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We study the flavor-changing quark-graviton vertex that is induced at the one-loop level when

gravitational interactions are coupled to the standard model. Because of the conservation of the

energy-momentum tensor the corresponding form factors turn out to be finite and gauge invariant.

Analytical expressions of the form factors are provided at leading order in the external masses. We show

that flavor-changing interactions in gravity are local if the graviton is strictly massless while if the graviton

has a small mass long-range interactions inducing a flavor-changing contribution in the Newton potential

appear. Flavor-changing processes with massive spin-2 particles are also briefly discussed. These results

can be generalized to the case of the lepton-graviton coupling.
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I. INTRODUCTION

Gravity is the only fundamental interaction which is
universally coupled to all matter fields. Universality is
then guaranteed by the tree-level coupling of the graviton
field with the conserved energy-momentum tensor.
However, when quantum corrections are taken into ac-
count, matter-coupling universality could be spoiled.

It is known that quantum corrections to the graviton-
matter vertices (without gravitons in the loops) are finite if
the underlying theory of matter fields (in flat space-time) is
renormalizable [1–6]. This remarkable property is just a
consequence of the Ward identities (WI) that result from
the energy-momentum conservation [3]. Therefore, (mat-
ter) radiative corrections to the graviton-matter vertices
can be consistently calculated in the framework of gravity
coupled to the standard model (SM) theory.

Long ago, Berends and Gastmans evaluated the finite
corrections to the graviton-photon and graviton-electron
vertices due to virtual quantum electrodynamical (QED)
processes at the one-loop level1 [6]. In the latter case the
corrections found lead to a modification of the Newton’s
law. In particular, for an electron (or any charged particle)
in a gravitational field of a stationary massM, they found a
repulsive correction term proportional to the classical ra-
dius of the particle, re ¼ �=me, or

VðrÞ � �GNMme

r

�
1� �

2mer

�
; (1)

where GN is the Newton constant, � is the fine-structure
constant, and me is the mass of the electron. At macro-
scopic distances (r � re) the modification of Newton’s

law induced by the 1=r2 term in Eq. (1) is extremely small,
Oð10�22Þ at the surface of the earth [6].
The term 1=r2 has an infrared origin as it can be simply

understood by looking at the singular behavior of the one-
loop Feynman diagrams in the massless limit (me ! 0).
The correction to the tree-level electron-graviton vertex is

proportional to�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�q2=m2

e

p
for negative small values of q2,

where q is the momentum transfer. This is due to the fact
that the photon has a tree-level coupling with the graviton.
Then, the diagram where the external graviton is attached
to two virtual photons in the loop contains a term with a
powerlike infrared singularity as me ! 0. Thus, after
Fourier transforming into coordinates space, this contribu-
tion gives rise to a 1=ðr2meÞ correction to the Newton
potential. Notice that there is no counterpart of such effect
in QED. Indeed, due to the absence of self-photon inter-
actions at tree level, the Coulomb potential is protected
against 1=r2 corrections of order Oð�Þ.
It is remarkable that, although derived in the framework

of quantum field theory, the 1=r2 term in Eq. (1) has a pure
classical origin and it was first obtained on the basis of
purely classical considerations in Ref. [7]. Indeed this term
arises from the fact that the total mass of the particle is not
concentrated at a point but is partly distributed as field
energy in the space around the particle [7].
When gravity is coupled to the weak interactions the

one-loop radiative corrections to the graviton-fermion ver-
tex will include also the virtual exchanges of the weak
gauge bosonsW� and Z. At the moment, a complete study
of these effects is still missing. These corrections are
expected to give small contributions in the low energy
limit and furthermore to be infrared safe, being the W�
and Z massive. Therefore, no long-distance modifications
in the Newton potential are expected from the weak radia-
tive corrections.
A peculiar aspect of the weak interactions is that they

can induce (at one loop) flavor-changing neutral currents

1The same calculation was previously done by Delbourgo and
Phocas-Cosmetatos in [1], but it was incorrect due to the wrong
Feynman rules adopted [6].
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(FCNC) processes in the fermionic sector. Since FCNC are
absent at tree level, they arise as a pure quantum effect.
Analogously, flavor-changing (FC) graviton vertices are
not present at the tree level. However, when gravity is
coupled to the weak interactions, quantum weak correc-
tions can induce an off-diagonal contribution (in flavor
space) to the energy-momentum tensor. These effects are
the spin-2 counterpart of the standard spin-1 FCNC con-
tribution in the SM. Because of the tensorial nature of the
coupling of spin-2 particles to the matter fields we will
refer to these effects as tensorial flavor-changing neutral
currents (TFCNC).

The aim of this paper is to compute the form factors of
the TFCNC and analyze their gravitational couplings. We
perform the exact computation of the one-loop FC
fermion-graviton vertex, i.e. retaining the full dependence
on all masses and momenta. We investigate under which
conditions these effective couplings could induce modifi-
cations in the Newton potential discussing both cases of
massless and massive-graviton exchange. We consider a
few applications of these results in the case of massive
spin-2 particles. In particular, we analyze the FC decay
f1 ! f2G, and the decay G ! f1 �f2 where G stands for a
massive spin-2 particle. Our results can be easily general-
ized to the leptonic sector with massive Dirac neutrinos,
provided the Cabibbo-Kobayashi-Maskawa (CKM) matrix
of the quark sector is substituted with the corresponding
leptonic one.

The paper is organized as follows. In Sec. II we specify
the interaction between the SM fields and the graviton by
suitably choosing a gauge that avoids the appearance of
cubic vector boson-Goldstone-graviton interactions. We
analyze the general structure of the off-diagonal matrix
element (in flavor space) of the energy-momentum tensor
of fermion fields, derive the corresponding Ward identities,
and provide the analytical expressions of the relevant form
factors. The analysis of the gravitational couplings of the
TFCNC is carried out in Sec. III. In Sec. IV we analyze a
few applications of these results. Finally, Sec. V contains
our conclusions.

