensional space is related to the corresponding Plank scale M In
(D = 44+ )-dim ensional space, by

Gy '=8R M. (29)

where R is the radius of the com pacti ed m anifold assum ed here to be on a torus. If one
requires M p TeV , present tests on gravity law in ply that 2.

A fter Integrating out com pact extra din ensions, the e ective low energy theory describes an
alm ost continuous spectrum ofm assive spin2 particles, which are excitations of the standard
graviton eld. Then, each m assive spin2 el is coupled to them atter eld by Eq.(24), where
the energy scale corresponds to the reduced Plank mass M p . In the case of M p TeV and

< 4, the m ass splitting between the KaluzaK kein (KK ) excitations is of the order of K&V,
and the KK spectrum can be approxim ated as a continuous. In this case the num ber density
ofmodes (AN ) between mg andmg + dng of KK spin2 m asses is [11]

2

M
dN =S 1MT§mG dm ¢ ; (30)
D
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where S 1 is the surface of a unitradius sphere in  din ensions which is given by S =
2"=mn 1land S ;= 2 “=Q§201(k+ )lfor = 2nand = 2n+ 1,with n integer,
respectively.

In this fram ework, we consider the inclusive avorchanging graviton decay f1 ! £,G,
where G stands for any KK m assive spin2 gravitons with massmg < m ;. In this case, the
corresponding decay w dth is obtained by multiplying Eq.(28) fordN ,with replacedby M,
and integrating it over all the allowed kinem atical range ofm ¢ . In particular, for the inclusive

decay we get

X ( | ) GFmZ S 1I( ) X ( )2 ( )
1 2 92 (2 )5 2+ fga f

Integration over the num ber of KK states cancels the 1=M § suppression factor of the single
graviton em ission. W e stress that the nalKK gravitons are detected asm issing energy, since
for laboratory experim ents they can be approxin ated as stable particles [18]. This is due to
the fact that the decay w idth of a single KK graviton is strongly suppressed by 1=M 2.

For a num erical evaluation of Eq.(3]]) we restrict ourselves to the inclusive B-m eson decay
By ! X G ,where the standard GIM suppression is enhanced due to the contribution of the
top-quark running in the loop. In particular, for = 2, the corresponding branching—ratio,
nom alized to the experimental BR (B ! X e)’ 104% of the sam ileptonic decay, is

4 4
X 13 Tev my, )

BR(By! XG)’ 10
. Ba G M, 43G eV

(32)

where X ¢ stands for any hadronic state containing an s-quark. T he above result corresponds
to a topquark massm .= 1712 G&V.

Next we consider the decay of a massive spin2 partice G ! £,f;, where £, are two
ferm ions of di erent avor. In the approxin ation of neglecting the nal ferm on m asses the
corresponding am plitude can be obtained from Eq.I4) by settinginit (p g)=M =M =0
and replacing the function g, (x) w ith the function G, (x;v) provided in A ppendix B ,where the
flllf dependence in the form factors is retained, or

iGygmZ X h i i

MG ! ff1) = PPE— ) £Ga®eixe U2(P2) P+ P Powvi(p) © @: (33)
MEq.B3) % =mi=m? ,p=p, p and thev, (o) isthe spinor of the antiferm ion associated
with f;. Then, for the corresponding decay w idth we obtain

2.4
Ggmg X 2

G ! f£.5)= ¢ ca £ GaXsixg) (34)

£
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w here
~ m2N, 35)
160 2

is the treedevel decay w idth of a m assive spin—2 particle into a pair ofm assless ferm ions of the
sam e avor, w ith N . the color factor.

Because of the presence of the GZm & term in the num erator of Eq.(34), one would na vely
expect that when m ¢ my , the one-doop decay would be strongly enhanced. H owever, this
is not the case. Tndeed, by using the asym ptotic expansion of the By (y) and Cq (x;y) functions
at large values of y [19], we obtain

1 1
Calxiy) = - Fx) - bgly) i +G(y)+0(5); (36)
y 2 LY
3x (3 x) x(8 6x+ ¥)bg(x) _ 2
F = + 413 (1 — 37
(%) 11 %) 17 B x) c (37)

where Li(x) stands for the usual dilogarithm function and G (y) is a pure function of y whose
Jeading term is proportional to Jog2 (y)=y, show ing that no pow erlike enhancem ent is present in
the FC decay whenm ¢ my . Furthem ore, due to the unitarity of CKM , the contribution of
G (y) vanishes when the sum over all intemal ferm ion m asses is perform ed, so that in the Iim it

mg my the decay width reads:
|
G2mg X b¢ m 2 2
G ! f.f1) = ¢ Flxe) — bg(—%) i : (38)

mg my 64 4 . 2 mVZ\]

