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A bstract

W e study parity symm etries and boundary conditions in the fram e-
work of gauged linear sigm a m odels. This allow s us to Investigate the
K ahler m oduli dependence of the physics of D branes as well as orien—
tifolds In a CalabiYau com pacti cation. W e rst determm ine the parity
action on D -branes and de ne the set of orientifold-invariant D “branes in
the linear sigm a m odel. U sing probe branes on top of ordentifold planes,
we derive a general form ula for the type (SO vs Sp) of orientifold planes.
A s applications, we show how com pacti cationsw ith and w ithout vector
structure arise naturally at di erent realslices of the K ahlerm oduli space
of a CalbiYau com pacti cation. W e observe that orientifold planes lo—
cated at certain com ponents of the xed point locus can change type
when navigating through the stringy regin e.

1 Introduction and results

O rientifolds and D branes play an in portant role for the consistency of type
IT string com pacti cations [1{7] as both classes of ob fcts are needed to
ensure a balance of Ram ond {R am ond charges and to preserve spacetin e
supersym m etry at the sam e tin e.

In this paper we are interested in B +ype orientifolds of C alabi¥Yau m an—
ifods, and in particular their dependence on the K ahlerm oduli. A suitable
fram ework to investigate these issues are gauged lnear sigm a m odels [8],
w hich provide the possibility to interpolate between the large and an all ra—
dius regin e of a C alabi¥Y au com pacti cation. H ere, the com pacti cation is
describbed In tetm s ofa 1+ 1 dim ensional abelian gauge theory; the stringy
Landau G Inzburg point and the geom etric lin it are located at di erent lim —
its of the Fayet Tiopoulosparam eters r of the gauge theory. Together w ith
the theta angles the combination t= r+ i param etrizes the K ahlerm od-
uli space. Here, the theta angle contains in particular the inform ation on
the B- eld at large volum e.

T he possibility of tuming on a discrete B— eld plays an in portant role in
the discussion of type I string theory or, m ore generally, of orientifolds in
type IIB string theory. In particular, it in plies the possibility of com pacti-

cations w ithout vector structure [9{12]. In the context of the linear sigm a
m odel, the di erent discrete values of the B— eld descend from di erent real
slices in the K ahler m oduli space param etrized by  [13,14]. In particular,
the linear sigm a m odelallow s to understand large volum e com pacti cations
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distinguished by B- elds as extrem al lin it points of di erent branches of
a stringy m oduli space. In som e cases the branches can get connected in
the stringy regin e, such that it becom es possible to navigate from one large
volum e point to another taking a path in the interior of the m oduli space.
H ow ever, the interior of the m oduli space contains a sihqgular locus, and the
real slices singled out by the ordentifold profction m ight pass through it,
depending on the particular value of the theta angles; this was observed
in [14]and will be reviewed and worked out In detail below .

An in portant problem is to understand the D “brane categories com pat-
ble with the orientifold projction [15,16]. At the Landau-G inzburg point
D branes are described in term s of m atrix factorizations of the superpoten—
tial, and the brane category relevant for the description of unoriented strings
has been constructed In [17], cf. also [18]. On the other hand, a geom etric
description of branes on CalbiYau m anifolds is provided by the derived
category of coherent sheaves, and parities have been studied in this context
in [19]. In thispaper, w e lift the constructions of these tw 0 approaches to the
linear sigm a m odel, thereby connecting di erent comers in the K ahlerm od-
uligpace. For D branesw ithout orientifolds this analysis was already carried
out in [20], and before in the m athem atics literature (up to m onodrom ies)
In [21{26]. Earlier results on the level of Ram ond{R am ond charges were
obtained for D branes in [27{31]and including orientifolds in [14].

O nce the parity action on D Jbranes is understood, we can proceed and
determ ine under certain assum ptions the type of an orientifold plane (SO vs
Sp gauge group). G enerically, the xed point set of the parity action consists
of several irreducible com ponents, and the type of the individual orientifold
planes can be tested by determ ing the gauge group on probe branes posi-
tioned on top of the xed point set. W e work out explicit form ulas that
determ ine the orientifold type (up to an overall sign to be xed once and
for all for each parity) from the linear sigm a m odel data of the brane and
the parity. W ith thisat hand,we show that the orientifold type can change
when navigating through the non-geom etric regim e. Sim ilar e ects have
already been observed in [14,32,33] using tadpole cancellation conditions.
In the cases where large volum e regin es w ith di erent values of the B—- eld
are connected in the Interior of the m oduli space, we ocbserve that the type
of the orientifold plane changes along the path. This of course is In agree—
m ent w ith the fact that, at least for toroidal orientifolds, com pacti cations
distinguished by a B— eld at large volum e corregpond to com pacti cations
w ith or w ithout vector structure. Interestingly, we also nd non-trivialm on—
odrom ies: starting out at large volum e, continuing to the stringy regin e and
going back to the sam e large volum e point w ith the sam e B- eld, a change
of type can be observed in exam ples.
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To give a further application of our technigques, we consider con gurations
0of0 7 -planesand singularD 7-oranesw ith SO (N ) gauge group,w hich have
been studied recently in the context of F-theory m odelbuiding [34{36]. In
fact, the D 7-brane carries a curve of ordinary double points that lies on the
Intersection w ith the ordentifold plane and that pinches o at a collection of
points. F —theory and probe branes In type IIB were used In [35,36] to argue
that the D 7-brane geom etry in the presence of the ordentifold is constrained
to be singular, adm itting few er deform ation param eters than a D 7-brane on
a generic hypersurface. W e w ill give an explnation of the sihqularity that
relies just on the requirem ent to have an orientifold-invariant D Jorane w ith
the right gauge group.

T he issue of tadpole cancellation and the construction of consistent su-
persym m etric string vacua is one out of several interesting m odel buiding
applications, which we om it at present, but hope to address in future work.
T his question has however been investigated in som e detail, for instance at
points of enhanced symm etry using explicit constructions in rational con-
form al eld theory [14,37{42]. In our context the G epner point corresponds
to the Landau {G Inzburg point and all the RCFT branes considered in the
papers cited correspond to very sin plem atrix factorizations of the superpo—
tential. H owever, the techniques presented in this work provide m any m ore
possibilities of constructing consistent string vacua®! and additionally give
control over the K ahler m oduli dependence.

T he role of ordentifolds and D Jranes for tadpole cancellation in the topo-
logical string was revealed in [43], follow ing earlier work on open string
m irror symm etry [44,45]. W e expect that the present paper paves the way
to consider m ore general tadpole cancelling states in this context.

In the follow Ing, we give a brief outline of the paper and itsm ain results
n m ore detail.

D branes

In order to set the stage we start this work with a brief review section on

gauged lnear sigm a m odels w ith abelian gauge group T = U (1) [8,20].
This section can be skipped by readers that are fam iliar w ith the results
of [20].

!For exam ple, not all Landau {G inzburg m odels correspond to rational conform al eld
theories. Even if the bulk theory is rational, m ost branes w ill break the enhanced sym —
m etry m aking a conform al eld theory construction hard, while a Landau{G inzburg de-
scription is still possible.
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In particular, we introduce the com plexi ed K ahler m oduli space M x =
(C YnS / where S is the singular locus of com plex codin ension one on
which the world sheet description breaksdown in view ofm assless D branes
[461].

W e de ne D branes in the linear sigm a m odelasm atrix factorizations or
com plexes of W ilson line branes and explain the notion of D —isom orphism
classes, or equivalently quasiHsom orphism classes, which de ne the set of
low -energy D Joranes in each phase of the linear sigm a m odel. T he transport
of D branes across phase boundaries is In plem ented in view of the grade
restriction rule, which is a \gauge" =xing condition on the D —isom orphism
classes and depends on the path between phases. W e also brie y discuss
the brew ise K norrer m ap that relates the m atrix factorizations of the
linear sigm a m odel to geom etric D branes on the hypersurface or com plete
intersection in the low -energy theory.

O rientifolds

A frer these preparations we proceed in Sec. 3 w ith de ning and studying

B -ype parity actions and orientifolds in gauged linear sigm a m odels, rst

on a world sheet w ithout boundary. The world sheet parity action is the

com position of three operators, P = ( 1} Fr form 2 7. Ips the

orientation of the world sheet, is a holom orphic Involution acting on the

chiral elds of the linear sigm a m odel, and form odd the operator ( 1)t
Ips the sign for leftm oving states in the Ram ond sector.

W e observe the wellknown e ect that only slices n M ¢ of realdim en—
sion k survive the orientifold profction [14]. In fact, there are 2% such slices
param etrized by Z,<wvalued theta angles = (1;:::; ) Por 5 2 £0; g.
Each slicem ay orm ay not intersect the singular locus S ,which is now real
codim ension one and cannot be avoided by any path. This leads to the
observation that som e phases of the linear sigm a m odel are not connected
to others, at least not n a world sheet description.’> Som ewhat surpris-
ing, there are even non-perturbative regions \desp inside" the m oduli space
that are not connected to any of the phases where, at least in principle,
perturbative string m ethods can be applied.

The xed point set of the holom orphic Involution  takes a particularly
sin ple form . For linear sigm a m odels w ithout superpotential (which have
toric varieties as low -energy con gurations) it splits into a nite num ber of
irreducible com ponents, the orientifold planesO , that are param etrized by
a discrete choice of k phases = ( 1;:::; ). For linear sigm a m odels w ith

’Here,wem ean the K ahler m oduli space before orientifold profction.
‘For an M —theory analysis that allow s avoiding the singularity see [47].
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superpotential the com ponents O m ay becom e reducible at low energies so
that they split up Into a nite num ber of reducible com ponents O ; . The
explicit param etrization of the irreducilble com ponents of the xed point
Jocus tums out valuable for determ ning a sin ple form ula for the types of
the ndiviual ordentifold planes.

O rientifolds and D Jbranes

In Sec. 4 we Investigate the world sheet parity action In the presence of
boundaries and de ne the set of invariant D -branes in the gauged linear
sigm a m odel. The latter depends on the follow Ing data: (i) the slice on
the K ahler m oduli space, (ii) the integer m that controls the appearance
of ( 1§, (iil) the nvolution and (iv) a sign associated with the
orientifold. In fact, changing the latter sign ips the gauge groups, SO (n)
to Sp(n=2) or vice versa, of all nvariant D Joranes as well as the type of all
orientifold planes sin ultaneously.

On a slice of M ¢ where two ad acent phases of the linear sigm a m odel
are not separated by the singular locus we can stillm ove D branes betw een
the two phases by applying the grade restriction rule of [20]. W e show that
the latter is com patible w ith the world sheet parity action and can indeed
be applied to invariant D “branes.

A particularly im portant piece of inform ation on an invariant D ‘brane is
the type of its gauge group [6,17,19]. A pplying our form alism we are able to
derive an explicit form ula (81) for the sign that determm nes the gauge group
(SO or Sp) of an in portant class of invariant D Jranes, ie. D branes given
by K oszul com plexes (or K oszul-ike m atrix factorizations) that localize at
the intersection of a nite num ber of holom orphic polynom ials.

In Sec. 5 resp. 6 we proceed discussing non-com pact m odels (w ithout
superpotential) and com pact m odels (w ith superpotential) separately, as
som e of the resultsw illdepend on w hetherwe dealw ith com plexes orm atrix
factorizations.

In Sec. 6.1 we consider the e ect of the ( brew ise) Knorrerm ap on the
worl sheet parity action and on the set of invariant D -branes.

In Sec.5.1 and 6.2 we have a closer Iook at the K ahlerm oduli space M
and its slicing by the discrete theta angles. In general, the slices are not
connected. However, at special loci of the m oduli space, such as orbifold
points or Landau {G inzburg orbifold points, they can be connected, cf. [14].
In the linear sigm a m odel this can be seen by considering the set of invariant
D branes at these special loci. For higherdim ensional m oduli spaces this
leads to the phenom enon that large volum e points corresponding to di erent
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values of the discrete B— eld can be connected through a path in m oduli
Space.

W e continue In Sec. 52 and 6.3 with com puting explicit form ulas (94)
and (106) for the type o = 1 of an orientifold plane O by testing the
gauge group of a probe brane on top of the orientifold plane. W e nd that
the relative types of the various xed point com ponents O depend on the
slice In M ¢ . In particular, the type o is proportional to the character

1= k=
()= 1 S .

In Sec. 6.4 we discuss the sin ple exam ple of O 7-planes at four points on
the torus. D epending on the choice of the B- eld, this con guration is T -
dual to an orientifold w ith or w ithout vector structure. W e reproduce the
result of [9], where it was found that for vanishing B- eld all four points
carry the sam e type, w hereas for non-vanishing B- eld one point carries a
type opposite to the other three points. In Sec. 53 and 6.5 we exam plify
the phenom enon of type change along continuous paths in m oduli space
in two-param eter m odels. W e close this work in Sec. 6.6 by com m enting
on the weak-coupling lim it of a certain F-theory com pacti cation that was
discussed In [35,36].

2 A briefreview ofD branes in gauged linear sigm a m odels

In this section we Introduce gauged linear sigm am odels and review them ain
results and concepts of [20] for desribing D Jranes.

The motivation to consider N = (2;2) supersymm etric gauged linear
sigm a m odels relies on the observation that they provide an ultra=riolet de-
scription for N = (2;2) superconform al eld theordes such as a non-linear
sigm a m odelon Calabi{Yau hypersurfaces [8]. In that way the com plicated
non-linear sigm a m odel is lifted to a m odel w ith linear target space C¥

In this work we consider only abelian gauge groups T = U (1)¥. The
action of the gauge group on the chiralm ultiplets is controlled by the integral

1 k
chargesQ?,ie.g ¥X= g?'X;,whereg?: = g(fi :::g]%i foran elementg2 T.
The classical action involves a gauge-invariant F-temm superpotential,

W X)= gW (X), whose coe cients param etrize the com plex structure
modulispace M ¢ in the nfraxed theory. In this work we are not interested
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In deform ing the com plex structure and x the coe cients in the superpo-
tential once and for all.
T he action furthem ore includes a tw isted superpotentjalP € awhere
.= D,D V, isthe gauge eld strength. The param eters t* = r* i?
tum out to becom e coordinates on the (com plexi ed) K ahler m oduli space
M x of the low-energy theory. The Fayet{Illiopoulos param eters r* take
values in ngl, and the theta angles ¢ enter in the action via a topological
term thatm easures the instanton num ber of the gauge bundle and therefore
take values In (S1)*. Tt is convenient to work with the param etrization

et = (etl;:::;eﬂ()2 c *.

Phases in the classicalK ahler m oduli space

Them ain advantages of the gauged linear sigm a m odel over the non-linear

sigm a m odel is its explicit dependence on the K ahler m oduli space M x ,
even m ore so asm oving around In M g Involves generalized op transitions
between low -energy geom etries, which are hard to control in the non-linear
sigm a m odel but can be studied easily in the gauged linear sigm a m odel.

C Jassically the infraxed dynam ics is govermed by the zeros of the potential
|
B xk P x 2 W e ,
(1) Upor = 0f axi + = it £ o+ RBW )T
=1 a=1 a=1 =1 =1
w here x; are the lowest com ponents of the chiralm ultiplets, and , are the
com plex scalars in the vectorm ultiplets. Setting Uper = 0 requires that each
term In (1) has to vanish individally. The second one yields the D -tem
equations

(2) % (xi) = 0¢x:F = r°; or a= 1;:::5k;
=1

and the last one the holom orphic Ftem egquations

(3) QW (x)= 0; for i= 1;:::;N

Letus rstconsider the situation w ithout superpotential, W (x) 0. The
solutions to the D ‘term equationsm odulo gauge transform ations restrict the
chiral eHds x; to the sym plectic quotient ' (r)=T ,which is in fact a toric
variety. Itwillsu ceand in fact bem ore convenient in the follow ing to drop
the explicit dependence on the param eters r* and work w ith the algebraic
instead of the sym plectic quotient. T he latter is given by

N
(4) X, - S 1,
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where (C )* is the com plexi cation of the gauge group T . In fact, X , is the
space of (C ¥-orbits In CN that intersect the solution set of the D -term
equation (2). Thedelted set . contains precisely the subset of points in
c¥ ,whose (C )f-orbits do not intersect (2).

For generic values of the param eters r* the rst term in the potential
(1) provides a non-degenerate m assm atrix M ab(x ;x) or the scalars 5 and
therefore sets them to zero.

Aswemove around In R?I the sym plectic quotient changes and can un—
dergo generalized op transitions. The opsoccur at (real) codin ension one
walls, which subdivide the F I-space into phases (or K ahler cones), and are
usually referred to as phase boundaries. In tem s of the algebraic quotient
X , the walls are the locations w here the deleted set , changes.

In view of the potential (1) the positions of the phase boundaries in ngl
are the lociwhere the D term equation (2) adm its a solution such that the
massm atrix M #°(x;x) degenerates. Consequently, a subgroup U (1), T
rem ains unbroken and the corresponding scalar *? can take non-vanishing
expectation values, thus leading to non-nom alizable wave functions and
therefore to a sihgularity in the low -energy theory.

Ifwe tum on a superpotential W (x) the F-tem equations lin it the low -
energy dynam ics to a holom orphic subvariety in X .. G enerically, the direc—
tions transverse to (3) are not m assive, and the elds x; can still uctuate
around (3) so thatwe end up w ith a Landau {G Inzburgm odelw ith potential
W (x) over the base toric variety X . In the other extram e, if all transverse
directions are m assive, the theory is con ned to the subvariety given by

directions the low -energy dynam ics is described by a hybrid m odel.

