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A bstract

W e study parity sym m etries and boundary conditions in the fram e-

work ofgauged linear sigm a m odels. This allows us to investigate the

K �ahler m odulidependence ofthe physics ofD-branes as wellas orien-

tifolds in a Calabi-Yau com pacti�cation. W e �rst determ ine the parity

action on D-branesand de�nethesetoforientifold-invariantD-branesin

the linearsigm a m odel.Using probe braneson top oforientifold planes,

wederivea generalform ula forthetype(SO vsSp)oforientifold planes.

Asapplications,weshow how com pacti�cationswith and withoutvector

structurearisenaturallyatdi�erentrealslicesoftheK �ahlerm odulispace

ofa Calabi-Yau com pacti�cation.W e observe thatorientifold planeslo-

cated at certain com ponents ofthe �xed point locus can change type

when navigating through the stringy regim e.

1 Introduction and results

O rientifoldsand D-branesplay an im portantrolefortheconsistency oftype

II string com pacti�cations [1{7]as both classes of objects are needed to

ensure a balance ofRam ond{Ram ond charges and to preserve spacetim e

supersym m etry atthe sam etim e.

In thispaperweareinterested in B-typeorientifoldsofCalabi-Yau m an-

ifolds,and in particulartheirdependenceon theK �ahlerm oduli.A suitable

fram ework to investigate these issues are gauged linear sigm a m odels [8],

which providethepossibility to interpolatebetween thelargeand sm allra-

diusregim eofa Calabi-Yau com pacti�cation.Here,thecom pacti�cation is

described in term sofa 1+ 1 dim ensionalabelian gauge theory;thestringy

Landau G inzburg pointand thegeom etriclim itarelocated atdi�erentlim -

itsofthe FayetIliopoulos-param etersr ofthe gauge theory.Togetherwith

thetheta angles� thecom bination t= r+ i� param etrizestheK �ahlerm od-

ulispace. Here,the theta angle contains in particular the inform ation on

theB-�eld atlarge volum e.

Thepossibility ofturning on a discreteB-�eld playsan im portantrolein

the discussion oftype Istring theory or,m ore generally,oforientifolds in

type IIB string theory.In particular,itim pliesthe possibility ofcom pacti-

�cationswithoutvectorstructure[9{12].In thecontextofthelinearsigm a

m odel,thedi�erentdiscretevaluesoftheB-�eld descend from di�erentreal

slicesin the K �ahlerm odulispace param etrized by � [13,14]. In particular,

thelinearsigm a m odelallowsto understand largevolum ecom pacti�cations
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distinguished by B-�elds as extrem allim it points ofdi�erent branches of

a stringy m odulispace. In som e cases the branches can get connected in

thestringy regim e,such thatitbecom espossibleto navigatefrom onelarge

volum e pointto anothertaking a path in the interiorofthe m odulispace.

However,theinteriorofthem odulispacecontainsa singularlocus,and the

realslices singled out by the orientifold projection m ight pass through it,

depending on the particular value ofthe theta angles; this was observed

in [14]and willbereviewed and worked outin detailbelow.

An im portantproblem isto understand the D-brane categories com pat-

ible with the orientifold projection [15,16]. Atthe Landau-G inzburg point

D-branesaredescribed in term sofm atrix factorizationsofthesuperpoten-

tial,and thebranecategory relevantforthedescription ofunoriented strings

hasbeen constructed in [17],cf. also [18]. O n the otherhand,a geom etric

description ofbranes on Calabi-Yau m anifolds is provided by the derived

category ofcoherentsheaves,and paritieshavebeen studied in thiscontext

in [19].In thispaper,welifttheconstructionsofthesetwoapproachestothe

linearsigm a m odel,thereby connecting di�erentcornersin theK �ahlerm od-

ulispace.ForD-braneswithoutorientifoldsthisanalysiswasalready carried

outin [20],and before in the m athem atics literature (up to m onodrom ies)

in [21{26]. Earlier results on the levelofRam ond{Ram ond charges were

obtained forD-branesin [27{31]and including orientifoldsin [14].

O nce the parity action on D-branes is understood,we can proceed and

determ ineundercertain assum ptionsthetypeofan orientifold plane(SO vs

Sp gaugegroup).G enerically,the�xed pointsetoftheparity action consists

ofseveralirreduciblecom ponents,and thetypeoftheindividualorientifold

planes can be tested by determ ing the gauge group on probe branesposi-

tioned on top ofthe �xed point set. W e work out explicit form ulas that

determ ine the orientifold type (up to an overallsign to be �xed once and

forallforeach parity) from the linear sigm a m odeldata ofthe brane and

theparity.W ith thisathand,weshow thattheorientifold typecan change

when navigating through the non-geom etric regim e. Sim ilar e�ects have

already been observed in [14,32,33]using tadpole cancellation conditions.

In the caseswhere large volum e regim eswith di�erentvaluesofthe B-�eld

are connected in the interiorofthe m odulispace,we observe thatthe type

ofthe orientifold plane changes along the path. Thisofcourse isin agree-

m entwith the factthat,atleastfortoroidalorientifolds,com pacti�cations

distinguished by a B-�eld at large volum e correspond to com pacti�cations

with orwithoutvectorstructure.Interestingly,wealso�nd non-trivialm on-

odrom ies:startingoutatlargevolum e,continuingtothestringy regim eand

going back to the sam e large volum e pointwith the sam e B-�eld,a change

oftype can beobserved in exam ples.
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Togiveafurtherapplication ofourtechniques,weconsidercon�gurations

ofO 7� -planesand singularD7-braneswith SO (N )gaugegroup,which have

been studied recently in the contextofF-theory m odelbuilding [34{36].In

fact,theD7-branecarriesa curveofordinary doublepointsthatlieson the

intersection with theorientifold planeand thatpincheso� ata collection of

points.F-theory and probebranesin typeIIB wereused in [35,36]to argue

thattheD7-branegeom etry in thepresenceoftheorientifold isconstrained

to besingular,adm itting fewerdeform ation param etersthan a D7-braneon

a generic hypersurface. W e willgive an explanation ofthe singularity that

reliesjuston therequirem entto have an orientifold-invariantD-branewith

therightgauge group.

The issue oftadpole cancellation and the construction ofconsistent su-

persym m etric string vacua isone outofseveralinteresting m odelbuilding

applications,which weom itatpresent,buthopeto addressin futurework.

Thisquestion hashoweverbeen investigated in som e detail,forinstance at

points ofenhanced sym m etry using explicit constructions in rationalcon-

form al�eld theory [14,37{42].In ourcontexttheG epnerpointcorresponds

to the Landau{G inzburg pointand allthe RCFT branesconsidered in the

paperscited correspond to very sim plem atrix factorizationsofthesuperpo-

tential.However,thetechniquespresented in thiswork providem any m ore

possibilitiesofconstructing consistent string vacua1 and additionally give

controloverthe K �ahlerm odulidependence.

Theroleoforientifoldsand D-branesfortadpolecancellation in thetopo-

logical string was revealed in [43], following earlier work on open string

m irrorsym m etry [44,45]. W e expectthatthe presentpaperpavesthe way

to considerm ore generaltadpole cancelling statesin thiscontext.

In thefollowing,wegive a briefoutlineofthepaperand itsm ain results

in m oredetail.

D -branes

In orderto setthe stage we startthiswork with a briefreview section on

gauged linear sigm a m odels with abelian gauge group T = U (1)k [8,20].

This section can be skipped by readers that are fam iliar with the results

of[20].

1Forexam ple,notallLandau{G inzburg m odelscorrespond to rationalconform al�eld

theories. Even ifthe bulk theory is rational,m ost branes willbreak the enhanced sym -

m etry m aking a conform al�eld theory construction hard,while a Landau{G inzburg de-

scription isstillpossible.
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In particular,we introduce the com plexi�ed K �ahlerm odulispace M K =

(C� )knS ,2 where S is the singular locus ofcom plex codim ension one on

which theworld sheetdescription breaksdown in view ofm asslessD-branes

[46].

W ede�neD-branesin thelinearsigm a m odelasm atrix factorizationsor

com plexes ofW ilson line branes and explain the notion ofD-isom orphism

classes,or equivalently quasi-isom orphism classes,which de�ne the set of

low-energy D-branesin each phaseofthelinearsigm a m odel.Thetransport

ofD-branes across phase boundaries is im plem ented in view ofthe grade

restriction rule,which isa \gauge" �xing condition on the D-isom orphism

classes and depends on the path between phases. W e also brie
y discuss

the �bre-wise K n�orrer m ap that relates the m atrix factorizations of the

linearsigm a m odelto geom etric D-braneson the hypersurface orcom plete

intersection in thelow-energy theory.

O rientifolds

After these preparations we proceed in Sec.3 with de�ning and studying

B-type parity actions and orientifolds in gauged linear sigm a m odels,�rst

on a world sheet without boundary. The world sheet parity action is the

com position ofthreeoperators,P = (� 1)m FL � 
� � form 2 Z.
 
ipsthe

orientation ofthe world sheet,� isa holom orphic involution acting on the

chiral�eldsofthe linearsigm a m odel,and form odd the operator(� 1)FL


ipsthe sign forleft-m oving statesin the Ram ond sector.

W e observe the well-known e�ect that only slices in M K ofrealdim en-

sion k survivetheorientifold projection [14].In fact,thereare2k such slices

param etrized by Z2-valued theta angles � = (�1;:::;�k) for �a 2 f0;�g.

Each slicem ay orm ay notintersectthesingularlocusS ,which isnow real

codim ension one and cannot be avoided by any path. This leads to the

observation thatsom e phasesofthe linear sigm a m odelare notconnected

to others,at least not in a world sheet description.3 Som ewhat surpris-

ing,thereareeven non-perturbativeregions\deep inside" them odulispace

that are not connected to any ofthe phases where,at least in principle,

perturbativestring m ethodscan beapplied.

The �xed pointsetofthe holom orphic involution � takes a particularly

sim ple form . For linear sigm a m odels without superpotential(which have

toric varietiesaslow-energy con�gurations)itsplitsinto a �nite num berof

irreduciblecom ponents,theorientifold planesO �,thatareparam etrized by

a discretechoiceofk phases� = (�1;:::;�k).Forlinearsigm a m odelswith

2
Here,we m ean the K �ahlerm odulispace before orientifold projection.

3Foran M -theory analysisthatallowsavoiding the singularity see [47].
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superpotentialthecom ponentsO � m ay becom ereducibleatlow-energiesso

thatthey splitup into a �nitenum berofirreduciblecom ponentsO �;� .The

explicit param etrization ofthe irreducible com ponents of the �xed point

locus turnsout valuable for determ ining a sim ple form ula for the types of

theindiviualorientifold planes.

O rientifolds and D -branes

In Sec.4 we investigate the world sheet parity action in the presence of

boundaries and de�ne the set ofinvariant D-branes in the gauged linear

sigm a m odel. The latter depends on the following data: (i) the slice on

the K �ahler m odulispace,(ii) the integer m that controls the appearance

of (� 1)FL , (iii) the involution � and (iv) a sign �� associated with the

orientifold. In fact,changing the latter sign 
ipsthe gauge groups,SO (n)

to Sp(n=2)orvice versa,ofallinvariantD-branesaswellasthe type ofall

orientifold planessim ultaneously.

O n a slice ofM K where two adjacent phases ofthe linear sigm a m odel

arenotseparated by thesingularlocuswecan stillm oveD-branesbetween

thetwo phasesby applying thegraderestriction ruleof[20].W e show that

the latter iscom patible with the world sheetparity action and can indeed

beapplied to invariantD-branes.

A particularly im portantpiece ofinform ation on an invariantD-braneis

thetypeofitsgaugegroup [6,17,19].Applyingourform alism weareableto

derivean explicitform ula (81)forthesign thatdeterm inesthegaugegroup

(SO orSp)ofan im portantclassofinvariantD-branes,i.e.D-branesgiven

by K oszulcom plexes(orK oszul-like m atrix factorizations) thatlocalize at

theintersection ofa �nitenum berofholom orphicpolynom ials.

In Sec.5 resp.6 we proceed discussing non-com pact m odels (without

superpotential) and com pact m odels (with superpotential) separately, as

som eoftheresultswilldepend on whetherwedealwith com plexesorm atrix

factorizations.

In Sec.6.1 we considerthe e�ectofthe (�bre-wise)K n�orrerm ap on the

world sheetparity action and on the setofinvariantD-branes.

In Sec.5.1 and 6.2 wehavea closerlook attheK �ahlerm odulispaceM K

and its slicing by the discrete theta angles. In general,the slices are not

connected. However,at speciallociofthe m odulispace,such as orbifold

pointsorLandau{G inzburg orbifold points,they can beconnected,cf.[14].

In thelinearsigm am odelthiscan beseen by consideringthesetofinvariant

D-branes at these specialloci. For higher-dim ensionalm odulispaces this

leadstothephenom enon thatlargevolum epointscorrespondingtodi�erent
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values ofthe discrete B-�eld can be connected through a path in m oduli

space.

W e continue in Sec.5.2 and 6.3 with com puting explicit form ulas (94)

and (106) for the type o� = � 1 ofan orientifold plane O�� by testing the

gauge group ofa probe brane on top ofthe orientifold plane.W e �nd that

the relative typesofthe various�xed pointcom ponentsO � depend on the

slice in M K . In particular, the type o� is proportionalto the character

�
��=�

(�)= �
� �1=�

1
::: �

� �k=�

k
.

In Sec.6.4 we discussthe sim ple exam ple ofO 7-planesatfourpointson

the torus. Depending on the choice ofthe B-�eld,thiscon�guration isT-

dualto an orientifold with orwithoutvector structure. W e reproduce the

result of[9],where it was found that for vanishing B-�eld allfour points

carry the sam e type,whereasfor non-vanishing B-�eld one pointcarries a

type opposite to the other three points. In Sec.5.3 and 6.5 we exam plify

the phenom enon of type change along continuous paths in m odulispace

in two-param eter m odels. W e close this work in Sec.6.6 by com m enting

on the weak-coupling lim itofa certain F-theory com pacti�cation thatwas

discussed in [35,36].

2 A briefreview ofD -branesin gauged linearsigm a m odels

In thissection weintroducegauged linearsigm am odelsand review them ain

resultsand conceptsof[20]fordesribing D-branes.

The m otivation to consider N = (2;2) supersym m etric gauged linear

sigm a m odelsrelieson theobservation thatthey providean ultra-violetde-

scription for N = (2;2) superconform al�eld theories such as a non-linear

sigm a m odelon Calabi{Yau hypersurfaces[8].In thatway thecom plicated

non-linear sigm a m odelis lifted to a m odelwith linear target space C
N

described by chiralm ultiplets X i for i= 1;:::;N ,while allnon-linear in-

teractions are governed by the coupling ofthe chiralm ultiplets to gauge

m ultipletsVa fora = 1;:::;k.

In this work we consider only abelian gauge groups T = U (1)k. The

action ofthegaugegroup on thechiralm ultipletsiscontrolled bytheintegral

chargesQ a
i,i.e.g� Xi= gQ iX i,whereg

Q i = g
Q 1

i

1
:::g

Q k
i

k
foran elem entg 2 T.

The classical action involves a gauge-invariant F-term superpotential,

W (X ) = g�W (X ), whose coe�cients param etrize the com plex structure

m odulispaceM C in theinfra-red theory.In thiswork wearenotinterested
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in deform ing the com plex structure and �x the coe�cientsin the superpo-

tentialonce and forall.

Theaction furtherm oreincludesa twisted superpotential
P

a
ta�a where

�a = �D + D � Va is the gauge �eld strength. The param eters ta = ra � i�a

turn outto becom e coordinateson the (com plexi�ed)K �ahlerm odulispace

M K ofthe low-energy theory. The Fayet{Illiopoulos param eters ra take

valuesin R
k
FI
,and the theta angles�a enterin the action via a topological

term thatm easurestheinstanton num berofthegaugebundleand therefore

take values in (S1)k. It is convenient to work with the param etrization

et= (et
1

;:::;et
k

)2 (C� )k.

P hases in the classicalK �ahler m odulispace

Them ain advantagesofthegauged linearsigm a m odeloverthenon-linear

sigm a m odelis its explicit dependence on the K �ahler m odulispace M K ,

even m oreso asm oving around in M K involvesgeneralized 
op transitions

between low-energy geom etries,which are hard to controlin the non-linear

sigm a m odelbutcan bestudied easily in the gauged linearsigm a m odel.

Classically theinfra-red dynam icsisgoverned by thezerosofthepotential

(1) Upot=

NX

i= 1

�
�
�
�
�

kX

a= 1

Q
a
i�axi

�
�
�
�
�

2

+

kX

a= 1

e2a

2

 
NX

i= 1

Q
a
ijxij

2 � r
a

! 2

+

NX

i= 1

j@iW (x)j
2
;

wherexi arethelowestcom ponentsofthechiralm ultiplets,and �a arethe

com plex scalarsin thevectorm ultiplets.Setting Upot= 0 requiresthateach

term in (1) has to vanish individally. The second one yields the D-term

equations

(2) �
a(xi):=

NX

i= 1

Q
a
ijxij

2 = r
a
; for a = 1;:::;k;

and the lastone theholom orphic F-term equations

(3) @iW (x)= 0; for i= 1;:::;N :

Letus�rstconsiderthesituation withoutsuperpotential,W (x)� 0.The

solutionstotheD-term equationsm odulogaugetransform ationsrestrictthe

chiral�eldsxi to the sym plectic quotient�
� 1(r)=T,which isin facta toric

variety.Itwillsu�ceand in factbem oreconvenientin thefollowing todrop

the explicitdependence on the param etersra and work with the algebraic

instead ofthesym plectic quotient.Thelatterisgiven by

(4) X r =
C
N � �r

(C� )k
;
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where(C� )k isthecom plexi�cation ofthegaugegroup T.In fact,X r isthe

space of(C� )k-orbits in C
N that intersect the solution set ofthe D-term

equation (2). The deleted set� r containsprecisely the subsetofpointsin

C
N ,whose(C� )k-orbitsdo notintersect(2).

For generic values ofthe param eters ra the �rst term in the potential

(1)providesa non-degeneratem assm atrix M ab(x;�x)forthescalars�a and

thereforesetsthem to zero.

Aswe m ove around in R
k
FI
the sym plectic quotientchangesand can un-

dergogeneralized 
op transitions.The
opsoccurat(real)codim ension one

walls,which subdivide the FI-space into phases(orK �ahlercones),and are

usually referred to asphase boundaries.In term softhe algebraic quotient

X r the wallsare thelocationswherethe deleted set� r changes.

In view ofthe potential(1)the positionsofthe phase boundariesin R
k
FI

are the lociwherethe D-term equation (2)adm itsa solution such thatthe

m assm atrix M ab(x;�x)degenerates. Consequently,a subgroup U (1)? � T

rem ainsunbroken and the corresponding scalar�? can take non-vanishing

expectation values, thus leading to non-norm alizable wave functions and

thereforeto a singularity in thelow-energy theory.

Ifwe turn on a superpotentialW (x)the F-term equationslim itthelow-

energy dynam icsto a holom orphicsubvariety in X r.G enerically,thedirec-

tionstransverse to (3)are notm assive,and the �eldsxi can still
uctuate

around (3)sothatweend up with aLandau{G inzburgm odelwith potential

W (x)overthe basetoric variety X r.In the otherextrem e,ifalltransverse

directions are m assive, the theory is con�ned to the subvariety given by

@iW (x)= 0 fori= 1;:::;N .In thesituation ofboth m assive and m assless

directionsthelow-energy dynam icsisdescribed by a hybrid m odel.

T he (quantum ) K �ahler m odulispace M K

In theclassicalanalysisthesingularlocusisrealcodim ension one in (C� )k.

However, when quantizing the system som e ofthe 
at directions for the

scalars�a getlifted by an e�ective potentialW eff(�;t)and only a singular

locus S � (C� )k ofcom plex codim ension one rem ains. The com plexi�ed

K �ahlerm odulispace ofthelow-energy theory isthen

M K = (C� )k n S :
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Classicalm odulispace:

K �ahlerm odulispace:

et= 0

et= 0 jetj= 1

et! 1

et! 1

et=
Q
Q i

� Q i

Figure 1. Theclassicaland quantum m odulispaceofone-

param eterm odels.