II. FLAVOR-CHANGING QUARK-GRAVITON
VERTEX

We are going to evaluate the interaction between the
graviton and two generic fermion states with different
flavor or the off-diagonal matrix element of the energy-
momentum tensor T��ðxÞ. In particular, working in the
basis of mass-eigenstates for the fermion fields, we are
interested in calculating the following matrix element2

T̂ �� � �ihp2jT��ð0Þjp1i; (2)

where the initial and final states are assumed to have

momenta p1 and p2, respectively, with p2
i ¼ m2

i and spi-
norial wave functions uiðpiÞ (i ¼ 1, 2) while the four-
momenta p, q are defined as p ¼ p1 þ p2 and q ¼ p1 �
p2. It is understood that initial and final states have differ-
ent flavor and mass. The relevant Feynman rules which are
necessary in order to calculate the above matrix element
can be easily derived by looking at the graviton couplings
with matter fields.
The interactions between gravity and the SM fields are

assumed to be described by the action integral

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
LSM½g���; (3)

where the SM Lagrangian,LSM, is thought to be written in
terms of the metric tensor g�� and for the fermionic part

using the vierbein formalism. In Eq. (3) g ¼ detg�� and

LSM includes the classical term and the gauge-fixing func-
tion in the R� gauge (the term with the ghost fields is not

relevant for our discussion). To obtain the interaction of the
graviton with the SM fields we expand in Eq. (3) the metric
g�� around the flat one as g�� ¼ ��� þ �h��, retaining

only the first term in the graviton field where ��� ¼
ðþ1;�1;�1;�1Þ, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32�GN

p
, and h�� is interpreted

as the spin-2 graviton field. We notice that, if in the gauge-
fixing term in LSM the standard ’t-Hooft gauge-fixing
function is taken, vertices in which a graviton field induces
a transition between a vector boson and its unphysical
Goldstone boson counterpart are going to appear [8]. In
order to avoid the appearance of vector-Goldstone-
graviton interactions we find it convenient to use a modi-
fied version of the ’t-Hooft gauge-fixing function, or

Lg:f: ¼ � 1

2�

�
g��@

�W�
a þ g����

��Wa�

þ i
g�

2
ð	0y
ah	i � h	yi
a	0Þ

�
2

� 1

2�

�
g��@

�B� þ g���
�
��B�

þ i
g0�
2

ð	0yh	i � h	yi	0Þ
�
2

(4)

that differs from the standard one by the terms3 propor-
tional to ��

��. In Eq. (4) � is the gauge parameter, g,
W

�
a ðg0; B�Þ are the coupling constant and fields of the

SUð2Þ ðUð1ÞÞ group, 
a are the Pauli matrices,

�
�
�� ¼ 1

2g
��ð@�g�� þ @�g�� � @�g��Þ (5)

is the Christoffel symbol, and

2The definition of T̂�� corresponds to the Feynman rule for the
off-diagonal matrix element of the energy-momentum tensor.

3The addition of a term proportional to the Christoffel symbol
in the gauge-fixing function of a spin-1 massive particle was
considered in Ref. [9]. However, in that work the mechanism of
mass-generation for the spin-1 particle was not addressed.
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	0 ¼ 	þ
	1þi	2ffiffi

2
p

 !
h	i ¼ 0

vffiffi
2

p

 !
(6)

with 	1 the physical Higgs field, 	þ and 	2 the unphys-
ical counterparts of the Wþ and Z vector boson, and v the
vacuum expectation value.

At the first order in the � expansion, the interaction
Lagrangian for the tree-level graviton coupling to SM
fields, is

L int ¼ � 1
�MP

T��h��; (7)

where T�� is the energy-momentum tensor of matter fields
obtained from the Lagrangian in Eq. (3) with the gauge-
fixing function given in Eq. (4). The mass-scale �MP ap-
pearing in Eq. (7) is the reduced Plank mass defined as
�MP � 2=�. From Eq. (7), the Feynman rules can be de-
rived. The ones, in the R� gauge, relevant for our calcu-

lation are collected in Appendix A. Feynman rules for
graviton interactions with vector bosons, in the unitary
gauge, can be found in Refs. [9–11].

Because of the V-A nature of the charged weak currents,
the exact expression of the off-diagonal matrix element (in

flavor space) of energy-momentum tensor T̂�� has the
following structure:

T̂ �� ¼ iGF

16�2
ffiffiffi
2

p X12
i¼1

fiðp; qÞ �u2ðp2ÞO��
i u1ðp1Þ (8)

with

O
��
1 ¼ ð��p� þ ��p�ÞPL;

O
��
2 ¼ ð��q� þ ��q�ÞPL;

O��
3 ¼ ���Mþ;

O��
4 ¼ p�p�Mþ;

O��
5 ¼ q�q�Mþ;

O��
6 ¼ ðp�q� þ q�p�ÞMþ;

O��
7 ¼ ���M�;

O��
8 ¼ p�p�M�;

O
��
9 ¼ q�q�M�;

O
��
10 ¼ ðp�q� þ q�p�ÞM�;

O��
11 ¼ m1m2

m2
W

ð��p� þ ��p�ÞPR;

O
��
12 ¼ m1m2

m2
W

ð��q� þ ��q�ÞPR;

(9)

where PL;R ¼ ð1� �5Þ=2 and M� � m1PR �m2PL.

The form factors appearing in Eq. (8) are not all inde-
pendent. Indeed, due to the conservation of the energy-
momentum tensor @�T

��ðxÞ ¼ 0 (or equivalently

@�T
��ðxÞ ¼ 0), a subset of independent form factors arise.

In momentum space, this relation is translated into

q�hp2jT��ð0Þjp1i ¼ 0; (10)

which reduce the number of form factors fiðp; qÞ in Eq. (8)
into an independent subset. Applying Eq. (10) into the
right-hand side (r.h.s.) of Eq. (8), we get the following
set of WI

ðp � qÞf1ðp; qÞ þ q2f2ðp; qÞ ¼ 0;

f3ðp; qÞ þ q2f5ðp; qÞ þ ðp � qÞf6ðp; qÞ þ ðp � qÞ
2m2

W

f12ðp; qÞ ¼ 0;

ðp � qÞf4ðp; qÞ þ q2f6ðp; qÞ þ ðp � qÞ
2m2

W

f11ðp; qÞ ¼ 0;

f2ðp; qÞ þ f7ðp; qÞ þ q2f9ðp; qÞ þ ðp � qÞf10ðp; qÞ � p2 þ q2

4m2
W

f12ðp; qÞ ¼ 0;

f1ðp; qÞ þ ðp � qÞf8ðp; qÞ þ q2f10ðp; qÞ � p2 þ q2

4m2
W

f11ðp; qÞ ¼ 0;

ðp � qÞf11ðp; qÞ þ q2f12ðp; qÞ ¼ 0:

(11)

These relations provide a strong check of our calculation in
terms of Feynman diagrams.