The (quantum ) K ahler m oduli space M g

In the classical analysis the singular locus is real codin ension one n (C  )*.
However, when quantizing the system som e of the at directions for the
scalars @ get lifted by an e ective potential W o¢¢ ( ;t) and only a singular
Jocus S (C ¥ of com plkx codin ension one rem ains. The com plexi ed
K ahler m oduli space of the low -energy theory is then
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C lassicalm oduli space:

=0 £5= 1 S

Kahlerm oduli space:

Figure 1. The classicaland quantum m oduli space of one-
param eter m odels.

Fork = 1 them oduli space is depicted in Fig. 1. T he singular locus is a
point at

(5) S= et= Qf:
=1

For the higher dim ensionalm oduli spaces it su ces to note that for large

values of r the singular locus between two ad pcent phases is determ ined by
the unbroken subgroup U (1), . A sym ptotically, it is S (C ); a]l_l So

(C )k,where S, isgiven by (5) with respect to the K ahler param eter and
the charges of the unbroken gauge group U (1); . At the boundary between
tw o adpcent phases the singularity therefore reduces e ectively to the one-

din ensional situation.

R —sym m etries

For the sake of com pleteness let us brie y note that a necessary condition
to obtain a superconform al theory in the infrared is the invariance of the
gauged linear sigm a m odelunder an axialand a vectorU (1) R -symm etry, cf.
for instance [48]. T he form er is ensured by requiring the conform alcondition
(or Calabi{Yau condition)

(6) Q5= 0; for a= 1;:::;k ¢

W e w il henceforth im pose this condition.
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If no superpotential is present, we assign vector R charge zero to all su—
pem ultiplets, which then tums Into the standard R charge assignm ent for
the non-linear sigm a m odel In the nfrared. If a superpotential is present,
som e of the chiral m ultiplets have to carry non-vanishing vector R -charge
and the global sym m etry is ensured by

(7) wo( x) =" (x) ;

w here x = fixq;i::; RBvxy ) for some phase . W e shall henceforth
assum e an integrality condition on the R <harges of the elds in the linear
sigm a m odel, ie. the R <harge is equalm odulo 2 to the ferm ion num ber,

( 17 = ( 1%+
Som e interesting exam ples
Example 1

Let us consider the gauged linear sigm a m odels w ith the follow ing chiral
m ultiplets:

X1 i Xy P
u@)y; 1 w1 N

(8)

Thedeleted setsatr Oresp.r Oare
(9) = fp= Og and + = fx1= 11:= xiy = Og;

and the corresponding toric varieties in the Infraxed are the orbifold X =
Cc¥ =2y and its crepant resolution X , , which is the total space of the line
bundeO ( N)! CP' .

Let us tum on a superpotential W (p;x) = pG (x) with a hom ogeneous
degreeN polynom i2lG (x). A frequent choice isthe Fermm at typepolynom ial,
G (x)= xlf + i+ xﬁ :

W e assign R <harge + 2 to p and 0 to all other elds. In the an all volum e
lin it the theory becom es a Landau{G inzburg m odel w ith potential G (x)
on the orbifold X . At large volum e we obtain a Landau{G nzburg m odel
over X , , whose potential however induces F-term m asses. T he low -energy
theory therefore localizesat fp = G (x) = 0g and becom esa non-linear sigm a
m odelon a degree N hypersurface in profctive space CPY 1.
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L

v = fxi=x,=0g[ fp= 0y 1= fx1 =x,=0g[ fx3= ::1:= x5 = 0Og

s}

111 = fx¢ = 0g [ fp= Og 1= fx; = 1:1:= x5 = 0g[ fx¢ = Og

Figure 2. TheclassicalK ahlerm oduli space of Exam ple 2
w ithout theta angle directions of the two-param eter m odel.

Exam ple 2

A frequently considered two-param eter m odel is given by the follow ng
elds and charges:

X1 X2 X3 X4 X5 Xg 1<
(10) U@y | 0 0 1 1 1 1 4

Its classical phase diagram together w ith the deleted sets is shown In Fig. 2.
Phase III contains the orbifold C°=7Zg, and phase I its sm ooth total resoli-
tion. Phases ITand IV are partial resolutions, the form er being a line bundle
over weighted profctive space, 0 ( 8) ! W B ,,,.

Let us tum on the superpotentialW (p;x) = pG (x) with a hom ogeneous
polynom ialG (x) of bidegree (4;0), for exam ple,
G (x)= xé(x? + x§)+ x§1+ x3+ xé:
W e assign R charge + 2 to p and 0 to allother elds. In phase III this results
in a Landau{G inzburg m odel over the orbifold C°=Z3 and in phase IV in
a LG -m odel over the toric variety X 1v . Phases I and II are geom etric in
view ofm assive F-term s. In particular, phase IT corresponds to a degree 8
hypersurface in W P%,,,, and phase I to a am ooth Calkbi{Yau hypersurface.
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2.1 D branes from the ultra—-violet to the infra-red

Let us consider boundary conditions that preserve B -type supersym m etry
N = 25 . The latter is characterized by the unbroken vector R -sym m etry.

A susualin supersym m etric theories the variation of the bulk action gives
rise to total derivatives and thus to boundary tem s. T he strategy in [20]
was to Introduce appropriate boundary counter termm s prior to im posing
boundary conditions. In fact, the supersymm etry variations of the bulk
kinetic termm s can be com pensated by standard boundary tem s that are
equalforallD branes. W e arenot interested in these and instead concentrate
on the part that gpeci es the D brane data.

Let us st consider the situation w ithout superpotential. The m odi —
cation to include W will tum out to be only m inor from the ultra-violet
perspective of the gauged linear sigm a m odel.

D branes in m odels w ithout superpotential

A D -rane In the gauged linear sigm a m odel is described by an N = 23
Invariant W ilson line at the boundary of the world sheet,
Z

(11) P exp 1 dsA
@

It carries a representation (g) of the gauge group T aswellas a represen—
tation R ( ) of the vector R symm etry and a representation  of the world
sheet ferm ion num ber. In view of the integrality condition on the R charges
wemay sest =R (ei ).

The sin plest choice for the W ilson line corresponds to an irreduchble
representation of the gauge group, (g) = g‘fl :::ggk ,ie.
Xk
(12) A = Vs Re( )= qa (Va)s Re(a)
a=1
W e call it a W ilson line brane and denoted it by W (g) = W (ql;:::;qk).
T he representation of theR symm etry isR ( )= 7 for som e integer j, and
= ( 1).Werefer to a W ilson line brane w ith even and odd j as brane
resp. antbrane.

The generalD brane B can be constructed by piling up a stack of W ilson
lnebranes,W = . W (qi),4 and tuming on a supersym m etric interaction,

=1

4By abuse of notation we som etin es refer to W as the Chan{Paton space of the D -
brane.
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ie.a tachyon pro e Q ,am ong the individualcom ponents. T he correspond-—
Ing superconnection reads

1 1 X 1X
(13) A = vs Re( )+ EfQ HoRLe) P 140 + 2 1607 ;

i i
where ; istheN = 2z superpartner of the chiral eld x;.

TheW ilson line (11) is supersym m etric if and only if the tachyon pro e
Q (x) depends holom orphically on the chiral elds x; and squares to zero.
A 150, Q (x) has to regpect the representation of the gauge group,

(14) @) '0@x) @ =0 x):

In view of the R-symm etry representation the stack W splits up into
com ponents of de nite R degree, W = sW 7, and from A we nd that
Q (x) has to carry R charge one,

(15) R()Q( xX)R( J= Q)
T his In pies in particular that Q (x) is odd,
(16) Q) = Q)

and therefore the interaction Q (x) in the superconnection couples branes to
antibranes only. M oreover, having R <harge one in plies that the tachyon
pro le can be brought into the block—fom

0 , 1
0 dhex 1 0 22 00
E 0 0 dkax 2 10 00 0 %
Q(X)=% : . . DR
€ o 0 0 221 0 dhs A
0 0 0 :: O 0
Each non-rivialmap dd :W 3 ! W3I* ! fncreases the R -degree by one. The

data for the D rane,B = (W ; (g);R ( );0Q (x)), can therefore conveniently
be encoded In a com plex of W ilson line branes,
dj 2 dj 1 . dj dj+ 1

17) ir——wIt?t — W — W L .

where W 3 = ri]:jlw (qij). In explicit exam ples we w ill often drop the R -
degree index and use the convention to underline the com ponent ofR -degree
j= 0.W edenote the set 0ofD branes in a gauged linear sigm a m odelw ithout
superpotentialby D (CN ;T ).
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D branes in the presence of a superpotential

Let us next study the in pact of a superpotential W (x). A s observed by
W amer in [49] its supersym m etry variation gives rise to a boundary tem

that needs to be com pensated appropriately. In the present context the form

of the superconnection (13) aswellas the transform ation properties (14{16)
rem ain unchanged. Theonly m odi cation com es from the necessity to cancel
the W amer temm and results in the condition that Q (x)2 = W (x) id ,
ie. Q (x) is a matrix factorization of the quasihom ogeneous polynom ial
W (x) [B0{54]. In the even/odd basis of W it has the fam iliar o -diagonal
form

(18) 0 (x)= ; with fg=W (x) d; gf=W (x) id:
Let the superpotential be of the form W (p;x) = pG (x) with the chiral

eld p carrying R <harge 2. Then, in a basis of Increasing R degree forw ,
the m atrix factorization reads schem atically

0 1
0 0
B C
0 0 H o]
% IS
E o0 p 0 0
19 =E :
(19) Q=8 o p 0 %
E o0 g 0 ¢
@ P K
An asterisk com ing w ith ¢° isshortforamapw I ! WI*! 2  Note that

the data for the m atrix factorization can conveniently be encoded In a form
analogous to a com plex (17). For Instance, a m atrix factorization w ithout
term s of order O (pz) In Q (p;x) reads

S . -V
(20) ::::le : wJ : W3+l:

pdil pd]j- pd]j-+1 pd]j-+2

W e denote the set of m atrix factorization of the gauged linear sigm a m odel
by M Fy €N ;T).

To summ arize we found that a D brane B in the gauged linear sigm a
model is given by the data W ; (g);R ( );Q (x)) satisfying the relations
(14{16) and

Q0 (x)=0 Qx)F=w (x) d
w thout superpotential, w ith superpotential.
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RG - ow and D —isom orphism s

Let us study the RG—-ow of the W ilson line (13) to the nfrared while
staying deep inside of one of the phases In the K ahler m oduli space. The
discussion here will be independent of F-termm s and is applicable to both
com plexes and m atrix factorizations. In particular, we do not yet integrate
out edswith F-termm m asses that constrain the low -energy dynam ics to a
holom orphic subvariety In X -, ie. In am odelw ith superpotentialW (x) we
consider the low -energy theory as a Landau{G inzburgm odelover X . In any
phase.

A sthegauge coupling constants arem assive param eters in tw o din ensions
they willblow up as the theory ow s to the infrared and as a consequence
the equations of m otion for the gauge m ultiplets becom e algebraic. In par-
ticular, ntegrating out the gauge eldsv, and the scalars , show s that the
superconnection (12) becom es the supersym m etric pulback of a connection
A to the world sheet,

i
A =XxA EFil i o
A is the connection of the holom orphic Iine bundle O () = O (g ;:::;0%)
on the toric variety X ., and F is its eld strength. The charges g, now
determ ine the divisor class, or m ore physically, the world volum e ux on
the D brane. The com plex (17) then tums into a com plex of holom orphic
vector bundles over X ., and the m atrix factorization (20) couples together
line bundles over the base space X . of the LG -m odel.

In the llow ng we are particularly interested in the Interply of the
boundary RG — ow and thebulk D tterm equations (2). Instead of considering
the RG - ow explicitly we identify deform ations of the W ilson line (13) that
donotalter the infraxed xed point. T hesedeform ations lead to equivalence
relations between D Jbranes, called D —isom orphisn s iIn [20]. T he low -energy
D branes can then be de ned as equivalence classes in the gauged linear
sigm a m odel. D —isom orphisn s are com posed of the follow ing two kinds of
m anjpulations.

(1) The rstmanipulation can be seen by noticing that the superconnec—
tion (13) contains a m atrix valued boundary potential £Q ;0 Yg.

Suppose a D brane is reducible, B = B, B,,with tachyon pro le

(21) 0 (x)= ;
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and the boundary potential £Q , ;0 »,¥g is positive de nite everyw here on the

toric variety X .. Then as the theory ows to the nfraxed the boundary

potential for B ; blow s up and its W ilson line is exponentially suppressed.

W e call such D -branes em pty. A s a consequence both D -branes,B and B 1,
ow to the sam e nfraxed xed point. W e w rite

(22) B =B B,=Bq:
W e can therefore freely add and rem ove D -branes w ith positive de nite

boundary potential in the gauged linear sigm a m odelas long aswe are only
interested in the low -energy D brane.

W e stress that the positive de nimess of £Q ;Q Yg depends In an essential
way on the phase of the gauged linear sigm a m odel, or m ore explicitly, on
thedeleted set , thatde nesthe algebraic quotient X . In fact, a D brane

B isempty ifand only if
n o

detfQ ;0¥g= 0 rt
Exam ples for D branes that are em pty in any phase are given by the com —
plex W (q) Now () for m odels w ithout superpotential and by the m atrix

]1

factorization W (q) W (q) form odels w ith superpotential.

Exam ple 1 with N = 3 and no superpotential

C onsider the D boranes

(23) X1 0 X03 X 2
X3 3 X5 x170 3 (X17X2;Xj)
Bi:W ( 1)~ W (0) - W@ W (2);
and
P _
(24) Bo:W Q)7 W ( 1);

aswellas the reducible D braneB = B; B,. Here, the underlined W ilson
line com ponent§ are at R degree j= 0. The boundary potentials are given
by f01;079=  ;¥iF idandf@;0’g= pf i, respectively. Com paring
w ith the deleted sets (9) we nd the follow ing pattem for the infraxed D —
branes:

r<< 0 r>> 0
(25) B1|B1=B en pty
By| empty |[B,=B

For the m odelw ith superpotentialW (p;x) = pG (x) it is possible to add
backward arrow s In (23) and (24) to make B 1 and B , Into m atrix factor-
zations. (Note however the non-trivial R charge 2 for p.) W e leave it to
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the reader to com pute the corresponding boundary potentials and to verify
that table (25) is not altered.

(i1) For the second m anipulation the essential idea is that renom alization
group ow can change the boundary action by boundary D term s,Q Q ¥ (:::),
but not by boundary Ftem s, Q (:::). Here, Q and QY are the N = 23
supercharges. T he theory ow s to an infraxed xed point w ith a particular
D temm , irrespective of the chosen D term in the gauged linear sigm a m odel,
ie.deform ing boundary D <term s does not alter the infra—red D Jorane.

In order to describe these D term deform ations it is convenient to consider
the supersym m etry generator on the world sheet boundary from theN oether
procedure. In the zero m ode approxin ation it becom es

(26) 0 = @+ A+ Q :

and reduces to Q uillens superconnection [55{57]. It can be used to express
the superconnection A of the low -energy theory as

1
(27) A=xA 5fQ ;0Yg :

Q uillens superconnection in (26) is written in the unitary fram e for the
associated graded holom orphic vector bundle E w ith hemm itian m etric. In
what ollow s it is m ore convenient to work in the holom orphic fram e, for
which i0 Bot=" 1@, + Q (x).

A D-tem deformationM =M (X;X; ‘)jntheholomorphjcftamejsthen
a transform ation (Q )"°l=M QoM 1, or equivalently

(28) 0%x=)=M 'eM '+ MQEx)M ‘l:

W e assum e that M comm utes w ith the representations of the gauge group
and the global sym m etries. In particular,

%G) = gM (@M ';

(29)
R%) = M R() M ':

In the gpecial situation when M depends only on the chiral elds x; it is
sin ply a sin ilarity transform ation
(30) 0%x)=MQxM *;

ie. a change of the holom orphic fram e of E.

An Im portant exam ple of the general transform ation (28) is as follow s.
Consider

0 Q2(x)
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with Q1 + Q , = 0,and assum e that for s= 0 the D brane becom es the
reducible D brane (21) with B , em pty.

A s long aswe keep s non—zero we can deform Q ¢ (x) by a sin ilarity trans-
form ation (30),
s d 0
Qs(x)=M QoM !; for M = 0 & u
However, setting s = 0 by a sin ilarity transform ation is not possible. Let
us consider the general D termm deform ation (28) In n nitesmalform M =
da s (x; ),

@ h i
(31) —Qs()F-0=10¢% (x;)
@s
Inserting the D Jorane under consideration on the left-hand side we obtain
Q . 0 &)
@_SQ s(X)E=0= 0 0

T he existence of a D term deform ation to set s = 0 therefore reduces to the
requirem ent that isQ SOI—exact. To see that this is Indeed true we m erely
rem ark that sihce isQ 8°l—c]osed it corresponds to a state between the
D branesB | and B , . However, since the open string spectrum between any
D brane and an em pty one is em pty, it follow s that must be Q gOl—exact.
See [20] for a m ore detailed discussion of this point.