Fork = 1 the m odulispace isdepicted in Fig.1.The singularlocusisa

pointat

(5) S =

(

e
� t=

NY

i= 1

Q i
Q i

)

:

For the higher dim ensionalm odulispaces it su�ces to note that for large

valuesofr thesingularlocusbetween two adjacentphasesisdeterm ined by

the unbroken subgroup U (1)? .Asym ptotically,itisS � (C� )k� 1
w all

� S? �

(C� )k,whereS ? isgiven by (5)with respectto the K �ahlerparam eterand

the chargesofthe unbroken gauge group U (1)? .Atthe boundary between

two adjacentphasesthesingularity thereforereducese�ectively to theone-

dim ensionalsituation.

R -sym m etries

Forthe sake ofcom pletenessletusbrie
y note thata necessary condition

to obtain a superconform altheory in the infra-red is the invariance ofthe

gauged linearsigm am odelunderan axialand avectorU (1)R-sym m etry,cf.

forinstance[48].Theform erisensured by requiringtheconform alcondition

(orCalabi{Yau condition)

(6)

NX

i= 1

Q
a
i = 0; for a = 1;:::;k :

W e willhenceforth im posethiscondition.
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Ifno superpotentialispresent,we assign vector R-charge zero to allsu-

perm ultiplets,which then turnsinto the standard R-charge assignm entfor

the non-linearsigm a m odelin the infra-red. Ifa superpotentialispresent,

som e ofthe chiralm ultiplets have to carry non-vanishing vector R-charge

and the globalsym m etry isensured by

(7) W (� � x)= �
2
W (x);

where � � x = (�R 1x1;:::;�
R N xN ) for som e phase �. W e shallhenceforth

assum e an integrality condition on the R-charges ofthe �eldsin the linear

sigm a m odel,i.e.the R-charge is equalm odulo 2 to the ferm ion num ber,

(� 1)F = (� 1)R i.

Som e interesting exam ples

Exam ple 1

Letusconsiderthe gauged linearsigm a m odelswith the following chiral

m ultiplets:

(8)
x1 ::: xN p

U (1) 1 ::: 1 � N

Thedeleted setsatr� 0 resp.r� 0 are

(9) � � = fp = 0g and � + = fx1 = :::= xN = 0g;

and thecorresponding toric varietiesin theinfra-red aretheorbifold X �
�=

C
N =ZN and itscrepantresolution X + ,which isthe totalspace ofthe line

bundleO (� N )! CP
N�1.

Let us turn on a superpotentialW (p;x) = pG (x) with a hom ogeneous

degreeN polynom ialG (x).A frequentchoiceistheFerm attypepolynom ial,

G (x)= x
N
1 + :::+ x

N
N :

W e assign R-charge + 2 to p and 0 to allother�elds. In the sm allvolum e

lim it the theory becom es a Landau{G inzburg m odelwith potentialG (x)

on the orbifold X � . Atlarge volum e we obtain a Landau{G inzburg m odel

overX + ,whose potentialhoweverinducesF-term m asses. The low-energy

theory thereforelocalizesatfp = G (x)= 0gand becom esanon-linearsigm a

m odelon a degree N hypersurfacein projective spaceCPN � 1.
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r1

r2

� I = fx1 = x2 = 0g[ fx3 = :::= x6 = 0g

� II = fx1 = :::= x5 = 0g[ fx6 = 0g� III = fx6 = 0g[ fp= 0g

� IV = fx1 = x2 = 0g[ fp= 0g

Figure 2. TheclassicalK �ahlerm odulispaceofExam ple2

withouttheta angle directionsofthe two-param eterm odel.

Exam ple 2

A frequently considered two-param eter m odelis given by the following

�eldsand charges:

(10)

x1 x2 x3 x4 x5 x6 p

U (1)1 0 0 1 1 1 1 � 4

U (1)2 1 1 0 0 0 � 2 0

Itsclassicalphasediagram togetherwith thedeleted setsisshown in Fig.2.

Phase IIIcontainsthe orbifold C
5=Z8,and phase Iitssm ooth totalresolu-

tion.PhasesIIand IV arepartialresolutions,theform erbeingalinebundle

overweighted projective space,O (� 8)! W P
8
11222.

Letusturn on the superpotentialW (p;x)= pG (x)with a hom ogeneous

polynom ialG (x)ofbidegree (4;0),forexam ple,

G (x)= x
4
6(x

8
1 + x

8
2)+ x

4
3 + x

4
4 + x

4
5:

W eassign R-charge+ 2top and 0to allother�elds.In phaseIIIthisresults

in a Landau{G inzburg m odelover the orbifold C
5=Z8 and in phase IV in

a LG -m odelover the toric variety X IV . Phases Iand IIare geom etric in

view ofm assive F-term s. In particular,phase IIcorrespondsto a degree 8

hypersurfacein W P
8
11222 and phaseIto a sm ooth Calabi{Yau hypersurface.
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2.1 D -branes from the ultra-violet to the infra-red

Let us consider boundary conditions that preserve B-type supersym m etry

N = 2B .Thelatterischaracterized by the unbroken vectorR-sym m etry.

Asusualin supersym m etrictheoriesthevariation ofthebulk action gives

rise to totalderivatives and thus to boundary term s. The strategy in [20]

was to introduce appropriate boundary counter term s prior to im posing

boundary conditions. In fact, the supersym m etry variations of the bulk

kinetic term s can be com pensated by standard boundary term s that are

equalforallD-branes.W earenotinterested in theseand instead concentrate

on thepartthatspeci�estheD-brane data.

Let us �rst consider the situation without superpotential. The m odi�-

cation to include W willturn out to be only m inor from the ultra-violet

perspectiveofthegauged linearsigm a m odel.

D -branes in m odels w ithout superpotential

A D-brane in the gauged linear sigm a m odelis described by an N = 2B
invariantW ilson line atthe boundary oftheworld sheet,

(11) P exp

�

i

Z

@�

dsA

�

:

Itcarriesa representation �(g)ofthe gauge group T aswellasa represen-

tation R(�)ofthe vectorR-sym m etry and a representation � ofthe world

sheetferm ion num ber.In view oftheintegrality condition on theR-charges

wem ay set� = R(ei�).

The sim plest choice for the W ilson line corresponds to an irreducible

representation ofthegauge group,�(g)= g
q1

1
:::g

qk

k
,i.e.

(12) A = ��
�
vs � Re(�)

�
=

kX

a= 1

q
a
�
(va)s � Re(�a)

�
:

W e callit a W ilson line brane and denoted it by W (q) = W (q1;:::;qk).

Therepresentation oftheR-sym m etry isR(�)= �j forsom eintegerj,and

� = (� 1)j. W e referto a W ilson line brane with even and odd j asbrane

resp.antibrane.

ThegeneralD-braneB can beconstructed by piling up a stack ofW ilson

linebranes,W = � n
i= 1

W (qi),
4 and turningon asupersym m etricinteraction,

4
By abuse ofnotation we som etim es refer to W as the Chan{Paton space ofthe D -

brane.
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i.e.a tachyon pro�leQ ,am ong theindividualcom ponents.Thecorrespond-

ing superconnection reads

(13) A = ��
�
vs � Re(�)

�
+
1

2
fQ ;Q yg�

1

2

X

i

 i@iQ +
1

2

X

i

� i�@iQ
y
;

where i istheN = 2B superpartnerofthe chiral�eld xi.

TheW ilson line(11)issupersym m etricifand only ifthetachyon pro�le

Q (x) depends holom orphically on the chiral�elds xi and squares to zero.

Also,Q (x)hasto respectthe representation ofthegauge group,

(14) �(g)� 1 Q (g�x)�(g)= Q (x):

In view of the R-sym m etry representation the stack W splits up into

com ponents ofde�nite R-degree, W = � jW
j,and from A we �nd that

Q (x)hasto carry R-charge one,

(15) R(�)Q (� � x)R(�)� 1 = �Q (x):

Thisim piesin particularthatQ (x)isodd,

(16) � Q (x)� = � Q (x);

and thereforetheinteraction Q (x)in thesuperconnection couplesbranesto

antibranes only. M oreover,having R-charge one im plies that the tachyon

pro�lecan bebroughtinto theblock-form

Q (x)=

0

B
B
B
B
B
@

0 djm ax� 1 0 ::: 0 0

0 0 djm ax� 2 ::: 0 0
...

...
...

...

0 0 0 ::: 0 djm in

0 0 0 ::: 0 0

1

C
C
C
C
C
A

:

Each non-trivialm ap dj :W j � ! W j+ 1 increasestheR-degreeby one.The

data fortheD-brane,B = (W ;�(g);R(�);Q (x)),can thereforeconveniently

beencoded in a com plex ofW ilson line branes,

(17) :::
dj�2

-
W j� 1

dj�1
-

W j
dj

-
W j+ 1

dj+ 1
-

::: ;

where W j = �
nj

i= 1
W (q

j

i
). In explicit exam ples we willoften drop the R-

degreeindex and usetheconvention tounderlinethecom ponentofR-degree

j= 0.W edenotethesetofD-branesin agauged linearsigm am odelwithout

superpotentialby D (CN ;T).
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D -branes in the presence ofa superpotential

Let us next study the im pact ofa superpotentialW (x). As observed by

W arner in [49]its supersym m etry variation gives rise to a boundary term

thatneedstobecom pensated appropriately.In thepresentcontexttheform

ofthesuperconnection (13)aswellasthetransform ation properties(14{16)

rem ain unchanged.Theonlym odi�cation com esfrom thenecessity tocancel

the W arner term and results in the condition that Q (x)2 = W (x)� idW ,

i.e. Q (x) is a m atrix factorization of the quasi-hom ogeneous polynom ial

W (x)[50{54]. In the even/odd basis ofW it hasthe fam iliar o�-diagonal

form

(18) Q (x)=

�
0 f(x)

g(x) 0

�

; with fg = W (x)� id ; gf = W (x)� id :

Let the superpotentialbe ofthe form W (p;x) = pG (x) with the chiral

�eld p carrying R-charge 2. Then,in a basisofincreasing R-degree forW ,

them atrix factorization readsschem atically

(19) Q (x)=

0

B
B
B
B
B
B
B
B
B
B
@

0 � 0

p � 0 � 0 :::

0 p � 0 � 0

p2 � 0 p � 0
...

0 p2 � 0
...

...
...

1

C
C
C
C
C
C
C
C
C
C
A

:

An asterisk com ing with pm isshortfora m ap W j � ! W j+ 1� 2m .Notethat

thedata forthem atrix factorization can conveniently beencoded in a form

analogous to a com plex (17). For instance,a m atrix factorization without

term soforderO (p2)in Q (p;x)reads

(20) :::
d
j�2

0 -

p d
j�1

1

� W j� 1
d
j�1

0 -

p d
j

1

� W j
d
j

0 -

p d
j+ 1

1

� W j+ 1
d
j+ 1

0 -

p d
j+ 2

1

� ::::

W e denotethesetofm atrix factorization ofthegauged linearsigm a m odel

by M FW (CN ;T).

To sum m arize we found that a D-brane B in the gauged linear sigm a

m odelis given by the data (W ;�(g);R(�);Q (x)) satisfying the relations

(14{16)and

Q (x)2 = 0

withoutsuperpotential,

Q (x)2 = W (x)� id

with superpotential.
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R G -
ow and D -isom orphism s

Let us study the RG -
ow ofthe W ilson line (13) to the infra-red while

staying deep inside ofone ofthe phases in the K �ahler m odulispace. The

discussion here willbe independent ofF-term s and is applicable to both

com plexesand m atrix factorizations.In particular,we do notyetintegrate

out�eldswith F-term m assesthatconstrain the low-energy dynam icsto a

holom orphicsubvariety in X r,i.e.in a m odelwith superpotentialW (x)we

considerthelow-energy theory asa Landau{G inzburgm odeloverX r in any

phase.

Asthegaugecouplingconstantsarem assiveparam etersin twodim ensions

they willblow up asthe theory 
owsto theinfra-red and asa consequence

the equationsofm otion forthe gauge m ultipletsbecom e algebraic.In par-

ticular,integrating outthegauge�eldsva and thescalars�a showsthatthe

superconnection (12)becom esthesupersym m etricpullback ofa connection

A to the world sheet,

A = x
�
A �

i

2
Fi�| i �| :

A is the connection ofthe holom orphic line bundle O (q) = O (q1;:::;qk)

on the toric variety X r,and F is its �eld strength. The charges qa now

determ ine the divisor class,or m ore physically,the world volum e 
ux on

the D-brane. The com plex (17)then turnsinto a com plex ofholom orphic

vectorbundlesoverX r,and the m atrix factorization (20)couplestogether

linebundlesoverthebase space X r ofthe LG -m odel.

In the following we are particularly interested in the interplay of the

boundaryRG -
ow and thebulkD-term equations(2).Instead ofconsidering

theRG -
ow explicitly weidentify deform ationsoftheW ilson line(13)that

donotaltertheinfra-red �xed point.Thesedeform ationslead toequivalence

relationsbetween D-branes,called D-isom orphism sin [20].The low-energy

D-branes can then be de�ned as equivalence classes in the gauged linear

sigm a m odel. D-isom orphism s are com posed ofthe following two kindsof

m anipulations.

(i) The�rstm anipulation can beseen by noticing thatthesuperconnec-

tion (13)containsa m atrix valued boundary potentialfQ ;Q yg.

Supposea D-braneisreducible,B = B 1 � B2,with tachyon pro�le

(21) Q (x)=

�
Q 1(x) 0

0 Q 2(x)

�

;
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and theboundary potentialfQ 2;Q 2
yg ispositivede�niteeverywhereon the

toric variety X r. Then as the theory 
ows to the infra-red the boundary

potentialfor B 2 blows up and its W ilson line is exponentially suppressed.

W ecallsuch D-branesem pty.Asa consequenceboth D-branes,B and B 1,


ow to the sam einfra-red �xed point.W e write

(22) B = B 1 � B2
�= B 1 :

W e can therefore freely add and rem ove D-branes with positive de�nite

boundary potentialin thegauged linearsigm a m odelaslong asweareonly

interested in the low-energy D-brane.

W e stressthatthepositivede�nitnessoffQ ;Q yg dependsin an essential

way on the phase ofthe gauged linearsigm a m odel,orm ore explicitly,on

thedeleted set� r thatde�nesthealgebraicquotientX r.In fact,a D-brane

B isem pty ifand only if
n

detfQ ;Q yg = 0

o

� �r :

Exam plesforD-branesthatare em pty in any phase are given by the com -

plex W (q)
1

� ! W (q)form odelswithoutsuperpotentialand by the m atrix

factorization W (q)
1

����!
 ����

W
W (q)form odelswith superpotential.

Exam ple 1 with N = 3 and no superpotential

ConsidertheD-branes

(23)

B 1 : W (� 1)

�
x1
x2
x3

�

-
W (0)� 3

�
0 x3 �x 2

�x 3 0 x1
x2 �x 1 0

�

-
W (1)

� 3
(x1;x2;x3)

-
W (2);

and

(24) B 2 : W (2)
p

-
W (� 1);

aswellasthereducibleD-braneB = B 1� B2.Here,theunderlined W ilson

line com ponentsare atR-degree j= 0.The boundary potentialsare given

by fQ 1;Q
y

1
g =

P

ijxij
2� id and fQ2;Q

y

2
g = jpj2� id,respectively.Com paring

with the deleted sets(9)we �nd the following pattern forthe infra-red D-

branes:

(25)

r<< 0 r>> 0

B 1 B 1
�= B em pty

B 2 em pty B 2
�= B

Forthe m odelwith superpotentialW (p;x)= pG (x)itispossible to add

backward arrows in (23)and (24)to m ake B 1 and B 2 into m atrix factor-

izations. (Note however the non-trivialR-charge 2 for p.) W e leave it to
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thereaderto com putethecorresponding boundary potentialsand to verify

thattable (25)isnotaltered.

(ii)Forthesecond m anipulation theessentialideaisthatrenorm alization

group 
ow can changetheboundaryaction by boundaryD-term s,Q Q y(:::),

but not by boundary F-term s,Q (:::). Here,Q and Q y are the N = 2B
supercharges.Thetheory 
owsto an infra-red �xed pointwith a particular

D-term ,irrespectiveofthechosen D-term in thegauged linearsigm a m odel,

i.e.deform ing boundary D-term sdoes notalter the infra-red D-brane.

In ordertodescribetheseD-term deform ationsitisconvenienttoconsider

thesupersym m etrygeneratoron theworld sheetboundaryfrom theNoether

procedure.In thezero m odeapproxim ation itbecom es

(26) iQ :=  �|(@�|+ iA �|)+ Q :

and reducesto Q uillenssuperconnection [55{57].Itcan be used to express

thesuperconnection A ofthelow-energy theory as

(27) A = x
�
A �

1

2
fQ ;Q yg :

Q uillens superconnection in (26) is written in the unitary fram e for the

associated graded holom orphic vector bundle E with herm itian m etric. In

what follows it is m ore convenient to work in the holom orphic fram e,for

which iQ hol=  �|@�|+ Q (x).

A D-term deform ation M = M (x;�x; �|)in theholom orphicfram eisthen

a transform ation (Q 0)hol= M Q holM � 1,orequivalently

(28) Q
0(x)= M  

�|
@�|M

� 1 + M Q (x)M � 1
:

W e assum e thatM com m uteswith the representationsofthe gauge group

and the globalsym m etries.In particular,

(29)
�0(g) = g�M �(g)M � 1 ;

R 0(�) = M R(�)��M � 1 :

In the specialsituation when M depends only on the chiral�elds xi it is

sim ply a sim ilarity transform ation

(30) Q
0(x)= M Q (x)M � 1

;

i.e.a change oftheholom orphic fram eofE.

An im portant exam ple ofthe generaltransform ation (28) is as follows.

Consider

Q s(x):=

�
Q 1(x) s	(x)

0 Q 2(x)

�
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with Q 1	+ 	Q 2 = 0,and assum e thatfors= 0 the D-brane becom esthe

reducibleD-brane(21)with B 2 em pty.

Aslong aswekeep snon-zero wecan deform Q s(x)by a sim ilarity trans-

form ation (30),

Q s(x)= M Q s0(x)M
� 1

; for M =

�
s� id 0

0 s0� id

�

:

However,setting s = 0 by a sim ilarity transform ation is notpossible. Let

usconsiderthegeneralD-term deform ation (28)in in�nitesim alform M =

id � s �(x; ),

(31)
@

@s
Q s(x)js= 0 = i

h

Q
hol
0 ;�(x;� )

i

:

Inserting theD-brane underconsideration on the left-hand sidewe obtain

@

@s
Q s(x)js= 0 =

�
0 	(x)

0 0

�

:

Theexistenceofa D-term deform ation to sets= 0 thereforereducesto the

requirem entthat	 isQ hol
0 -exact.To seethatthisisindeed truewem erely

rem ark that since 	 is Q hol
0 -closed it corresponds to a state between the

D-branesB 1 and B 2.However,sincetheopen string spectrum between any

D-brane and an em pty one isem pty,itfollowsthat	 m ustbe Q hol
0 -exact.

See[20]fora m oredetailed discussion ofthispoint.

Exam ple 1 with N = 3 and no superpotential

Consider B = B 1 � B2,de�ned in (23) and (24). In both the orbifold

and the large volum e phasetheD-brane B isD-isom orphic to

(32)

B
0:W (� 1)

�
x1
x2
x3

�

-
W (0)� 3

�
0 x3 �x 2

�x 3 0 x1
x2 �x 1 0

�

-
W (1)

� 3
(px1;px2;px3)

-
W (� 1):

Toshow thiswestartwith B and �rstuserelation (31)toturn on aconstant

m ap from the W ilson line com ponents W (2) in B 2 to W (2) in B 1. Then

weusea changeofbasis(30)to transform itto B 0� (W (2)
1
! W (2))�= B 0.

Thisshowsthe equivalence ofB and B 0in theinfra-red.

Again we can add backward arrows in B 0 to m ake it into a m atrix fac-

torization ofW (p;x)= pG (x).Then B and B 0are stillD-isom orphic.