In the case of light external states, the dominant contri-

bution to T̂�� comes from theO1 andO2 structures. Indeed
the O3–O10 structures have a single chiral suppression
while O11 and O12 are double chirally suppressed.

The interaction of the graviton with two different fer-
mion fields is described at the lowest order by the one-loop

diagrams drawn4 in Fig. 1. To be definite we assume the
external fermion states to be quarks of different generation,
then the mixing matrix entering in theWþ and	þ vertices
is the CKM matrix. We evaluated exactly, namely, keeping
the complete dependence on the p, q momenta and on the

4Feynman diagrams have been drawn using JAXODRAW [12].
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internal/external masses, the Feynman diagrams in Fig. 1
to obtain the form factors fiðp; qÞ appearing in Eq. (8). The
calculation has been performed in the ’t Hooft-Feynman
gauge (� ¼ 1) and cross-checked in the unitary gauge.
While in the ’t Hooft-Feynman gauge the result is finite
before the application of the Glashow-Iliopoulos-Maiani
(GIM) mechanism, in the unitary gauge the GIM is needed
to cancel some residual divergent term. From our result we
explicitly verified all the WI reported in Eq. (11). It should
be pointed out that to satisfy the WI the �-dependent
term in the WþW� graviton vertex (see Eq. (A2) in
Appendix A) was necessary.

The complete result is too long to be reported, however;
since we are mainly interested in analyzing the effects of
the TFCNC in low energy processes, we report here the
leading term of the form factors fiðp; qÞ in a q2=m2

W and
ðp � qÞ=m2

W expansion of the matrix element, keeping the
dependence on the internal fermion masses exact. In this
approximation, the nonvanishing factors are given by

f1ðp; qÞ ¼ �q2
X
f

�fgaðxfÞ;

f2ðp; qÞ ¼ ðp � qÞX
f

�fgaðxfÞ;

f3ðp; qÞ ¼ q2
X
f

�fgbðxfÞ;

f5ðp; qÞ ¼ �X
f

�fgbðxfÞ;

f7ðp; qÞ ¼ �2ðp � qÞX
f

�fgaðxfÞ;

f10ðp; qÞ ¼
X
f

�fgaðxfÞ;

f11ðp; qÞ ¼ �q2
X
f

�fgmðxfÞ;

f12ðp; qÞ ¼ ðp � qÞX
f

�fgmðxfÞ;

(12)

where xf ¼ m2
f=m

2
W with mf the mass of the fermion

running into the loop and �f � Kf1K
?
f2 (the external

quarks are assumed to be of the down type), with Kij the

corresponding CKM matrix element. The functions giðxÞ
appearing in Eq. (12) are given by

gaðxÞ ¼ 1

36ðx� 1Þ4 ½44� 194xþ 243x2 � 98x3 þ 5x4

þ 6xð2� 15xþ 10x2Þ logðxÞ�;
gbðxÞ ¼ 1

6ðx� 1Þ4 ½8� 14xþ 21x2 � 14x3 � x4

þ 2xð4þ 3xþ 2x3Þ logðxÞ�;
gmðxÞ ¼ 1

72ðx� 1Þ6 ½6� 83xþ 200x2 þ 12x3 � 142x4

þ 7x5 � 12xð1þ 4x� 18x2 � 2x3Þ logðxÞ�:

(13)

It is easy to check that, in this approximation, the form
factors in Eq. (12) satisfy the WI in Eq. (11). From
Eqs. (12) and (13) one sees that the leading contribution

to T̂�� is given in terms of two functions, namely gaðxÞ and
gbðxÞ. Indeed the explicit expression of the leading terms in

T̂�� is

T̂��¼ iGF

16�2
ffiffiffi
2

p X
f

�f �uðp2Þfð��p�þ��p�ÞPLð�q2ÞgaðxfÞ

þð��q�þ��q�ÞPLðp �qÞgaðxfÞ�q�q�MþgbðxfÞ
þ���½�2ðp �qÞM�gaðxfÞþq2MþgbðxfÞ�
þðp�q�þp�q�ÞM�gaðxfÞguðp1Þ; (14)

and gauge invariance, q�T
�� ¼ 0, is easily verified using

q� �uðp2Þ��PLuðp1Þ ¼ �uðp2ÞM�uðp1Þ.
In Appendix B we present T̂�� in the approximation

ðp � qÞ ¼ p2 þ q2 ¼ 0 keeping the full dependence on q2

and the internal masses.

III. FLAVOR-CHANGING GRAVITATIONAL
COUPLINGS

In this section we analyze the matrix element of the
TFCNC coupled to an external gravitational source at the
tree level. We consider the following gravitational scatter-
ing:

f1ðp1Þ þ Text ! f2ðp2Þ þ Text; (15)

where Text
�� indicates the energy-momentum tensor of the

external source, assumed to be conserved (@�Text
�� ¼ 0),

and f1;2ðp1;2Þ are two fermions of different flavor and

masses, with associated four-momenta p1;2, respectively.