A s a last exam ple, we consider the high-energy 1im it of the follow Ing F'C ferm ion scattering

process

X @) ! £5@X (@) (39)

induced by the one-graviton exchange am plitude, w here £, stands for two femm ions ofdi erent

avor and X Indicates a generic particle. Because of the fact that gravity does not change

avor at tree level, only the tchannel diagram w ill contribute to the above scattering (where
t (@ p) ), provided theX particle isdi erent from the initialand nal form jons. Tn the
ferm jon m assless lin it, only the rsttemm in Eq.(19), proportionalto the G , (x;y) finction, w i1l
contrbute to the m atrix elem ent and therefore, regardless the graviton is assum ed m assive or
m asskss, in the region of hirgetvalues (] m fq ), the follow Ing relation am ong cross sections
holds:

g %5 g 8 A giph x h e £ s

< P2 Fxe) = gl—) ; 40

— — G P Sl (40)
where %fi! “ stands for the diagonal part (in  avor) of the treeJdevel di erential cross section

of the process ;X ! f3;X mediated by the onegraviton exchange diagram .
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5 Conclusions

W e com puted the one-lbop avorchanging quark-graviton vertex verifying all the W I induced
by the consarvation ofenergy-m om entum tensor. T he calculation wasperform ed in theR gauge
with = 1,usihg a modi ed version of the "t ooft gauge- xing function, and cross<hecked
In the unitary gauge. W e found that the corresponding form factors tum out to be strongly
G M suppressed when the intemal ferm ion m asses aremuch an aller than the W mass. These
results can be easily generalized to the corresponding FC Jlepton-graviton vertices, provided the
neutrinos acquire m ass of the D irac type.

W e lnvestigated the case ofa avorchanging ferm ion-graviton vertex coupled to an extermal
gravitational source. W e show that, due to the angularm om entum conservation, gravity and
weak Interactions induce at one-loop an e ective local interaction for the F = 1 transitions.
At low energy, the corresponding e ective H am ﬂronjaa isgiven by local operators of dim ension
eight suppressed by a characteristic scaleoforder = Mopmy 10° G eV . T husgravitational
FC e ects are com pletely negligble when com pared to the known contribution of F = 1
din ension six operators of the SM .

W e showed that, in the case of m assless graviton, the locality of the FC gravitational
interaction is related to the cancellation of 1= pole in the corresponding one-graviton exchange
am plitude. The latter does not take place if the graviton has a sn allm ass signaling another
aspect of the known vDV Z discontinuity in the graviton m ass. Indeed we showed that in the
graviton-m assive case the New ton potential acquires a FC contribution that vanishes in the
Iim it of equal extermalm asses.

A sa few applications of our results we analyzed a new physics scenario containing m assive
soin2 particles coupled to the SM  elds. In this fram ework, we calculated the w idth of the
FC decay f; ! f,G and the decay of a heavy spin2 particle in two ferm ions of di erent

avor, G ! f,f;. W e also consdered the scenario of quantum gravity propagating in large
extra din ensions. In this fram ework, we evaluated the inclusive decay w idth for the process
f1 ! £,G,where G stands for any K aluzaK lein spin2 graviton, and estin ated the branching
ratio for the inclusive B4-m eson decay By ! X ;G . Finally, as a consistency test of our results,
we studied the asym ptotic behavior for large spin2 m asses of the decay G ! f,f; and the
high-energy Iim it of the gravitational scattering £;X ! £,X (with X & f;,) with respect to
theG MM m echanian . W e explicitly check that also in the asym ptotic 1in it, the G IM m echanian
acts in the usualway strongly suppressing the process for an all intemal ferm ion m asses.

T he results presented for the m assive graviton can be easily generalized to the case of a
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graviscalar, s ,whose interaction with the SM elds can be described by

1
Lt = — T (x)sX)
S

In particular, the counterpart of Eq.(22) for the graviscalar reads:

. e 1 M rm
hjjv (r)jii= ———e s m; 55+ M3 my)

2 ij
s4r

w ith fj = 6 . Thewdth ofthe FC decay f; ! f, s neglecting the m ass of the produced
particles is instead:
Gim] X 2

2 £% (Xf )

£11 £ g)= —b L1
(1 2 s) 322 P 2 .

Finally, because the coupling between a graviscalar and the ferm jons is proportional to the
ferm ion m ass, the decay w idth of a graviscalar into two m assless ferm ions is null
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A ppendix A

In this appendix we report the Feynm an rules for gravitational interactionsw ith SM  elds that
are relevant for the processes considered in this article. They are presented in Fig[d.
The symbols used In FigJ are de ned as:

x & = k, + ky ) e +k,  2my) (41)
wy 1
X = 5 kz kl + kl kz kl kz kz kl
) 1
+ kl 2]{+ mw 5
11
- S (k; k; + k, ko + k; ky ) k; kg K, ks (42)
x ) =k o+ mi k ko, k ks, (43)
x F7) = K2 )Py (44)
m 5 i
x B8 = ko —2py P, (45)
my W
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Fi(k) War (k1)

0%
_—tg X (f,V)
>/m 4]VIP517(X(f) + X)) / 2V2Mp ™ BV

fi(k2) Py
W (k)

e —ig_ ~x(f.5)
?gm (Xjvan + Xiyias) >%WP
Wy (k2)

&" (k1)
N
N e
YOO a1 X
~
Ve
o~ (ko)

Figure 2: Three and fourpoint vertex Feynm an rules relevant for our calculation. T he particle
mom enta are assum ed to ow along the direction of the arrow s. For the m eaning of the sym bols see
text.