For later applications itturnsoutto be m ore convenient to reform ulate

thetwo m anipulationsfrom abovein term sofquasi-isom orphism son theset

oflinear sigm a m odelD-branes (or the underlying category) [58]. Indeed,

D-isom orphism sare nothing else butquasi-isom orphism s[20].
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Recallthata quasi-isom orphism U between two D-branesB 1 and B 2 is

a Q -closed m ap,i.e.Q 2U = U Q 1,such thatitscone,

(33) Q C(U ) =

�
Q 1 0

U � Q2

�

;

isem pty.Thefollowingm anipulationsshow thatquasi-isom orphicD-branes,

B 1 and B 2,are indeed related by a chain ofbrane-antibrane annihilations

and D-term deform ations[20]:

Q 1
�=

0

@

Q 1 0 0

0 � Q2 id

0 0 Q 2

1

A �=

0

@

Q 1 0 0

U � Q2 id

0 0 Q 2

1

A �=

0

@

Q 1 0 0

U � Q2 0

0 0 Q 2

1

A �= Q 2

In the �rstand laststep we used brane-antibrane annihilation (22),in the

second a sim ilarity transform ation (30) to turn on U ,and in the third an

in�nitesim alD-term deform ation (31)to turn o� id.

Having introduced D-isom orphism s we can de�ne now the set of low-

energy D-branes on a toric variety X r as D-isom orphism classes oflinear

sigm am odelbranes.Letusdenotethesetoflow-energy D-branesby D (X r)

and M FW (X r). W e obtain the following two pyram ids of m aps, where

the vertical m aps correspond to m odding out by D-isom orphism s in the

respective phase:

D (CN ;T)















�

�

�

�

�

�

�
�


B

B

B

B

B

B
BN

J

J

J

J

JĴ

D (X I)

D (X II) D (X III)

D (X IV )P
P

P
P

PP

������
D

D
D

h h h h h hh
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ppppp

M FW (CN ;T)
















�

�

�

�

�

�

�

��


B

B

B

B

B

B

BBN

J

J

J

J

J
Ĵ

M FW (X I)

M FW (X II) M FW (X III)

M FW (X IV )
P

P
P

P
PP

������
D

D
D

h h h h h hh

� � � � � �

ppppp

R G -
ow to orbifolds or LG -orbifolds

In orderto close the discussion ofD-isom orphism s,let usbrie
y consider

their role in the special case when the phase in M K corresponds to an

orbifold X r
�= C

N � k=�.Itoccursifthe deleted setconsistsofk irreducible

factors,� r =
S

l2Ifxl = 0g,where I � f1;:::;N g contains k elem ents.

The �eldsxl forl2 I getvacuum expectation values,say


xl
�
= 1,which

break T to �.ForD-branestherepresentation �(g)ofT then descendsto a

respresentation ��(
)of�.
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How doesthisa�ectthe D-isom orphism s? In view ofthe deleted set� r

theem pty D-branesare given by

W (q� Ql)
xl
-

W (q) for l2 I :

Afterassigning expectation valuesthisdescendsto thetrivialcom plex,

O (�q)
1

-
O (�q):

where �q = q m od Q l is now a representation of�. Since the only em pty

D-branesin theorbifold m odelaregiven by such trivialcom plexes,we �nd

that any quasi-isom orphism is a sim ilarity transform ation as in (30) and

thusinvertible,i.e.thereareno non-trivialquasi-isom orphism sanym ore.A

sim ilarargum entholdsform atrix factorizationsin LG -orbifoldsaswell.

R G -
ow and F-term m asses

Before we turn to the question ofhow to relate the sets oflow-energy D-

branesacrossphaseboundaries,letusconsideranotherissuethatisspeci�c

to m odelswith a superpotentialand thusto m atrix factorizations.Aseluci-

dated abovethesuperpotentialcan giveriseto m assesforsom eofthechiral

m ultiplets,which then m ustbe integrated outin the strictinfra-red lim it.

As an exam ple consider the superpotentialW (p;x) = pG (x) which gives

m assesto p and to the transverse m ode ofthe hypersurface fG (x)= 0g at

large volum e.Let� N = � (N1;:::;N k)bethegauge charge ofp.

The e�ectofthe m assive m odeson m atrix factorizations wasstudied in

[20],cf.also [59{63].Indeed,a �bre-wiseversion ofK n�orrerperiodicity [64]

im plem entstheequivalenceofthesetofm atrix factorizationsin M FW (X r)

and the setofcom plexes(ofcoherentsheaves)D (M r)on the hypersurface

M r = fp = G (x)= 0g � Xr.

Takeam atrixfactorization given bythedata(W ;�(g);R(�);Q (p;x)).Let

jm bethem inim alR-degreein therepresentationsR(�).Them atrix factor-

ization ism apped to theD-braneon M r asfollows.Firstim poseG (x)= 0,

which im pliesQ (p;x)2 = 0.Second considera W ilson linecom ponentW (q)

asa graded m oduleA(q),whereA = C[p;x]=(G ).HereC[p;x]isthegraded

coordinate ring ofthe linear sigm a m odeland taking the quotient by the

ideal(G )correspondsto im posing G (x)= 0.Now considerA(q)asan in�-

nitem oduleoverthering B = C[x]=(G ),thatisA(q)= � 1
m = 0p

m B (q+m N ),

i.e.every W ilson line com ponent W (q) becom es an in�nite stack of line

bundleson M r,
1M

m = 0

O M r
(q+ m N )[� 2m ]:
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[� 2m ]denotesa shiftin R-degree by 2m ,which isdueto theR-charge 2 of

p.

Itrem ainsto work outthe action ofQ (p;x)on the in�nite Chan{Paton

space.Considerthe m atrix factorization in the basis(19).W rite Q (p;x)=
P

n
pnQ n(x)and denote by Ej the vector bundle over M r,which descends

from W j.Then we obtain a half-in�nitecom plex,

Ejm
Q 0

-
Ejm +1

Q 0
-
Ejm +2

Q 0
-
Ejm +3

Q 0
-

Ejm +4
Q 0

-
Ejm +5 :::

Q 1X X Xz �
Q 1X X Xz �

Q 1X X Xz

Q 2
A

A

A

A

A

AU

�
Q 1X X Xz

Q 2
A

A

A

A

A

AU

�

E
jm
1

Q 0
-
E
jm +1

1

Q 0
-

E
jm +2

1

Q 0
-

E
jm +3

1
:::

Q 1X X Xz �
Q 1X X Xz �

E
jm
2

Q 0
-

E
jm +1

2
::: ;

where E
j
n isshort-hand forEj(nN )[� 2n]. Aftera �nite num berofstepsto

theright,therank oftheentriesin thiscom plex stabilizesto therank ofthe

m atrixfactorization,and thecom plexbecom estwo-periodicwith alternating

m aps f̂(x) = f(p;x)jp= 1 and ĝ(x) = g(p;x)jp= 1. In fact,the half-in�nite

com plex isquasi-isom orphicto a �nitecom plex ofcoherentsheavesoverthe

hypersurfaceM r,i.e.the in�nite towerofbraneanti-brane pairscondenses

to a �nite num ber of branes and anti-branes, which gives the geom etric

D-branein D (M r).

W e �nally rem ark that the gauge charges � N and N of the m assive

m odesp and G (x)inducesa non-trivialrelation between the B -�eld in the

non-linearsigm a m odelon M r and thetheta angle [20,65],thatis

(34) B
a = �

a + N
a
� :

W e postponea m ore detailed discussion ofthise�ectto a latersection.

Exam ple 1 with N = 3 with superpotential

Considerthe superpotentialW (p;x)= pG (x)with cubicFerm atpolyno-

m ialG (x).Atr>> 0 thetheory localizesattheellipticcurveE = fG (x)=

0g � CP
2.Letusexm aine them atrix factorizations

B 1 : W (� 1)
x

-

px2
� W (0)� 3

x
-

px2
� W (1)

� 3
x

-

px2
� W (2);

and

B 2 : W (� 1)
G (x)

-

p

� W (2);

which arethe analogsofthe com plexes(23)and (24),respectively.
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Atlarge volum e theK n�orrerm ap actson them in thefollowing way.B 1

becom es

O (� 1)
x
-
O (0)� 3

x
-
O (1)

� 3
x
-

O (2)
x2X X Xz �

x2X X Xz �
x2X X Xz

O (2)
x
-
O (3)� 3

x
-
O (4)� 3

x
-

x2X X Xz �
x2X X Xz :::;

O (5)
x
-

wherethe line bundlesO (q)are understood to be pulled back from CP
2 to

theellipticcurveE .In fact,thiscom plexisan em ptyD-brane,in accordance

with table (25).

O n theotherhand,B 2 ism apped to

O (� 1)
0
-

O (2)
1
-

O (2)
0
-

O (5)
1
-

O (5)
0
-

::: :

Trivialbraneantibranepairscan bedropped in theinfra-red,and thesingle

linebundleO (� 1)[1]rem ains.

2.2 M oving around in m odulispace

So far we considered the renorm alization group 
ow to the infra-red only

deep inside ofthe phases in the K �ahler m odulispace. W e de�ned the set

oflow-energy D-branesin the infra-red theory asthe setofD-isom orphism

classes of D-branes in the linear sigm a m odel. Let us now turn to the

question ofhow to transportlow-energy D-branesacrossphase boundaries

between adjacentphases.

G rade restriction rule

Theanalysisofthegauged linearsigm a m odelon thecylinder,correspond-

ing to a propagating closed string in theinfra-red,showsthatalong thesin-

gularlocusS � M K the world sheetdescription breaksdown. Additional

non-norm alizable m odesshow up,which are due to noncom pactdirections

in �eld space,i.e.the e�ective potentialW eff(�;t) for large values ofthe

scalar�elds�a has
atdirectionsalong S .

In the presence ofD-branes,the analysis ofthe e�ective potentialwas

redonein [20]on a strip ofwidth L and led to thefollowing result.Forthe

gaugegroup T = U (1)aW ilson linecom ponentW (q)in aD-braneB causes
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w1

w0

w� 1

3�

�

� �

� 3�

r

�

Figure 3. W indowsforthe graderestriction rule.Here S isodd.

no singularity nearthe phase boundary ifand only ifthe grade restriction

rule,

(35) �
S

2
<

�

2�
+ q<

S

2
;

issatis�ed.Here,S = 1=2
P

ijQ ij.

The grade restriction rule isillustrated in Fig.3.Take a path through a

window w between singularpointsin theFI-theta-plane.Then thecondition

(35) adm its only a set N w of S consecutive charges for the W ilson line

com ponents W (q) of the D-brane B . Denote the set ofgrade restricted

com plexesand m atrix factorizationsby T w resp.M FW (T w).

Forhigherrank gaugegroups,T = U (1)k,only theunbroken gaugegroup

U (1)? atthe respective phaseboundary entersin thecondition (35).

C om bining D -isom orphism s and the grade restriction rule

As it stands the grade restriction rule is a condition on the D-branes in

the gauged linear sigm a m odel, i.e. T w � D (CN ;T) and M FW (T w ) �

M FW (CN ;T). For the low-energy D-branes the im portant observation is

the factthatthe grade restriction rule isa unique ’gauge choice’in the D-

isom orphism class(fork > 1uniqueup toD-isom orphism sthatarecom m on

to both phases,see [20]). A low-energy D-brane can therefore be trans-

ported,say from phaseIto phaseII,by �rstim posing thegraderestriciton

rule on the D-isom orphism class in phase I and then m apping the grade

restricted representative to itsD-isom orphism classin phaseII.
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In fact,thecom positionsofm aps,�II� !I;II and �I� !II;I in thefollowing

diagram sare inverse to each other:

D (CN ;T)

[

D (X I)
!I;II

-

�I

� T w
�II
-

!II;I

� D (X II);

M FW (CN ;T)

[

M FW (X I)
!I;II

-

�I

� M FW (T w )
�II

-

!II;I

� M FW (X II):

Here,�� denotesm odding outby D-isom orphism sin the respective phase,

and !� ;�ispickingtherepresentativeoftheD-isom orphism classin thegrade

restricted set.Letusillustrate thisin ourexam ple.

Exam ple 1 with N = 3 and no superpotential

Here, S = 3. W e pick a window w = f� � < � < �g,which adm its

N w = f� 1;0;1g according to the grade restriction rule. At r << 0 we

found the D-isom orphic D-branes,B 1
�= B �= B 0,and atr >> 0 we found

B 2
�= B �= B 0. From its de�nition (32) itfollows thatin both phasesthe

D-braneB 0isthegraderestricted representativein theD-isom orphism class

and can thusbetransported acrossthe phaseboundary:

r<< 0 G RR r>> 0

B 1
�= B 0 B 0 B 2

�= B 0

3 O rientifolds in linear sigm a m odels

In this section we put aside D-branes and review and study world sheet

parity actionsin gauged linearsigm a m odelswithoutboundary.Letuspick

thecylinder�= R � S1 with coordinates(t;x)’ (t;x+ 2�)asworld sheet.

The partiy action isan orientation reversal
 :(t;x)7! (t;� x)dressed by

an involution � ofthe target space coordinates and possibly dressed by a

sign on the left-m oving Ram ond sectorstates,(� 1)FL .

In theoriespreserving N = 2B supersym m etry the action ofthe orienta-

tion reversalneedsto beextended to theN = (2;2)superspacecoordinates

by 
 : (� � ;��� ) 7! (�� ;��� ). This in particular im plies that (anti)chiral

m ultiplets are m apped to (anti)chiralm ultiplets,twisted chiralm ultiplets

arem apped to twisted antichiralm ultiplets,and vectorm ultipletsto vector



26 O RIENTIFO LDS AND D-BRANES IN N = 2 G LSM

m ultiplets[13].Also,theinvolution � isholom orphicand actsnon-trivially

on thechiralsuper�eldsofthe gauged linearsigm a m odel.

In the following we willhave a closerlook atthe �xed pointlocusofthe

holom orphicinvolution � and atthe orientifold K �ahlerm odulispace.

3.1 T he holom orphic involution and orientifold planes

Recallthebulk Lagrangian ofN = (2;2)gauged linearsigm a m odels,

L =

Z

d
4
�

 

�

kX

a= 1

1

2e2a

��a�a +

NX

i= 1

�X ie
Q a
i
� VaX i

!

(36)

+ Re

Z

d
2e�

 

�

kX

a= 1

t
a�a

!

+ Re

Z

d
2
� W (X ):

Thekineticterm sin the�rstlineareinvariantundertheorientation reversal


 by itself,butwe can dressthe latterby theholom orphic involution,

(37)
� : Xi 7! !iX �(i) for i= 1;:::;N ;

� : Va 7! Va for a = 1;:::;k:

Theperm utation � isofordertwo,�2 = id,and preservesthegaugecharges,

Q i= Q �(i).Invariance ofthe action requiresthe coe�cients! i to bephase

factors.W e obtain the parity action on the com ponent�eldsby com bining

theright-hand sideof(37)with thetransform ation ofthesupercoordinates

with respectto 
.Theresultis

(38)

� � : (xi; i� ;Fi) 7! (!ix

�(i);!i 
�(i)

� ;� !iF
�(i));


� � : (v�;�;�� ;D ) 7! (v�;��;� �� ;D ):

The holom orphic involution � needs to be involutive only up to gauge

transform ations,

(39) �
2
X i= g� Xi ;

thatis!i!�(i) = �
Q i
(g),where �

Q i
(g)= g

Q 1

i

1
:::g

Q k
i

k
isthe characterofthe

representation determ ined by the chargesQ i.

In view of(39)weseethatonly gaugeequivalenceclassesofholom orphic

involutions,� � g�,m atter. Note thatwe can always�nd a representative

�0 oftheclassso that�
2
0 = 1.Itishowevernotunique.Therearein fact2k

gaugeequivalentchoices.Ifwetakeareferenceinvolution �0,wecan dressit

by an elem ents� = (�1;:::;�k)2 T for�a = � 1.Theresulting involution,

(40) �
�
0 = ��0 ;
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stillsatis�estheproperty (��0)
2 = 1.

In thepresenceofa superpotentialthephasefactorsin theB-typeparity

(37)arefurtherconstrained by

(41) �
�
W (x):= W (�(x))= � W (x):

The m inus sign on the right-hand side com pensates the sign from 
 :

d�+ d�� 7! � d�+ d�� in the action (36). For a m odelwith Ferm at poly-

nom ial,G (x)=
P

i
x
ki+ 2

i
,and W (p;x)= pG (x),thisisensured by

(42) !
ki+ 2

i
= � !

� 1
p for i= 1;:::;N :

Here,!p isan arbitrary phasefactor.In particular,in �0 thephase!p m ust

bea sign.

O rientifold planes

O rientifold planes are the irreducible com ponents ofthe �xed pointlocus

FixT(�) of the holom orphic involution �. The �xed point locus can be

determ ined by �ndingsolutionstog�xi= xiforappropriateelem entsg 2 T.

Using the gauge sym m etry it can be expressed in term s ofspecialgauge

choices��0,thatis

(43) FixT(�)=
[

�2I �

Fix(��0);

where Fix(��0)=
T

if�
�
0xi = xig=(C

� )k. In (43) the union is taken over a

discrete subsetofelem ents in the gauge group,I� � T. In particular,any

� = (�1;:::;�k)with �a = � 1 isan elem entin I�.

Note thatin the low-energy con�guration the deleted set� r isrem oved

in view ofthe D-term equations. Therefore,depending on the phase som e

ofthe com ponentsFix(��0)ofthe �xed pointlocusm ay be rem oved in the

infra-red. In m odelswithoutsuperpotentialthe irreducible com ponents of

the�xed pointlocus,thatisthe orientifold planes,are then given by

(44) O � = Fix(��0)� �r=(C
� )k :

In m odelswith superpotentialtherearegeom etric phaseswherethelow-

energy con�guration localizes on a holom orphic subvariety M r = f@iW =

0g.Theorientifold planesare then given by

(45) O � = Fix(��0)\ M r � �r=(C
� )k :
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As we willobserve explicitly in exam ples later on,the intersection in (45)

m ay be reducible (or even em pty) and splits into a �nite num ber ofirre-

duciblecom ponentsO �;� ,

O � =

n�[

�= 1

O �;� :

Exam ple 1 with N = 3

O rientifolds in localCP2

Letusconsider the allowed parity actions � in Exam ple 1 withoutsuper-

potential. W e can work in coordinates that diagonalize the holom orphic

involution,

�(!1!2!3;!p)(x1;x2;x3;p)= (!1x1;!2x2;!3x3;!pp):

W e �nd the following distinctchoices ofparity actions with corresponding

orientifold planesO �:

Involution �0 FixT(�) orbifold pt large volum e

�(1;1;1;1) O + 1 = space �lling C
3=Z3 O 9 on O

CP2
(� 3)

�(1;1;� 1;1) O + 1 = fx3 = 0g 2� plane=Z3 O 7 on O
CP1

(� 3)

O � 1 = fx1= x2= p= 0g � O 3 on pt

�(1;� 1;� 1;1) O + 1 = fx2= x3= 0g line=Z3 O 5 on C

O � 1 = fx1= p= 0g � O 5 on CP
1

�(� 1;� 1;� 1;1) O + 1 = fx1= x2= x3= 0g Z3 �xed pt �

O � 1 = fp = 0g � O 7 on CP
2

O rientifolds on the elliptic curve

Letusnextturn on a superpotentialW (p;x)= pG (x) with Ferm atpoly-

nom ial

G (x)= x
3
1 + x

3
2 + x

3
3 :

In view of this superpotentialwe have to consider, besides the diagonal

involution �(!1!2!3;!p),theadditionalinvolutions,

�
0
(!1;!2;!3;!p)

(x1;x2;x3;p)= (!1x2;!2x1;!3x3;!pp);

wheretwo coordinatesareexchanged.However,weneed tosatisfy condition

(42),which rulesoutsom eoftheinvolutionsthatweconsidered in thenon-

com pact situation. There are in fact only two independent involutions,
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et = 0 et ! 1et =
Q
Q
�Q i

i

Figure 4. Theslicesofthem odulispacein thepresenceof

an orientifold. O ne slice connects the large volum e and the

’sm all’volum e point(som etim esG epnerpoint).

which arerelated by T-duality:

Involution �0 FixT(�) G epnerpoint large volum e

�(� 1;� 1;� 1;1) O + 1 = fx1= x2= x3= 0g �xed ptofZ 3 �

O � 1 = fp = 0g � E

�0
(� 1;� 1;� 1;1)

O + 1 = fx1+ x2= x3= 0g line=Z3 1 pt � E

O � 1 = fx1� x2= p= 0g � 3 pts� E

In thetable,E � CP
2 denotestheelliptic curveatlarge volum e.Thelocus

O � 1 for the second involution is reducible at large volum e and consists of

threepoints,

O � 1;� = fx1 � x2 = x3 � �x2 = p = 0g � E ;

where�3 = � 2.