FIG. 1. The one-loop Feynman diagrams contributing to the
flavor-changing quark-graviton vertex in the unitary gauge. In
the R� gauge there is also the contribution of diagrams where the

W boson is replaced by its unphysical counterpart.
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In momentum space, the corresponding one-graviton ex-
change amplitude is given by

M ¼ 1
�M2
P

T̂��P
���
h ðq2ÞT̂ext

�; (16)

where P
���
h ðq2Þ is the graviton propagator in momentum

space, with q ¼ p1 � p2, and T̂
ext
�� is the Fourier transform

of Text
��ðxÞ. It is understood that all indices are contracted

with the Minkowski metric ���. In the Einstein theory, the

graviton propagator, in a covariant gauge, is given by

P���
h ðq2Þ ¼ i

q2 � i"

1

2
ð����� þ ����� � �����

þQ���ðqÞÞ; (17)

where the last termQ���ðqÞ, which is gauge dependent, is
a tensor made by linear combinations of an even number of
q momenta with open indices, such as, for instance,
q�q��� or q�q�q�q. It is also possible to set Q��� ¼
0 by a particular gauge choice [13]. Nevertheless, due to
the conservation of the energy-momentum tensor, the con-

tribution of Q���ðqÞ vanishes when contracted with T̂��

or T̂ext
�, leading to a gauge-invariant result. By using the

energy-momentum conservation, we can write

M ¼ i

ðq2 � i"Þ2 �M2
P

½2T̂��T̂ext
�� � CT̂�

�T̂
ext�
� �; (18)

where we introduce, for later reference, the numerical
factor C that in the present case (massless graviton)
is equal to one. Because of the fact that the r.h.s. of
Eq. (18) is not vanishing, the scattering of a fermion on
an external gravitational field can induce a FC transition.

Despite the presence of the 1=q2 pole in Eq. (18), the FC
gravitational transition turns out to be local. Indeed by
using the leading contributions from Eq. (14) in Eq. (18)
we find

M ¼ GF

16�2
ffiffiffi
2

p
�M2
P

X
f

�f �uðp2Þ
�
ð��p� þ ��p�ÞPLgaðxfÞ

� ���Mþ
�
CgaðxfÞ �

�
3

2
C� 1

�
gbðxfÞ

�

þ ���M�
ðp � qÞ

ðq2 � i"ÞgaðxfÞ½2þ Cð�2Þ�
�
uðp1ÞT̂ext

��:

(19)

The second line in Eq. (19) is zero if C ¼ 1 (massless
graviton) showing that in the Einstein theory of general
relativity the 1=q2 pole cancels out. This is a general result
that holds also in the exact case, as can be easily proved
using the WI in Eq. (11).

As we can see from Eq. (19), gravity and weak inter-
actions induce at one loop an effective local interaction for
the �F ¼ 1 flavor transitions. The leading contribution to
the corresponding effective Hamiltonian is given by local

operators of dimension eight. The characteristic scale of
this effective theory is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPmW

p � 1010 GeV, which
is 6 orders of magnitude below the grand unified theory
(GUT) scale. However, with respect to the known dimen-
sion six operators in the �F ¼ 1 effective Hamiltonian of
weak interaction, the TFCNC gravitational operators in-
duce negligible effects because the scale � is much higher
and moreover it enters in Eq. (19) at the fourth power.
The fact that the 1=q2 pole cancels out in the amplitude

M in Eq. (18) for a massless graviton can be simply
understood in terms of angular-momentum conservation.
Let us suppose that the numerator ofM does not vanish in
the q2 ! 0 limit. If this would be the case, then TFCNC
could be directly coupled to an on-shell massless graviton
(q2 ¼ 0). In particular, a nonvanishing matrix element for
the fermion decay f1 ! f2G would be possible, where G
is an on-shell graviton and mf1 >mf2 . However, the decay

f1 ! f2G is forbidden by angular-momentum conserva-
tion as can be easily understood looking, in the rest frame
of the decaying particle, at the conservation of the angular
momentum along the momentum direction of the two final
states. In this frame one can see that angular-momentum
conservation is unbalanced along this direction, since a
massless graviton carries only helicity states �2, while
fermions can only have helicity states �1=2. Therefore, in
the case of massless graviton, only contact terms in the
amplitudeM are allowed. Instead the fermion decay f1 !
f2G does not vanish if the graviton has a small mass.
Indeed, the spin content of a massive graviton contains
five independent polarization states, including, among the
spin-2 and spin-1 polarizations, also a spin-0 one. Then, the
on-shell transition f1 ! f2G is allowed by angular-
momentum conservation due to the presence of the spin-
0 graviton polarization.
We consider now a scenario in which the graviton has a

very small mass mG. In this case, the corresponding gravi-
ton propagator in the unitary gauge is given by [13]

P���
G ðq2Þ ¼ i

q2 �m2
G � i"

1

2

	
�
~��� ~�� þ ~��� ~�� � 2

3
~��� ~��

�
; (20)

where ~��� � ��� � q�q�=m2
G. The terms proportional to

q=mG, that in principle can be very enhanced, actually
vanish when contracted with T�� and therefore do not

contribute to the analogous transition amplitude M in
Eq. (18). We assume here that mG is small enough that
the corresponding Newton potential (VðrÞ � 1

r e
�rmG) is not

affected by its effect. This is clearly true for distances r 

1=mG, where VðrÞ � 1=r.
We recall that, apart from terms proportional to the

momentum q, the massive-graviton propagator in
Eq. (20) differs from the one of the Einstein theory in
Eq. (17) by a finite term proportional to ����� which
does not vanish in the limitmG ! 0. This is a consequence
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of the fact that the spin-0 component of the graviton field
does not decouple in the limitmG ! 0, giving rise to a real
graviton-mass discontinuity. This phenomenon was dis-
covered by van Dam, Veltman [13], and Zakharov [14]
(vDVZ), by analyzing the one-graviton exchange ampli-
tude. In particular, they found that if the graviton has a
small mass, no matter how small, a finite difference in the
deflection angle for the light bending from the sun would
be predicted with respect to the massless case. Then, since
this prediction is out of 25% from the measured value
(which is in agreement with the general relativity predic-
tions), they concluded that the massive gravity theory can
be ruled out by solar system observations. This conclusion
relies on the fact that the terms singular inmG vanish in the
one-graviton approximation. However, there are criticisms
on the validity of this approximation based on the obser-
vation that higher order corrections can be singular in the
graviton mass and therefore cannot be neglected [15,16].