A ppendix B

Tn this appendix we discuss the form taken by T hthelmit (p  q)=r € = 0, ie. when
term s proportionaltom f, are neglected. In this lin it, from the W Ion Eq.(), only ve form
factors survive and T can be cast in the Hllow ng form

N Gy X
T = —p= FiE;a)u@)® u (o) (46)
16 2 2 .,
w here
pPad +9p
1 = ( p + p )PL qz M 7
2 = qZ + q q M + 7



&, = f+aqg M ;
Pp M, ;
® = (Ep)M : (47)

&
Il

with 'y (p;q) = £1 (0;Q)iF2 (p;q) = £5(0;q)iF3(ia) = Lo (iq);Fs (i) = f4(pjq),and Fs (p;q) =
s (p;q). In thisbasis each elam ent @i satis es the gauge Invariance condition g @i = 0,and
50 the corresponding form factors F; (p;q) are m anifestly independent.

W riting
X
Fi(pig) = 4 £ Gaxesy) s
« £
Fo(pra) = £ Gp(Xeiy) s
£
Fiz(a) = 05
X
Fy(pra) = £ Gc(Xey) s
£
Fs(pig) = 0; (48)
we nd
4 1
Caleiy) = 5 2 3x+ ¥ Boly) Boly) + x 1) 2+ x) Colxiy)+ —Colxjy)
i1 1
+ (X 1? 2+ x) log(x) + = (1 x) (2+ x) 5 42 23x + 53¢ By (y)
h%

7 4x+ 3¥ Bo(y)+ (x 1) 18 Tx+ ¥ Co(x;v)

4
3
2
+ S (x 1) 4 x+3% Colxzy)+ 14 3x+ 4% log(x)
X
1
y

+ A+ x) 2t X)L s B )t @+ x)Boly) 12 6x+ # Co(xsy)
1 ) . X o Y 3 X oy X 0 X7y
#
(34 45x+ 18¥ + 2x°) log(x)
+ 2xCo(x;y)+ 2C (x7y) (49)
6(x 17V
4 1
Gp(x;y) = = 2 3x+ ¥ Byly) Bly) (x 1)@+ x) Colxiy)+ ~Colxjy)

i

2 4
(x 12) 2+ x) log(x) +—2 (x 1) 2+ x)+§ 3 X+ ¥ Bo(y)
Y

1
3 2+ x+ 9x% Bo(y)+ 6 Tx+ 2¥ ¥ Cox;v)

i
2 1) (L4 2x)Geoy) 4+ 2x+ 3x% bgx) + + 2 5x+ ¥)
y 2 (x 1)
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1 2
+ 5 (2 5x) By(y)+ 5 (8 5x)By(y)+ (4 2x) G (x;y)
4
1 2 24% + 10x>
L4 6x+ 62 Compy) 2FO% F0x) gt o ) (50)
X 3(x lf
20 1
Golxiy) = — 2 3x+¥ Boly) Boly) (x D @+x) Coljy)+ —Colxjy)
i 2 1
x 152+ x) bg(x) + = 8(x 1)@+ x)+5 78 59x+ 5% By(y)
y
1
5 10 25x + 39 Bo(y)+ 18 (x 2) (x 1) Gx;y) 18x (x )G x;y)
26+ 3x+ 13%° bglx) + = 22 Sx+x) 440 x)Bly)
y x 1 3
4 1
+ 5 (2 5x)By(y)+ 2 (9 x) (2 x)GQx;v) ; 4 14x + 18% Co(x;vy)
#
2 (20 24 15%+ 10x>
( x P 10X 9B ciwiy)  2G iy § (51)

3(x lf

where x; mif=m: andy d=m?2 ,andx 1=x,y y=x,and the functionsB (y),Co(X;y)

arede ned as

0 2 31
R ya— y
Y y (4 y)
z 1 z 1 x h i 1
Colxsy) = dx, dx, (I @ x)®+ x)+yxixp 1 ¢ (52)

An analytic result for the function C,(x;y) can be obtained from Refs.[20,[19]. T he functions
G anx(x;y) generalize the g, 4 (x) in Eq.{I3) to include the fiull ¢ dependence and satisfy the
follow ing conditions

In G, (x;y)=ga(x); ln Gp(x;y)=g(x); IlmG.(x;y)= 0: (53)
y! 0 y! 0 y! 0

N otice that, despite the presence of pure log(x) term s (not multiplied by x) in Egs.(49){ (&1),
the G 11 (X;y) functions tum out to be of order O (x) for an all x. T his is because the log(x)
term s cancel out when summ ed to the corresponding term s proportional to the B (y) function.
Indeed, B (y) = log(x)+ O (x). T herefore, as expected by the infrared behavior of the diagram s
nFig.l,foran allintermalferm ionm asses, theG IM m echanisn strongly suppresses the TEFCNC
in allranges of .
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