3.2 O rientifolds and their constrained m odulispace

So far we considered the parity action on the kinetic term s and the chiral

superpotentialin (36).Asforthee�ecton thetwisted chiralsuperpotential,

ta�a,wenote thattheorientation reversal
 m apsthegauge �eld strength

�a to ��a.Invarianceofthepath integralthereforerequirest
a = �ta m od 2�i,

where the m od 2�ishiftisdue to the topologicalterm forthe theta angle.

Thetheta angle isthereforerestricted to

(46) �
a = 0 or� m od 2�:

According to these conditions the orientifold constrains the allowed com -

plexi�ed K �ahlerm odulito 2k realhalf-dim ensionalslicesin M K .Notethat

theorientifold slicesm ay orm ay notintersectthe singularlocusS .



30 O RIENTIFO LDS AND D-BRANES IN N = 2 G LSM

� = (�;0) � = (0;0)

r2

r1

r2

r1

X I

X II

X IV

X III

X I

X II

X IV

X III
non-pert.

�

��

Figure 5. The slices� = (�;0)resp. � = (0;0)divide the

m odulispace in distinctsectors.

O ne-param eter m odels

For k = 1 the slices in the K �ahler m odulispace are depicted in Fig.4.

The singularity S sits at the theta angle � = S� (m od 2�), where S =
P

Q i> 0
Q i.Thesliceat� = S� isthereforedivided byS intotwodisconnected

com ponents. O therwise,on the slice � 6= S� the singularity isavoided and

the slice connectslarge and sm allvolum e lim its.W e will�nd later,aftera

detailed investigation ofD-branesin theorientifold background,thatunder

specialcircum stancesthetwoslicesm ay bejoined atthesm allvolum epoint.

H igher dim ensionalm odulispaces

Fork > 1 the slicesin m odulispace are com plicated butm ore interesting.

Letusillustrate thisin the two-param eterm odelExam ple 2.

Exam ple 2

ThesingularlocusS istheunion ofthe following two loci[65]:

S 0 = fe� t
2

= 1=4(1� 2� 8et
1

)2g ; and S 1 = fe� t
2

= 1=4g :

The orientifold action adm its four slices. Two of them , � = (0;�) and

� = (�;�),do notintersectthesingularlocusS so thatwe can m ove freely

between the fourphases. O n the otherhand,the intersectionsofthe slices

� = (�;0)resp.� = (0;0)with S are depicted in Fig.5.In theform erslice

we can m ove from phases I to IV . In the latter allphases are separated,

even m ore,there is a non-perturbative regim e that is not accessible from

any ofthefourperturbativeregions.
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3.3 O rientifolds at orbifold points

At an orbifold point ofM K the gauge group T ofthe linear sigm a m odel

is broken to a discrete subgroup � in view ofvacuum expectation values

xl
�

l2I
= 1. Letusexam ine the consequences forthe holom orphic involu-

tion.

Thevacuum expectation valuesrequirespecialgaugechoicesfor�,nam ely

theonesthatacttrivially on the�eldsxl forl2 I,so thata �-equivalence

classofparity actions,� � 
� for
 2 �,rem ainsand actson the orbifold

C
N � k=�. The orientifold group and the orbifold group are com bined in an

extension [66],

� � ! b� � ! Z2 :

Notice that after breaking the gauge group to the discrete group it is in

generalnotpossibleto �nd a representative forthe holom orphic involution

thatsatis�es�20 = id.

4 D -branes in the presence oforientifolds

In thissection we study the parity actionson world sheetswith boundary.

W e willcom bine the considerations ofthe previous two sections to de�ne

parity-invariant,low-energy D-branes.Thepresentation willfollow thedis-

cussion in [17].

4.1 T he w orld sheet parity action on D -branes

Letuspick the strip � = R � [0;�]with coordinates (t;x)asworld sheet.

The orientation reversalacts as 
 :(t;x) 7! (t;� � x). Let us study the

e�ectoftheworld sheetparity P m
�
:= (� 1)m FL � 
� � on thegeneralW ilson

line(13).

Recallthattheboundaryaction on thestrip forasingleW ilson linebrane

W (qa)isgiven by

(47)

kX

a= 1

�
�a

2�
+ q

a

� Z 1

� 1

dt

��
(va)t� Re(�a)

�

x1= 0
�
�
(va)t� Re(�a)

�

x1= �

�

:

Here we included the contribution from the theta angle. The orientation

reversal
exchangesthetwo boundariesofthestrip giving riseto an overall

sign in frontof(47)and,therefore,inverting the sign of�a=2� + qa,i.e.its
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e�ecton thechargesis

(48) P m
� :qa 7! � (�a=� + q

a):

Notice thatthism ap iswell-de�ned because ofthe integralvaluesof�a=�

thatwefound earlierin (46).

Letusnow considera generalW ilson linewith tachyon pro�leQ (x).For

convenience we set

A [Q ]=
1

2
fQ ;Q yg�

1

2

NX

i= 1

 i@iQ +
1

2

NX

i= 1

� i�@iQ
y
:

Thepath ordered W ilson line on the strip is

(49) Str

�

�1(x)j� 1 P e
i

R 1

�1
dtA [Q ]x= 0�2(x)j1 P e

� i
R 1

�1
dt0A [Q ]x= �

�

;

wherethetim e t0on the boundary x = � isoppositely oriented to the tim e

ton thestrip itself.Here,the�elds�1(x)and �2(x)takevaluesin End(W )

and correspond to incom ing and outgoing string states at m inus and plus

in�nitetim e.

Theorientation reversal
 swapsthe two boundaries,and the involution

� actson theconnection as��A [Q ]= A [��Q (x)],resulting in

Str

�

�
�
�1j� 1 P e

i
R 1

�1
dtA [��Q ]x= � �

�
�2j1 P e

� i
R 1

�1
dt0A [��Q ]x= 0

�

=

Str

�

�
�
�
T
1j� 1 P e

� i
R 1

�1
dt0A [��Q ]T

x= 0 �
�
�
T
2j1 P e

i
R 1

�1
dtA [��Q ]Tx= �

�

:

In the second line we applied the graded transpose and its properties as

sum m erized in theappendix A.Theappearanceofthetransposition in the

parity action tellsusthattheChan{Paton vectorspaceW ism apped to its

dualvectorspaces,

P m
� :W ! W �

:

In order to extract the parity transform ofQ we rewrite the transposed

superconnection as

� A [��Q ]T =
1

2
f��Q T

;(��Q y)Tg+
1

2
 i@i�

�
Q
T �

1

2
� i�@i(�

�
Q
y)T =

=
1

2
f��Q T

;(��Q T)y
�

g+
1

2
 i@i�

�
Q
T �

1

2
� i�@i(�

�
Q
T)y

�

=

= A [� �
�
Q
T];

Heretheherm itian conjugate ofan endom orphism on thedualspace W � is

de�ned by (M T)y
�

:= (M y)T. Com paring with (49)we can easily read o�

theaction ofthe world sheetparity P m
�
on thetachyon pro�le,

(50) P m
� :Q (x)7! � �

�
Q (x)T ;
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and on �elds,

(51) P m
� :�(x)7! �

�
�(x)T :

Letusconsiderthe generalization ofthe parity transform ofthe charges

in equation (48)to the stack ofW ilson line branesW . The representation

�(g)ofthegauge group T on W isdeterm ined by thechargesofitsW ilson

linecom ponents,so that(48)turnsinto

(52) P m
� :�(g)7! �

��=�
(g)�(g)� T :

The graded transpose appearsby the sam e reasoning asabove and iscon-

sistentwith relation (14).

In ordertodeterm inethee�ecton therepresentation R(�)ofthevectorR-

sym m etry wetakethegraded transposeofrelation (15)and com pareitwith

(50).W e �nd thatthe representation hasto transform asR(�)7! R(�)� T.

Note howeverthatthe world sheetparity action P m
�
containsthe operator

(� 1)m FL ,which,form odd,invertsthe sign ofleft-m oving Ram ond sector

statesand in particularthesign ofRam ond{Ram ond �elds.SinceD-branes

are sources for these �elds,the overallsign ofthe D-brane charges is also


ipped,i.e.branesare m apped to antibranesifm isodd.In the contextof

D-branestheoperator(� 1)FL iscalled theantibraneoperator(orantibrane

functor on the D-brane category [17,19]). Since the com ponents W j with

R-degree j even and odd correspond to branesand antibranesrespectively,

weconcludethattheoperator(� 1)m FL inducestheshift[� m ]:j7! m + j.

The parity action P m
�
on the representation R(�)istherefore dressed by a

character,

(53) P m
� :R(�)7! �

m
(�)R(�)� T :

Therelation � = R(� 1)im pliesfurtherm ore

(54) P m
� :� 7! (� 1)m �T :

Let us sum m arize our �ndings ofthis section. The world sheet parity

action acts on a D-brane B = (W ;�(g);R(�);Q (x)) in the linear sigm a

m odelas

(55) P m
� :

�
W ;�;R;Q

�
7!

�
W �

;�
��=�

(g)�� T;�
m
(�)R� T

;� �
�
Q
T
�
:

W e som etim esusetheabbreviation P m
�
(B )forthe parity im age ofB .

4.2 D ressing by quasi-isom orphism s

A well-de�ned parity operatoron D-branesshould squareto theidentity,so

thatwecan gaugeitin orderto obtain an orientifold background.However,
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P m
�
doesnotsquareto the identity,ratheritactsas

(P m
� )

2 :Q (x)7! (� 1)m + 1
�(�2)Q (x)�(�2)� 1 :

Recallthat�2 isan elem entofthegaugegroup and thereforethedressingby

therepresentation �(�2)arisesfrom applyingthegaugeinvariancecondition

(14) on Q (�2x). The sign (� 1)m + 1 is due to the graded double transpose

(118)in the appendix.

Thenon-involutive property ofP m
�
iscured in conjunction with ourwish

to describe low-energy D-branes as D-isom orphicsm classes in the gauge

linearsigm am odel.W esupplem enttheD-branedataby an arbitrary quasi-

isom orphism ,B = (W ;�(g);R(�);Q (x);U�(x)),and de�nea dressed parity

operatorP m
�

asfollows:

(56)

P m
�
(Q (x))U� = � U� �

�Q (x)T ;

P m
�
(�(g))U� = �

��=�
(g)g�U� �(g)

� T ;

P m
�
(R(�))��U� = �

m
(�)U� R(�)

� T ;

P m
�
(�)U� = (� 1)m U� �

T :

By abuse ofnotation we abbreviate these transform ationsby P m
�
(B )U� =

U�P
m
�
(B ).Notethatquasi-isom orphism sin the\inverse" direction arealso

possible,thatisV�P
m
�
(B )= P m

�
(B )V�. A hom om orphism � taking values

in Hom (W 2;W 1)transform sas

(57) P
m
� (�)U�1 = U�2 �

�
�
T
:

In order to ensure that the parity operator P m
�

depends only on the

gauge equivalence class ofthe holom orphic involution,� � g�,the quasi-

isom orphism U� m usttransform as

(58) Ug� := U� �(g)
T
:

Inserting (58) in the de�nition ofthe parity operator P m
�

one can easily

check thatthelatterdoesnotdepend on the gauge choice.

T w o orientifold actions

The de�nition ofthe dressed parity operatorP m
�

doesnotyetensure that

itsquaresto theidentity.W em ay howeverutilizethedressingby thequasi-

isom orphism U� to ensure this property by an appropriate transform ation

behaviourofthequasi-isom orphism itself,i.e.wedeterm ineP m
�
(U�)so that

(P m
�
)2 = id.

Letuspick a hom om orphism � taking valuesin Hom (W 2;W 1)and apply

the parity operator (57) twice. W ith the Ansatz P m
�
(U�) = A ��U�

T for



ILK A BRUNNER,M ANFRED HERBST 35

som econstantinvertible m atrix A we have

P
m
� � P

m
� (�)P m

� (U�2) = A 1 �
�
U�

T
1 �

�
P
m
� (�)T =

= A 1 (�
2)��TT �

�
U�

T
2 =

= A 1 �1(�
2)�m + 1

1
� �

m + 1
2

�2(�
2)� 1 ��U T

2

Requiring equality with the original�eld � determ inesA up to a constant

��,so thatU� hasto transform as

(59) P
m
� (U�)= ���(�

2)� 1�m + 1
�
�
U�

T
:

A quasi-isom orphism in the inverse direction,i.e.V�2 P
m
�
(�) = ���T V�1,

transform sas

(60) P
m
� (V�)= �

� 1
� �

�
V
T
� �

m + 1
�(�2):

Here the inverse constant appears for consistency with the case when the

quasi-isom orphism isinvertible,U� = V � 1
� .

The constant �� is associated with the parity operator. It has to be

the sam e for allm utually com patible D-branes. In order to stress this we

henceforth denote the parity operator on D-branesby P
��;m

�
. By abuse of

notation wecontinueto denotethesetofD-branes,now supplem ented with

U�,by D (C
N ;T)orM FW (CN ;T).

Likethequasi-isom orphism ,theconstant�� dependson thegaugechoice

of �. Com paring the transform ation (59) for U� and Ug� and requiring

P
��;m

�
(Ug�)= P

��;m

�
(U�)P

��;m

�
(�(g))T aswellas(58)revealsthat

(61) �g� = �
��=�

(g)�� :

The com bined shift,(�a;qa)7! (�a + 2�na;qa � na)forna 2 Z
k,altersthe

constant�� asfollows:

(62) �� 7! ����n
(�2):

W hatwehaveconsidered sofarensuresthatP
��;m

�
squarestotheidentity

on the D-brane data (W ;�;R;Q ). However,since the quasi-isom orphism

transform snow underthe parity operatorwe have to im pose (P
��;m

�
)2 = id

on U� aswell.In fact,using (56)and (59)we obtain

U� = P
��;m

�
(P

��;m

�
(U�))=

= ��P
��;m

�
(�(�2))� 1 P

��;m

�
(�)m + 1

�
�
P
��;m

�
(U�)

T =

= ��P
��;m

�
(�(�2))� 1 P

��;m

�
(�)m + 1

�
���(�

2)� 1�m + 1(��)2U�
T
�T

=

= �
2
� ��=�

(�2)U� :

Theconstant�� istherefore determ ined up to a sign,

�� = �c�; with � = � 1 :
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The constant c� depends on � and �. W e willrefer to the constant �� as

orientifold sign,although itisstrictly speaking nota sign.In the following

wewilloften pick an involution �0 thatsquaresexactly totheidentity,which

im pliesthat��0 = � 1. Also the com bined shiftofthe theta anglesand the

gauge chargesresulting in (62)doesnotalterthe sign ��0.

In sum m ary,P
��;m

�
is a parity operator on the set ofD-branes in the

gauged linear sigm a m odel. It squares to the identity operator and is de-

term ined by the discrete theta angle �,by the dressing with the antibrane

operator,m odd oreven,and by the orientifold sign �� whose role willbe

elucidated in a m om ent.

Shift ofR -degree

Asknown in D-brane categories an overallshiftofthe R-degree,[l]:j 7!

j� l,isunphysicalbecauseallm easurablequantitiesdepend on thedi�erence

ofR-degrees [67]. In view ofthe interpretation ofthe Z2-grading (� 1)j as

distinguishing branes from antibranes the shift [1]is indeed the antibrane

operatorasitappeared already in the previoussubsection.

Letusstudythee�ectoftheantibraneoperatoron thequasi-isom orphism

U� and on thesign ��.First,thepartiy action com m uteswith theshiftonly

ifthe latterisaccom panied by m 7! m � 2l,i.e.Pm � 2l

�
� [l]= [l]� Pm

�
.

TheR-sym m etry representation and theZ2-gradingoperatorarem apped

asfollows,

[l]:R(�) 7! �
� l
R(�);(63)

[l]:� 7! (� 1)l� :

In view ofthesign changeoftheZ2-gradingoperator� thegraded transpose

isaltered to

[l]:M T 7! (�T)lM T(�T)l :

The transform ation property (56) of Q (x) then tells us that the quasi-

isom orphiam sU� ism apped as

[l]:U� 7! �
l
U� :

Inserting (63)in the de�ning equation (59)ofthe orientifold sign �� we

observe thatitism apped as

(64) �� 7! (� 1)l�� :

Alltogetherwe have shown thatthe shift[l]transform sthe parity operator

asfollows,

(65) P
(� 1)l��;m � 2l

�
� [l]= [l]� P

��;m

�
:
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Notice that the com bination ��(� 1)[m =2] is an invariant underthe shift of

R-degree. Here,the square bracket denotes taking the next lower integer.

W e therefore expectthatphysicalquantitiesdepend on thisinvariantcom -

bination.

4.3 Parity invariant D -branes

As a next step we de�ne parity-invariant low-energy D-branes to be D-

isom orphism classesthatarepreserved bytheparityoperatorP
��;m

�
,i.e.there

existsa quasi-isom orphism U� orV� from B = (W ;�(g);R(�);Q (x)) to its

world sheetparity im age P m
�
(B ),so thatP

��;m

�
(B )= B .Explicitly,

(66)

Q (x)U� = � U� �
�Q (x)T ;

�(g)U� = �
��=�

(g)g�U� �(g)
� T ;

R(�)��U� = �
m
(�)U� R(�)

� T ;

� U� = (� 1)m U� �
T ;

U� = ���(�
2)� 1�m + 1��U�

T :

Analogousrelationshold forquasi-isom orphism sV�. Note thate the quasi-

isom orphism isnow determ ined by the invariance conditions(66),whereas

in the previoussubsection itwascom pletely arbitrary. W e denote the sets

ofinvariantlow-energy D-branesin gauged linearsigm a m odelswithoutand

with superpotentialby D ��;m ;�(X r)and M F
��;m ;�

W
(X r),respectively.

Let us point out a subtlety here. In general,a D-brane B is invariant

ifit can be related to its world sheet parity im age P m
�
(B ) by a chain of

quasi-isom orphism s.However,ifboth typesofquasi-isom orphism s,U� and

V�,appearin thechain itisnotclearhow to determ inethesign ��.W ewill

later�nd an elegantresolution to thisproblem .

4.4 G auge groupson D -branesand the type oforientifold planes

AllD-branein an orientifold background have to carry thesam eorientifold

sign ��.In thissection wewantto considerthesituation when theD-brane

is a stack ofidenticalD-branes B i,that is the Chan{Paton space is the

tensor product ofan externalChan{Paton space Ve
�= C

n and the inter-

nalChan{Paton space W i. The orientifold sign �� can then be distributed

appropriately on thetwo contributions,

�� = �e �i :
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Stacks ofirreducible invariant D -branes

Letusconsiderastack ofirreducibleand invariantD-brane,i.e.thetachyon

pro�le Q i(x)on the internalChan{Paton space W i isan irreducible endo-

m orphism .Theinternalsign �i,which isnow associated with theirreducible

D-brane(notthe orientifold),isde�ned through

(67) U�i= �i �i(�
2)� 1�m + 1

i
�
�
U
T
�i :

Thestack ofD-braneson theChan{Paton spaceW = Ve
 W iisde�ned as

follows:

Q (x) = id 
 Qi(x);

�(g) = id 
 �i(g);

R(�) = id 
 Ri(�);

U� = Ue 
 U�i :

In particular,thequasi-isom orphism splitsinto an externalisom orphism Ue

on Ve and an internalquasi-isom orphism U�i.

Com paringthelastrelation of(66)forU� and relation (67)forU�iwe�nd

thatthe externalsign �e enters in the sym m etry condition ofthe external

isom orphism s,

Ue = �e (Ue)
t
:

Ittherefore determ inesthe gauge group on the stack ofD-branes[6,17],

SO (n);n 2 Z for �e = + 1 ;(68)

Sp(n=2); n 2 2Z for �e = � 1 :(69)

In thefollowing wewillm ainly work with theinternal,irreduciblepartof

a D-brane.W e drop the index iforconvenience,with the exception of�i.

T he type oforientifold planes

G iven a parity action with m ultiple com ponentsofthe�xed pointlocusin

the infra-red theory,we m ay consider a probe D-brane that sits on top of

oneofthecom ponents.According to thegaugegroup oftheprobeD-brane,

�e = + 1 or �e = � 1,we follow the generalconvention in the literature to

de�nethe type ofthe orientifold planeby o:= � �e.Indicating the type we

referto the orientifold plane asO o-plane.W e willhave to say m ore on the

typeoforientifold planesin latersections.