Here we show that there exists another aspect of the
vDVZ discontinuity, to our knowledge not considered so
far, concerning the flavor-changing contribution to the
Newton potential in the massive gravity theory. In order
to see that, let us consider the amplitude in Eq. (16) in the
case of one massive-graviton exchange. It can be easily
obtained from Eq. (19) with C ¼ 2=3 giving

M ¼ GF

16�2
ffiffiffi
2

p
�M2
P

X
f

�f �uðp2Þ
�

q2

ðq2 �m2
G � i"Þ

	
�
ð��p� þ ��p�ÞPL � 2

3
���Mþ

�
gaðxfÞ

þ 2

3
���M�

ðp � qÞ
ðq2 �m2

G � i"ÞgaðxfÞ
�
uðp1ÞT̂ext

��: (21)

A remarkable aspect of Eq. (21) is that the 1=q2 pole in the
last term does not vanish in the limit mG ! 0. As a con-
sequence it generates an off-diagonal contribution (in fla-
vor space) to the Newton potential. In order to see that, one
has to first look at the nonrelativistic limit of Eq. (21) in the
case of an external heavy gravitational source. This should
be compared with the Born approximation to the corre-
sponding scattering amplitude in nonrelativistic quantum
mechanics written in terms of the potential function VðrÞ.
Then, the matrix element of the Newton potential VðrÞ
(generated by a heavy massive particle M) between initial
and final fermions states is

hjjVðrÞjii ¼ �GNM

r
e�rmGðmi�ij þ ðmi �mjÞ�ijÞ (22)

with

�ij ¼
GFðm2

i �m2
j Þ

32�2
ffiffiffi
2

p X
f

KfiK
?
fjgaðxfÞ; (23)

where GN is the Newton constant for the massive-graviton
case [13] and �ij is the delta function in flavor space, the

indices i and j standing for the ingoing and outgoing
fermion states, respectively. The discontinuity in mG is
manifest in the fact that in the limit mG ! 0 the �ij term

does not vanish, while the �ij is strictly zero in the case of

massless graviton. Notice that the FC contribution to the
Newton potential vanishes in the case of equal masses
(mi ¼ mj) and its attractive or repulsive nature is related

to the sign of the
P

fKfiK
?
fjgaðxfÞ quantity. It should be

recalled that the result of Eq. (22) has been derived in the
one-graviton approximation and therefore all the criticisms
with respect to the vDVZ discontinuity apply also to it
[15,16].

IV. FLAVOR-CHANGING PROCESSES WITH
MASSIVE SPIN-2 PARTICLES

In this section we analyze a few applications of the
results derived in Secs. II and III related to processes that
are characterized by the kinematical regimes of small and
large values of jq2j=m2

W . At this aim, we consider a sce-
nario containing an elementary massive spin-2 particle in
the spectrum coupled to a conserved energy-momentum
tensor T��ðxÞ via the interaction Lagrangian

L eff ¼ � 1

�
T��ðxÞG��ðxÞ; (24)

whereG��ðxÞ represents the massive spin-2 field and� is a

mass-scale free parameter having no relation with the
Plank mass �MP. For the spin-2 free Lagrangian we take
the Pauli-Fierz action which is the ghost-free linearized
action for a massive spin-2 particle [13]. Since we will
consider here only the first order in the 1=� expansion,
self-interactions of the spin-2 fields can be neglected and
the T��ðxÞ is reduced to the energy-momentum tensor of

matter fields in flat-space-time. Then, the off-diagonal one-
loop correction to the Lagrangian in Eq. (24) can be easily
generalized from the gravitational case by replacing �MP !
�.
We consider first the case of a decay process

f1ðp1Þ ! f2ðp2ÞGðqÞ (25)

that can be considered as the spin-2 counterpart of the well-
known fermion radiative decay f1 ! f2�. In Eq. (25) f1
and f2 stand for two generic different fermions of the same
charge with p1;2 the corresponding momenta, q ¼ p1 � p2

and all the external particles are assumed to be much
lighter than the W boson and the fermions running into
the loop. The corresponding decay amplitude can be writ-
ten as

Mðf1 ! f2GÞ ¼ � im2
GGF

16�2
ffiffiffi
2

p
�

X
f

�fgaðxfÞ�i��ðqÞ

	 �u2ðp2Þ½��p� þ ��p��PLu1ðp1Þ; (26)
where �i��ðqÞ is the polarization tensor of the spin-2 par-
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ticle of mass mG with the index i ¼ 1, 5 labeling the five
independent polarizations and the function gaðxÞ is defined
in Eq. (13). In obtaining Eq. (26) we have used the fact that
for an on-shell spin-2 particle one has q��

��ðqÞ ¼ 0 and

����
��ðqÞ ¼ 0.

We point out that in the limit mG ! 0 the amplitude in
Eq. (26) seems to vanish, being proportional to m2

G.

However, the sum over polarizations of a massive spin-2
particle [11,13]

X5
i¼1

�i��ðqÞ�iy�ðqÞ ¼
1

2

�
~��� ~�� þ ~��� ~�� � 2

3
~��� ~��

�
(27)

contains terms singular as mG ! 0. Thus, after summing
over all the polarizations, averaging over the initial ones,
and integrating over the phase space, the decay width,
assuming f2 massless, reads:

�ðf1 ! f2GÞ ¼ G2
Fm

7
1fðxGÞ

192ð2�Þ5�2

��������X
f

�fgaðxfÞ
��������2

; (28)

where xG ¼ m2
G=m

2
1, and fðxÞ ¼ ð1� xÞð1� 3

2 ðxþ x2 þ
x4Þ þ 7

2 x
3Þ absorbs the matrix element and phase space

corrections.
These results can have an application in the framework

of quantum gravity propagating in large extra dimensions
[17,18]. In [17,18], it was pointed out that if compactified
extra dimensions exist, with only gravity propagating in
the bulk, the fundamental scale of quantum gravity could
be much lower than the Plank scale MP. In this scenario,
the standard Newton constant GN in (3þ 1)-dimensional
space is related to the corresponding Plank scale MD in
(D ¼ 4þ �)-dimensional space, by

G�1
N ¼ 8�R�M2þ�

D ; (29)

where R is the radius of the compactified manifold as-
sumed here to be on a torus. If one requires MD � TeV,
present tests on gravity law imply that � � 2.