Exam ple 1 with N = 3 and no superpotential

Consider B = B, B,,de ned in (23) and (24). In both the orbifold
and the Jarge volum e phase the D orane B is D —=isom orphic to

(32) X1 0 X
0 xi -~ 3 X23 X1 701 3 fx1ipx2ipxs)
B ":W ( 1)— W (0) - W (1) - W ( 1):

To show thiswe startwith B and rstuserelation (31) to tum on a constant
map from the W ilson line com ponentsW (2) n B, to W (2) in B 1. Then
we use a change of basis (30) to transform itto B W )" W (2)=BCO.
T his show s the equivalence of B and B © in the nfrared.

Again we can add backward arrows in B ? to m ake it into a m atrix fac-
torization of W (p;x)= pG (x). Then B and B 0 are still D —isom orphic.

For later applications it tums out to be m ore convenient to reform ulate
the two m anipulations from above in term s of quasi=isom orphism son the set
of linear sigm a m odel D branes (or the underlying category) [58]. Indeed,
D —isom orphian s are nothing else but quasidsom orphisn s [20].
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Recall that a quasidsom orphisn U between two D branesB | and B ; is
aQ—<losed map,ie.Q,U = UQ 1, such that its cone,

_ Q1 0 .
(33) Qc )~ U 0, ’
isem pty. The follow ingm anippulations show thatquasiHsom orphicD “branes,
B and B ,, are iIndeed related by a chain of braneantibrane annihilations
and D term deform ations [20]:

0 1 0 1 0 1
Q1 0 0 Q1 0 0 Q1 0 0
0:=0@ 0 0, WA ==Cuy Q, dA=-Cuy Q 0A =0,
0 0 Q- 0 0 (O 0 0 Q2

In the rst and last step we used braneantibrane annihilation (22), In the
second a sin ilarity transform ation (30) to tum on U , and in the thid an
in nitesin alD —-term deform ation (31) to tum o .

Having introduced D —isom orphism s we can de ne now the set of low—
energy D -branes on a toric variety X, as D —isom orphisn classes of linear
sigm a m odelbranes. Let usdenote the set of low -energy D branesby D (X ;)
and M Fy X,). We obtain the follow ing two pyram idds of m aps, where
the vertical m aps correspond to m odding out by D —isom orphism s In the
regpective phase:

D CY;T) M Fy (CY;T)
BY BJ
B Y B J
J J
pppPB J pppp% J
Pp Pp
Ppy B 9 Pprpp B %
DX F le h h%th(i(lhlv ) M Fy (X71) P 15 h Byl By X )
K
DXm) B D Xm) MFy Km) DMFy (X

RG - ow to orbifolds or LG —-orbifolds

In order to close the discussion of D —isom orphian s, let us brie y consider
their role in the special case when the phase In M g corresponds to an
orbibd X , = CSN k— . Tt occurs if the deleted set consists of k irreducible
factors, = ,;fx1= 0g, where I fl;:::;N g contains k elem ents.
The eldsx, for12 I getvacuum expectation values, say x; = 1,which
break T to . ForD -branes the representation (g) of T then descends to a
respresentation ( ) of
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How does this a ect the D <isom orphisn s? In view of the deleted set .
the em pty D branes are given by

X1

W@ Q) W@ for 121 :
A frer assigning expectation values this descends to the trivial com plex,

where g = gmod Q; is now a representation of . Since the only em pty
D branes In the orbifold m odel are given by such trivial com plexes, we nd
that any quasidsom orphism is a sin flarity transform ation as in (30) and
thus invertible, ie. there are no non-trivial quasidsom orphisn s anym ore. A
sin ilar argum ent holds for m atrix factorizations in LG -orbifolds as well.

RG - ow and F-term m asses

Before we tum to the question of how to relate the sets of low -energy D —
branes across phase boundaries, let us consider another issue that is speci ¢
tom odelsw ith a superpotential and thus to m atrix factorizations. A s elici-
dated above the superpotential can give rise to m asses for som e of the chiral
m ultiplets, which then m ust be integrated out in the strict infra—red lim it.
A s an exam ple consider the superpotential W (p;x) = pG (x) which gives
m asses to p and to the transverse m ode of the hypersurface £G (x) = Og at
large volume. Let N = (N ;:::;N %) be the gauge charge of p.

The e ect of the m assive m odes on m atrix factorizations was studied in
[20], cf. also [59{63]. Indeed,a bresw ise version of K norrer periodicity [64]
In plem ents the equivalence of the set of m atrix factorizations in M Fy (X 1)
and the set of com plexes (of coherent sheaves) D (M ) on the hypersurface
M,= fp= G (x)= 0Og Kew

Take am atrix factorization given by thedata W ; (g);R ( );Q (p;x)). Let
Jn bethem Inim alR -degree in the representationsR ( ). Them atrix factor-
ization ism apped to the D braneon M , as follow s. First in pose G (x) = 0,
which In pliesQ (p;x )2 = 0. Second consider a W ilson line com ponentW (q)
asagradedmodulkA (q),whereA = C [p;xE(G ). Here C [p;x ] is the graded
coordinate ring of the linear sigm a m odel and taking the quotient by the
deal (G ) corresponds to in posing G (x) = 0. Now consider A (gq) asan in —
nitem odule over theringB = C [x (G ), thatisA () = %:Opm B(pmN ),
ie. every W ilson line com ponent W (g) becom es an in nite stack of line

bundleson M .,
M
OM,@+mN)[ 2m]:

m=0
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[ 2m ]Jdenotes a shift in R degree by 2m , which is due to the R charge 2 of

It ram ains to work out the action of Q (p;x) on the in nite Chan{Paton
goace. Consider the m atrix j'ac;tordzation In the basis (19). W rite Q (p;x) =

L, PO, (%) and denote by E’ the vector bundle over M ., which descends
from W 3. Then we obtain a halfin nite com plex,

Qo

Q Qo
i = En+l o En+2 = En+3 E:+S ...
X x%? X x G % 1 xﬁfk
) Qo
B gt Bt EF Y L
" : O_Hl 4 41
EF — EF i

w here Er? is short-hand for EJ (nN )[ 2n]. Aftera nite number of steps to
the right, the rank of the entries in this com plex stabilizes to the rank of the
m atrix factorization, and the com plex becom es tw o-periodic w ith altermating
maps f (x) = f£(p;x)}=1 and §(x) = g(p;x)}-1. In fact, the halfin nite
com plex is quasidsom orphic to a nite com plex of coherent sheaves over the
hypersurface M ., ie. the In nite tower of brane antidbrane pairs condenses
to a nite num ber of branes and antibranes, which gives the geom etric
D-branein D M ).

W e nally ram ark that the gauge charges N and N of the m assive
modes p and G (x) induces a non—trivial relation between the B — eld in the
non-linear sigm a m odelon M , and the theta angle [20,65], that is

(34) B®= 4+ N°?

W e postpone a m ore detailed discussion of this e ect to a Jater section.
Exam ple 1 with N = 3 with superpotential

Consider the superpotential W (p;x)= pG (x) with cubic Fem at polyno—
mialG (x). Atr>> 0 the theory localizes at the elliptic curve E = fG (x) =
0g CP. Letusexmaine them atrix factorizations

By:W ( 1) —w (0) ° = w (1) ° =W (2);
px? px? px?
and
G (x)
Bo:W ( 1) W (2) ;
P

which are the analogs of the com plexes (23) and (24), respectively.
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At Jarge volum e the K norrerm ap acts on them in the follow ng way. B 1
becom es

X
X

X
O( 1y—o0 () 3

2
X x% XxZ i
X _

w here the line bundles O (q) are understood to be pulled back from CP? to
the elliptic curve E . In fact, thiscom plex isan em pty D brane, in accordance
w ith table (25).

O n the other hand, B , ism apped to

Trivial brane antlbrane pairs can be dropped in the infrared, and the single
lJinebundle O ( 1)[1]rem ains.

2.2 M oving around in m oduli space

So far we considered the renom alization group ow to the infraxed only
deep inside of the phases in the Kahler m oduli space. W e de ned the set
of low -energy D branes In the infra-xed theory as the set of D <isom orphism
classes of D branes In the linear sigma model. Let us now tum to the
question of how to transport low -energy D Jranes across phase boundaries
between ad pcent phases.

G rade restriction rule

T he analysis of the gauged linear sigm a m odelon the cylinder, correspond-—
Ing to a propagating closed string in the nfraxed, show s that along the sin-
gular locus S My the world sheet description breaks down. Additional
non-nom alizable m odes show up, which are due to noncom pact directions
In eld space, ie. the e ective potential W o¢¢ ( ;1) for large values of the
scalar eds © has atdirections along S .

In the presence of D branes, the analysis of the e ective potential was
redone in [20]on a strip of width L and led to the follow ing result. For the
gaugegroup T = U (1) aW ilson line com ponentW (g)in aD braneB causes
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A

Figure 3. W indow s for the grade restriction rule. Here S is odd.

no singularity near the phase boundary if and only if the grade restriction
rule,
S S

35 —< —+g< — ;
(35) 53 q 5

P
issatis ed. Here,S= 1=2 ;D ;ij

T he grade restriction rule is illustrated in Fig. 3. Take a path through a
w indow w between singular points in the F I-theta-plane. T hen the condition
(35) adm its only a set N " of S consecutive charges for the W ilson line
com ponents W (q) of the D brane B . D enote the set of grade restricted
com plexes and m atrix factorizationsby T" resp. M Fy (T" ).

For higher rank gauge groups, T = U (1)¢, only the unbroken gauge group
U (1), at the regpective phase boundary enters In the condition (35).

Com bining D —isom orphism s and the grade restriction rule

A s it stands the grade restriction rule is a condition on the D Joranes in
the gauged linear sigma model, ie. T" D(C;T)and M Fy (T")

M Fy (€Y ;T). For the Iow -energy D branes the in portant observation is
the fact that the grade restriction rule is a unique ‘gauge choice’ In the D —
isom orphian class (fork > 1 unigue up to D —isom orphisn s that are com m on
to both phases, see [20]). A low-energy D Jbrane can therefore be trans—
ported, say from phase I to phase IT,by rst In posing the grade restriciton
rule on the D —isom orphism class in phase I and then m apping the grade
restricted representative to its D <dsom orphisn class in phase IT.
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In fact, the com positionsofmaps, 11 fmand 1 I In the follow ing
diagram s are inverse to each other:

D CY;T)

[

!1;1_1 w IT

D X1) T D X11);
I !II;I
M Fy (C7;T)
[
Vrar u II_
MFy X1) MFy (T7) MFy X11)8

1 Yrrp

Here, denotes m odding out by D —isom orphisn s in the respective phase,
and ! ; ispicking the representative of the D -isom orphisn class in thegrade
restricted set. Let us illustrate this In our exam ple.

Exam ple 1 with N = 3 and no superpotential

Here, S = 3. We pick a window w = £ < < g, which adm its
N" = f 1;0;1g according to the grade restriction rule. At r << 0 we
found the D —isom orphic D -branes,B1 = B = B, and at r >> 0 we found
B, =B = BY From isde nition (32) it ollow s that in both phases the
D brane B " is the grade restricted representative in the D —isom orphisn class
and can thus be transported across the phase boundary:

r<< 0 |GRR r>>0
B,=8B° BY [B,=B"

3 O rientifolds in linear sigm a m odels

In this section we put aside D branes and review and study world sheet
parity actions in gauged linear sigm a m odels w ithout boundary. Let us pick
thecylinder = R S! with coordinates (t;x) " (;x+ 2 )asword sheet.
T he partily action is an ordentation reversal : (t;x) 7 (t; x) dressed by
an involution  of the target space coordinates and possibly dressed by a
sign on the left-m oving R am ond sector states, ( 1§* .

In theories preserving N = 25 supersymm etry the action of the orienta—
tion reversal needs to be extended to the N = (2;2) superspace coordinates
by s ( ;)7 ( ; ). This in particular Im plies that (anti)chiral
m ultiplets are m apped to (anti)chiral m ultiplets, tw isted chiralm ultiplets
arem apped to tw isted antichiralm ultiplets, and vector m ultiplets to vector
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multiplets [13]. A lso, the Involution  is holom orphic and acts non-trivially
on the chiral super elds of the gauged linear sigm a m odel.

In the follow ing we w illhave a closer Iook at the xed point locus of the
holom orphic Involution  and at the orientifold K ahler m oduli space.

3.1 T he holom orphic involution and orientifold planes

Recall the buk Lagrangian of N = (2;2) gauged linear sigm a m odels,
|

Z xk 1 X
(36) L = g — 2.+ X! ¥xy
a:lzea | =1
Z XK : Z
+Re d°e £ . +Re d> W (X):
a=1

T hekinetic term s in the st line are Invariant under the orientation reversal
by itself, but we can dress the Jatter by the holom orphic involution,
X; 7 LX) for i= 1;:::;N;

37
(37 AV Va for a= 1;:::;k:

Thepem utation isofordertwo, 2= i,and preserves the gauge charges,
Qi=Q (4 . Invariance of the action requires the coe cients ! ; to be phase
factors. W e obtain the parity action on the com ponent elds by com bining
the right-hand side of (37) w ith the transform ation of the supercoordinates
w ith respect to . The result is

2 F) T (x5 Py F @y,
~v; ;5 D) T (v;; ;D ):

(38)

T he holom orphic Involution needs to be Involutive only up to gauge
transformm ations,

(39) Xi=g X;
k

1
thatis !3! (4 = Qi(g),where Qi(g)z gfi :::g}(fi is the character of the
representation determ ned by the charges Q ;.

In view of (39) we see that only gauge equivalence classes of holom orphic
involutions, g ,matter. Note that we can always nd a representative
o of the class so that ¢ = 1. It ishowever not unigue. T here are in fact 25
gauge equivalent choices. Ifwe take a reference involution o, we can dress it
by an elements = ( 1;:::; x)2 T or o= 1. The resulting involution,

(40) 0= 07
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still satis es the property ( = 1.

In the presence of a superpotential the phase factors in the B ype parity
(37) are further constrained by

(41) W x=W(x)= W X):

The m nus sign on the righthand side com pensates the sign from
d*d 7 dfd iIn the action (36). For a m odel with Ferm at poly—
nom 11, G (x) = ¥ % and W (pjx) = pG (x), this is ensured by

1%
(42) !fﬁz: !pl for i= 1;:::;N
Here, |, is an arbitrary phase factor. In particular, n o the phase ! ; must
be a sign.

O rientifold planes

O rlentifold planes are the irreducible com ponents of the xed point locus
Fix' () of the holom orphic involution . The xed point locus can be
determ ined by nding solutionsto g x; = x; forappropriateelem entsg2 T .
U sing the gauge symm etry it can be expressed in temm s of special gauge
choices |, , that is

(43) Fix' ()= Fi(g);
21
T
where Fix( )= ,f (x;= x;0=(C ¥ . In (43) the union is taken over a
discrete subset of elam ents in the gauge group, I T . In particular, any
= (175007 y)wih 4= lisan elementin T .

Note that in the low-energy con guration the deleted set , is rem oved
in view of the D +tem egquations. T herefore, depending on the phase som e
of the com ponents Fix( , ) of the xed point locusm ay be rem oved in the
Infrared. In m odels w ithout superpotential the irreducible com ponents of
the xed point locus, that is the ordentifold planes, are then given by

(44) 0 =Fix(,) =(C ):
In m odels w ith superpotential there are geom etric phases w here the low —

energy con guration localizes on a holom orphic subvariety M . = f@iW =
O0g. T he orientifold planes are then given by

(45) O =Fi(g)\ M,y =C ):
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A swe will observe explicitly In exam ples later on, the intersection in (45)
m ay be reduchbl (or even em pty) and splits into a nite num ber of irre—
ducible com ponents O ; ,

Example 1 with N = 3

O rientifolds in local CP?

Let us consider the allowed parity actions in Exam ple 1 without super-
potential. W e can work in coordinates that diagonalize the holom orphic
involution,

(111213;1p)(X1;X2;X3;p): (1ixy7loxo; 1 3%37 pp) ¢
W e nd the follow ing distinct choices of parity actions w ith corresponding
orientifold planes O

Involution | Fix' () orbifold pt large volum e
(1.1:1:) O +1 = %DaCE ]_hng C :Z3 O 9 on O Ccp2 ( 3)
1:; 1) Os1= fx3= 0g 2 plhne=Z3 |07 0onOcp1( 3)

O 1= fx1=x,=p= 0g O3 on pt
(1; 1; 1:1) O+1: fX2:X3: Og ]jne=Z3 O5on C

O 1= fx1=p=0g O5on CP
(1; 1; 1) ||O+1= fXi=xp=x3=0g| Z3 xed pt

O 1= fp= Og 07 onCP

O rientifolds on the elliptic curve

Let us next tum on a superpotential W (p;x) = PG (x) with Fem at poly—

nom ial

G (x)= x:f+ x§+ x% :
In view of this superpotential we have to consider, besides the diagonal
nvoluition o) the additional involutions,

135!