Stacks ofbrane im age-brane pairs

A specialclassofinvariantD-branesisgiven by brane im age-brane pairs,

i.e.D-branesthatareoftheform irreduciblebraneplusparity im agebrane.
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In particular,the internalChan{Paton space reads W i = V � V�. Ifwe

considera stack ofsuch braneswe tensorV � V� with the externalChan{

Paton space Ve,which isequivalentto considering

W = Ve 
 V � V�e 
 V� ;

and setting

Q (x) = id 
 Qi(x) � id 
 (� �
�
Q i(x)

T);

�(g) = id 
 �i(g) � id 
 �
��=�

(g)�i(g)
� T

;

R(�) = id 
 Ri(�) � id 
 �
m
(�)Ri(�)

� T
:

Thequasi-isom orphism forthisD-branecan bewritten in thebraneim age-

branebasisas

(70) U� =

�
0 cc� U

t
e 
 �m + 1�(�2)� 1

Ue 
 id 0

�

:

where c is an a priori arbitrary constant and c� was introduced for later

convenience.Letustrytom atch thesign � oftheparityaction bycom puting

U��
�
U
� T
� �

m + 1
�(�2)=

�
cc�id 
 id 0

0 c� 1c�id 
 id

�

= �c�id :

So we�nd thatwecan alwaysadjusttheconstantcto beequalto thesign

�. In particular,this m eans that the brane im age-brane pairs appear for

both orientifold signs��,and since there isno sym m etry restriction on the

isom orphism Ue the gauge group isU (n).

4.5 M oving betw een phases | O rientifolds and the grade re-

striction rule

In view oftheobservationsofSec.3.2 thetransportoflow-energy D-branes

between phasesin the gauged linearsigm a m odelisnotalways possible in

thepresence oforientifolds,atleastnotwithin the world sheetdescription.

The reason is the singular locus S ,which is real codim ension one on the

orientifold slicesin M K .

Letusconcentrate on linearsigm a m odelswith gaugegroup T = U (1)in

thesubsequentdiscussion.

A voiding the singularity

Iftheslicein K �ahlerm odulispacedoesnotintersectwith thesingularlocus,

that is � 6= S� m od 2�,we can apply the grade restriction rule of[20]to
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transportD-branesbetween thephase.Itreads

�
S

2
<

�

2�
+ q<

S

2
:

In fact,theworld sheetparity action P m
�
,m apping �=2� + q7! � (�=2� +

q),preserves the grade restriciton rule. O nce we have found a grade re-

stricted representativefora D-brane,itsim ageundertheworld sheetparity

action P m
�
isagain graderestricted.Thisisim portantforconsistency ofthe

gauged linearsigm a m odelnearthe phaseboundary.

From [20]werecallthatthereareno non-trivialD-isom orphism sbetween

D-branes in the grade restricted set. The grade restricted D-branes are

uniqueup toabasischange(30)oftheChan{Paton spaceW .SinceP m
�
does

notm ap outofthe grade restricted setthisim pliesthata grade restricted

invariant D-brane B and its parity im age P m
�
(B ) m ust be related by an

(invertible) basis change U�. It is therefore convenient to work with the

graderestricted representativeofagiven D-isom orphism class.In particular,

sinceU� isan isom orphism itiseasy tocom putethesign �iand theproblem s

with chainsofquasi-isom orphism sthatwem entioned in Sec.4.3donotshow

up.

C olliding w ith the singularity

Ifwe consider a slice in M K that collides with the singularity,we cannot

transportD-branesfrom one phaseto theother.W e wantto add a rem ark

on thesign �i though.

Supposewesiton theslice� = S�.Thewindowsthatareadjacentto the

singularity atS�,cf. Fig.3,adm itthe charges N w � = f0;:::;S� 1g resp.

N w + = f1;:::;Sg. Ifwe pick a representative B for the D-brane that is

grade restricted with respectto N w � ,itsworld sheetparity im age P m
�
(B )

willbegraderestricted with respectto N w + .In orderto m ap P m
�
(B )back

to B the associated quasi-isom orphism has to rem ove allthe W ilson line

com ponentsW (S).Thiscan beachieved by a chain ofquasi-isom orphism s,

allofwhich areofthesam etype,eitherU� orV�.In fact,thesecan then be

com posed to a single quasi-isom orphism ,which allowsto com pute the sign

�i.

Exam ple 1 with N = 2 and no superpotential

Letusconsiderasim pleexam pleofan invariantD-braneatlargevolum e.

W e take the world sheetparity action with � = id and m = 1 and pick the
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slice � = 0 thatcollides with the singularity S . The adjacent windows at

thephaseboundary determ ineN w � = f� 1;0g and Nw + = f0;1g.

Regard theD-brane

B : W (� 1)
x2

-
W (0); Q =

�
0 x2

0 0

�

;

which isan elem entofT w � .Itism apped by the world sheetparity to

P 1
0(B ): W

�(0)
x2

-
W �(1); � �

�
Q
T =

�
0 0

x2 0

�

:

In view ofthe di�erent gauge charge assignm ents the latter is clearly not

isom orphic to the originalcom plex. However,atlarge volum e,r >> 0,we

can bind to itan em pty D-brane via a D-term deform ation (31),

W �(0)
x2

-
W �(1)

�
0

1

�
@

@

@R

� 1
@

@

@R

W (� 1)

�
x2
�x 1

�

-
W (0)� 2

(x1;x2)
-

W (1):

Afterelim inating trivialpairsW �(q)
1

� ! W (q)forq= 0;1,wegetback the

originalD-brane.Theassociated quasi-isom orphism is

V� =

�
0 x1

x1 0

�

; with �i= 1 :

4.6 O rientifolding com plexes and m atrix factorizations

Let us form ulate invariant D-branes in m odels without superpotentialin

term sofcom plexes(17).Thiswillfacilitatesom eofthesubsequent,explicit

com putations in exam ples. In the low-energy interpretation the following

m akes contact with the discussion oforientifold projections in the derived

category ofcoherentsheavesin [19].

Sim ilarly,invariantm atrix factorizationsaredescribed by m erely adding

\backward arrows" in the com plexes,as in (20). This is straight forward,

and we willskip thegeneraldiscussion ofm atrix factorizationshere.
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The de�ning conditions (66) for an invariant D-brane can be rewritten

fora com plex (17)in term sofa com m utative diagram ,

(71)

:::
� ��(dm �j )T

-
W � j

� ��(dm �j�1 )T
-

W � j+ 1
� ��(dm �j�2 )T

-
:::

uj

?

uj+ 1

?

:::
dj�1

-
W j

dj
-

W j+ 1
dj+ 1

-
:::

:

The second line is the com plex for Q (x),and the �rst line represents the

world sheet parity im age P m
�
(Q (x)) = � ��Q (x)T. Note that we have

(dj)T = � (� 1)j(dj)t according to the de�nition ofthe graded transpose,

where t is the ordinary transposition ofm atrices. W j = � iW (q
j

i
) is the

com ponentwith R-degree j,and

W � m � j= W j� = � iW
�(� �=� � q

j

i
)

isitsdual,now carrying R-degree m � j.

The chain m aps,uj :W � j! W j,preserve the globalsym m etriesaswell

asthe gauge charges.They are thecom ponentsofthe quasi-isom orphism

U� =

0

B
B
B
B
@

. .
.

uj

uj� 1

. .
.

1

C
C
C
C
A

:

Thelastcondition in (66)becom es

(72) u
j = �i �

j(�2)� 1 (� 1)(m + 1)j
�
�(um � j)t :

K oszulcom plexes

Asexam plesforinvariantD-branesweconsidercoherentsheavesO C (q)that

arelocalized atthecom m on zerolocusC ofn polynom ials(f1;:::;fn).They

can bedescribed via tachyon condensation [58,68{70]by K oszulcom plexes,

which we de�ne below. W e determ ine the chain m aps uj that render the

K oszulcom plexes invariant and provide a sim ple form ula for the type of

gauge group thatissupported on them .

Letusdenotethegaugechargesofthepolynom ialsby (Q f1;:::;Q fn)and

introduceQ f =
P n

i= 1Q fi.TheW ilson line(11)associated with theK oszul

com plex can be realized in term sofboundary ferm ions�i fori= 1;:::;n,

which upon quantization satisfy theCli�ord algebra relationsf�i;��jg= �ij.
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The associated Fock space,builton the Fock vacuum de�ned by �ij0i= 0,

isthen the Chan{Paton space W .Theboundary interaction isgiven by

Q (x)=

nX

i= 1

fi(x)�i

and acts naturally on the Fock space W . Since Q (x) needs to be gauge

invariant, the boundary ferm ions �i m ust carry the gauge charges � Qfi.

Theresulting com plex reads

(73) C :W m �n

2

(q� Qf)
f

-
:::

nM

i= 1

W m + n

2
� 1
(q� Qfi)

f
-

W m + n

2

(q):

W e assigned R-degree (m + n)=2 to the Fock vacuum j0i,i.e.to the right-

m ost entry in the com plex. This assignm ent is necessary for an invariant

D-brane.Note thatitalso requires

(74) m = n m od 2:

In orderto determ ine thechain m apsuj and thecorresponding sign �i itis

instructive to describethe K oszulcom plex C in the language ofalternating

(or exterior) algebras. Let R � =
L

n

i= 1C[x]��i,
5 where C[x]is the graded

coordinate ring ofchiral�elds.W e introduce theinteriorproduct

(75) �v :^
pR � ! ^p� 1R �

; � 7! �v� = �(v;� � � );

where � denotes a p-form in ^pR � and v =
P

ivi�i a vector �eld in R .

The tachyon pro�le Q (x)in the com plex C can then be realized asinterior

product�f,

(76) C :(̂ nR �)m �n

2

�f
-
:::

�f
-
(̂ 1R �)m + n

2
� 1

�f
-
(̂ 0R �)m + n

2

:

Forsack ofbrevity wedid notindicate the gauge charges.

To calculate the parity im age ofthisD-brane we need to determ ine the

graded transpose of�f. The dualpairing ofp-form s,� 2 ^pR �,with p-

vectors,� 2 ^pR ,is

(77) h�;�ip := ��� =
1

p!

X

i1;:::;ip

�i1:::ip�i1:::ip ;

where�� isthenaturalgeneralization oftheinteriorproductto polyvectors.

W ith theconvention used in (77)itsatis�es�� �
 = �
^�.Notethat,accord-

ing to the R-degree assignm entin C,p-form shave R-degree (m + n)=2� p.

Since the world sheet parity m aps R-degrees as j 7! n � j,we assign the

5Henceforth,we drop the Fock vacuum j0i.
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R-degree(m � n)=2+ p to p-vectors.Thegraded transpose�T
f
oftheinterior

productisthen de�ned by

h�Tf�;�ip+ 1 := (� 1)
m �n

2
+ p+ m h�;�f�ip ;

which isin accord with the de�nition (113)in the appendix. Inserting the

right-hand sidein the dualpairing (77)we readily �nd that

�
T
f :^pR ! ^p+ 1R ; � 7! (� 1)

m + n

2
+ p
f ^ � ;

and the world sheetparity im age ofthe boundary interaction � ��Q (x)T is

realized as� (� 1)(m + n)=2+ p(��f)̂ on p-vectors.

Letusnextconstructthe quasi-isom orphism U� thatm akesC invariant.

According to (71) we have to construct m aps up such that the following

diagram com m utes,

(78) (̂ n� pR �)m �n

2
+ p

�f
// (̂ n� p� 1R �)m �n

2
+ p+ 1

(�� ^p R )m �n

2
+ p

� (� 1)
m + n
2

+ p
��f^

//

up

OO

(�� ^p+ 1 R )m �n

2
+ p+ 1

:

up+ 1

OO

Theidea isto chose a volum e form � 2 ^nR � and try theAnsatz

(79) u
p(�)= "p f0(x)���1

f
� �
� :

"p areconstantsto bedeterm ined below.�f isde�ned astherepresentation

m atrix ofthe holom orphic involution on the polynom ialsfi,thatis�
�fi=

(�f)ijfj forj= 1;:::;n.Itsinverseisinserted in every contraction between

� and �.Thepolynom ialf0(x)m ustbesuch thatU� isaquasi-isom orphism ,

i.e.according to the de�nition of a quasi-isom orphism , around (33), the

polynom ials(f0;f1;:::;fn)m ustgive rise to an em pty K oszulcom plex,or

putin yetanotherway,the com m on zero locusofallpolynom ialsm ustbe

contained in thedeleted set� r.Notealsothatin view ofP m
�
:q7! � �=�� q

thepolynom ialf0 hasto carry gauge charge

(80) Q f0 = �=� + 2q� Qf :

The constants "p for p = 0;:::;n are �xed by inserting the Ansatz

in the diagram (78) and requiring that it com m utes. W e obtain "p+ 1 =

� (� 1)(m + n)=2"p. Using the freedom to norm alize U�,we �x "0 = 1 and

obtain

"p = (� 1)(
m + n

2
+ 1)p

:

The internalsign �i ofthe D-brane is determ ined by constructing the

graded transposeofup.Since thelatteriseven itsgraded transposeequals
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itsordinary transpose,

h�;(up)t(�)ip := h�;up(�)in� p ;

where� 2 ^pR and � 2 ^n� pR .Inserting up on theright-hand sidewe�nd

aftersom ealgebra,

(up)t= "n(� 1)p(m + 1)det�f �
� 2

f
� u

n� p
;

where (�
� 2

f
)ij = �

�Q fi

(�2) �ij, which acts on a (n � p)-form as �
� 2

f
=

�
�q
(�2)�p(�

2).Applyingtheholom orphisinvolution on both sidesweobtain

u
n� p = "n(� 1)p(m + 1)

�
q
(�2)

s0det�f
�p(�

2)� 1��(up)t :

Thefactors0 isfrom ��f0 = s0f0 in un� p.Com paring with (72)we obtain

theinternalsign �i forthe K oszulcom plex,

�i= (� 1)
m �n

2

�
q
(�2)

det�0
f

;

where we introduced det�0
f
= s0det�f. W e have therefore succeeded in

determ ining thegauge group forK oszulcom plexes,i.e.

(81) �e = ��=�i= ��(� 1)(m � n)=2
�
�q
(�2)det�0f :

Note that this result con�rm s the expectation that the gauge group does

notdepend on shiftsofR-degree[l],which exchangesbranesand antibranes.

Indeed,theexternalsign dependson theinvariantcom bination ��(� 1)[m =2],

cf.relation (65).To seethisnotethatin view of(74)wehave(m � n)=2 =

[m =2]� [n=2].

K oszul-like m atrix factorizations

Let us brie
y com m ent on m odels with non-vanishing superpotential. A

naturalanalog ofK oszulcom plexes is provided by introducing additional

polynom ials(g1;:::;gn)and de�ning a m atrix factorization

Q (x)=

nX

i= 1

(fi(x)�i+ gi(x)��i) :

Thecondition Q 2 = W isensured by W =
P

ifigi.

O n the levelofcom plexes, we com plete the factorization by including

arrows\backwards"

(82) C :(̂ nR �)m �n

2

�f
-

g^

� :::
�f
-

g^

� (̂ 1R �)m + n

2
� 1

�f
-

g^

� (̂ 0R �)m + n

2

;



46 O RIENTIFO LDS AND D-BRANES IN N = 2 G LSM

where g =
P

gi��i isa 1-form in R �. O bviously,f�f;ĝ g = W realizes the

m atrix factorization.Thegraded transposecan befound to be

� �
�(ĝ )T = � (� 1)

m + n

2
+ p
���g :

Thechain m apsup and thusthesign �iturn outtobethesam easforK oszul

com plexes.

4.7 Tensor products ofinvariant D -branes

Tensor products ofcom plexes or m atrix factorizations have been studied

and used to constructspecialtypesofD-braneson m any occasions[71{83].

In particular, allthe known boundary states of G epner m odels are real-

ized astensorproductsofsim plem atrix factorizationsin thecorresponding

Landau{G inzburg m odel.

Herewewantto addressthequestion ofhow theinvariance ofa D-brane

underthe orientifold action behaves undertaking graded tensor products.

The resultsofthissubsection willbe m ostim portantwhen we later study

the �bre-wise K n�orrerm ap that relates m atrix factorizations ofthe linear

sigm a m odelto com plexesofcoherentsheavesatlow energies.

Som e properties ofthe graded tensor productare listed in appendix A.

Let us brie
y present its de�nition. For two endom orphism s of de�nite

R-charge,A 2 End(W 1) and B 2 End(W 2),we de�ne the graded tensor

productas

A b
 B = A 
 �
jA j

2
B ;

whereweused theordinary tensorproducton theright-hand side.jAjisthe

R-charge ofA. In order to not forget subtle signs related to the insertion

of�
jA j

2
,which takes care ofthe grading,we willwork explicitly with the

ordinary tensorproduct.

Let us consider two invariant D-branes,B a = (W a;�a;R a;Q a;Ua) for

a = 1;2,satisfying (66)with (�a;�i;a;m a).W e can form the tensorproduct

braneB = (W ;�;R;Q ;U�)with W := W 1
b
 W 2 and

(83)

Q := Q 1 
 �2 + id1 
 Q2 ;

�(g) := �1(g)
 �2(g);

R(�) := R1(�)
 R2(�):

For m atrix factorizations the tensor product brane is associated with the

sum ofsuperpotentialsW = W 1 + W 2.
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Thesede�nitionstogetherwith (52)and (53)im ply that

(84)
� = �1 + �2 ;

m = m 1 + m 2 :

A rathernon-trivialquestion isto build thequasi-isom orphism U� outof

U1 and U2,and in turn relate the sign �i to �i;1 and �i;2. U� cannot just

be the naive guess,that is U1 
 U2. To see this notice that upon using

thegraded transposeoftensorproducts,form ula (119)in theappendix,the

world sheetparity im age ofQ is

� �
�
Q
T = � �

�
Q
T
1 
 id2 � �

T
1 
 �

�
Q
T
2 :

W e �nd thatU 1 
 U2 cannotm ap � ��Q T back to Q ,since itcannotturn

the�a’sinto ida’sand vice versa.

W e need a m ore sophisticated quasi-isom orphism for the tensor prod-

uct D-brane. To construct it we introduce the projection operators pra =

1=2(ida + (� 1)r�a) and note that they can be used to switch between �a

and ida,i.e.p
r
a�a = �ap

r
a = (� 1)rpraida. This suggests an Ansatz for U�,

which is a linear com bination offour term s,p
r1
1
U1 
 p

r2
2
U2 with ra = 0;1.

Inserting the Ansatz in the invariance condition forQ in (66)itturnsout

thatthequasi-isom orphism hasto take the form

(85) U� =
X

r1;r2= 0;1

(� 1)(m 1+ r1)r2 p
r1
1
U1 
 p

r2
2
U2 :

U� isfurtherm orecom patiblewith allotherequationsin (66).In particular,

thelastone givesthesim ple sign relation

(86) �i= �i;1 �i;2 :

A n application: T he K oszulcom plex revisited

Letusreconsiderthe K oszulcom plexes ofthe previoussubsection. Using

the tensor product techniques we recom pute the sign �e that determ ines

the gauge group. Let us �rst assum e that C is invariant with invertible

quasi-isom orphism Uinv,which requires

(87) � �=� � q= q� Qf :

M oreover,we work in a basisfor the polynom ials fa that diagonalizes the

action of the holom orphic involution, i.e.��fa = safa for a = 1;:::;n.

Recallthatan invariantD-brane requiresm = n m od 2.



48 O RIENTIFO LDS AND D-BRANES IN N = 2 G LSM

W e start by using the fact that a K oszulcom plex C ofn polynom ials

(f1;:::;fn)isthe tensorproductofn K oszulcom plexesofa singlepolyno-

m ial,

Ca : W m a�1

2

(qa � Qfa)
fa

-
W m a+ 1

2

(qa):

Each m a hasto beodd and we set�a=� := Q fa � 2qa.By (84)the integers

(m 1;:::;m n)and the auxiliary theta angles(�1;:::;�n)m ustbe chosen so

thatthey sum up to

m = m 1 + :::+ m n ;

� = �1 + :::+ �n :

Now let uscom pute the signs�i;a for the com plexes Ca. The isom orphism

Ua isgiven by thechain m ap

W m a�1

2

(qa � Qfa)
(� 1)

m a � 1

2 safa
-

W m a+ 1

2

(qa)

1

?