After integrating out compact extra dimensions, the
effective low energy theory describes an almost continuous
spectrum of massive spin-2 particles, which are excitations
of the standard graviton field. Then, each massive spin-2
field is coupled to the matter field by Eq. (24), where the
energy scale� corresponds to the reduced Plank mass �MP.
In the case of MD � TeV and � < 4, the mass splitting
between the Kaluza-Klein (KK) excitations is of the order
of KeV, and the KK spectrum can be approximated as
continuous. In this case the number density of modes
(dN) between mG and mG þ dmG of KK spin-2 masses
is [11]

dN ¼ S��1

�M2
P

M2þ�
D

m��1
G dmG; (30)

where S��1 is the surface of a unit-radius sphere in �

dimensions which is given by S��1 ¼ 2�n=ðn� 1Þ! and
S��1 ¼ 2�n=

Q
n�1
k¼0ðkþ 1

2Þ! for � ¼ 2n and � ¼ 2nþ 1,

with n integer, respectively.
In this framework, we consider the inclusive flavor-

changing graviton decay f1 ! f2G, where G stands for
any KK massive spin-2 gravitons with mass mG <m1. In
this case, the corresponding decay width is obtained by
multiplying Eq. (28) for dN, with � replaced by �MP, and
integrating it over all the allowed kinematical range ofmG.
In particular, for the inclusive decay we get

X
G

�ðf1 ! f2GÞ ¼ G2
Fm

7þ�
1 S��1Ið�Þ

192ð2�Þ5M2þ�
D

��������X
f

�fgaðxfÞ
��������2

;

(31)

where Ið�Þ ¼ 960=ð�ð2þ �Þð6þ �Þð8þ �Þð10þ �ÞÞ and
� � 2. As we can see from Eq. (31), the integration over
the number of KK states cancels the 1= �M2

P suppression
factor of the single graviton emission. We stress that the
final KK gravitons are detected as missing energy, since for
laboratory experiments they can be approximated as stable
particles [18]. This is due to the fact that the decay width of
a single KK graviton is strongly suppressed by 1= �M2

P.
For a numerical evaluation of Eq. (31) we restrict our-

selves to the inclusive B-meson decay Bd ! XsG, where
the standard GIM suppression is enhanced due to the
contribution of the top-quark running in the loop. In par-
ticular, for � ¼ 2, the corresponding branching ratio, nor-
malized to the experimental BRðB ! X ��eÞ ’ 10:4% of the
semileptonic decay, is

X
G

BRðBd ! XsGÞ ’ 10�13

�
TeV

MD

�
4
�

mb

4:3 GeV

�
4
; (32)

where Xs stands for any hadronic state containing an
s-quark. The above result corresponds to a top-quark
mass mt ¼ 171:2 GeV.
Next we consider the decay of a massive spin-2 particle

G ! f2 �f1, where f1;2 are two fermions of different flavor.

In the approximation of neglecting the final fermion
masses the corresponding amplitude can be obtained
from Eq. (14) by setting in it ðp � qÞ ¼ Mþ ¼ M� ¼ 0
and replacing the function gaðxÞ with the function
Gaðx; yÞ provided in Appendix B, where the full q2 depen-
dence in the form factors is retained, or

MðG ! f2 �f1Þ ¼ � iGFm
2
G

16�2
ffiffiffi
2

p
�

X
f

�fGaðxf; xGÞ�i��ðqÞ

	 �u2ðp2Þ½��p� þ ��p��PLv1ðp1Þ: (33)
In Eq. (33) xG ¼ m2

G=m
2
W , p ¼ p2 � p1 and the v1ðp1Þ is

the spinor of the antifermion associated with �f1. Then, for
the corresponding decay width we obtain

�ðG ! f2 �f1Þ ¼ �f

G2
Fm

4
G

64�4

��������X
f

�fGaðxf; xGÞ
��������2

; (34)
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where

�f ¼ m3
GNc

160��2
(35)

is the tree-level decay width of a massive spin-2 particle
into a pair of massless fermions of the same flavor, with Nc

the color factor.
Because of the presence of the G2

Fm
4
G term in the nu-

merator of Eq. (34), one would naı̈vely expect that when
mG � mW , the one-loop decay would be strongly en-
hanced. However, this is not the case. Indeed, by using
the asymptotic expansion of the B0ðyÞ and C0ðx; yÞ func-
tions at large values of y [19], we obtain

Gaðx; yÞ ¼ 1

y

�
FðxÞ � x

2
ðlogðyÞ � i�Þ

�
þ �GðyÞ þO

�
1

y2

�
;

(36)

FðxÞ ¼
�
3xð3� xÞ
4ð1� xÞ þ xð8� 6xþ x2Þ logðxÞ

2ðx� 1Þ2
�

� 4

�
Li2ð1� xÞ � �2

6

�
; (37)

where Li(x) stands for the usual dilogarithm function and
�GðyÞ is a pure function of y whose leading term is propor-
tional to log2ðyÞ=y, showing that no powerlike enhance-
ment is present in the FC decay when mG � mW .
Furthermore, due to the unitarity of CKM, the contribution
of �GðyÞ vanishes when the sum over all internal fermion
masses is performed, so that in the limit mG � mW the
decay width reads:

�ðG ! f2 �f1ÞjmG�mW

¼ �f

G2
Fm

4
W

64�4

��������X
f

�f

�
FðxfÞ �

xf
2

�
log

�
m2

G

m2
W

�
� i�

����������2

:

(38)

As a last example, we consider the high-energy limit of
the following FC fermion scattering process

fiðp1ÞXðq1Þ ! fjðp2ÞXðq2Þ (39)

induced by the one-graviton exchange amplitude, where
fi;j stands for two fermions of different flavor and X

indicates a generic particle. Because of the fact that gravity
does not change flavor at tree level, only the t-channel
diagram will contribute to the above scattering (where t �
ðp1 � p2Þ2), provided the X particle is different from the
initial and final fermions. In the fermion massless limit,
only the first term in Eq. (19), proportional to the Gaðx; yÞ
function, will contribute to the matrix element and there-
fore, regardless the graviton is assumed massive or mass-
less, in the region of large t values (jtj � m2

W), the
following relation among cross sections holds:

d


dt

fi!fj ’ d


dt

fi!fi 	G2
Fm

4
W

64�4

	
��������X

f

�f

�
FðxfÞ �

xf
2

log

��t

m2
W

����������2

; (40)

where d

dt

fi!fi stands for the diagonal part (in flavor) of the

tree-level differential cross section of the process fiX !
fiX mediated by the one-graviton exchange diagram.