(t1!2
0
(istonsng FriXeixgp)= (Lixpiloxyjlaxsilpp) ;

w here tw o coordinates are exchanged . H ow ever, w e need to satisfy condition
(42), which rules out som e of the involutions that we considered in the non-

com pact situation. There are in fact only two independent involutions,
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Figure 4. The slices of them odulispace in the presence of
an ordentifold. O ne slice connects the large volum e and the
'sm all’ volum e point (som etin es G epner point).

which are related by T duality:

Involution g Fixt () G epner point| large volum e

(1; 1; 17) O+1: fX1:X2:X3: Og xed ptOfZ3

O 1=1fp=0g E
?l; 1; 1) O41= fx1+ x2=x3=0g line=7 5 1pt E
O 1= £fx1 x=p=0g 3pts E

In the table, E C P’ denotes the elliptic curve at large volum e. T he locus
0 1 for the second involution is reducible at large volum e and consists of
three points,

O 1; =fx1 x%=x3 »=p=0 E;

3.2 O rientifolds and their constrained m oduli space

So far we considered the parity action on the kinetic tem s and the chiral
superpotentialin (36). A s for thee ect on the tw isted chiral superpotential,
t? 4, we note that the orientation reversal m aps the gauge eld strength

2 to 4. Invariance of the path integral therefore requirest? = t® mod 2 1,
where them od 2 1 shift is due to the topological term for the theta angle.
T he theta angle is therefore restricted to

(46) = 0or mod 2

A ccording to these conditions the ordentifold constrains the allowed com —
plexi ed K ahlerm odulito 2¥ realhalfdin ensionalslices in M g . Note that
the ordentifold slicesm ay or m ay not intersect the singular locus S .
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= ( ;0) = (0;0)
18] 18]
X 1v X1 X v X 1
i} r
X 11 X 11
X 111 X 111 non-pert.
Figure 5. Theslices = ( ;0) resp. = (0;0) divide the

m oduli space in distinct sectors.

O neparam eter m odels

For k = 1 the slices In the Kahler m oduli space are depicted n Fig. 4.
Ehe singularity S sits at the theta angle =S (mod 2 ), where S =

0>0QiThesliceat =S isthereforediided by S into two disconnected
com ponents. O therw ise, on the slice 6 S the singularity is avoided and
the slice connects large and sn all volum e 1im its. W e will nd later, after a
detailed investigation of D branes in the orientifold background, that under
specialcircum stances the tw o slicesm ay be pined at the an allvolum e point.

H igher dim ensionalm oduli spaces

For k > 1 the slices in m oduli space are com plicated but m ore interesting.
Let us illustrate this in the two-param eter m odel E xam pl 2.

Exam ple 2

The singular Iocus S is the union of the follow Ing two loci [65]:

Sp=fe ©=1=4(1 2% )g; and S,=fe £ = 1=4g :
T he ordentifold action adm its four slices. Two of them, = (0; ) and
= ( ; ),do not intersect the singular locus S so that we can m ove frecly
between the four phases. O n the other hand, the intersections of the slices
= ( ;0)resp. = (0;0)with S aredepicted in Fig. 5. In the form er slice
we can move from phases I to IV . In the latter all phases are separated,
even m ore, there is a non-perturbative regin e that is not accessible from
any of the four perturbative regions.
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3.3 O rientifolds at orbifold points

At an orbifold point of M ¢ the gauge group T of the linear sigm a m odel
is broken to a discrete subgroup in view of vacuum expectation valies

X1 ,,; = 1. Letus exam ine the consequences for the holom orphic involu-
tion .

T hevacuum expectation values require specialgauge choices for ,nam ely
the ones that act trivially on the edsx, for12 I,so thata -equivalence
class of parity actions, for 2 ,remainsand acts on the orbifold
cY¥ *= | The orientifold group and the orbifold group are combined i an
extension [66],

bz,

Notice that after breaking the gauge group to the discrete group it is In
general not possble to nd a representative for the holom orphic Involution
that satis es 2= d.

4 D branes in the presence of orientifolds

In this section we study the parity actions on world sheets w ith boundary.
W e will com bine the considerations of the previous two sections to de ne
parity—invariant, low -energy D Joranes. T he presentation w ill follow the dis-
cussion in [17].

4.1 The world sheet parity action on D branes

Letuspik thestrip = R [0; ]lwith coordinates (t;x) as world sheet.

T he orientation reversal acts as : (tx) 7 (& x). Let us study the
e ect of theworHd sheetparity P® = ( 1§ on the generalW ilson
line (13).

R ecall that the boundary action on the strip fora singleW ilson line brane
W () is given by
X 21

(47) 2_+ qa dt (Va)t Re(a)
1

(Va)t Re( a)

X1=O X1=

a=1
Here we included the contribution from the theta angle. The orientation

reversal exchanges the two boundaries of the strip giving rise to an overall
sign in front of (47) and, therefore, nverting the sign of =2 + o, ie. its
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e ect on the charges is
(48) P™ 7 (%= + ") :

Notice that thism ap is wellde ned because of the integral values of “=
that we found earlier In (46).

Let usnow consider a generalW ilson line w ith tachyon pro e Q (x). For
convenience we set
AQR]= }fQ iQYg }5@ 1@;0 + }5@ FICHOREH
2 2 =1 2 =1
T he path ordered W ilson line on the strip is

. rl s
(49) Str 1(x)j1 Pelfl dtA 0 k-o ,(x)j Pe ift, aA 0 k- ;

where the tin e t? on the boundary x =  is oppositely ordented to the tin e
ton the strip itself. Here, the elds ;(x)and ;(x) take values in End (W )
and correspond to incom ing and outgoing string states at m inus and plus
n nite tim e.

T he orientation reversal swaps the two boundaries, and the involution
acts on the connection as A QR ]J= A[ Q (x)], resulting In

.l .l 0
Str G pet/: dAL 0k ,i Pe iff, dfAl Qk-o

iff, atar of_

s T
lf1 afal ol , 51 Pe

Str 7j1 Pe
In the second line we applied the graded transpose and its properties as
sum m erized In the appendix A . T he appearance of the transgposition in the
parity action tells us that the Chan{Paton vector space W ism apped to its
dual vector spaces,

P™ W ! W

In order to extract the parity transform of Q we rew rite the transgposed
superconnection as

1 1 1

—f QF; Yyt - @ Q07 = @ ) =
> Q (Q)q+2@ Q 2@(Q)
1 1
_f T,. Ty -
> Q (Q)g+2

arof

@ QF

= Al 0Q71;

Here the hem itian conjugate of an endom orphisn on the dualspace W is
denedby M T)Y = M Y)'. Comparing with (49) we can easily read o
the action of the world sheet parity P™ on the tachyon pro le,

(50) P™ :Q(x)7 0 &) ;
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and on eds,

(51) P™ . (x)7 x)F

Let us consider the generalization of the parity transform of the charges
In equation (48) to the stack of W ilson line branesW . T he representation

(g) of the gauge group T on W is determm ined by the charges of its W ilson
line com ponents, so that (48) tums into

(52) P™ : (@7 _ (g @°

T he graded transpose appears by the sam e reasoning as above and is con—
sistent w ith relation (14).

In order to determ ine thee ecton the representation R ( ) ofthe vectorR —
sym m etry we take the graded transpose of relation (15) and com pare it w ith
(50). W e nd that the representation has to transform asR ( )7 R ( ) L
N ote how ever that the world sheet parity action P™ contains the operator
( 1¥¥:,which, form odd, inverts the sign of left-m oving R am ond sector
states and in particular the sign of R am ond{R am ond elds. Since D branes
are sources for these elds, the overall sign of the D brane charges is also

pped, ie. branes are m apped to antibranes ifm is odd. In the context of
D branes the operator ( 1 F1 is called the antibrane operator (or antlbrane
functor on the D Jborane category [17,19]). Since the com ponents W J with
R degree j even and odd correspond to branes and antlbranes respectively,
w e conclude that the operator ( 1V Fr induces the shift [ m ] 237 m + 7.
T he parity action P™ on the representation R ( ) is therefore dressed by a
character,

(53) P™ :R( )T _()R()"
Therelation = R ( 1) inplies furthem ore
(54) P®™ . 7 (1% T .

Let us summ arize our ndings of this section. The world sheet parity

action acts on a D-brane B = W ; (9);R( );Q (x)) In the linear sigm a
m odelas
(55)  P™ :W ; ;R;Q T W ; _ (@ ‘;,(RT; of

W e som etim es use the abbreviation P™ (B ) for the parity in age of B .

4.2 D ressing by quasi=isom orphism s

A wellde ned parity operator on D branes should square to the dentity, so
that we can gauge it In order to obtain an orientifold background. H ow ever,
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P™ does not square to the dentity, rather it acts as
™Y :0E)T (17T (") (%) '

Recallthat ? isan elam ent of the gauge group and therefore the dressing by
the representation  ( ?) arises from applying the gauge invariance condition
(14) on Q ( 2x). The sign ( 17 * 1 dis due to the graded double transpose
(118) in the appendix.

T he non-involutive property of P™ is cured in conjinction w ith our w ish
to descrbe low -energy D branes as D —isom orphicam classes in the gauge
linear sigm am odel. W e supplem ent the D brane data by an arbitrary quasi-
isom orphiam ,B = W ; (9);R ( );Q (x);U (x)),and de ne a dressed parity
operator P™ as follow s:

P™(Q (x))U = U o' ;
P™( (g)U = _@aU @7 ;
(56)
P"R() U = _()U R()T;
P™( )U = ( 1y u T

By abuse of notation we abbreviate these transform ations by P™ (B )JU =
U P™ (B ). Note that quasidsom orphign s in the \inverse" direction are also
possible, that sV P™ (B )= P™ (B )V . A hom om orphisn taking values
in Hom (W 5 ;W ;) transform s as

(57) P"()U ;=U,

In order to ensure that the parity operator P™ depends only on the
gauge equivalence class of the holom orphic involution, g , the quasi-
isom orphism U must transform as

(58) Uy, =U (@) :

Tnserting (58) iIn the de nition of the parity operator P™ one can easily
check that the latter does not depend on the gauge choice.

T w o orientifold actions

T he de nition of the dressed parity operator P™ does not yet ensure that
it squares to the dentity. W em ay how ever utilize the dressing by the quasi-
isom orphiam U to ensure this property by an appropriate transform ation
behaviour of the quasidsom orphian itself, ie.we determ neP™ (U ) so that
P™) = id.

Let uspick a hom om orphisn  taking values n Hom (W ;W 1) and apply
the parity operator (57) twice. W ith the Ansatz P® (U )= A U ' for
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som e constant nvertible m atrix A we have

P" B ()P"(U , = A; U; P"()=
= A () 7T U=
— Al 1(2) 111+1 12n+l 2( 2)1 UZT

R equiring equality with the original eld detemm ines A up to a constant
,s0 that U has to transform as

(59) Pm(U ): (2)1m+1 UT .
A quasidsom orphisn in the Inverse direction, ie.V , P™ ( ) = v,
transform s as

Here the inverse constant appears for consistency w ith the case when the
quasiisom orphisn is nvertble, U = vV 1.

The constant is associated with the parity operator. It has to be
the sam e for allm utually com patible D branes. In order to stress this we
henceforth denote the parity operator on D branesby P ™ . By abuse of
notation we continue to denote the set of D branes, now supplem ented w ith
U ,byD CY;T)orM Fy CY;T).

Like the quasidsom orphisn , the constant  dependson the gauge choice
of . Comparing the transform ation (59) for U and Uy and requiring
P "@Ug)=P "W )P " ( (@) aswellas (58) reveals that

(61) g = _ Q)

The combined shift, ( #;6f) T ( 2+ 2 n*;f 1) orn? 2 25, alters the
constant  as follow s:

(62) 7 (P

W hatwe have considered so farensuresthatP ™ sguares to the identity
on the D brane data W ; ;R ;Q ). However, since the quasi-isom orphism
transform s now under the parity operator we have to Impose @ ™ )> = d
on U aswell In fact, using (56) and (59) we obtain

u = p @ "@U)=
_ P fm((Z))lP m()rn+l P fm(U )T=
= P T((pte PPt (AT YUt =
- 2 _(Hu

The constant  is therefore determ ined up to a sign,
= ¢c; wih = 1:
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The constant ¢ dependson and . W e will refer to the constant as
orientifold sign, although it is strictly speaking not a sign. In the follow ing
wew illoften pick an Involution ( that squares exactly to the dentity, which
npliesthat | = 1. Also the combined shift of the theta angles and the

gauge charges resulting In (62) does not alter the sign .

In summary, P ™ is a parity operator on the set of D branes in the
gauged linear sigm a m odel. Tt squares to the dentity operator and is de-
term ined by the discrete theta angle , by the dressing w ith the antibrane
operator, m odd or even, and by the orientifold sign whose role w ill be
elicidated In a m om ent.

Shift of R degree

A sknown In D Jrane categories an overall shift of the R degree, [1]: 3 7

j 1, isunphysicalbecause allm easurable quantitiesdepend on thedi erence
of R degrees [67]. In view of the interpretation of the Z,grading ( 1) as
distinguishing branes from antibranes the shift [1] is indeed the antdbrane
operator as it appeared already in the previous subsection.

Letusstudy thee ect of the antibbrane operator on the quasi-isom orphism
U and on thesign . First, the partily action com m utes w ith the shift only
if the Jatter is accom panied by m 7 m 21, ie.P" 21 L= [ "p.

TheR —sym m etry representation and the Z ,grading operator arem apped
as follow s,
(63) M:R() 7 R();
m: 7 ( 1}

In view ofthe sign change of the Z ,grading operator the graded transpose
is altered to

meMT7 (M T(T):
T he transform ation property (56) of Q (x) then tells us that the quasi-
isom orphiam s U  ism apped as

m:u 7 '

Inserting (63) In the de ning equation (59) of the orientifold sign we
observe that it ism apped as

(64) 7 ( 1}

A Iltogether we have shown that the shift [1] transform s the parity operator
as follow s,

(65) j=
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Notice that the combination (12! is an fnvariant under the shift of
R degree. Here, the square bracket denotes taking the next lower integer.
W e therefore expect that physical quantities depend on this invariant com —
bination.

4.3 Parity invariant D branes

A's a next step we de ne parity—invariant low-energy D Jranes to be D —
isom orphisn classesthatare preserved by the parity operatorP ™, ie.there
exists a quasizisom orphism U orV from B = (W ; (g);R ( );0 (x)) to its
world sheet parity Inage P™ (B ), so thatP ™ (B )= B . Explicitly,

Qx)U = U Q&) ;
@Uu = _@gU @ "
(66) R() U = _()UR(C)"T;
u = ( 1yu T,
U = (2) 1m+l g T,

A nalogous relations hold for quasi=isom orphism sV . Note thate the quasi-
isom orphism is now determm ined by the invariance conditions (66), whereas
in the previous subsection it was com pletely arbitrary. W e denote the sets
of Invariant low -energy D -branes in gauged linear sigm a m odelsw ithout and
w ith superpotentialby D #7 (X ) and M F ™’ (X ), respectively.

Let us point out a subtlety here. In general, a D brane B is invariant
if it can be related to its world sheet parity inage P™ (B ) by a chain of
quasi=isom orphian s. H owever, if both types of quasi-Hsom orphisn s, U and
V ,appear in the chain it isnot clear how to determ nethesign .W ewill
later nd an elegant resolution to this problam .

4.4 G auge groupson D branes and the type of orientifold planes

A 11D brane in an ordentifold background have to carry the sam e ordentifold
sign . In this section we want to consider the situation when the D brane
is a stack of identical D oranes B ;, that is the Chan{Paton space is the
tensor product of an external Chan{Paton gpace Ve = C" and the inter-
nalChan{Paton space W ;. T he orientifold sign can then be distributed
appropriately on the two contributions,

L.
e 1 -
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Stacks of irreducible invariant D branes

Letusconsidera stack of irreducible and invariant D brane, ie. the tachyon
pro le Q ;(x) on the Intemal Chan{Paton space W ; is an irreducible endo-
m orphian . The intermalsign ;,which isnow associated w ith the irreducible
D brane (not the ordentifold), is de ned through
(67) Us= 5 (T U
T he stack of D branes on the Chan{Paton spaceW = V. W; isde ned as
follow s:

OQx) = ©d  Qix);
(@ = d i@ ;
R() = d Ri();
U = Us U;j:

In particular, the quasiHisom orphism splits into an extemal isom orphism Ug
on Ve and an Intemal quasi=isom orphian U ;.

C om paring the last relation of (66) forU and relation (67) forU ; we nd
that the extermal sign ¢ enters in the symm etry condition of the extermal
isom orphian s,

Ue= ¢ (Ue)t :
Tt therefore determ ines the gauge group on the stack of D branes [6,17],
(68) SOn);n2 7z for e=+1;
(69) Spnh=2); n 2 27 for e = 1:

In the follow ng we w illm ainly work w ith the internal, irreducible part of
a D brane. W e drop the index i for convenience, w ith the exception of ;.

T he type of orientifold planes

G ven a parity action w ith m ultiple com ponents of the xed point locus in
the Infraxed theory, we m ay consider a probe D brane that sits on top of
one of the com ponents. A ccording to the gauge group of the probe D brane,
e= +lor o= 1, we ollow the general convention in the literature to
de ne the type of the ordentifold plane by o = . Indicating the typewe
refer to the orientifold plane as O °plane. W e w ill have to say m ore on the
type of ordentifold planes in Jater sections.

Stacks of brane In age-brane pairs

A special class of invariant D branes is given by brane in agebrane pairs,
ie.D -branes that are of the form irreducible brane plusparity in age brane.
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In particular, the intemal Chan{Paton space reads W ; = V V. Ifwe
consider a stack of such braneswe tensor V..V w ith the extermal C han/{
Paton space Ve, which is equivalent to considering

W =Ve V Y Vo

and setting
Q) = d  Qix) do( 0:ix));
@ = d i@ d @ i@ T
R() = d R() d ()R )"

T he quasidsom orphism for this D orane can be w ritten In the brane im age—
brane basis as

7 =
(70) v U d 0
where ¢ is an a priori arbitrary constant and ¢ was Introduced for later
convenience. Letustry tom atch thesign ofthe parity action by com puting
T m+1 2y _ cc d u 0 _ AT
U U (°)= 0 cleyy u ~ € i
Sowe nd thatwe can always adjust the constant ¢ to be equal to the sign
. In particular, this m eans that the brane in agedbrane pairs appear for
both ordentifold signs , and since there is no sym m etry restriction on the
isom orphian U, the gauge group isU (n).