(� 1)
m a � 1

2 s�1a

?

W m a�1

2

(qa � Qfa)
fa

-
W m a+ 1

2

(qa)

Applyingequation (72)we�nd that�i;a = (� 1)(m a� 1)=2�
qa
(�2)s� 1a .Forthe

tensorproductcom plex C we thereforehave

�i=

nY

a= 1

�i;a = (� 1)(m � n)=2
�
q
(�2)

nY

a= 1

s
� 1
a :

Ifthe condition (87)foran invertible quasi-isom orhism Uinv isnotsatis-

�ed,theK oszulcom plex m ay stillbeinvariantprovided thatthere existsa

polynom ialf0(x)so thatU� = f0Uinv isa quasi-isom orphism ,cf. equation

(79).Setting ��f0 = s0f0 we �nd

�i= (� 1)(m � n)=2
�
q
(�2)

dY

a= 0

s
� 1
a :

In general,the polynom ials fa willnot diagonalize �. For an invariant

D-brane we have ��fa =
P n

b= 0�
0
f;ab

fb for a = 0;1;:::;n. The sign that

determ inesthegaugegroup can then bewritten in term softhedeterm inant

of�0
f
,

�e = ��=�i= ��(� 1)(m � n)=2
�
�q
(�2)det�0f :
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5 N on-com pact m odels

So farwediscussed aspectsofD-branesin gauged linearsigm a m odelsthat

are largely independent ofthe presence or absence ofan F-term superpo-

tentialW (x),thediscussionsincluded both,Q (x)describing com plexesand

m atrix factorizations. Let us now specialize to the case without superpo-

tentialand consider som e exam ples oforientifolds and invariant D-branes

described through com plexes ofW ilson line branes. As an application of

the form ula (81)we determ ine the type oforientifold planesby testing the

gauge group ofprobebranes.

W e are m ainly interested in the dependence ofthe set ofinvariant D-

branesand the orientifold planeson the slices ofthe K �ahlerm odulispace.

Asa particularconsequenceofourlinearsigm a m odelapproach wewill�nd

that the di�erent slices m ay be connected along speciallociin M K . W e

investigate the phenom enon oftype change oforientifold planes that was

discussed in [14].

5.1 O rbifold phases and the orientifold m odulispace

Let usconsider linear sigm a m odels with an orbifold phase and study the

relation between the linear sigm a m odeland the orbifold description. W e

illustrate the m ain points in Exam ple 1 that becom es the quotient CN =�

with discrete group � = Z N at the orbifold point. Recallthe charges (8)

and the m odulispace in Fig.4.

From the linear sigm a m odelto the orbifold

Asbrie
y reviewed in Sec.3.3 thediscretegroup � in theorbifold phaseis

dueto a vacuum expectation valueforthe�eld p ofgaugecharge� N .This

expectation value also restrictsthe gauge equivalence classofholom orphic

involutionsto a �-equivalenceclass,� � 
� for
 2 �,i.e.itrequires�(p)=


� N p = p.

By conveniently setting p = 1 an invariantD-branein theorbifold theory

isdeterm ined by the linearsigm a m odeldata through

�Q (x) := Q (p= 1;x);

��(
) := �(
) for 
 2 �� U (1);

�R(�) := R(�);

�U� := U�(p= 1):
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A W ilson line com ponentW (q) becom es a �-equivariant line bundle O (�q)

with charge �q= qm od N .W edenotethe�-equivariantChan{Paton bundle

descending from W by �E.

Itfollowsim m ediately thattheorbifold data (�E;��;�R;�Q ;�U�)ofan invari-

antD-branesatis�estheinvariance conditions(66),now with a representa-

tion ��(
)of�,cf.[66].6 In particular,�
� ��=�

(
)isa characteroftheorbifold

group �,which im pliesthatthe theta angle isde�ned only m odulo N � at

theorbifold point,

(88) �� := � 2 Z� m od N � :

Thiscan beseen explicitly in the world sheetparity action on thecharges,

�q7! � ��=� � �q2 Z m od N :

From the orbifold to the linear sigm a m odel

Forthe inverse m ap,lifting D-branesfrom the orbifold to the linearsigm a

m odel,we�rsthave to decide to which slice oftheK �ahlerm odulispace we

wantto lift.Fora given �� we have a m od N � choice oftheta anglesin the

linearsigm a m odel.Letuspick one such choice.

The representation of the gauge group �(g) is obtained by lifting the

charges�qin ��(
)tointegersq(= �qm odN )in a�xedinterval,sayf0;:::;N �

1g.Then the tachyon pro�leQ (p;x)isconstructed from �Q (x)by m ultiply-

ing the entries in the latter by appropriate powers ofp as to m atch the

gaugechargesdeterm ined by �(g).Therepresentation oftheR-sym m etry is

sim ply R(�):= �R(�).Finally,theisom orphism �U� justliftsto U� by �lling

in appropriatepowersofp.

Thefreedom ofchoosing thetheta anglem od N � actually m eansthatwe

can lift a D-brane from the orbifold pointto di�erent slices ofthe m oduli

space,i.e.a prioridistinctslicesofthe K �ahlerm odulispaceare connectat

the orbifold point. Thiscan easily be picturized in the N -fold cover ofthe

m odulispace param etrized by the algebraic m irror coordinate  ,de�ned

by et = (� N  )N . Since a shift� 7! � � N � corresponds to a phase shift

 7! ei� ,changing the slice m eans going straight throught the orbifold

pointat = 0. Asdepicted in Fig.6 thisleadsto a qualitative di�erence

forN odd and N even.In view ofthecom bined shift(�;q)7! (� + 2�;q� 1)

we see thatthe slices� = 0 and � = � are connected atthe orbifold point

for N odd,but rem ain disconnected for N even. So for N odd we have

6
In [66]therepresentation ��(
)for
 2 � and theisom orphism �U� aredenoted by 
(g)

forg 2 � and 
(
),respectively.In particular,the�rsttwo linesin theirconditions(3.10)

correspond to the second and to the lastline in (66).
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θ = π

N odd

LV

SingOrb

ψ

θ = 0 θ = 0

θ = π

ψ

N even

Orb Sing

LV

Figure 6. The N -fold cover ofthe K �ahler m odulispace,

et= (� N  )N .Relation (88)saysthatwecan m ove straight

through theorbifold point.ForN odd (here5)thetwoslices,

at� = 0 and � = �,areconnected atthe orbifold point.For

N even (here 6)the two slices,at� = 0 and � = �,rem ain

disconnected.

two disconnected com ponents ofthe orientifold m odulispace,whereas for

N even we have three.

W hen changing the slice attheorbifold pointwehave to becarefulwith

relating the corresponding two sets of invariant D-branes properly. Let

us pick an arbitrary invariant D-brane with quasi-isom orphism U� in the

orbifold phase.Recallthatthe sign �i isdeterm ined via

U� = �i�
m + 1

�(�2)� 1��U T
� :

Aswe shiftthe theta angle to � � N � the parity action (48)on the gauge

chargesischanged to

q7! � �=� + N � q :

Accordingly,in orderto keep theD-braneinvariant,weneed to m odify the

quasi-isom orphism to U 0
� = pU� with a new sign �0i. Using ��p = !pp,we

�nd

�
0
i= !

� 1
p �i :

Sincethegaugegroup on astack ofD-branescannotbealtered aswechange

theslice,theorientifold sign ism odi�ed in the sam eway,

(89) �
0
� = !

� 1
p �� :

Consequently,when we m ove straight through the orbifold pointin Fig.6

wehave to take into accountthe orientifold sign change (89).
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H igher-dim ensionalm odulispaces

Ingeneral,forgaugegroupT = U (1)k anecessarycondition foraconnection

between di�erentslicesoftheorientifold m odulispaceisthatthedeleted set

� r thatdeterm inesX r in the particularphase hasatleastone irreducible

com ponent ofthe form fxl = 0g for som e l 2 f1;:::;N g. The vacuum

expectation value forxl then breaksthe gauge group so thatqa � qa + Q a
l

and in particular,

(90) �
a � �

0a = �
a + Q

a
l� and �

0
� = !

� 1
l
�� :

Taking into accountthechangeofquasi-isom orpism ,U 0
� = xlU�,thisshows

an equivalence ofthe setsofinvariantlow-energy D-branes,

(91) D
��;m ;�(X r)

�=
� ! D

�0�;m ;�0(X r):

For higher-dim ensionalm odulispaces this leads to the interesting phe-

nom enon that large volum e lim its distinguished by di�erent values ofthe

theta angles m ay be connected through a path in K �ahler m odulispace.

Thiswillbeillustrated laterin the two-param eterm odelofExam ple 2.

Exam ple 1

Let us consider the inequivalent spacetim e involutions of Exam ple 1.

W e can always choose coordinates so that the involution acts diagonally,

�(!1:::!N ;!p)
(xi;p)= (!ixi;!pp).ForN odd we have

�� := �(1;:::;1;� 1;:::;� 1
| {z }

��

;1) ; for � = 0;:::;N :

In the orbifold phase the �xed pointlocusisan (N � �)-dim ensionalplane

through the �xed pointp = fx1 = :::= xN = 0g.ForN even we have

�� := �(1;:::;1;� 1;:::;� 1
| {z }

��

;1) ;

�0� := �(1;:::;1;� 1;:::;� 1
| {z }

��

;� 1) ;
for � = 0;:::;N =2 :

The�xed pointlocusoftheinvolution �� isaunion ofan (N � �)-dim ensional

and an �-dim ensionalplane in the orbifold phase,whereas the �xed point

locusof�0� isalwaysthe orbifold �xed point.

FractionalD-branesO p(�q)on the orbifold C
N =ZN are localized atp and

carry ZN -charge �q. They can be represented in the linear sigm a m odel

through the K oszulcom plexes(73)ofN coordinate �elds(x1;:::;xN ). In

the orientifold context fractionalbraneswere studied before from di�erent

perspectives,see forinstance [84{87,89]. Letusreexam ine them from the

linear sigm a m odelpoint ofview. In particular,we want to know which
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Figure 7. Branesin an Z3 orbifold and possible re
ection

planes,related by the Z3-sym m etry

fractionalbranesareinvariantfora given orientifold speci�ed by (�;m ;�;��
or�0�).

From equation (74) we conclude that m = N m od 2,i.e.an invariant

fractionalbranem ustbedressed by (� 1)FL forN odd,whereasthere isno

dressing forN even.

In order to study the role of the theta angle, we note that the ZN -

representation �q hasto obey 2�q= � ��=� m od N orform ally

�q= � ��=2� m od N =2 :

Recallthat �� isde�ned m od N �.ForN even thishastwo solutionsfor �q if
��=2� isan integerand nosolution if��=2� ishalf-integer.ForN odd italways

hasonly onesolution.Thishasa nicepictorialrepresentation in thequiver

diagram corresponding to thisorbifold. Here,the branescorresponding to

irreduciblerepresentationsoftheorbifold group becom edotsofthediagram ,

see Fig.7 and 8. The N fundam entalfractionalbranesare related by the

quantum ZN sym m etry,i.e.2� shiftsofthethetaangleattheorbifold point,

which is depicted as a rotationalsym m etry in the corresponding diagram .

O rientifoldsare m irror-planesin these diagram s,respecting the sym m etry.

Itisnow easytoseethatforthecaseN oddthereareN possiblesym m etry

planes,each ofthem passing through exactly one point,asdepicted in the

�gureforthecaseN = 3.Thedi�erentorientifoldsarerelated by rotational

quantum sym m etry. The corresponding invariant fractionalbrane can be

lifted to both slicesofthe K �ahlerm odulispace,see Fig.6.

O n the otherhand,forN even there are two classesoforientifolds. The

�rstclasspassesthrough precisely two points,leaving two ofthe fractional

branes �xed,whereas the second class does not leave any point �xed,as

shown in the �gure forthe case N = 4. The orientifold with two invariant

fractionalbraneslieson the slice ofM K thatcollides with the singularity.
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Figure 8. Branesin an Z4 orbifold and possible inequiva-

lentre
ection planes: Eithertwo orno branesare invariant

undertheparity.

The orientifold without invariant fractionalbranes is on the slice that is

connected to the large volum e point.

Forthe discussion ofthe gauge group letusdistinguish between the two

typesofholom orphic involutions,�� and �0�.W e use form ula (81)to deter-

m inethegauge groups.

Since the involutions �� square to zero,the orientifold sign ��� isindeed

justa sign,��� = �,and we can readily com pute

�e = �(� 1)
m �N

2
+ �

For N even and on the slice � = 0 that collides with the singularity,the

invariant fractional branes O p(�0) and O p(N =2) therefore carry the sam e

gaugegroup.ForN odd thetwo slicesin m odulispaceareconnected atthe

orbifold point,which isre
ected by thefactthat�e doesnotdepend on the

theta angle.

For�0� (only N even)weusetherepresentative �0!;:::;!;� !;:::;� !;1 for!
N =

� 1,which ensures�0�p = p.However,�02� = !2 2 � and the orientifold sign

isactually a sign tim esa nontrivialconstant,��0� = ��
��=2�

(!2).Using this

theexternalsign on the slice � = 0 becom es

(92) �
0
e =

(
� �(� 1)

m �N

2
+ � for O p(�0);

�(� 1)
m �N

2
+ � for O p(N =2):

The two invariant fractional branes carry opposite type of gauge group.

Theseorientifoldsappeared in theconstruction ofsix-dim ensionalRG �xed

pointsfrom branesseeforinstance[87,88].From a m irrorperspectivethey

have been discussed in [89].
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5.2 T he type ofan orientifold plane

Letus use the results from Sec.4.7 to com pute the type o� for the orien-

tifold planesO � asde�ned in (44). Itwillbe convenient to work with the

holom orphicinvolution ��0 = ��0 thatde�nesO � through its�xed pointlo-

cus. Furtherm ore,we use coordinatesthatdiagonalize the involution. The

probe brane thatwe willuse to determ ine the type isgiven by the K oszul

com plex C� ofthe coordinatesforwhich ��0xi = !ixi with !i 6= 1. Setting

thesecoordinatesto zero givestheorientifold planeO �.Letusdenotethem

by (f1;:::;fd).d isthe codim ension ofO �.

W e are already m aking severalassum ptionshere.Indeed,a K oszulcom -

plex thatcorrespondsto a D-brane thatlieson top ofO � need notalways

exist.Firstthe condition m = d m od 2 hasto besatis�ed.Second a quasi-

isom orphism U� m ustexistforC� in orderto renderitinvariant.Ifitdoes

not exist,it is som etim es possible to utilize a probe brane ofhigher codi-

m ension,thatisd+ 2p,which lieson O �.K eeping in m ind thatthetypeof

thegaugegroup alternateswith p [6],we�nd thatthetypeoftheorientifold

planeisgiven by

o� = � (� 1)p�e ;

where�e isthe externalsign oftheprobebrane.

Aswe observed in the exam ple (92),orientifold planesatorbifold singu-

larities m ay lead to the e�ect that there exist two probe branes carrying

opposite gauge group. The following result on the type ofan orientifold

planecan thereforebeapplied reliably only ifwedealwith a sm ooth orien-

tifold geom etry.

Under the above assum ptions,the probe brane is a K oszulcom plex of

the coordinates f1;:::;fd,which are not invariant under ��0,and the ��0-

invariant polynom ials fd+ 1;:::;fd+ 2p. The polynom ialf0 that enters the

quasi-isom orphism (79)is��0-invariantaswell.W e �nd

(93) o� = � (� 1)p�e = � ��0(� 1)(m � d)=2 det(�)�
��=��2q

(�)

where det(�)= � 1 is the sign associated with the involution �,7 and q is

the m axim alcharge in the K oszulcom plex (73). In the specialsituation

that� = (�1;:::;�k)isgiven by signs�a = � 1 wehavedet(�)= (� 1)d and

theform ula forthetype sim pli�esto

(94) o� = � ��0(� 1)(m + d)=2
�
��=�

(�) for �a = � 1

7
Itisa sign and independentofthegaugechoicefor� only iftheCalabi{Yau condition

issatis�ed.
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W e want to stress again that the result (93) requires the existence ofa

K oszulcom plex on O �.Ifsuch a K oszulcom plex failsto existitisunclear

which probebraneshould beused todeterm inethetype.Also,letusrem ark

that the two probe branes (92) are re
ected in form ula (93) in a two-fold

choice forthe m axim alcharge q.

5.3 Type change in the orientifold m odulispace

In thissection we wantto explore orientifoldsand the dependence oftheir

typeon theslicein theK �ahlerm odulispace.W ewillillustratethispointin

a particularexam ple.W e willobserve thatthe type ofan orientifold plane

isnotan invariantconceptand can change overthe K �ahlerm odulispace.

Exam ple 2

Recallthelistofchiral�elds(10)and them odulispaceforthisexam ple.

O utofthe listofpossibletargetspace involutionsweconsider:

x1 x2 x3 x4 x5 x6 p

�0 � 1 + 1 � 1 � 1 � 1 + 1 � 1

The holom orphic involution actsdiagonaly with the indicated signson the

linear sigm a m odelcoordinates. For consistency with tadpole cancellation

we pick m = 1,which isequalto the codim ension ofthe �xed pointlocus

m odulo 2.

Deep inside phases IIand III,cf. the dotted line in Fig.9,the �eld x6

with charge Q 6 = (1;� 2) gets a vacuum expectation value,and relation

(90)connectsthe slice � = (0;�)with (�;� �),and the slice � = (0;0)with

(�;� 2�). Now recallfrom the discussion in Sec.3.2 that the form er two

slicesofthe orientifold m odulispace do notintersectthe singularlocusS .

W e can therefore m ove from the large volum e point along Path A to the

dashed lineatin�nity in phaseIIorIII,changesliceand m oveback to large

volum e. W ith our choice of�0 the orientifold sign ��0 is notaltered as we

change slices.

O n the otherhand,deep inside phasesIIIand IV,along the dotted line,

the �eld p with charge Q p = (� 4;0)getsa vacuum expectation value.The

associated shiftof� now doesnotcorrespond to a changeoftheslice.How-

ever,the orientifold sign isaltered,�0�0 = !� 1p ��0 = � ��0. Ifwe m ove along

Path B in Fig.9 we return to the originallarge volum e point,butpick up

a non-trivialm onodrom y on the D-branes. Thisdiscussion can be sum m a-

rized in the following diagram ,which shows how the various large volum e
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� = (0;�)or(�;�)

� �
�+

(1;
�
2)�

�
�

�
+
(�

4
;
0
)�

LV

Path A

Path B

W P8

O rb

hybrid

Figure 9. In thetwo-param eterm odel,Exam ple2,thetwo

slices,� = (0;�)and (�;�),areconnected alongthe(dashed)

lineatin�ntiy in phasesIIand III.Thisisduetothevacuum

expectation valueofthe�eld x6.Asaconsequence,twolarge

volum elim itsareconnected via Path A in them odulispace.

Path B inducesa non-trivialm onodrom y butreturnsto the

originallarge volum e point.

pointsare connected via PathsA and B:

(95)

D + 1;1;(0;�)(X )
A

-
D + 1;1;(�;�)(X )

B

?

B

?

D � 1;1;(0;�)(X )
A

-
D � 1;1;(�;�)(X )

Here,D ��0;m ;�(X )denotesthesetofinvariantD-braneson thetoricvariety

X atlarge volum e.

Letusanalyse the orientifold planesO � = O (�1;�2)
.Atlarge volum e the

�xed pointlocusoftheinvolution isthe union oftwo points,

pa = O (+ 1;� (� 1)a) = fxa = x3 = x4 = x5 = p = 0g for a = 1;2 ;

and two com pactsurfaces,

Sa = O (� 1;� (� 1)a) = fxa = x6 = p = 0g for a = 1;2 :
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At this point we could just use form ula (94) in order to obtain the types.

Letusbem oreexplicitan putthe probebraneson pa resp.Sa.