V. CONCLUSIONS

We computed the one-loop flavor-changing quark-
graviton vertex verifying all the WI induced by the con-
servation of energy-momentum tensor. The calculation
was performed in the R� gauge with � ¼ 1, using a modi-

fied version of the ’t-Hooft gauge-fixing function and
cross-checked in the unitary gauge. We found that the
corresponding form factors turn out to be strongly GIM
suppressed when the internal fermion masses are much
smaller than the W mass. These results can be easily
generalized to the corresponding FC lepton-graviton verti-
ces, provided the neutrinos acquire mass of the Dirac type.
We investigated the case of a flavor-changing fermion-

graviton vertex coupled to an external gravitational source.
We show that, due to the angular-momentum conservation,
gravity and weak interactions induce at one loop an effec-
tive local interaction for the �F ¼ 1 transitions. At low
energy, the corresponding effective Hamiltonian is given
by local operators of dimension eight suppressed by a

characteristic scale of order � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MPmW

p � 1010 GeV.
Thus gravitational FC effects are completely negligible
when compared to the known contribution of �F ¼ 1
dimension six operators of the SM.
We showed that, in the case of massless graviton, the

locality of the FC gravitational interaction is related to the
cancellation of 1=q2 pole in the corresponding one-
graviton exchange amplitude. The latter does not take
place if the graviton has a small mass signaling another
aspect of the known vDVZ discontinuity in the graviton
mass. Indeed we showed that in the graviton-massive case
the Newton potential acquires a FC contribution that van-
ishes in the limit of equal external masses.
As a few applications of our results we analyzed a new

physics scenario containing massive spin-2 particles
coupled to the SM fields. In this framework, we calculated
the width of the FC decay f1 ! f2G and the decay of a
heavy spin-2 particle in two fermions of different flavor,
G ! f2 �f1. We also considered the scenario of quantum
gravity propagating in large extra dimensions. In this
framework, we evaluated the inclusive decay width for
the process f1 ! f2G, where G stands for any Kaluza-
Klein spin-2 graviton and estimated the branching ratio for
the inclusive Bd-meson decay Bd ! XsG. Finally, as a
consistency test of our results, we studied the asymptotic
behavior for large spin-2 masses of the decay G ! f2 �f1
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and the high-energy limit of the gravitational scattering
f1X ! f2X (with X � f1;2) with respect to the GIM

mechanism. We explicitly check that also in the asymptotic
limit, the GIM mechanism acts in the usual way strongly
suppressing the process for small internal fermion masses.

The results presented for the massive graviton can be
easily generalized to the case of a graviscalar, 	S, whose
interaction with the SM fields can be described by

L int ¼ � 1

�S

T��ðxÞ	SðxÞ���:

In particular, the counterpart of Eq. (22) for the graviscalar
reads:

hjjVðrÞjii ¼ � 1

�2
S

M

4�r
e�rm	S ðmi�ij þ ðmi �mjÞ�S

ijÞ

with �S
ij ¼ 6�ij. The width of the FC decay f1 ! f2	S

neglecting the mass of the produced particles is instead

�ðf1 ! f2	SÞ ¼ G2
Fm

7
1

32ð2�Þ5�2
S

��������X
f

�fgaðxfÞ
��������2

:

Finally, because the coupling between a graviscalar and the
fermions is proportional to the fermion mass, the decay
width of a graviscalar into two massless fermions is null.
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APPENDIX A

In this appendix we report the Feynman rules for gravi-
tational interactions with SM fields that are relevant for the
processes considered in this article. They are presented in
Fig. 2.

The symbols used in Fig. 2 are defined as

XðfÞ
�� ¼ ��ðk1� þ k2�Þ � ���ð6k1 þ 6k2 � 2miÞ; (A1)

XðVÞ
��� ¼ 1

2
���k2�k1 þ ��k1�k2� � ��k1�k2�

� ���k2�k1 þ ðk1 � k2 þm2
WÞ

	
�
����� � 1

2
�����

�

þ 1

�

�
1

2
���ðk1�k1 þ k2�k2 þ k1�k2Þ

� ��k1�k1� � ���k2k2�

�
; (A2)

XðSÞ
�� ¼ ðk1 � k2 þ �m2

WÞ��� � k1�k2� � k1�k2�; (A3)

Xðf;VÞ
��� ¼ Kijð2����� � ����� � �����ÞPL; (A4)

Xðf;SÞ
�� ¼ Kij

�
mj

mW

PR � mi

mW

PL

�
���: (A5)

APPENDIX B

In this appendix we discuss the form taken by T̂�� in the
limit ðp � qÞ ¼ p2 þ q2 ¼ 0, i.e. when terms proportional
tom2

1;2 are neglected. In this limit, from theWI on Eq. (11),

only five form factors survive and T̂�� can be cast in the
following form:

T̂ �� ¼ iGF

16�2
ffiffiffi
2

p X5
i¼1

Fiðp; qÞ �u2ðp2ÞÔ��
i u1ðp1Þ; (B1)

where

Ô��
1 ¼ ð��p� þ ��p�ÞPL � p�q� þ q�p�

q2
M�;

Ô
��
2 ¼ ð����q2 þ q�q�ÞMþ;

Ô
��
3 ¼ ð����q2 þ q�q�ÞM�;

Ô��
4 ¼ ðp�p�ÞMþ;

Ô
��
5 ¼ ðp�p�ÞM�

(B2)