4.5 M oving between phases | O rientifolds and the grade re-
striction rule

In view of the observations of Sec. 3.2 the transport of low -energy D Joranes
between phases in the gauged linear sigm a m odel is not always possible in
the presence of ordentifolds, at least not w ithin the world sheet description.
The reason is the singular locus S , which is real codin ension one on the
orientifold slices in M k .

Let us concentrate on linear sigm a m odels w ith gaugegroup T = U (1) In
the subsequent discussion.
A voiding the singularity

Ifthe slice in K ahlerm odulispace doesnot intersect w ith the singular locus,
thatis 6 S mod 2 ,we can apply the grade restriction rule of [20] to
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transport D -branes between the phase. It reads

5 < 5 + g< 2’

In fact, the world sheet parity action P™ ,m apping =2 + g7 (=2 +
q), preserves the grade restriciton rule. O nce we have found a grade re—
stricted representative for a D borane, its in age under the world sheet parity
action P™ isagain grade restricted. T his is im portant for consistency of the
gauged linear sigm a m odel near the phase boundary.

From [20]we recall that there are no non-trivial D <isom orphisn s between
D branes in the grade restricted set. The grade restricted D -branes are
unigque up to a basis change (30) of the Chan{Paton spaceW .SihceP™ does
notm ap out of the grade restricted set this In plies that a grade restricted
nvariant D brane B and its parity imnage P™ (B ) must be related by an
(Invertible) basis change U . It is therefore convenient to work with the
grade restricted representative ofa given D <isom orphisn class. In particular,
sinceU isan isom orphism it iseasy to com pute the sign ; and the problam s
w ith chains of quasi=isom orphisn sthatwem entioned in Sec.4.3 do not show
up.

Colliding w ith the singularity

Ifwe consider a slice In M ¢ that collides w ith the sihqularity, we cannot
transport D -branes from one phase to the other. W e want to add a rem ark
on the sign ; though.

Supposewe sit on theslice = S . Thewindow s that are ad acent to the
singularity at S , cf. Fig. 3, adm it the chargesN" = f0;:::;S 1g resp.
N"+ = fl;:::;Sg. Ifwe pik a representative B for the D brane that is
grade restricted w ith respect to N ¥ , its world sheet parity image P™ (B )
w i1l be grade restricted w ith respect to N "+ . In ordertom ap P™ (B ) back
to B the associated quasiHsom orphism has to rem ove all the W ilson line
com ponents W (S). This can be achieved by a chain of quasi=isom orphiam s,
allofwhich are of the sam e type, eitherU orV . In fact, these can then be
com posed to a single quasi=isom orphism , which allow s to com pute the sign

ie

Exam ple 1 with N = 2 and no superpotential

Letusconsider a sin ple exam ple ofan invariant D -brane at lJarge volum e.
W e take the worldd sheet parity action with = id andm = 1 and pick the
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slice = 0 that collides with the singularity S . The adjcent w indow s at
the phase boundary determ neN ¥ = £ 1;0g and N"* = £0;1g.

R egard the D -brane

which isan element of T" . Tt ism apped by the world sheet parity to

P

X
YByiw o (0)— , 00

In view of the di erent gauge charge assignm ents the latter is clearly not
isom orphic to the original com plex. However, at large volim e, r >> 0, we
can bind to it an em pty D brane via a D ttermm deform ation (31),

X27
W (0) Wo(1)
@ 0 @ 1
@1 @
B R
(x1;%2)
W 1) —— W (0) ? — W (1)

A fter elin inating trivial pairsW () 1! W () forg= 0;1,we getback the
originalD Jbrane. T he associated quasi=isom orphian is

OX]_ s -~ .
vV = % 0 ; with ;= 1:

4.6 O rientifolding com plexes and m atrix factorizations

Let us form ulate invariant D -branes in m odels w ithout superpotential in
term s of com plexes (17). T hisw ill facilitate som e of the subsequent, explicit
com putations In exam ples. In the low -energy interpretation the follow ing
m akes contact w ith the discussion of orientifold projctions in the derived
category of coherent sheaves in [19].

Sin ilarly, Invariant m atrix factorizations are described by m erely adding
\backward arrow s" in the com plexes, as in (20). This is straight forward,
and we w ill skip the generaldiscussion ofm atrix factorizations here.



42 ORIENTIFOLDS AND D-BRANES IN N = 2 GLSM

The de ning conditions (66) for an Invariant D brane can be rew ritten
fora complex (17) in term s of a com m utative diagram ,

(dm 3j )T . (dm j1 )T . (dm j 2 )T
- = W J - - W Jj+ 1 - - e
(71) uj uj+ 1
? ?
d] 1 dj dj+ 1
- = W 3j - - W J+ 1 - -
The second Ine is the com plex for Q (x), and the zst lne represents the
world sheet parity inage P™ (Q (x)) = 0 x)''. Note that we have
@)t = ( 13(d)* according to the de nition of the graded transpose,
where  is the ordinary transposition of matrices. W J = @ (q)) is the

com ponent w ith R degree j, and
w " d=wd = wo( = 3§
is its dual, now carrying R -degree m J.

The chain maps,ul :W 3! W I, preserve the global sym m etries as well
as the gauge charges. T hey are the com ponents of the quasi=isom orphisn

O
=

(72) w= 3 IH oI Wt )

K oszul com plexes

A sexam ples for invariant D -branesw e consider coherent sheaves O ¢ (q) that

can be descrbed via tachyon condensation [58,68{70]by K oszul com plexes,
which we de ne below . W e determ ine the chain m aps uJ that render the
K oszul com plexes invariant and provide a sin ple form ula for the type of
gauge group that is supported on them .

Letus denoteﬁhe gauge charges of the polynom ialsby Q¢ ;:::;0 ¢, ) and
Introduce Q ¢ = I;:lei.TheW ilson line (11) associated w ith the K oszul
com plex can be realized In term s of boundary ferm ions ; fori= 1;:::;n,
w hich upon quantization satisfy the C i ord algebra relations £ ;; 9= 5.
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T he associated Fock gpace, built on the Fock vacuum de ned by ;Pi= 0,
is then the Chan{Paton space W . T he boundary interaction is given by

and acts naturally on the Fock space W . Since Q (x) needs to be gauge
Invariant, the boundary femm ions ; must carry the gauge charges Qg .
T he resulting com plex reads

£ M £
(73) C :W %(q Q) — =i Woasn 1@ Qf)
i=1

Wonin (Q) :
2

W e assigned R -degree (m + n)=2 to the Fock vacuum 7i, ie. to the right-
m ost entry in the com plex. This assignm ent is necessary for an invariant
D brane. N ote that it also requires

(74) m =nmod 2:

In order to determ ine the chain m aps u’ and the corresponding sign ; it is
instructive to descrlbe the K oszulEom plex C In the language of altemating
(or exterior) algebras. Let R = 1;: ; Cx] i,5 where C [x] is the graded
coordinate ring of chiral elds. W e Introduce the interior product

(75) Ji"PROLAPIR T = (v );

P
where denotes a p=form in "PR  and v = ;Vi ; a vector ed n R.
T he tachyon pro ke Q (x) in the com plex C can then be realized as interior

product ¢,

£ £ £

(76)  C:(*"R ) n so ("R Jnen (*°R s

2 2 2

For sack of brevity we did not indicate the gauge charges.

To calculate the parity in age of this D brane we need to determ ne the
graded trangpose of ¢. The dual pairing of pforms, 2 "PR , with p-
vectors, 2 “PR ,1is
(77) h 7 Jp = = _I BEREEE O E R 7
where  isthenaturalgeneralization of the interior product to polyvectors.
W ith the convention used In (77) it satis es = . .Note that, accord—
Ing to the R -degree assignm ent in C, pform shave R -degree (m + n)=2  p.
Since the world sheet parity maps R-degreesas 7 7 n Jj, we assign the

°H enceforth, we drop the Fock vacuum Pi.
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R-degree m n)=2+ p to pvectors. T he graded transpose E of the Interior
product is then de ned by

nl 7 odeer = (102 TPh g g
which is in accord w ith the de nition (113) In the appendix. Inserting the
right-hand side in the dualpairing (77) we readily nd that

m +n

PNPROLOAPHIR 7 1)z TPEA

and the world sheet parity in age of the boundary interaction 0 x)! is
realized as ( 1§ *7)2*P( £)~ on p-ectors.

Let us next construct the quasidsom orphism U thatm akes C invariant.
According to (71) we have to construct m aps uP such that the follow ing
diagram comm utes,

f

(78) (" PR ). sy — (P IR o nspea
UPT Tuf”l

AP Apt+ 1l .

( R )m2n +p ﬁ ( R )m2n +p+l *

(1) =z P £~
The dea isto chosea volum e form 2 ""R  and try the Ansatz
(79) u?( )= "y fox) .1

", are constants to be detemm ned below . ¢ isde ned as the representation
m atrix of the holom orphic involution on the polynom ials f;, thatis f; =

and . Thepolynom ialfy(x)mustbesuch thatU isa quasidsom orphiam ,
ie. according to the de nition of a quasidsom orphisn , around (33), the

put in yet another way, the comm on zero locus of all polynom ials m ust be
contained in thedeleted set . Notealso that in view of P™ :q7 =
the polynom ial £y has to carry gauge charge

(80) Qg = = +29 & :

The constants ", for p = 0;:::;n are xed by inserting the Ansatz
In the diagram (78) and requiring that it commutes. W e obtain ", 1 =
( 1()“+“):2"p. U sing the freedom to nomalize U ,we x "o = 1 and

obtain
"= 1)(%*’1)[3 .

The intemal sign ; of the D -brane is determm ined by constructing the
graded transpose of uP. Since the latter is even its graded transpose equals
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its ordinary transpose,
h ;™) ) =h ()i p s

where 2 "PR and 2 """ PR . Inserting uP on the right-hand sdewe nd
after som e algebra,

@P)="( 1P™*Vdet » . * P

2

2)ij = Qf_( 2) 15, which acts on a (n p)fom as ;° =

where(f

. (%) p( ?). Applying the holom orphis nvolution on both sidesw e cbtain
un P_ n ( 1§>(m+1) q( 2) 2) 1 (up)t .
" spdet ¢ P )

T he factor sp is from fo = sofp n u" P. Com paring with (72) we obtain
the ntemal sign ; for the K oszulcom plex,

2
eo (7))

O 4
det -

where we Introduced det fo = gpdet ¢. W e have therefore succeaded In
determm ining the gauge group for K oszul com plexes, ie.

(81) e= =i= (1" P (?)det ¢ :

q

N ote that this result con m s the expectation that the gauge group does
notdepend on shifts of R degree [1], w hich exchanges branes and antibranes.
Indeed, the external sign depends on the variant combination (1)),
cf. relation (65). To see this note that in view of (74) we have (m n)=2=
m=2] Mnh=2].

K oszul-like m atrix factorizations

Let us brie y comm ent on m odels w ith non-vanishing superpotential. A
natural analog of K oszul com plexes is provided by introducing additional
polynom ials (g ;:::;9, ) and de ning a m atrix factorization
XI’]
Q0 (x)= (fix) i+ gi(x) 1) :
=1

P
The condition Q% = W is ensured by W = ; figi.

On the level of com plexes, we com plete the factorization by including
arrow s \backw ards"

(82) C:(""R )un o F ('R Jnsn .
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P . . . .
where g = gi 1lsa lfom n R . Obviously, f £;9%g= W realizes the
m atrix factorization. T he graded transpose can be found to be

@)= (17 g

The chain m apsu® and thusthe sign ; turn out to be the sam e as forK oszul
com plexes.

4.7 Tensor products of invariant D branes

Tensor products of com plexes or m atrix factorizations have been studied
and used to construct special types of D branes on m any occasions [71{83].
In particular, all the known boundary states of G epner m odels are real-
ized as tensor products of sin plem atrix factorizations in the corresponding
Landau{G inzburg m odel.

Here we want to address the question of how the invariance of a D brane
under the orientifold action behaves under taking graded tensor products.
T he results of this subsection w ill be m ost in portant when we later study
the brew ise Knorrer m ap that relates m atrix factorizations of the linear
sigm a m odel to com plexes of coherent sheaves at low energies.

Som e properties of the graded tensor product are listed In appendix A .
Let us brie y present its de nition. For two endom orphisn s of de nite
R-charge, A 2 End(W 1) and B 2 End(W ,), we de ne the graded tensor
product as

abB=a IB;

where we used the ordinary tensor product on the right-hand side. A jis the
R charge of A . In order to not forget subtle signs related to the insertion
of ?3, which takes care of the grading, we will work explicitly w ith the
ordinary tensor product.

Let us consider two invariant D branes, B, = W 5; 2/R2;04,U,) for
a= 1;2,satisfying (66) with ( 5; ja/m4). W e can form the tensor product
braneB = W ; ;R;Q;U )withW =W, D W, and

0 = 03 o+ iy Q2 ;
(83) 9 = 1) 2(9) ;
R() = Ri() Ro():

For m atrix factorizations the tensor product brane is associated w ith the
sum of superpotentialsW = W1+ W 5.
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T hese de nitions together w ith (52) and (53) In ply that

1t 27

(84)
m = mi+my:

A rather non-trivial question is to build the quasidsom orphism U out of
U; and Uy, and In tum relate the sign ; to ;3 and ;. U cannot just
be the naive guess, that is U; U,. To see this notice that upon using
the graded transpose of tensor products, form ula (119) in the appendix, the
world sheet parity inage ofQ is

0= o] [ Q; :

We nd thatU; U, cannot m ap 07T back to Q, since it cannot tum
the ,’s nto d,’s and vice versa.

W e nead a m ore sophisticated quasi=isom orphism for the tensor prod-
uct D -brane. To construct it we introduce the projction operators p; =
1=2(d, + ( 1F ,) and note that they can be used to switch between
and d,, ie.p; 2 = 2P, = ( 1fpid,. This suggests an Ansatz for U ,
which is a linear com bination of four tem s, p;'U;  B°U, with r, = 0;1.
Inserting the Ansatz in the invariance condition for Q in (66) it tums out
that the quasi-isom orphism has to take the form

X
(85) U = ( 1ffrRm gy, gRu,

1 a2=0;1

U is furthem ore com patible w ith all other equations in (66). In particular,
the last one gives the sin ple sign relation

(86) i= i1 it

A n application: T he K oszul com plex revisited

Let us reconsider the K oszul com plexes of the previous subsection. U sing

the tensor product technigues we recom pute the sign . that detem ines
the gauge group. Let us st assum e that C is nvariant w ith nvertible
quasidsom orphian U iy, which requires

(87) = a=q9 g:

M oreover, we work in a basis for the polynom ials £; that diagonalizes the
action of the holom orphic involution, ie. £, = s;f; fora = 1;:::;n.
Recall that an invariant D brane requiresm = n mod 2.
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W e start by using the fact that a Koszul com plex C of n polynom ials

(£1;:::;£,) Is the tensor product of n K oszulcom plexes of a single polyno-—
m ial,
fa
Cazw%(qa Qf.) Wma2+1(qa):
Each m ; has to be odd and weset ;= = Q¢ 2G . By (84) the integers

that they sum up to

m = mp+ iz+mp

= 1+ it g

Now let us com pute the signs ;, for the com plexes C

- . T he isom orphisn
U, isgiven by the chain m ap

(1) 7 sifs
W%(% Q. ) Wma2+1(qa)
1 (1) lsal
? ?
.
Wmazl(qa Qfa) Wma2+l(qa)
Applying equation (72)we nd that ;5= ( 1f"e o ( ?)s . Forthe
tensor product com plex C we therefore have
B =2 2 v 1
i= ia = ( 1 <07 ST
a=1 a=1

If the condition (87) for an nvertible quasidsom orhisn Ui,y is not satis-
ed, the K oszul com plex m ay still be Invariant provided that there exists a

polynom ial fy(x) so that U = £yUi,y IS @ quasidsom orphism , cf. equation
(79). Setting  fp = spfg we nd

In general, the polynomﬂa]s f, will not diagonalize

. For an invariant
D brane we have f; =

b= 0 f,abfb fora = 0;1;:::;n. The sign that

determ ines the gauge group can then be w ritten in tem s of the determ inant
of 2
£r

e= =i= (1" P (?)det

q
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5 N on-com pact m odels

So far we discussed agpects of D branes in gauged linear sigm a m odels that
are largely independent of the presence or absence of an F-tem superpo-
tentialW (x), the discussions included both, Q (x) describing com plexes and
m atrix factorizations. Let us now specialize to the case without superpo-
tential and consider som e exam ples of orientifolds and invariant D Jranes
described through com plexes of W ilson line branes. A s an application of
the form ula (81) we determ ine the type of ordentifold planes by testing the
gauge group of probe branes.

W e are maihly interested in the dependence of the set of invariant D —
branes and the ordentifold planes on the slices of the K ahler m oduli space.
A s a particular consequence of our linear sigm a m odelapproach we w ill nd
that the di erent slices m ay be connected along special ociin M ¢ . We
nvestigate the phenom enon of type change of ordentifold planes that was
discussed In [14].