Theprobebraneforthepointpa istheK oszulcom plexof(xa;x3;x4;x5;p),

which hasQ f = (� 1;1)and right-m ostgauge charge q= (� 1;0),

W � 2(0;� 1)
f
-

:::
f
-

W 3(� 1;0):

Thepolynom ialf0 in thequasi-isom orphism (79)m ustthereforecarry gauge

charge according to theconditions

Q f0 = �=� � Qf + 2q= (0;0)on � = (�;�);

Q f0 = �=� � Qf + 2q= (� 1;0) on � = (0;�):

In theform ersituation f0 = 1,thusthequasi-isom orphism isU� = Uinv and

thetype opa = � �e oftheorientifold planeon pa isdeterm ined using (81),

opa = � ��0(� 1)(m � d)=2 det(�0f)= � (� 1)a��0 :

In the lattercase we can setf0 = x2
â
x6,where(x1̂;x2̂):= (x2;x1),with the

quasi-isom orphism V� = x2
â
x6(Uinv)

� 1 and

opa = � ��0(� 1)(m � d)=2 det(�0f)= � (� 1)a��0 :

ForthesurfaceSa thenaiveK oszulcom plex doesnotprovidean invariant

D-brane. W e therefore use a K oszulcom plex for (xa;x3;x4;x6;p),which

correspondsto a pointon Sa.The type oSa ofthe orientifold plane isthen

determ ined by oSa = �e. W e have Q f = (� 1;� 1) and right-m ost gauge

charge q= (� 1;� 1),

W � 2(0;0)
f
-

:::
f
-

W 3(� 1;� 1):

Thecondition on thegauge charge off0 reads

Q f0 = �=� � Qf + 2q= (0;0)on � = (�;�);

Q f0 = �=� � Qf + 2q= (� 1;0) on � = (0;�):

For � = (�;�) the quasi-isom orphism is the invertible one,Uinv,and the

typeoftheorientifold planeSa is

oSa = � (� 1)a��0 :

For� = (0;�)the quasi-isom orphism isV� = x5(Uinv)
� 1 and

oSa = (� 1)a��0 :

W eobservethatforboth,thepointsand thesurfaces,thetwo respective

typesareopposite,so thatthetotalcon�guration oforientifold planesdoes

notcarry a netRR-charge in thisexam ple.



ILK A BRUNNER,M ANFRED HERBST 59

Let us sum m arize our results on the types oforientifold planes at large

volum e asfollows:

large volum e � = (0;�) � = (�;�)

��0 = + 1 O +
p1
O �
p2
O �
S1

O +

S2

A
-

O +
p1
O �
p2
O +

S1
O �
S2

B
?

B
?

��0 = � 1 O�p1 O
+
p2
O +

S1
O �
S2

A
-

O �
p1
O +
p2
O �
S1

O +

S2

From thisdiagram we �nd thatallfourdi�erenttype assignm entsare con-

nected through paths in m odulispace. Path B leads back to the original

large volum e point,butstillchanges the overalltype. Path A,which con-

nectstwo di�erentlarge volum e points,swapsthe typesofthesurfacesSa.

6 C om pact m odels

Letusnextturn to linearsigm a m odelswith superpotential.They giverise

to com pact low-energy con�gurations. From now on we have to dealwith

m atrix factorizations instead ofcom plexes. In fact,m any ofthe features

thatweobserved forcom plexesin theprevioussection carry overto m atrix

factorizations,so thatwe elaborate on the peculiaritiesofthe latterin the

following.

Firstthing to keep in m ind when turning on a superpotentialisthatin

ordertosatisfythehom ogeneity equation (7)som eofthechiral�eldshaveto

carry non-vanishing R-charge.In particular,fora gauge-invariantpotential

ofthe form

(96) W (p�;xi)=
X

�

p�G �(xi);

wewillassign R-charge+ 2 to the�eldsp� and 0 to the�eldsxi.Thisnon-

trivialcharge assignm entplaysa specialrole in Landau{G inzburg orbifold

phases,which we discussin Sec.6.2.

Second,in a phase where the superpotential(96) gives rise to F-term

m asses for p� and the transverse m odes to G �(xi) = 0, the low-energy

dynam ics is restricted to the subvariety M = \�fp� = G � = 0g. In that

case the m atrix factorizations are m apped to geom etric D-braneson M by

theK n�orrerm ap [20].W estartin Sec.6.1 with investigating how theworld

sheet parity action P m
�

on the m atrix factorizations gets m apped to the

parity action P ~m
B on thegeom etricD-branesin thelow-energy con�guration.
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6.1 T he e�ect ofthe K n�orrer m ap on the parity action

Let us review the standard K n�orrer periodicity before we m ove on to ori-

entifoldsand the �bre-wise version thatisneeded in the contextofgauged

linear sigm a m odels. Consider 
at space C N with coordinates x1;:::;xN
and CN + 2 with coordinatesu;v;x1;:::;xN .O verthelatterweconsiderthe

superpotentialW (u;v;x)= uv+ fW (x).

K n�orrer periodicity then states that the set of(isom orphism classes of)

m atrix factorizations of W (u;v;x) over CN + 2 is equivalent to the set of

m atrix factorizationsoffW (x)overCN .Physically,in theLandau{G inzburg

m odelthesuperpotentialW (u;v;x)givesm assestothe�eldsu and vsothat

they can beintegrated outin theinfra-red.A canonicalm atrix factorization

oftheterm uv in W (u;v;x)then establishestheequivalenceofthetwo sets

ofm atrix factorizations.Thecanonicalm atrix factorization reads

Q c(u;v)=

�
0 v

u 0

�

:

In fact,a m atrix factorization eQ (x)offW (x)ism apped to a m atrix fac-

torization ofW (u;v;x)by taking thegraded tensorproductwith Q c,

(97) eQ (x)7! Q (u;v;x)= Q c(u;v)
 �0 + idc
 eQ (x):

Conversely,K n�orrerobserved in [64]thatby isom orphism any m atrix fac-

torization ofW (u;v;x) can be brought to the tensor product form as in

(97),thusproviding eQ (x).

In the context ofgauged linear sigm a m odelsthe coordinate �elds,here

u;v;x1;:::;xN ,carry gauge charges as wellas R-charges,and we have to

determ inehow theirrepresentationson D-branesarem apped underK n�orrer

periodicity. The tensor product (97) dictates the following decom position

ofrepresentations,

�(g) = �c(g)
 e�(g);(98)

R(�) = Rc(�)
 eR(�):

Letus set the R-charges for u and v to 0 and 2,the R-charge assignm ent

ofthe rem aining �elds xi does not play a role for the subsequent discus-

sion. The representation ofthe R-sym m etry R c(�)can be chosen up to an

(unphysical)m ultiplication by acharacter�
�
(�).W esetRc(�)= diag(1;�).

In orderto determ ine the representation �c(g)in the uv-system we note

that the canonicalm atrix factorization Q c can be obtained by quantizing

a boundary ferm ion �;�� with canonicalcom m utation relations f�;��g = 1.
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The two states in the Hilbert space ofthe boundary ferm ion are j0
�
and

��j0
�
,where�j0

�
= 0.Theferm ion iscoupled to thebulk uv-system through

theboundary superchargeQ c = u� + v��.

Ifwe assign to v and u the charges Q v resp. � Qv,then gauge invari-

ance ofthe boundary supercharge requiresQ � = � Q�� = Q v. Accordingly,

the Chan{Paton factors associated with the states j0
�
and ��j0

�
have the

canonicalcharge assignm ents� Qv=2 resp. Q v=2. Note howeverthatQ v=2

doesnothaveto bean integer.W ethereforeshiftitinto theauxiliary theta

angle �c = Q v� and obtain �c(g) = diag(1;g� Q v). The canonicalm atrix

factorization istherefore

B c :W (0)
u

-

v

� W (� Qv):

To sum m arize,a m atrix factorization offW (x)ism apped to a m atrix fac-

torization ofW (u;v;x)by taking thetensorproductwith B c.Theauxiliary

theta angle givesrise to thenon-trivialrelation

(99) � = ~� + Qv� ;

where � and ~� are the theta anglesofthe ultra-violettheory,including the

uv-system ,and theinfra-red theory,respectively.

O rientifolds and the K n�orrer periodicity

Let us now check the com patibility ofthe K n�orrer m ap with the parity

action. Note �rst that condition (41) on the superpotentialrequires that

theinvolution � actsin theuv-system as� :(u;v)7! (� !� 1v u;!vv)forsom e

phase!v.

W eneed to determ inehow theparity operatoron m atrix factorizationsof

W (u;v;x)splitsup in the tensorproduct(97)and (98). O n the canonical

m atrix factorization the world sheetparity actsas

Pc(Q c) = � �
�
Q
T
c ;

Pc(�c(g)) = �
�� c=�

(g)�c(g)
� T

;

Pc(R c(�)) = �
m c
(�)Rc(�)

� T
;

wherem c = 1.Thecanonicalquasi-isom orphism thatm akesB c invariantis

Uc =

�
0 1

� !v 0

�

:

Itsatis�es

(100) Uc = �c�c(�
2)� 1��U T

c with �c = � !
� 1
v :
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Using the resultsofSec.4.7 on tensorproductbraneswe can construct

the quasi-isom orphism U� for the m atrix factorization Q (u;v;x) in term s

ofthe quasi-isom orphism ~U for eQ (x). The relationsbetween the constants

associated with theorientifold action can besum m arized asfollows:

(101)

~m = m � 1 ;
~� = � � Qv� ;

~�� = � !v�� :

In sum m ery,wefound thatthe K n�orrerm ap relatesthe setsofinvariant

D-branesasfollows:

M F
��;m ;�

W
(CN + 2)

�=
-

M F
~��;~m ;~�

fW
(CN )

In particular,the dressing ofthe parity action by the antibrane operator

(� 1)FL changes underthe K n�orrer m ap,i.e.no dressing m aps to dressing

and vice versa.8 Thisresultisin agreem entwith [18].

Fibre-w ise K n�orrer m ap

Letusreturn now to ouroriginalquestion.G iven a parity operatorin the

linearsigm am odelwewanttodeterm inetheparity operatoron thecom pact

hypersurfaceM r in a geom etric phase.

Aspointed outin [20]them atrix factorizationsin M FW (CN ;T)and the

geom etric D-branesin D (M r)arerelated by a �bre-wiseversion ofK n�orrer

periodicity.ForW = pG (x)wecan thereforeadoptourpreviousdiscussion,

replacing (v;u)by (p;G (x))and setting fW = 0.

Ifwehavea superpotentialW =
P ‘

�= 1
p�G �(x)thatgivesriseto a com -

pleteintersection M r in thelargevolum e phasewehave to apply �bre-wise

K n�orrerperiodicity ‘tim es,

M F
��;m ;�

W
(CN + 2)

�=
-

D
~��;~m ;B (M r)

wherethe relation between theB -�eld and thetheta angle is

B = � �

‘X

�= 1

Q p�� ;

and the dressing by the antibraneoperatorisshifted according to

~m = m � ‘:

8Thisshiftwasobserved in the contextofdefectsin [90]
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The relation between orientifold signs is ~�� = (� 1)‘
Q

‘

�= 1
!���. Here the

phases!� are de�ned through the holom orphic involution on the �eld p�,

i.e.�(p�)= !�p�.In a generalcoordinatebasistheaction oftheinvolution

� on the p�’s m ay not be diagonal,so that the m ore invariant expression

between theultra-violetand theinfra-red signsisin term softhedeterm inant

of� acting on the p�’soron the polynom ialsG �,i.e.

~�� = (� 1)‘det(�jp)�� = det(�jG )
� 1

��

Aswehavereviewed in Sec.2.1 thepriceto pay forapplying theK n�orrer

m ap �bre-wise isto dealwith half-in�nite com plexesin D (M r).Theworld

sheetparity action on R-degrees,j7! ~m � j,im pliesthatP~m
B
m apsright-to

left-in�nite com plexesand vice versa.A D-braneisinvariantifthere exists

aquasi-isom orphism between theleft-and theright-in�nitecom plex,i.e.the

joined com plex m ustbean in�niteexact(i.e.em pty)com plex.

Since the description in term s ofin�nite com plexes is cum bersom e,in

particular in the situation ofcom plete intersections,we prefer to work di-

rectly with the m atrix factorizations in the linearsigm a m odelin the sub-

sequentexam ples.W e willm ake an exception ifthe low-energy D-brane in

D ~��;~m ;B (M r)isexpressiblethrough a �nite com plex ofvectorbundles.

6.2 Landau{G inzburg orbifoldsand the orientifold m odulispace

Landau{G inzburg orbifoldsarethe’com pact’analog oftheorbifold m odels

that we discussed in Sec.5.1. W e therefore closely follow the discussion

therein.W e startwith the one-param eterm odel,wherethe vacuum expec-

tation valueforthe�eld p ofchargeQ p = � N breaksthegaugegroup from

U (1)to ZN .

The m ain di�erence to the noncom pact situation is the non-trivialR-

charge assignm ent,R p = 2,for the chiral�eld p. W hen this �eld gets a

vacuum expectation value,forinstance p = 1,itisconvenient to dressthe

R-sym m etry by a globalgaugetransform ation,i.e.in theLandau{G inzburg

m odelwe use the shifted R-sym m etry with charges �R i = R i+ 2Q i=N on

thechiral�elds.A m atrix factorization iscorrespondingly m apped from the

linearsigm a m odelto theLandau{G inzburg m odelthrough

�Q (x) := Q (p= 1;x);

��(
) := �(
); for 
 2 �� U (1);

�R(�) := R(�)�(�2=N )� 1;

�U� := U�(p= 1):
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Figure 10. The N -fold cover ofthe K �ahlerm odulispace,

et = (� N  )N . For both N even and odd only the large

volum e point with non-trivialB-�eld,B = �,is connected

to the G epnerpoint,the large volum e pointwith vanishing

B-�eld isnot.Thisisdueto the relation B = � + N �.

The Landau{G inzburg orbifold data ofthe D-brane clearly satis�esthe in-

variance conditions(66)forthediscrete group ZN ,provided thatthetheta

angle isgiven by
�� := � 2 Z m od N � ;

and the R-sym m etry character�
�m
(�)isdeterm ined by

(102) �m := m +
2

N

�

�
2 Q :

In thisway we obtain thesetofinvariantD-branesM F
���;�m ;��

W
(CN ;�)in the

Landau{G inzburg orbifold m odel,asitwasstudied beforein [17].Therein,

thetriangulated structureofthecategoryofm atrixfactorizationswasworked

outin detail. In particular,the world sheet parity action was represented

asa functoron the triangulated category.

In Sec.5.1 we found that a shift ofthe theta angle by N � leaves the

theory invariantatthe orbifold point. In view of(102)thisshifthasto be

supplem ented by a shiftofm ,so that �m isnotaltered,i.e.

(103) (�;m )�= (�0;m 0)= (� � N �;m + 2) , (��;�m )�= (�� � N �;�m ):

The liftofa m atrix factorization from the Landau{G inzburg orbifold to

the linear sigm a m odelcan be found along the lines ofSec.5.1 and is ex-

plained in detailin [20]. According to (103) we have a choice in lifting

to di�erent slices ofthe m odulispace. Suppose we have a m atrix factor-

ization with quasi-isom orphism U� for given (�;m ). Then in view ofthe
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relations (66) a com bined shift (103) im plies that we have to dress the

quasi-isom orphism by the �eld p,i.e.U 0
� = pU�. Note that m 7! m + 2

isconform with the R-charge R p = 2. The sign ofthe orientifold action is

altered according to (89),

�
0
� = !

� 1
p �� :

Note thatthe im plicationsforthe m odulispace are essentially the sam e as

forthenon-com pactsituation,see Fig.10.

H igher-dim ensionalm odulispaces

Letusgeneralize this discussion to m odelswith higher-rank gauge group,

T = U (1)k. W e consider a phase where the deleted set � r has one or

severalirreduciblecom ponentoftheform fxl= 0g forsom el2 f1;:::;N g.

The vacuum expectation value forxl then breaksthe gauge group so that

qa � qa + Q a
l
and in particular,

(104) �
a � �

0a = �
a + Q

a
l�; m

0= m + R l; �
0
� = !

� 1

l
��:

Note thatthe �eld xlm ay orm ay notcarry R-charge.

W e obtain theequivalence

M F
��;m ;�

W
(X r)

�=
� ! M F

�0�;m
0;�0

W
(X r):

Asdistinguished from thenon-com pactsituation (91)theintegerm m ay get

shifted by 2. In orderto see thatthiscan indeed have a non-triviale�ect,

recallthat a com m on shift ofR-degree [1]:j 7! j� 1 is accom panied by

m 7! m � 2.Thiscan beused to undo theshiftofm in (104).However,the

orientifold sign isthen altered according to (64),thatis�0� 7! � �0�.

6.3 T he type oforientifold planes

Recallfrom Sec.3.1 thatin a geom etric large volum e phase the orientifold

plane O � isgiven by the intersection ofthe �xed pointlocusFix(��0)with

the holom orphic subvariety M = fp� = G � = 0g8�. Thisintersection m ay

be reducible,O � =
S

� O �;� ,which adds som e subtleties as com pared to

the discussion ofthe type oforientifold planes for non-com pact m odels in

Sec.5.2.Theassum ptionson theapplicability ofthe type form ulasare the

sam easin Sec.5.2.

Forthefollowing letusdenotetheam bientspaceby Y = fp1 = :::;p‘ =

0g � X and the com plete intersection by M = fG1(x) = :::= G ‘(x) =

0g � Y .Forsim plicity we work in a coordinate basisthatdiagonalizes��0.
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Fora given com ponentO �;� � M ,letusprobe the type with a K oszul-

like m atrix factorization with tachyon pro�le Q =
P

i
(fi�i+ gi��i). The

polynom ialsfi are given by those coordinatesxi whose com m on zero locus

isO �;� . Note thatthe �eldsp� are notincluded,because in the geom etric

phase they obtain zero expectation values from the F-term equations no

m atterhow the involution ��0 actson them .

The polynom ialsthatdeterm ine O �;� can be separated in two sets.The

�rst contains coordinate �elds xi that are not invariant under �
�
0. Let us

denotethem by f1;:::;fs.Theircom m on zero locusgivesFix(�
�
0).In order

torestricttoM and topick an irreduciblecom ponentwehavetoadd a�nite

num berof��0-invariantpolynom ials,fs+ 1;:::;fs+ r,where r 2 f0;:::;‘g is

thenum berofpolynom ialsneeded torestricttoM and topick an irreducible

com ponent.

Asforthenon-com pactm odelsin Sec.5.2theresultingK oszul-likem atrix

factorization m ay notbean invariantD-brane.In som ecasesaway outisto

utilize a lower-dim ensionalprobebraneto determ ine thetype.Forthatwe

need to add theappropriate��0-invariantpolynom ialsfs+ r+ 1;:::;fs+ r+ 2p to

theK oszulcom plex.Thetypeisthen given by

(105) o� = � (� 1)p�e = � ��0(� 1)(m � D + ‘)=2
�
��=��2q

(�)det(��0jG )det(�):

Here, D = s + r � ‘ is the codim ension of O�;� in M . Notice that its

codim ension in theam bientspaceY iss+ r.For� containing only signswe

obtain the sim plerexpression

(106) o� = � ��0(� 1)r+ (m + D + ‘)=2
�
��=�

(�) for �a = � 1 :

6.4 O rientifolds w ith and w ithout vector structure

Com pacti�cationswithoutvectorstructure have been introduced in [9,10],

where they were investigated fortoroidalcom pacti�cations,see [11,12]for

recentworks.The starting pointwasthe observation thatthe gauge group

for the heterotic string is Spin(32)=Z2 rather than SO (32). This allows

com pacti�cationswith gaugebundleswhich donotadm itvectorsofSO (32).

The obstruction to having vector structure is determ ined by a generalized

Stiefel-W hitney class �w2,de�ned m odulo 2.O n the dualtype Iside itwas

observed thatthechoiceof �w2 correspondsto thechoiceofa discreteB-�eld

thatisstillallowed by theorientifold projection,see [91].

UnderT-duality thesecom pacti�cationsgetm apped to IIB com pacti�ca-

tionswith O 7-planes.Asopposed to theT-dualofa com pacti�cationswith
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vectorstructure,thedi�erentorientifold planeswillhaveunequaltype,lead-

inge�ectively to arank reduction ofthegaugegroup.Theorientifold action

with �xed points on a two torus has four O 7-planes. In the case without

vectorstructure three ofthem are O � planes,and one isan O + ,such that

tadpolecancellation requiresonly 8 D7 branes,resulting in thegaugegroup

SO (8).

In thecurrentpaperwehavedeveloped a fram ework wherethephysicsof

orientifoldscan bestudied overthewholeK �ahlerm odulispace,in particular

forallvaluesofthediscreteB-�eld.Theearlierresultson com pacti�cations

withoutvectorstructureshould therefore bereproduced by ourm ethods.