FIG. 2. Three and four-point vertex Feynman rules relevant for
our calculation. The particle momenta are assumed to flow along
the direction of the arrows. For the meaning of the symbols see
text.
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with F1ðp; qÞ ¼ f1ðp; qÞ, F2ðp; qÞ ¼ f5ðp; qÞ, F3ðp; qÞ ¼ f9ðp; qÞ, F4ðp; qÞ ¼ f4ðp; qÞ, and F5ðp; qÞ ¼ f8ðp; qÞ. In this

basis each element Ô��
i satisfies the gauge invariance condition q�Ô

��
i ¼ 0, and so the corresponding form factors

Fiðp; qÞ are manifestly independent.
Writing

F1ðp; qÞ ¼ �q2
X
f

�fGaðxf; yÞ; F2ðp; qÞ ¼ �X
f

�fGbðxf; yÞ; F3ðp; qÞ ¼ 0;

F4ðp; qÞ ¼
X
f

�fGcðxf; yÞ; F5ðp; qÞ ¼ 0;

(B3)

we find

Gaðx; yÞ ¼ 4

y3

�
ð2� 3xþ x3ÞðB0ðyÞ � B0ð �yÞÞ þ ðx� 1Þ3ð2þ xÞ

�
C0ðx; yÞ þ 1

x
C0ð �x; �yÞ

�
þ ðx� 1Þ2ð2þ xÞ logðxÞ

�

þ 1

y2

�
ð1� xÞð2þ xÞ � 1

3
ð42� 23xþ 5x2ÞB0ð �yÞ þ 4

3
ð7� 4xþ 3x2ÞB0ðyÞ þ ðx� 1Þð18� 7xþ x2ÞC0ðx; yÞ

þ 2

x
ðx� 1Þð4� xþ 3x2ÞC0ð �x; �yÞ þ ð14� 3xþ 4x2Þ logðxÞ

�

þ 1

y

�ð1þ xÞð2þ xÞ
4ð1� xÞ þ 1

6
ðx� 34ÞB0ð �yÞ þ 1

3
ð8þ xÞB0ðyÞ � ð12� 6xþ x2ÞC0ðx; yÞ þ 2xC0ð �x; �yÞ

þ ð34� 45xþ 18x2 þ 2x3Þ logðxÞ
6ðx� 1Þ2

�
� 2C0ðx; yÞ; (B4)

Gbðx; yÞ ¼ 4

y3

�
ð2� 3xþ x3ÞðB0ð �yÞ � B0ðyÞÞ � ðx� 1Þ3ð2þ xÞ

�
C0ðx; yÞ þ 1

x
C0ð �x; �yÞ

�
� ðx� 1Þ2ð2þ xÞ logðxÞ

�

þ 2

y2

�
ðx� 1Þð2þ xÞ þ 4

3
ð3� xþ x2ÞB0ð �yÞ � 1

3
ð2þ xþ 9x2ÞB0ðyÞ þ ð6� 7xþ 2x2 � x3ÞC0ðx; yÞ

� 2ðx� 1Þð1þ 2xÞC0ð �x; �yÞ � ð4þ 2xþ 3x2Þ logðxÞ
�

þ 1

y

�
3ð2� 5xþ x2Þ

2ðx� 1Þ þ 1

3
ð2� 5xÞB0ð �yÞ þ 2

3
ð8� 5xÞB0ðyÞ þ ð4� 2xÞC0ðx; yÞ

� 1

x
ð4� 6xþ 6x2ÞC0ð �x; �yÞ � ð2þ 3x� 24x2 þ 10x3Þ logðxÞ

3ðx� 1Þ2
�
� 2C0ð �x; �yÞ; (B5)

Gcðx; yÞ ¼ 20

y3

�
ð2� 3xþ x3ÞðB0ð �yÞ � B0ðyÞÞ � ðx� 1Þ3ð2þ xÞ

�
C0ðx; yÞ þ 1

x
C0ð �x; �yÞ

�
� ðx� 1Þ2ð2þ xÞ logðxÞ

�

þ 2

y2

�
8ðx� 1Þð2þ xÞ þ 1

3
ð78� 59xþ 5x2ÞB0ð �yÞ � 1

3
ð10� 25xþ 39x2ÞB0ðyÞ

þ 18ðx� 2Þðx� 1ÞC0ðx; yÞ � 18xðx� 1ÞC0ð �x; �yÞ � ð26þ 3xþ 13x2Þ logðxÞ
�

þ 1

y

�
3ð2� 5xþ x2Þ

x� 1
þ 4ð10� xÞB0ð �yÞ

3
þ 4

3
ð2� 5xÞB0ðyÞ þ 2ð9� xÞð2� xÞC0ðx; yÞ

� 1

x
ð4� 14xþ 18x2ÞC0ð �x; �yÞ � 2ð20� 24x� 15x2 þ 10x3Þ logðxÞ

3ðx� 1Þ2
�
þ 4C0ðx; yÞ � 2C0ð �x; �yÞ; ; (B6)
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where xf � m2
f=m

2
W and y � q2=m2

W , and �x � 1=x, �y �
y=x, and the functions B0ðyÞ, C0ðx; yÞ are defined as

B0ðyÞ ¼ 2

y

�
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð4� yÞ

q
arctan

�
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yð4� yÞp ��
;

C0ðx; yÞ ¼
Z 1

0
dx1

Z 1�x1

0
dx2½ð1� xÞðx1 þ x2Þ

þ yx1x2 � 1��1:

(B7)

An analytic result for the function C0ðx; yÞ can be obtained
from Refs. [19,20]. The functions Ga;b;cðx; yÞ generalize
the ga;bðxÞ in Eq. (13) to include the full q2 dependence and
satisfy the following conditions:

lim
y!0

Gaðx; yÞ ¼ gaðxÞ; lim
y!0

Gbðx; yÞ ¼ gbðxÞ;

lim
y!0

Gcðx; yÞ ¼ 0:
(B8)

Notice that, despite the presence of pure logðxÞ terms (not
multiplied by x) in Eqs. (B4)–(B6), the Ga:b:cðx; yÞ func-
tions turn out to be of order OðxÞ for small x. This is
because the logðxÞ terms cancel out when summed to the
corresponding terms proportional to the Bð �yÞ function.
Indeed, Bð �yÞ ¼ logðxÞ þOðxÞ. Therefore, as expected by
the infrared behavior of the diagrams in Fig. 1, for small
internal fermion masses, the GIM mechanism strongly
suppresses the TFCNC in all ranges of q2.
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