5.1 O rbifold phases and the orientifold m oduli space

Let us consider linear sigm a m odels w ith an orbifold phase and study the
relation between the linear sigm a m odel and the orbifold description. W e
illustrate the m ain points in Exam ple 1 that becom es the quotient CN =
w ith discrete group = Zy at the orbifold point. Recall the charges (8)
and them odulispace n Fig. 4.

From the linear sigm a m odel to the orbifold

A sbrie y reviewed In Sec. 3.3 the discrete group  in the orbifod phase is
due to a vacuum expectation value for the eld p ofgauge charge N . This
expectation value also restricts the gauge equivalence class of holom orphic
nvolutions to a -equivalence class, for 2 ,ie.itrequires (p)=
“p=p.
By conveniently setting p= 1 an invariant D -brane in the orbifold theory
is detem Ined by the lnear sigm a m odeldata through

0x) = 0Q=1;x);

() = () for 2 U@);
R() = R();
U
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A W ilson line com ponent W (q) becom es a -egquivariant line bundle O (q)
w ith chargeg= gqm od N . W edenote the -equivariantChan{Paton bundle
descending from W by E.

It follow s In m ediately that the orbifold data (E; R ;0 ;U ) ofan invari-
ant D brane satis es the nvariance conditions (66), now w ith a representa—
tion ( )of ,cf. [66].6 In particular, _ () isa character of the orbifold
group ,which in plies that the theta anglk isde ned only modulo N at
the orbifod point,

(88) = 272 modN
This can be seen explicitly in the world sheet parity action on the charges,
q’7 = g2 Z modN

From the orbifold to the linear sigm a m odel

For the inverse m ap, lifting D branes from the orbifold to the linear sigm a
m odel, we rsthave to decide to which slice of the K ahlerm oduli space we
want to lift. Fora given wehaveamod N choice of theta angles in the
linear sigm a m odel. Let us pick one such choice.

T he representation of the gauge group (g) is obtained by lifting the
chargesgin ( )tointegersg (= qmodN )ina xed interval,say £0;:::;N
1g. Then the tachyon pro le Q (p;x) is constructed from Q (x) by m ultiply—
Ing the entries in the lhatter by appropriate powers of p as to m atch the
gauge charges determ Ined by (g). T he representation of the R -sym m etry is
smply R( ) = R ( ). Fhally, the isom orphian U st liftsto U by Iling
In appropriate powers of p.

T he freedom of choosing the theta anglem od N actually m eans thatwe
can lift a D brane from the orbifold point to di erent slices of the m oduli
space, ie. a priori distinct slices of the K ahler m oduli space are connect at
the orbifold point. This can easily be picturized in the N old cover of the
m oduli space param etrized by the algebraic m irror coordinate , de ned
by e*= ( N Y. Sicea shift 7 N  corresponds to a phase shift

7 &' , changing the slice m eans going straight throught the orbifold
pointat = 0. Asdepicted In Fig. 6 this leads to a qualitative di erence
forN odd and N even. In view ofthecombined shift ( ;)7 ( +2 ;g 1)
we see that the slices = 0and =  are connected at the orbifold point
for N odd, but rem ain disconnected for N even. So for N odd we have

°m [66] the representation ( ) for 2 and the isom orphisn U aredenoted by (g)
forg2 and ( ),respectively. In particular, the rst two lines in their conditions (3.10)
correspond to the second and to the last line in (66).
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A ' . \_l'lL . . \_'.L

N odd ! - N even

Figure 6. The N =old cover of the K ahler m oduli space,

et= ( N ¥ .Reltion (88) says that we can m ove straight

through the orbifold point. For N odd (here 5) the two slices,

at = 0and = ,are connected at the orbifold point. For
N even (here 6) the two slices,at = 0Oand = ,ramain
disconnected.

two disconnected com ponents of the ordentifold m oduli space, whereas for
N even we have three.

W hen changing the slice at the orbifold point we have to be carefulw ith
relating the corresponding two sets of invariant D -branes properly. Let
us pick an arbitrary invariant D brane w ith quasidsom orphisn U in the
orbifold phase. R ecall that the sign ; is determ ined via

U = . ™ +1 ( 2 ) 1 U T .
i :
A s we shift the theta angle to N  the parity action (48) on the gauge
charges is changed to
a’l = + N q:

A ccordingly, In order to keep the D brane invariant, we need to m odify the
quasiisom orphisn to U% = pU  with a new sign g. Using p= !yp,we
nd
0_ , 1

i= - P i :
Since the gauge group on a stack ofD Jranes cannot be altered aswe change
the slice, the ordentifold sign ism odi ed In the sam e way,

0 1
(89) =1,

Consequently, when we m ove straight through the orbifold point n Fig. 6
we have to take into account the ordentifold sign change (89).
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H igher-dim ensionalm oduli spaces

In general, forgaugegroup T = U (1)¥ a necessary condition fora connection
between di erent slices of the orientifold m odulispace is that the deleted set

+ that determ ines X . in the particular phase has at least one irreducible
com ponent of the form fx; = O0g for some 12 fl1;:::;N g. The vacuum
expectation value for x; then breaks the gauge group so that g g+ 073
and in particular,

(90) N o and °=1"

Taking Into account the change of quasiisom orpisn ,U°% = xU , this shows
an equivalence of the sets of invariant low -energy D Jranes,

(91) D ™/ (Xy) I D ™)

For higherdim ensional m oduli spaces this leads to the Interesting phe-
nom enon that large volum e lin its distinguished by di erent values of the
theta angles m ay be connected through a path In Kahler m oduli space.
Thisw il be fllustrated later in the two-param eter m odel of Exam ple 2.

Exam ple 1

Let us consider the nequivalent spacetin e involutions of Exampl 1.
W e can always choose coordinates so that the involution acts diagonally,

(1t ) (Xi7P) = (14x45!pp). ForN odd we have
S @pud; Ll 1) 7 for = 07::5N
In the orbifold phase the xed point locus isan (N )-dlin ensional plane
through the xed pointp= fx; = :::= xy = 0g. ForN even we have
= (Ljeeel; 10005 151) 7
N———
0 for = 0;:::5,N=2
o (Ljeeel; Lec0:; 1; 1) 7
N———
The xed point locusof the involution isaunion ofan (N )-<lin ensional

and an -din ensional plane in the orbifold phase, whereas the xed point
locus of ? isalways the orbibd xed point.

Fractional D fbranes O , (q) on the orbifold chN =%y are localized at p and
carry Zy <<harge q. They can be represented in the linear sigm a m odel
through the K oszul com plexes (73) of N coordinate elds (x1;:::;xy ). In
the ordentifold context fractional branes were studied before from di erent
perspectives, see for instance [84{87,89]. Let us reexam ine them from the
linear sigm a m odel point of view . In particular, we want to know which
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Figure 7. Branes in an Z; orbifold and possible re ection
plnes, related by the Z 3-symm etry

fractional branes are invariant for a given orientifold speci ed by ( ;m ; ;
or o).

From egquation (74) we conclude thatm = N mod 2, ie. an nvariant
fractionalbranemust bedressed by ( 1 §r rN odd,whereas there is no
dressing for N even.

In order to study the role of the theta angle, we note that the Zy -
representation g has to obey 2g= = mod N or form ally

q= =2 modN=2 :

Recallthat isde nedmod N .ForN even thishastwo solutions for g if
=2 isan Integer and no solution if =2 ishalfinteger. ForN odd italways
has only one solution. T his has a nice pictorial representation in the quiver
diagram corresponding to this orbifold. Here, the branes corresponding to
irreducible representations of the orbifold group becom e dots of the diagram ,
see Fig. 7 and 8. The N fundam ental fractional branes are related by the
quantum Zy symm etry,ie.2 shiftsofthe theta angle at the orbifold point,
which is depicted as a rotational symm etry in the corresponding diagram .
O rientifolds are m irrorplanes in these diagram s, respecting the sym m etry.

Ttisnow easy to see that forthecaseN odd thereareN possble sym m etry
planes, each of them passing through exactly one point, as depicted in the
gure for thecase N = 3. Thedi erent orientifolds are related by rotational
quantum symm etry. T he corresponding invariant fractional brane can be
lifted to both slices of the K ahler m oduli space, see Fig. 6.

On the other hand, for N even there are two classes of orientifolds. The
rst class passes through precisely two points, leaving two of the fractional
branes xed, whereas the second class does not leave any point xed, as
shown In the gure for the case N = 4. The orientifold with two nvariant
fractional branes lies on the slice of M ¢ that collides w ith the singularity.
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Figure 8. Branes in an Z, orbifold and possible inequiva-
lent re ection planes: E ither two or no branes are invariant
under the parity.

T he orientifold w ithout invariant fractional branes is on the slice that is
connected to the lJarge volum e point.

For the discussion of the gauge group let us distinguish between the two
types of holom orphic nvolutions, and °. W e use o ul (81) to deter—
m Ine the gauge groups.

Since the involutions square to zero, the ordentifold sign is iIndeed

Just a sign, = ,and we can readily com pute
m_ N +
e= ( 172
For N even and on the slice = 0 that colldes with the sihgularity, the

nvariant fractional branes O ,(0) and O (N =2) therefore carry the same
gauge group. For N odd the two slices in m oduli space are connected at the
orbifold point, which is re ected by the fact that . doesnotdepend on the
theta angle.

For ° (only N even) we use the representative !0;::;! ;1 1 g fOT 1N =
1,which ensures p= p. However, ® = 122 and the orientifold sign
is actually a sign tin es a nontrivial constant, o = _, 2). U sing this

the extermal sign on the slice = 0 becom es

( m_ N

( I)2 ©  for 0,(0);

(92) 0= o
( 1)z © for 0,(N=2):

The two nvariant fractional branes carry opposite type of gauge group.
T hese orientifolds appeared in the construction of six-din ensionalRG  xed
points from branes see for instance [87,88]. From a m irror perspective they
have been discussed In [89].
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5.2 T he type of an orientifold plane

Let us use the results from Sec. 4.7 to com pute the type o for the orien—
tifold planes O asde ned In (44). Tt willbe convenient to work w ith the
holom orphic involution , = ( thatde nesO through its xed point lo-
cus. Furthem ore, we use coordinates that diagonalize the involution. T he
probe brane that we w ill use to determ ine the type is given by the K oszul
com plex C  of the coordinates for which ;x; = !ix; with !; 6 1. Setting
these coordinates to zero gives the orientifold plane O . Let usdenote tham

W e are already m aking several assum ptions here. Indeed, a K oszul com —
plex that corresponds to a D brane that lies on top of O need not always
exist. First the condition m = dm od 2 has to be satis ed. Second a quasi-
isom orphism U must exist for C in order to render it nvariant. If it does
not exist, it is som etim es possible to utilize a probe brane of higher codi-
m ension, that isd+ 2p,which Iileson O . Keeping n m ind that the type of
the gauge group altematesw ith p [6],we nd that the type of the orientifold
plane is given by

o = ( 18 e 7

where . is the external sign of the probe brane.

Aswe observed In the exam ple (92), ordentifold planes at orbifold singu-
larities m ay lead to the e ect that there exist two probe branes carrying
opposite gauge group. The follow ing result on the type of an orientifold

plane can therefore be applied reliably only if we dealw ith a am ooth orien—
tifold geom etry.

Under the above assum ptions, the probe brane is a K oszul com plex of

quasiisom orphism (79) is ;-dnvardant aswell. W e nd

(93) o= ( We= 1 PPdet() _, ()

where det( )= 1 is the sign associated w ith the mvolition ', and q is
the m axin al charge In the K oszul com plex (73). In the special situation
that = ( 1;:::; k) Isgiven by signs ; = lwehavedet( )= ( PF)and

the form ula for the type sin pli es to

(94) o = L= for L= 1

"Itisa sign and independent of the gauge choice for only if the Calbi{Y au condition
is satis ed.
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W e want to stress again that the result (93) requires the existence of a
Koszulcom plex on O . If such a K oszulcom plex fails to exist it is unclear
w hich probe brane should be used to determ ine the type. A 1so, let us ram ark
that the two probe branes (92) are re ected In formula (93) In a wo-old
choice for the m axin al charge g.

53 Type change in the orientifold m oduli space

In this section we want to explore orientifolds and the dependence of their
type on the slice in the K ahlerm oduli space. W e w ill illustrate this point in
a particular exam ple. W e w ill observe that the type of an orientifold plane
isnot an invariant concept and can change over the K ahler m oduli space.

Exam ple 2

Recall the list of chiral elds (10) and them oduli gpace for this exam ple.
O ut of the list of possible target space involutions we consider:

X1 X2 X3 X4 X5 XKp p
0 1 +1 1 1 1 +1 1

T he holom orphic Involution acts diagonaly w ith the indicated signs on the
linear sigm a m odel coordinates. For consistency w ith tadpole cancellation
wepik m = 1,which is equal to the codim ension of the xed point locus
modulo 2.

D eep Inside phases IT and IIT, cf. the dotted line in Fig. 9, the eld x4
with charge Qg = (1; 2) gets a vacuum expectation value, and relation
(90) connects the slice = (0; )with ( ; ), and the slice = (0;0) with
(; 2 ). Now recall from the discussion in Sec. 3.2 that the form er two
slices of the ordentifold m oduli space do not Intersect the singular locus S .
W e can therefore m ove from the large volum e point along Path A to the
dashed line at in nity in phase IT or IIT, change slice and m ove back to large
volum e. W ith our choice of ( the ordentifold sign | is not altered aswe
change slices.

O n the other hand, deep Inside phases IIT and 1V , along the dotted lne,
the eld pwith chargeQ = ( 4;0) gets a vacuum expectation value. T he
associated shift of now does not correspond to a change of the slice. H ow —
ever, the ordentifold sign is altered, 00 = !pl 0 = , - Ifwem ove along
Path B in Fig. 9 we retum to the original lJarge volum e point, but pick up
a non—rivialm onodrom y on the D branes. T his discussion can be summ a-

rized In the follow ing diagram , which show s how the various large volum e
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= (0; )or( ;)
hybrid Path B
4 // ]
! /Path A
< - ‘.-®
_ AW
+ \eer”
T
o *
Figure 9. In thetwoparam eterm odel, Exam ple 2, the two
= (0; )and ( ; ),areconnected along the (dashed)

slices, =
line at in ntiy in phases ITand ITI.T his isdue to the vacuum
expectation value of the eld x¢. A sa consequence, two large

volum e lim its are connected via Path A in them oduli space.
Path B induces a non-trivialm onodrom y but retums to the

original large volum e point.

points are connected via Paths A and B :
A
D T 12i0;) X ) = DTl X )
(95) B B
? ?
D 120 X ) D i) X )

o™ 7 (X ) denotes the set of nvariant D fbranes on the toric variety

Here, D
X at large volum e.

Let us analyse the ordentifold planes O
xed point locus of the involution is the union of two points,
for a= 1;2;

=x3=x5=x5=p= Og

=0(,;, - Atlarge volum e the

Pa=0G1; (192)= xa

and two com pact surfaces,
= xs=p= Og for a= 1;2:

Sa=0 (1 (1)~ Xa=
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At this point we could just use fomula (94) In order to obtain the types.
Let us bem ore explicit an put the probe branes on p; resp. S;.

T he probebrane for the pointp, istheK oszulcom plex of (X5 ;X3 ;X4 ;X5;0),
which hasQ¢ = ( 1;1) and rightm ost gauge charge g= ( 1;0),

£ £
W ,0; 1)—/ i T Ws( 1;0):

Thepolynom ialfy in the quasidsom orphism (79) m ust therefore carry gauge
charge according to the conditions

Qf, = = &+ 29= (0;0) on = (i )i
Qf = = O+ 29= ( 1;0) on = (0; ):
In the form er situation £y = 1, thus the quasidsom orphisn isU = Uj;,, and
the type op, = o of the ordentifold plane on p; is determ ined using (81),
Op, = o 1f" VPdet( )= (B,

In the latter case we can set fp = x§x6,where (xi;xﬁ) = (Xp;X1),with the
quasidsom orphisn V. = xix¢(Uiny) ' and

Op, = L 1" Pder( )= (1B,

For the surface S5 the naive K oszulcom plex does not provide an Invariant
D brane. W e therefore use a Koszul com plex for (x4 ;X3;X4;Xe;P), which
corresponds to a point on S, . The type os, of the orientifold plane is then
determ Ined by o5, = .. Wehave Qr = ( 1; 1) and right-m ost gauge
chargeg= ( 1; 1),

H

f
W 5(0;0)— :::———Ws( 1; 1):

T he condition on the gauge charge of £y reads

Qf = = O+ 2g9= (0;0) on =(;);
Qg = = &+ 2g9= ( 1;0) on = (0; ):
For = ( ; ) the quasidisom orphisn is the Invertible one, Uy, and the
type of the orientifold plane S, is
os,= (19 ,:
For = (0; ) the quasidsom orphisn isV = xs5(Uiny) * and
os, = ( 1} , :

W e observe that for both, the points and the surfaces, the two respective
types are opposite, so that the total con guration of orientifold planes does
not carry a net RR charge in this exam pl.
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Let us sum m arize our results on the types of orientifold planes at large
volum e as follow s:

large volum e = (0; ) =( ;)
+ A +
_ + +
o= +1 Op Op, Os, Og, Op, Op, 05, Og,
B B
? ?
A

— + + + +
o 1 Oplop2051052 Oplop2051052

From thisdiagram we nd that all four di erent type assignm ents are con—
nected through paths in m oduli space. Path B leads back to the original
large volum e point, but still changes the overall type. Path A, which con—
nects two di erent large volum e points, swaps the types of the surfaces S, .

6 C om pact m odels

Let usnext tum to linear sigm a m odels w ith superpotential. T hey give rise
to com pact low -energy con gurations. From now on we have to dealw ith
m atrix factorizations instead of com plexes. In fact, m any of the features
that we observed for com plexes in the previous section carry over to m atrix
factorizations, so that we elaborate on the peculiarities of the latter in the
follow ing.

First thing to keep In m iInd when tuming on a superpotential is that in
order to satisfy the hom ogeneity equation (7) som e ofthechiral eldshave to
carry non-vanishing R <harge. In particular, for a gauge=nvariant potential
of the form

X
(96) W (P ixi)= PG (xi);

we willassign R charge + 2 to the eldsp and 0 to the eldsx;. Thisnon-
trivial charge assignm ent plys a special role in Landau{G inzburg orbifold
phases, which we discuss in Sec. 6 2.

Second, in a phase where the superpotential (96) gives rise to F—-tem
masses for p and the transverse modes to G (x;) = 0, the low-energy
dynam ics is restricted to the subvariety M = \ fp = G = 0g. In that
case the m atrix factorizations are m apped to geom etric D braneson M by
the Knorrerm ap [20]. W e start in Sec. 6.1 w ith investigating how the world
sheet parity action P™ on the m atrix factorizations gets m apped to the
parity action P on the geom etrdc D Joranes in the low -energy con guration.
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6.1 The e ect of the K norrer m ap on the parity action

Let us review the standard K norrer periodicity before we m ove on to ori-
entifolds and the brew ise version that is needed in the context of gauged

and CN * 2 with coordinates u;v;xy ;:::;xy - O ver the latter we consider the
superpotential W (u;v;x)= uv+ W (x).

K norrer periodicity then states that the set of (isom orphisn classes of)
m atrix factorizations of W (u;v;x) over CN*?2 is equivalent to the set of
m atrix factorizations of @ (x)overc¥ . Physically, in the Landau{G inzburg
m odelthe superpotentialW (u;v;x) givesm asses to the eldsu and v so that
they can be Integrated out in the Infraxed. A canonicalm atrix factorization
oftheterm uv In W (u;v;x) then establishes the equivalence of the two sets
of m atrix factorizations. T he canonicalm atrix factorization reads

0 v

Qcluyv) = u 0

In fact, a m atrix factorization & (x) of f (x) iIsm apped to a m atrix fac—
torization of W (u;v;x) by taking the graded tensor product w ith Q .,

(97) F&x)T Q(u;v;x)= Qc(u;v) o+t de F(x):

C onversely, K norrer observed in [64] that by isom orphism any m atrix fac—
torization of W (u;v;x) can be brought to the tensor product form as in

(97), thus providing & (x).

In the context of gauged linear sigm a m odels the coordinate elds, here

determ ne how their representations on D “branes arem apped under K norrer
periodicity. T he tensor product (97) dictates the follow ing decom position
of representations,

(98) @ = <@ e@);
R() = Rc() ®():

Let us set the R charges for u and v to 0 and 2, the R -charge assignm ent
of the ram aining elds x; does not play a role for the subsequent discus-
sion. T he representation of the R symm etry R.( ) can be chosen up to an
(unphysical) m ultiplication by a character ( ). W esetR.( )= diag(l; ).

In order to determ ine the representation .(g) in the uv-system we note
that the canonical m atrix factorization Q . can be obtained by quantizing
a boundary ferm ion  ; with canonical commutation relations £ ; g= 1.
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The two states In the H ibert gspace of the boundary ferm ion are § and
P ,where 9 = 0. The ferm ion is coupled to the buk uv-system through
the boundary superchargeQ.= u + v

If we assign to v and u the charges Q. resp. Qv , then gauge invari-
ance of the boundary supercharge requiresQ = Q = Q.. Accordingly,
the Chan{Paton factors associated with the states P and § have the
canonical charge assignm ents  Q,=2 resp. Q +=2. Note however that Q =2
does not have to be an integer. W e therefore shift it Into the auxiliary theta
angle .= Q, and ocbtaln (g) = diag(l;g Qv), The canonical m atrix
factorization is therefore

Be:W (0) —/——W ( Q) :

To sum m arize, a m atrix factorization of (x) ism apped to am atrix fac-
torization of W (u;v;x) by taking the tensor productw ith B . T he auxiliary
theta angle gives rise to the non-trivial relation

(99) ="+ Qv 7

where and ™ are the theta angles of the ultra-violt theory, including the
uv-system , and the infraxed theory, respectively.

O rientifolds and the K norrer periodicity

Let us now check the com patibility of the K norrer m ap w ith the parity
action. Note st that condition (41) on the superpotential requires that
the nvolution actsin theuv-system as :(u;v) 7T ( \',lu;!vv) for som e
phase !.

W e need to determm ine how the parity operator on m atrix factorizations of
W (u;v;x) splits up in the tensor product (97) and (98). On the canonical
m atrix factorization the world sheet parity acts as

PcQc) = Q¢ ;
Pe( c(@) = L@ el T
PcRe( ) = . (IRc() "5

wherem . = 1. The canonical quasizsom orphisan thatm akesB . Invariant is

0 1

Tt satis es
(100) Uc= ()t Ul with .= 1t
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U sing the results of Sec. 4.7 on tensor product branes we can construct
the quasidsom orphisn U for the m atrix factorization Q (u;v;x) In tem s
of the quasiHsom orphian U for & (x). T he relations between the constants
associated w ith the ordentifold action can be sum m arized as follow s:

(101) o= Q@

In summ ery, we found that the K norrer m ap relates the sets of invariant
D -branes as ollow s:

M me; (CN+2)7_M F%]um;N(CN)

In particular, the dressing of the parity action by the antibrane operator
( 1§+ changes under the K norrer m ap, ie. no dressing m aps to dressing

and vice versa® This result is in agreem ent w ith [18].

F ibre-w ise K norrer m ap

Let us retum now to our original question. G iven a parity operator in the
linear sigm am odelw e want to determm ine the parity operator on the com pact
hypersurface M . in a geom etric phase.

A s pointed out in [20] the m atrix factorizations n M Fy (CYN ;T ) and the
geom etric D branesn D M ) are related by a brew ise version of K norrer
periodicity. ForW = pG (x) we can therefore adopt our previous discussion,
replacing (v;u) by (p;G (x)) and setting w =o0.

P
Ifwe have a superpotential W = _1P G (x)thatgives rise to a com —
plete intersection M . In the Jarge volum e phase we have to apply brew ise
K norrer periodicity “ tim es,
Mme; (CN+2)7— D~m«;B(Mr)

w here the relation between the B — eld and the theta angle is

®This shift was observed in the context of defects in [90]
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Q.

T he relation between orientifold signs is ~ = ( 1) -1 ! . Here the
phases ! are de ned through the holom orphic nvolution on the ed p ,
ie. (p )= ! p .In ageneralcoordinate basis the action of the involution

on the p ’smay not be diagonal, so that the m ore Invariant expression
betw een the ultra-violet and the infrared signs is in term s of the determ nant
of acting on the p ’'soron the polynom alsG , ie.

~ = ( 1ydet( §) =det( g)*

A swehave reviewed In Sec. 2.1 the price to pay for applying the K norrer
map brew ise is to dealw ith half<n nite complexesin D M ). Theword
sheet parity action on R-degrees, 7 m  j, in plies that Py m aps right—to
left-in nite com plexes and vice versa. A D -brane is invariant if there exists
a quasi=isom orphian between the left—and the right=n nite com plex, ie. the
Pined com plex m ust be an In nite exact (ie.ean pty) com plex.

Since the description In term s of In nite com plexes is cum bersom e, In
particular In the situation of com plete intersections, we prefer to work di-
rectly with the m atrix factorizations In the linear sigm a m odel in the sub-
sequent exam ples. W e w illm ake an exception if the low -energy D brane in
D~ ™8 (M ,) is expressible through a nite com plex of vector bundles.

6.2 Landau{G inzburg orbifolds and the orientifold m odulispace

Landau{G inzburg orbifolds are the ‘com pact’ analog of the orbifold m odels
that we discussed in Sec. 5.1. W e therefore closely follow the discussion
therein. W e start w ith the oneparam eter m odel, w here the vacuum expec—
tation value for the eld pofchargeQ , = N breaks the gauge group from
U((1)toZy.

The m ain di erence to the noncom pact situation is the non—trivial R -
charge assignm ent, R, = 2, for the chiral eld p. W hen this el gets a
vacuum expectation value, for instance p = 1, it is convenient to dress the
R —sym m etry by a global gauge transform ation, ie. In the Landau{G inzburg
model we use the shifted R symm etry with chargesR; = R;+ 20 ;=N on
the chiral elds. A m atrix factorization is correspondingly m apped from the
linear sigm a m odel to the Landau {G inzburg m odel through

() = () for 2 U (1);
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v

LV

N even

Figure 10. TheN =fold cover of the K ahler m oduli space,
et = ( N Y. Forboth N even and odd only the large
volum e point w ith non-trivial B—eld, B = , is connected
to the G epner point, the large volum e point w ith vanishing
B-eld isnot. Thisisdue to therehtion B = + N

T he Landau{G Inzburg orbifold data of the D brane clearly satis es the in—
variance conditions (66) for the discrete group Zy , provided that the theta
angle is given by

= 272 mod N ;

and the R-symm etry character _ ( ) isdetem ined by
2

102 m =m+ —— 2

(102) N Q

In thisway we obtain the set of invariant D branesM F,; 7 (CY ; ) In the
Landau{G inzburg orbifold m odel, as it was studied before in [17]. T herein,
the triangulated structure of the category ofm atrix factorizationswasw orked
out in detail. In particular, the world sheet parity action was represented
as a functor on the triangulated category.

In Sec. 5.1 we found that a shift of the theta angle by N leaves the
theory invariant at the orbifold point. In view of (102) this shift has to be
supplem ented by a shift of m , so thatm is not altered, ie.

(103) (;m)= (%m%H=( N m+2), (m)=( N ;m):

T he lift of a m atrix factorization from the Landau{G inzburg orbifold to
the linear sigm a m odel can be found along the lines of Sec. 5.1 and is ex—
plined in detail n [20]. According to (103) we have a choice in lifting
to di erent slices of the m oduli space. Suppose we have a m atrix factor—
zation with quasidsom orphism U for given ( ;m ). Then in view of the
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relations (66) a combined shift (103) in plies that we have to dress the
quasiisom orphisn by the eld p, ie.U% = pU . Note thatm 7 m + 2
is conform w ith the R-charge R, = 2. The sign of the ordentifold action is
altered according to (89),

0_ , 1

=1
N ote that the in plications for the m oduli space are essentially the sam e as
for the non-com pact situation, see F ig. 10.

H igher-dim ensionalm oduli spaces

Let us generalize this discussion to m odels w ith higher+ank gauge group,
T = U(@)*. We consder a phase where the deleted set  has one or

T he vacuum expectation valie for x; then breaks the gauge group so that
o g+ Qf and in particular,

(104) *®o fi0f; ml-maRy 0=ty
Note that the el x;may orm ay not carry R charge.

W e obtain the equivalence

- 0

. = 0 0.
MFE, " ;) ! ME ™7 X.):

A sdistinguished from the non-com pact situation (91) the integerm m ay get
shifted by 2. In order to see that this can indeed have a non-trivial e ect,
recall that a comm on shift of Rdegree [11:37 7 3 1 is accom panied by
m7 m 2. Thiscan beusaed to undo the shift ofm in (104). H owever, the
orientifold sign is then altered according to (64), that is 07 0,

6.3 The type of orientifold planes

Recall from Sec. 3.1 that In a geom etric lJarge volum e phase the orientifold
plane O is given by the Intersection of the xed point locus Fix( ;) with
the holom orphic subxéan'ety M = fp = G = 0Ogg . This intersection m ay
be reducible, O = O ; ,which adds som e subtleties as com pared to
the discussion of the type of orientifold planes for non-com pact m odels in
Sec.52. The assum ptions on the applicability of the type form ulas are the
sam e as In Sec.52.

For the follow ing let us denote the am bient spaceby Y = fp, = :::;p =
Og X and the com plete intersection by M = £G; (x) = :::= G/ (x) =
Og Y .For sinplicity we work In a coordinate basis that diagonalizes .
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For a given com ponent O ; M , let us probe ‘d? type w ith a K oszul-
like m atrix factorization with tachyon pro le Q = ;€ 1+ gii). The
polynom ials £ are given by those coordinates x; whose comm on zero locus
isO ; . Note that the eldsp are not included, because In the geom etric
phase they obtain zero expectation values from the F-temm equations no
m atter how the nvolition , actson them .

T he polynom ials that determ ine O ; can be separated in two sets. The
rst contains coordinate elds x; that are not invariant under . Let us

the num ber of polynom ialsneeded to restrict toM and to pick an rreducible
com ponent.

A s for thenon-com pactm odels in Sec. 5.2 the resulting K oszul-likem atrix
factorization m ay notbe an invariant D borane. In som e casesa way out is to
utilize a low erdin ensional probe brane to determ ine the type. For that we

the K oszul com plex. T he type is then given by

(105) o = ( 1§e= ,( 1fr PO ( )det( o3 )det( ) :

= 29

Here, D = s+ r ‘ is the codimension of O, in M . Notice that its
codin ension In the am bient space ¥ iss+ r.For containing only signswe
obtain the sin pler expression

(106) o = L 1 mrbe=2 () for L= 1:

6.4 O rientifolds w ith and w ithout vector structure

C om pacti cations w ithout vector structure have been introduced in [9,10],
w here they were investigated for toroidal com pacti cations, see [11,12] for
recent works. T he starting point was the observation that the gauge group
for the heterotic string is Spin (32)=Z, rather than SO (32). This allows
com pacti cations w ith gauge bundlesw hich do not adm it vectors of SO (32).
T he obstruction to having vector structure is determ ined by a generalized
StiefelW himey classw,,de ned modulo 2. On the dualtype I side it was
observed that the choice of w, corresponds to the choice ofa discrete B— eld
that is still allow ed by the ordentifold profction, see [911].

Under T duality these com pacti cations getm apped to IIB com pacti ca—
tions w ith O 7planes. A s opposed to the T -dualofa com pacti cations w ith
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vector structure, the di erent orientifold planesw illhave unequal type, lead—
ng e ectively to a rank reduction of the gauge group. T he orientifold action
with xed points on a two torus has four O 7planes. In the case without
vector structure three of them are O planes, and one isan O* , such that
tadpole cancellation requiresonly 8 D 7 branes, resulting in the gauge group
S0 (8).

In the current paper we have developed a fram ew ork w here the physics of
orientifolds can be studied over the w hole K ahlerm odulispace, in particular
for all values of the discrete B— eld. T he earlier results on com pacti cations
w ithout vector structure should therefore be reproduced by our m ethods.

Exam ple 1 with N = 3 and superpotential

To see this in the sin plest exam ple, we consider orientifolds of the cubic
torus E CP. T he superpotential is taken to be

(107) W = px;+ x5+ x3) :
W e will focus on the holom orphic involution
(108) 0(x17x2;%3;0)= ( %; =i Xip):

A swasdiscussed in Sec. 3.2 its xed point set at large volum e consists of
3+ 1 points on the torus,

0O 1; = fxq X% = X3 % = Og for = 2 ;

0,1 = fx1+ x,=x3=0g:

T he types can readily be com puted using (106), where r = 1 for the three

pointsand r = 0 for the single one. Taking into account the shiftB = + 3
we obtain
(109) o1 = o0 1FTFC 1T

O+l = 0( 1?:2 .

A sexpected the fourpointshave equaltype forvanishing B—- eld. O therw ise,
for nonvanishing B— eld the type of one point is di erent from the types of
the other three points. Note thatm being even in the gauged linear sigm a
m odelm eansm being odd in the geom etric phase, so that the parity action
isdressed In the infraxed by the antibrane operator ( 1 jr ,as it should be
for O 7oplanes in the type IIB context.

Let us be m ore explicit and construct the probe branes that are used
to test the type of each of these points. Since the xed point set can in
each case be described by two linear equations, f1 = £, = 0, the m atrix
factorizations are of Koszul type with W = f;g; + f29,, see the general
discussion In section 4.6.
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The B- eld turned on

For = 0 the matrix factorization and its parity im age take the form
isom orphian between the orientifold and its in age.

f1

£ 5 (f2; f1)
WmZ( 1) W“L(O) B Wm+2(l)
2 . 2 g1 2
(g1792) o
u 1 Ug Ui
? £2 ? ?
B (f1;£2)
Wono( 1) —/——— W= (0) ? —— Wan-2(1)
2 A 2 g1 2
( 91i92) o
Thebrane and its In age tthrough the w ndow w = < < wihN =

f 1;0;1g,see Sec.2.2. In order to determ ine the isom orphism (u 1;ug;ur)
we nead to consider the individual orientifold points separately.

P
To the singke point O , ; we can associate the factorization W = fgg;
w ith

fll X1+ X5; f21= X3

g% = p(x% XXy + x%); g% = px%:
T he polynom ials fa1 are odd under the holom orphic involution (. The
isom orphian is then given by

0 1
u11=1; ué= 1 0 ; u%=l
We nd that U = U and hence 0,1 = e= o( 1772, whih

con m s the result (109) for non-vanishing B- eld.

For the three orientifod points O ;; we have
£ = % %; £, = x3 b
_ 2 2. _ 2 2.2\,
g, = pEI+ x1xX2+ X3); g, = p(X5+ Xpx3z+ X5):
T he holom orphic involution acts on the polynom ials as
so that the isom orphisn U isgiven by

1
u =1, uyy= 1 o F wm= 1:
A sa consequence, (U ' = U and therefore o 1; = e = o ( 1?:2.
Thiscon m sthat for non-vanishing B - eld the type at the three orientifold

points is opposite to the one at the single point calculated before.
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Tom ake contact w ith the discussion in Sec. 4.6 note thatdet ¢ = 1 for
the three points, and det ¢ = 1 for the single point, such that our explicit

calculation is iIn agreem ent w ith the general discussion.

Vanishing B - eld

Letusnexttum to thecase = . TheD Jrane and its In age are related
as follow s, .
= , (f2; f1)
Waoo( 2) —/—/——— Wo ( 1) —— W a2 (0)
2 . 2 g1 2
(91792) 9
u 1 Uo B!
? £ ? ?
e (F17f2)_
Waooo( 1) —/—/—/—— W o (0) —— W a2 (1)
2 2 g1 2
( 91/92) o

Obviously, U can in this case notbe an isom orphism , it increases the degree
by one, and therefore can only be a quasi=isom orphian linear in the coor—
dinates x;. That U is a quasi-isom orphism m eans that the bound state of
the brane and its in age brane obtained by binding them using the tachyon
pro le given by U is an empty brane. W hich branes are em pty depends
on the phase under consideration. Since we are interested in relating our
construction to com pacti cations w ithout vector structure, we would lke
to m ake contact w ith the geom etric regin e at large volum e. Here, the set

= fx1 = x5 = x5 = 0g is excluded and any brane located there ows to
an em pty brane. Thism eans that the quasidsom orphisn should be of the
form foU , where U is the isom orphism considered previously, and fy is a
polynom ialin the eldsx; such that the comm on zero locus of (fg;f1;£,) is
contained in .

For the singke xed point O ;1 one can choose

fOl = X7 X
Since £ is sym m etric under the holom orphic nvolution, we conclide that
again (folU Ot = %U 1, such that the type does not change, 0,1 =

(17

At the three xed points O ;; this isdi erent. Here, one can choose
fo =x1+ xo ¢
Since the polynom ialf, Jpssign under parity transform ation,we nd that
(£4U')Y = £U' and the type of the orientifod willalso ip, that
iso1; = 1¥=2. A1l our points carry the sam e type for vanishing
B-ed.
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To summ arize, the transform ation properties of the quasi-Hsom orphism
between a D brane and its parity In age determ Ine w hether or not the ori-
entifold type is changed when the theta angle ism odi ed.

6.5 Type change in the orientifold m oduli space

In m odels w ith higherdin ensionalK ahlerm oduli space it m ay happen that
di erent large volum e points are connected via a path in m oduli space. In
this section we illustrate the change of orientifold type along paths In the
com pact version of Exam ple 2.

Exam ple 2

Recall the charges (10) and the m oduli space from Fig. 9. The super-

potential is W = pG (x) with a quasithom ogeneous polynom ial G (x) of
gauge charge (4;0). For sin plicity we pick the Femm at type polynom ial
G (x)= x¢(x{+ x5)+ x3+ x]+ xi. For the world sheet parity action we

choose the holom orphic Involution [14]

X1 Xz X3 X4 X5 Xg IS
ol +1 +1 1 1 1 +1 il

w hich acts diagonally on the chiral elds.W e setm to be even.

Let us ollow the two paths In Fig. 9. The two slices of interest have
theta angles = (0; )and = ( ; ). Along Path A wem ect the dashed
line, which stretches between the Landau {G Inzburg point and the weighted
progctive m odelpoint. O n this Iine x4 obtains a vacuum expectation value,
and according to the shifts (104) neither norm isaltered when we change
from slice (0; ) to ( ; ).

0

Follow ing Path B isdi erent. A long the dotted line between the Landau {
G Inzburg point and the hybrid point the eld p gets a vacuum expectation
value, thus connecting = (0; ) with 0= (4 ; ). The corresponding

shiftsarem = m + 2 and OO= , - Indeed Path B connects the large
volum e theories M Fu m;(o;)(X ) and M F, m+2;(o;)(X ). In the latter we

can perform an overall shift of the R-degrees and use (64) to nd that
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m+2;0;)

M T, ®) ! ME ™" (x).W eobtain the Hllow ing diagram :
D M 1;(0;)(M) D A l;(;)(M ):
?
. - A . -
MFW.m,(O,)(X) Mme,(,)(X)
KB 1] B

The vertical m ap is the K norrer m ap. Note that as com pared to the dia—
gram (95) for the non-com pact m odel, now the sets of invariant D branes
M F;rql:m #0; ) (X ) and M le:m (05 )(

K ahler m oduli space.

X ) are not connected through a path in

Let us investigate the =xed point locus of ( on the hypersurface M =
fp= G (x)= Og at large volum e. T he non—trivial com ponents O are

Opin1y = fxz3=x4=%5=0 M ;

O(1p1y = fxe=0g M

The second isa divisor D , and the rstisa union of eght pointson M ,

Let us com pute the type of O ;1 1); rst. The matrix factorization
for the probe brane can be written In tem s of boundray ferm ions as Q =
fa(®) o+ Ga(pPix) 5 with

f1=x1 %; fo=x3;f3=x4; f4=x5:

P
Thepolynom ials g, are such thatW = fog;. Using formula (106) w ith
r= 1we nd for the type,

=2
Owip1)y; = o 1¥77:

Thetype of O ( 1, 1) is com puted using (106) with r= 1,

Ot 141)~ 0( 1511:2( 1)~
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Let us sum m arize our results in the follow ing table:

large volum e = (0; ) = (3
m A,
(1) =+1| 0} 0y o O,
8
o A
(7= 1] 0, O] — 0, O,
%8 8

W e found that orientifold planes of opposite type sit In the sam e m oduli
space. In particular, the type change of the O 7plane on D has non-trivial
n plications: In order to be able to cancel tadpoles and preserve space+tin e
supersymm etry we need an O 7 plane In the large volum e lim it. A ssum e
that we have found a supersym m etric and tadpole cancelling con guration
of D -branes. Aswe llow Path A we end up with an O 7" plne, that is
w ith positive tension, which in plies that space-tin e supersym m etry m ust
have been broken along the way.

6.6 O 7 —planes and singular D 7dranes from F —-theory

In this section we consider a particular type IIB com pacti cation with D -
branes and orientifold planes that is known to descend from the weak cou-
pling lin it of F-theory on an elliptic bration over CP> [92]. The authors
of [34{36] investigated the geom etry of the D 7-brane and found that it is
singular along a curve that sits at the intersection w ith the O 7-plane. This
can be attributed to the fact that the D 7-brane is located at the zero lo—
cus of a non-generic hypersurface polynom ial, ie. the D 7-brane geom etry
has less deform ation param eters than a D 7-Jrane on a generic hypersurface.
Ref. [34,36] give essentially two type IIB explanations for the sinqular inter—
section, one involring a test brane and the other invoking D 3-brane tadpole
cancellation.

Atpresent we want to reexam ine thism odeland explain the non-generic
hypersurface from a type IIB world sheet perspective, neither referring to
tadpole cancellation nor using test branes.

°Andres Collinucci pointed out in his tak at the workshop on \M athem atical C hal-
lenges of String Phenom enology" at the ESIV ienna that a world sheet argum ent should
exist.
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Them odel

The type IIBR com pacti cation at hand is a system of O 7planes and D 7-
branes on a degree eight hypersurface in weighted pro jctive space W P§1114 .
T his is the Jarge volum e point of the follow ing gauged linear sigm a m odel.

X1 Xz X3 Xy IS
U@ | 1 1 1 1 4 8
0 +1 +1 +1 +1 1 1

The involution g actsdiagonally on the coordinates w ith the signs given in
the table. T he superpotentialisgiven by W = p G ( ;x),where

and h(x) is a degree eight polynom ial. The low-energy con guration at
large volum e is the hypersurfaceM = fG ( ;x)= 0g W By;;,. The B-

eld vanishes. W e setm = 0 in the gauged linear sigm a m odel, w hich m eans
m = 1 in the non-linear sigm a m odel on the hypersurface, ie. the parity
action isdressed by ( 1 jr ,as it should be foran O 7-plane.

The =xed point locus of o gives the ordentifold planeat ( = + 1)
O,1=1f = Og M

A s the ordentifold plane descends from F-theory, it isan O 7 -plane, which

means that o, = 1. Let us apply the type form ula (106) w ith the codi-
m ension of the orientifold planeD = 1, ‘= 1 fora Calbi{Yau hypersurface,
andr=1.Weobtaih~, = = q;= +1.ThesetofihvariantD -branes

is therefore given by

+1,0;=0

M Fy ®)=D "1 1B 0w ).

A 11D -branes that we consider in the follow ing m ust be contained in this set.

The D 7dbrane descending from F -theory carries gauge group SO (N ) and
is Jocalized on the divisor

(110) D=f xf 2 (x)=0g M ;

where (x) and (x) are polynom ials of degree n resp. 2n 8 for som e
integern > 4.1°

10 fact, in the con guration that descends from F -theory the integer takes the value
n = 16 and the gauge group on the D -brane is O (1), so that tadpole cancellation is
autom atic.
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Invariant D branes in the orientifold background

TheD 7braneon D contains a curve of ordinary double pointsatf = =

Og for & 0,which lies on the intersection w ith the ordjentifold plane. T his
singular curve pinches o at thepointsf = = = 0g,which are Iocally
described by the W himey um brella fu? = vwg  C°. T he num ber of these
pinch points is given by m ultiplying the degrees of the polynom ials (h; ; )
that de ne their location, that is8 n (2n 8). O ne of the goals of [34{36]
was then to explain this singular behaviour and to nd a m echanism that
prohibits deform ing the specialdivisor D to a generic degree 2n divisor,

D%= fP,,(x)= 0g M

In our approach we rst check the gauge group for a D 7-brane on the
divisor D ©, that is for a coherent sheafOpo(n). In D * 17 =0 ) it can be
described through a D 9ﬁ{systen given by the com plex

Pon (x)
(111) Om ( n)— Oy (n):
Oy isthepulltback of the trivialholom orphic line bundle from the am bient
space W PY,,,, to the hypersurfaceM ! Tn order to determ ine the gauge
group, let us com pute the extemal sign for this D brane. Since the D borane
(111) isa K oszulcom plex (73) of just one polynom ial, we can apply form ula
8l) with m = 1,~, = +1,and n = 1. For illustration let us be m ore
explicit here. In m atrix form the tachyon pro leQ and the isom orphism U
that satis es the invariance conditions (66) are given by

_ 0 Pon(x) . _ 0 1

9= o o pooand U=
The condition (67) then gives ~ ;3 = +1. The external sign is therefore
readily com puted to be o= ~ =~ ;= 1, and tells us that Opo(n) has to

carry gauge group Sp(N )2 Note thatwe could even choose the polynom ial
Pon (X) to assum e the special form (x)2 h(x) (x). The gauge group on
this brane tells us how ever that the coherent sheafO p (n) isnot the D brane
from the weak-coupling lin it of F'—theory, although it shares the sam e world

YN ote that in this sin ple situation the com plex can be lifted to a m atrix factorization
by tensoring it w ith the canonicalm atrix factorization

G
W (0) —/—— W (8) :

IS
Instead of doing so we willdirectly work in D * %7 12 =0 1 ).

12 nstead of the even polynom ialP,, (x) we could have considered a divisor determ ined
through an odd polynom ial P2, 4 (x). Thiswould lead to « = + 1 and therefore to gauge
group SO (N ). T hisdivisor is how ever reducible into two com ponents [34,36], one of them
Iying on the O 7 -plane. But this is again not the con guration.
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volum e. In particular, there are no obstructions to deform ing O p (n) back
to a generic divisor. W e conclude that the D brane that descends from F-—
theory on the divisor D cannot correspond to a single D 9D 9{system (111).

A s suggested in [36] the next best guess for the actual D brane that de-
scends from F-theory isa rank two D 9D 9{systam , that is a com plex

Om (@) T(;x) Owm (@)
(112) - ;
Owm ( D) Owm ()

where T ( ;x) isa rank two tachyon pro le.

TheD Prane (112) is invariant fwe nd an isom orphism U that satis es
condition (72). In fact, we have

whereweused ¢ = ~,=~,1= ~,i and the freedom of choosing a basis for
the Chan{Paton space to set u 1 = {. The nvariance condition on Q (x)
in (66) becom es

T= o oTF

R ecall that the D -brane should carry an orthogonal gauge group SO (N ), so
= +1 and the tachyon pro le takes the form

T( ;x)=

In the nfraxed the D ©orane localizes on the determm inant

detT = ?( 2y 2,

which isa polynom ial of degree 2n = 2(a + b).

T he determ nant is already very sin ilar to the polynom ialin D . In fact
[36], the D brane on thedivisor D corresponds to the tachyon pro e T w ith
the largest num ber of deform ation param eters in the polynom ials. Tt can be
obtained by settinga= 2and b=n 2. Then thepolynomials ( ; ; ; )
havedegrees (0;n 4;2n  8;n). In that case thepolynom ial is redundant
and can be set to zero by a sin ilarity transform ation of the Chan{Paton
space. Finally setting = 1, the tachyon pro le becom es

T( ;x)= 7

and its determ inant is precisely the polynom ialin (110), ie.

D=fdetT = 2 2 =0g:
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W e conclude that we have found strong indications that the D 7-brane
from the weak-coupling lin it of F ~theory corresponds to a rank two D 9D 9{
system that carries gauge group SO (N ) and is localizes on the divisor D .
It does not however correspond to the coherent sheafOp (n). In fact, we
found that the latter supports the gauge group Sp ).
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A ppendix A Z,—~graded vector spaces and their dual

Let us consider a Z,graded com plex vector space V. = V., V with in-
volution :V ! V thathasElgenvaluie 1l onV . An eleamentv 2 V
has degree Jjso that ( 1V3= 11® The dualvector space V. isde ned
through the dual pairing f;v g orv 2V and £ 2 V . It is nonvanishing
for £+ Jj= m . The pairing is called even/odd ifm is even/odd .

Thegrading on V naturally inducesa grading on the vector space ofhom o-
m orphian ,Hom (V,;V,) = Hom, (V{;V,) Hom (V1;Vy). For an elem ent
M 2 Hom (V1;V,) of de nite degree we denote the degree by M jand we
have

>M ]_=( lqu.Vl:

T he graded transpose

Toan elementM 2 Hom (V1;V,) we can associate a dual hom om orphism
inHom (V,;V; ), the graded transpose M ', via

(113) MTEiv, = P IEF) £y
1 Vo

In them ain text the degree corresponds to the R -charge.
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Herev 2 V; and £ 2 V,. In an even/odd basis, n which | = , =
diag(d; 1id),a hom om orphisn and its graded transpose aré?

a b at &
(114) M= T M= o

where © is the ordinary transposition ofm atrices. In view of the shiftm in
grading between the vector space and its dual, the involution on the dual
vectro spaceV is (1§ T.

Let us subsum e som e properties for the graded transpose that are useful
for them ain part of thiswork. For com positions of hom om orphian swe have

(115) @B)Y = ( 1PpEBRIAT .

Tts behaviour w ith respect to m atrix Inversion is

(116) Mty t= T DY T = 1M Y

For even hom om orphism s we do not pick up a sign on the right-hand side
and we can use the abbreviationM T = M T) ! unam biguously. T he her—

m itian conjugation on the dual space is de ned by requiring that herm itian
conjugation com m utes w ith the graded transpose,

(117) ™M Ty = M)

D ouble transpose

ThedoubldualV ofa vector space V is canonically isom orphic to V via

the canonical isom orphiam e :V ! V de ned by e(v);f v = f;v v'l5

In the follow ing and in them ain part of this work we do not explicitly w rite
out this isom orphism .

The doubl trangpose of a hom om orphisn M :V; ! V, acts via the
canonical isom orphism asM T :V; ! V,. Let usdetem ine its relation to
M,

MTTviE o= (I g TE =
= 1)‘)“4 j(ij*m)MTf;vvz
S PEE iy -

= le 3 £9 vif ”

T he slightly non-standard de nition of the graded transpose in (113), including the
sign (1) ¥ I ,ensures that M * has the sam e form ®r both m even and odd.

15N ote that this isom orphisn isde ned w ithout sign as com pared to [17], and therefore
{there = ©Chere
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W e therefore nd,using M j+ £+ Fj= m ,that
TT _ DM Gy — 1 1.
(118) MTT = (1M = mrdy Tl

A Itematively, this can be seen directly w ith (114), keeping in m ind that the
grading operator on the dualvector space is ( 1¥ T.

G raded tensor products

T he graded tensor product,V = V; © W, can bede ned for endom orphisn s
A and B in tem s of the ordinary (non-graded) tensor product,
@abB)y=a B:
T he grading operator on the right-hand side ensures the m ultiplication rule
@b B)cbD)=( F¥ac)b BD):

H ow ever, the graded transpose is not the naive one, an explicit com puta-
tion in the even/odd basis reveals

(119) @b Bf=a"(PIb (IP»BT=2T(1)" B :
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