Exam ple 1 with N = 3 and superpotential

To see thisin the sim plestexam ple,we considerorientifoldsofthe cubic

torusE � CP
2.Thesuperpotentialistaken to be

(107) W = p(x31 + x
3
2 + x

3
3):

W e willfocuson the holom orphicinvolution

(108) �0(x1;x2;x3;p)= (� x2;� x1;� x3;p):

As was discussed in Sec.3.2 its �xed pointsetat large volum e consists of

3+ 1 pointson the torus,

O � 1;� = fx1 � x2 = x3 � �x2 = 0g for �
3 = � 2 ;

O + 1 = fx1 + x2 = x3 = 0g :

The typescan readily be com puted using (106),where r = 1 forthe three

pointsand r= 0forthesingleone.Takinginto accounttheshiftB = �+ 3�

weobtain

(109)
o� 1;� = ��0(� 1)m =2(� 1)B =� ;

o+ 1 = ��0(� 1)m =2 :

Asexpected thefourpointshaveequaltypeforvanishingB-�eld.O therwise,

fornonvanishing B-�eld the type ofone pointisdi�erentfrom the typesof

the otherthree points.Note thatm being even in the gauged linearsigm a

m odelm eans ~m being odd in thegeom etric phase,so thattheparity action

isdressed in theinfra-red by theantibraneoperator(� 1)FL ,asitshould be

forO 7-planesin thetype IIB context.

Let us be m ore explicit and construct the probe branes that are used

to test the type ofeach ofthese points. Since the �xed point set can in

each case be described by two linear equations,f1 = f2 = 0,the m atrix

factorizations are ofK oszultype with W = f1g1 + f2g2,see the general

discussion in section 4.6.
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T he B -�eld turned on

For � = 0 the m atrix factorization and its parity im age take the form

isom orphism between the orientifold and itsim age.

W m �2

2

(� 1)

��
�
f1
f2

�

-

� ��(g1;g2)

� W m

2

(0)� 2
� ��(f2;� f1)

-

��
�
�g 1

g2

�� W m + 2

2

(1)

u�1

?

u0

?

u1

?

W m �2

2

(� 1)

�
f2
�f 1

�

-

(� g1;g2)

� W m

2

(0)� 2
(f1;f2)

-
�
g1
g2

�� W m + 2

2

(1)

Thebraneand itsim age�tthrough thewindow w = � � < � < � with N =

f� 1;0;1g,seeSec.2.2.In orderto determ inetheisom orphism (u� 1;u0;u1)

weneed to considerthe individualorientifold pointsseparately.

To thesingle pointO + 1 wecan associate thefactorization W =
P

a
f1ag

1
a

with

f
1
1 = x1 + x2; f

1
2 = x3

g
1
1 = p(x21 � x1x2 + x

2
2); g

1
2 = px

2
3:

The polynom ials f1a are odd under the holom orphic involution �0. The

isom orphism isthen given by

u
1
� 1 = 1; u

1
0 =

�
0 � 1

1 0

�

; u
1
1 = 1 :

W e �nd that �(U 1)T = � U1 and hence o+ 1 = � �e = ��0(� 1)m =2,which

con�rm sthe result(109)fornon-vanishing B-�eld.

Forthe three orientifold points O � 1;� we have

f
�
1 = x1 � x2; f

�
2 = x3 � �x2

g
�
1 = p(x21 + x1x2 + x

2
2); g

�
2 = p(x23 + �x2x3 + �

2
x
2
2):

Theholom orphic involution actson the polynom ialsas

�
�
f
�
1 = f

�
1 ; �

�
f
�
2 = � f

�
2 + �f

�
1 ;

so thatthe isom orphism U � isgiven by

u
�
� 1 = 1; u

�
0 =

�
� � 1

� 1 0

�

; u
�
1 = � 1 :

Asa consequence,�(U �)T = U � and thereforeo� 1;� = � �e = � ��0(� 1)m =2.

Thiscon�rm sthatfornon-vanishingB-�eld thetypeatthethreeorientifold

pointsisopposite to the oneatthe single pointcalculated before.
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To m akecontactwith thediscussion in Sec.4.6 notethatdet�f = � 1 for

the three points,and det�f = 1 forthe single point,such thatourexplicit

calculation isin agreem entwith thegeneraldiscussion.

Vanishing B -�eld

Letusnextturn to the case � = �.TheD-braneand itsim age arerelated

asfollows,

W m �2

2

(� 2)

��
�
f1
f2

�

-

� ��(g1;g2)

� W m

2

(� 1)� 2
� ��(f2;� f1)

-

��
�
�g 1

g2

�� W m + 2

2

(0)

u�1

?

u0

?

u1

?

W m �2

2

(� 1)

�
f2
�f 1

�

-

(� g1;g2)

� W m

2

(0)� 2
(f1;f2)

-
�
g1
g2

�� W m + 2

2

(1)

O bviously,U can in thiscasenotbean isom orphism ,itincreasesthedegree

by one,and therefore can only be a quasi-isom orphism linear in the coor-

dinatesxi. ThatU is a quasi-isom orphism m eansthatthe bound state of

thebraneand itsim age braneobtained by binding them using thetachyon

pro�le given by U is an em pty brane. W hich branes are em pty depends

on the phase under consideration. Since we are interested in relating our

construction to com pacti�cations without vector structure,we would like

to m ake contact with the geom etric regim e at large volum e. Here,the set

� r = fx1 = x2 = x3 = 0g isexcluded and any brane located there 
owsto

an em pty brane. Thism eansthatthe quasi-isom orphism should be ofthe

form f0U ,where U is the isom orphism considered previously,and f0 is a

polynom ialin the�eldsxisuch thatthecom m on zero locusof(f0;f1;f2)is

contained in � r.

Forthe single �xed pointO + 1 one can choose

f
1
0 = x1 � x2 :

Since f0 is sym m etric underthe holom orphic involution,we conclude that

again ���(f10U
1)T = � f10U

1,such that the type does not change,o+ 1 =

��0(� 1)m =2.

Atthethree �xed points O � 1;� thisisdi�erent.Here,onecan choose

f
�
0 = x1 + x2 :

Sincethepolynom ialf�0 
ipssign underparity transform ation,we�nd that

���(f!0 U
!)T = � f!0 U

! and the type ofthe orientifold willalso 
ip,that

is o� 1;� = ��0(� 1)m =2. Allfour points carry the sam e type for vanishing

B-�eld.
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To sum m arize,the transform ation properties ofthe quasi-isom orphism

between a D-brane and itsparity im age determ ine whetherornotthe ori-

entifold typeischanged when the theta angle ism odi�ed.

6.5 Type change in the orientifold m odulispace

In m odelswith higher-dim ensionalK �ahlerm odulispaceitm ay happen that

di�erentlarge volum e pointsare connected via a path in m odulispace. In

this section we illustrate the change oforientifold type along paths in the

com pactversion ofExam ple2.

Exam ple 2

Recallthe charges (10) and the m odulispace from Fig.9. The super-

potential is W = pG (x) with a quasi-hom ogeneous polynom ial G (x) of

gauge charge (4;0). For sim plicity we pick the Ferm at type polynom ial

G (x)= x46(x
8
1 + x82)+ x43 + x44 + x45. For the world sheet parity action we

choose the holom orphicinvolution [14]

x1 x2 x3 x4 x5 x6 p

�0 + 1 + 1 � 1 � 1 � 1 + 1 � 1

which actsdiagonally on the chiral�elds.W e setm to beeven.

Let us follow the two paths in Fig.9. The two slices ofinterest have

theta angles � = (0;�) and � = (�;�). Along Path A we m eetthe dashed

line,which stretchesbetween theLandau{G inzburg pointand theweighted

projectivem odelpoint.O n thislinex6 obtainsa vacuum expectation value,

and accordingtotheshifts(104)neither��0 norm isaltered when wechange

from slice (0;�)to (�;� �).

Following Path B isdi�erent.Along thedotted linebetween theLandau{

G inzburg pointand the hybrid pointthe �eld p getsa vacuum expectation

value,thus connecting � = (0;�) with �0 = (� 4�;�). The corresponding

shifts are m 0 = m + 2 and �0�0 = � ��0. Indeed Path B connects the large

volum e theories M F
��;m ;(0;�)

W
(X )and M F

� ��;m + 2;(0;�)

W
(X ). In the latter we

can perform an overall shift of the R-degrees and use (64) to �nd that
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M F
� ��;m + 2;(0;�)

W
(X )

[1]
� ! M F

��;m ;(0;�)

W
(X ).W eobtain thefollowing diagram :

D ��;m � 1;(0;�)(M ) D ��;m � 1;(�;�)(M ):

�=

?

�=

?

M F
��;m ;(0;�)

W
(X )

A
-

M F
��;m ;(�;�)

W
(X )

� �KB[1] � �KB[1]

The verticalm ap is the K n�orrer m ap. Note that as com pared to the dia-

gram (95) for the non-com pact m odel,now the sets ofinvariant D-branes

M F
+ 1;m ;(0;�)

W
(X )and M F

� 1;m ;(0;�)

W
(X )are notconnected through a path in

K �ahlerm odulispace.

Let us investigate the �xed point locus of�0 on the hypersurface M =

fp = G (x)= 0g atlarge volum e.Thenon-trivialcom ponentsO � are

O (+ 1;+ 1) = fx3 = x4 = x5 = 0g � M ;

O (� 1;+ 1) = fx6 = 0g � M :

Thesecond isa divisorD ,and the �rstisa union ofeightpointson M ,

p� = O (+ 1;+ 1);� = fx1 � �x2 = x3 = x4 = x5 = 0g � M for �
8 = � 1 :

Let us com pute the type ofO (+ 1;+ 1);� �rst. The m atrix factorization

forthe probe brane can be written in term sofboundray ferm ionsas Q =

fa(x)�a + ga(p;x)��a with

f1 = x1 � �x2; f2 = x3; f3 = x4;f4 = x5 :

Thepolynom ialsga are such thatW =
P

a faga.Using form ula (106)with

r= 1 we �nd forthetype,

o(+ 1;+ 1);� = ��0(� 1)m =2
:

Thetype ofO (� 1;+ 1) iscom puted using (106)with r= 1,

o(� 1;+ 1) = � ��0(� 1)m =2(� 1)�
1=�

:
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Letussum m arizeourresultsin the following table:

large volum e � = (0;�) � = (�;�)

��0(� 1)
m

2 = + 1 O +
p�

O �
D

A
-

O +
p�

O +

D

� �KB � �KB

��0(� 1)
m

2 = � 1 O�p� O +

D

A
-

O �
p�

O �
D

� �KB � �KB

W e found that orientifold planes ofopposite type sit in the sam e m oduli

space. In particular,the type change ofthe O 7-plane on D hasnon-trivial

im plications:In orderto beableto canceltadpolesand preservespace-tim e

supersym m etry we need an O 7� -plane in the large volum e lim it. Assum e

thatwe have found a supersym m etric and tadpole cancelling con�guration

ofD-branes. As we follow Path A we end up with an O 7+ -plane,that is

with positive tension,which im plies that space-tim e supersym m etry m ust

have been broken along theway.

6.6 O 7� -planes and singular D 7-branes from F-theory

In this section we consider a particular type IIB com pacti�cation with D-

branesand orientifold planesthatisknown to descend from the weak cou-

pling lim it ofF-theory on an elliptic �bration over CP3 [92]. The authors

of[34{36]investigated the geom etry ofthe D7-brane and found that it is

singularalong a curve thatsitsatthe intersection with the O 7-plane.This

can be attributed to the fact that the D7-brane is located at the zero lo-

cus ofa non-generic hypersurface polynom ial,i.e.the D7-brane geom etry

haslessdeform ation param etersthan a D7-braneon a generichypersurface.

Ref.[34,36]giveessentially two typeIIB explanationsforthesingularinter-

section,oneinvolving a testbraneand theotherinvoking D 3-branetadpole

cancellation.

Atpresentwewantto re-exam inethism odeland explain thenon-generic

hypersurfacefrom a typeIIB world sheetperspective,9 neitherreferring to

tadpolecancellation norusing testbranes.

9
Andr�es Collinuccipointed out in his talk at the workshop on \M athem aticalChal-

lengesofString Phenom enology" atthe ESIVienna thata world sheetargum entshould

exist.
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T he m odel

The type IIB com pacti�cation at hand is a system ofO 7-planes and D7-

braneson a degreeeighthypersurfacein weighted projectivespaceW P
8
11114.

Thisisthelarge volum e pointofthefollowing gauged linearsigm a m odel.

x1 x2 x3 x4 � p

U (1) 1 1 1 1 4 � 8

�0 + 1 + 1 + 1 + 1 � 1 � 1

Theinvolution �0 actsdiagonally on thecoordinateswith thesignsgiven in

thetable.Thesuperpotentialisgiven by W = p G (�;x),where

G (�;x)= h(x)+ �
2
;

and h(x) is a degree eight polynom ial. The low-energy con�guration at

large volum e is the hypersurface M = fG (�;x) = 0g � W P
8
11114. The B-

�eld vanishes.W esetm = 0 in thegauged linearsigm a m odel,which m eans

~m = � 1 in the non-linearsigm a m odelon the hypersurface,i.e.the parity

action isdressed by (� 1)FL ,asitshould beforan O 7-plane.

The�xed pointlocusof�0 givesthe orientifold plane at(� = + 1)

O + 1 = f� = 0g � M :

Asthe orientifold plane descendsfrom F-theory,itisan O 7� -plane,which

m eansthato+ 1 = � 1. Letusapply the type form ula (106)with the codi-

m ension oftheorientifold planeD = 1,‘= 1foraCalabi{Yau hypersurface,

and r= 1.W eobtain ~��0 = ��0 = � o+ 1 = + 1.ThesetofinvariantD-branes

istherefore given by

M F
+ 1;0;�= 0

W
(X )�= D

+ 1;� 1;B = 0(M ):

AllD-branesthatweconsiderin thefollowing m ustbecontained in thisset.

TheD7-branedescending from F-theory carriesgaugegroup SO (N )and

islocalized on the divisor

(110) D = f�(x)2 � �
2
�(x)= 0g � M ;

where �(x) and �(x) are polynom ials ofdegree n resp. 2n � 8 for som e

integern > 4.10

10
In fact,in the con�guration thatdescendsfrom F-theory the integertakesthe value

n = 16 and the gauge group on the D -brane is O (1), so that tadpole cancellation is

autom atic.
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Invariant D -branes in the orientifold background

TheD7-braneon D containsa curveofordinary doublepointsatf� = � =

0g for� 6= 0,which lieson the intersection with the orientifold plane.This

singularcurve pincheso� atthe pointsf� = � = � = 0g,which are locally

described by theW hitney um brella fu2 = v2wg � C
3.Thenum berofthese

pinch pointsisgiven by m ultiplying thedegreesofthepolynom ials(h;�;�)

thatde�netheirlocation,thatis8� n � (2n � 8).O neofthegoalsof[34{36]

was then to explain this singular behaviour and to �nd a m echanism that

prohibitsdeform ing the specialdivisorD to a generic degree 2n divisor,

D
0= fP2n(x)= 0g � M :

In our approach we �rst check the gauge group for a D7-brane on the

divisorD 0,thatisfora coherentsheafO D 0(n).In D + 1;� 1;B = 0(M )itcan be

described through a D 9D 9{system given by the com plex

(111) O M (� n)
P2n(x)

-
O M (n):

O M isthepull-back ofthetrivialholom orphiclinebundlefrom theam bient

space W P
8
11114 to the hypersurface M .11 In orderto determ ine the gauge

group,letuscom putetheexternalsign forthisD-brane.SincetheD-brane

(111)isa K oszulcom plex (73)ofjustonepolynom ial,wecan apply form ula

(81) with ~m = � 1,~��0 = + 1,and n = 1. For illustration let us be m ore

explicithere.In m atrix form thetachyon pro�leQ and theisom orphism U �

thatsatis�esthe invariance conditions(66)are given by

Q =

�
0 P2n(x)

0 0

�

; and U� =

�
0 1

1 0

�

:

The condition (67) then gives ~��0i = + 1. The externalsign is therefore

readily com puted to be �e = ~��0=~��0i= � 1,and tellsusthatOD 0(n)hasto

carry gaugegroup Sp(N ).12 Notethatwecould even choosethepolynom ial

P2n(x) to assum e the specialform �(x)2 � h(x)�(x). The gauge group on

thisbranetellsushoweverthatthecoherentsheafO D (n)isnottheD-brane

from theweak-coupling lim itofF-theory,although itsharesthesam eworld

11
Notethatin thissim ple situation thecom plex can belifted to a m atrix factorization

by tensoring itwith the canonicalm atrix factorization

W (0)

G
-

p

� W (8):

Instead ofdoing so we willdirectly work in D
+ 1;�1;B = 0

(M ).
12Instead oftheeven polynom ialP2n(x)wecould haveconsidered a divisordeterm ined

through an odd polynom ial�P2n�4 (x).Thiswould lead to �e = + 1 and thereforeto gauge

group SO (N ).Thisdivisorishoweverreducibleinto two com ponents[34,36],oneofthem

lying on the O 7� -plane.Butthisisagain notthe con�guration.
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volum e. In particular,there are no obstructionsto deform ing O D (n)back

to a generic divisor. W e conclude thatthe D-brane thatdescendsfrom F-

theory on thedivisorD cannotcorrespond to a singleD 9D 9{system (111).

Assuggested in [36]the nextbestguessforthe actualD-brane thatde-

scendsfrom F-theory isa rank two D 9D 9{system ,thatisa com plex

(112)
O M (� a)

�
O M (� b)

T(�;x)
-

O M (a)
�

O M (b)
;

whereT(�;x)isa rank two tachyon pro�le.

TheD-brane(112)isinvariantifwe�nd an isom orphism U � thatsatis�es

condition (72).In fact,we have

u
0 = ~��0i �

�
0(u

� 1)t= �e � id ;

where we used �e = ~��0=~��0i = ~��0i and the freedom ofchoosing a basisfor

the Chan{Paton space to setu� 1 = id. The invariance condition on Q (x)

in (66)becom es

T = � �e �
�
0T

t

RecallthattheD-braneshould carry an orthogonalgaugegroup SO (N ),so

�e = + 1 and thetachyon pro�letakestheform

T(�;x)=

�
�� � + �

� � � ��

�

:

In the infra-red theD-brane localizeson the determ inant

detT = �
2(�� �  

2)+ �
2
;

which isa polynom ialofdegree 2n = 2(a+ b).

The determ inantisalready very sim ilarto the polynom ialin D . In fact

[36],theD-braneon thedivisorD correspondsto thetachyon pro�leT with

thelargestnum berofdeform ation param etersin thepolynom ials.Itcan be

obtained by setting a = 2 and b= n � 2.Then the polynom ials(�; ;�;�)

havedegrees(0;n� 4;2n� 8;n).In thatcasethepolynom ial isredundant

and can be set to zero by a sim ilarity transform ation ofthe Chan{Paton

space.Finally setting � = � 1,thetachyon pro�lebecom es

T(�;x)=

�
� � �

� � ��

�

;

and itsdeterm inantisprecisely the polynom ialin (110),i.e.

D = fdetT = �
2 � �

2
� = 0g :
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W e conclude that we have found strong indications that the D7-brane

from theweak-coupling lim itofF-theory correspondsto a rank two D 9D 9{

system that carries gauge group SO (N ) and is localizes on the divisor D .

It does not however correspond to the coherent sheafO D (n). In fact,we

found thatthelattersupportsthe gauge group Sp(N ).
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A ppendix A Z2-graded vector spaces and their dual

Let us consider a Z2-graded com plex vector space V = V+ � V� with in-

volution � :V ! V that has Eigenvalue � 1 on V� . An elem ent v 2 V�

hasdegree jvjso that(� 1)jvj= � 1.13 The dualvectorspace V� isde�ned

through the dualpairing


f;v

�

V
forv 2 V and f 2 V�. Itisnon-vanishing

forjfj+ jvj= m .Thepairing iscalled even/odd ifm iseven/odd .

Thegradingon V naturallyinducesagradingon thevectorspaceofhom o-

m orphism ,Hom (V1;V2)= Hom + (V1;V2)� Hom� (V1;V2). For an elem ent

M 2 Hom (V1;V2) ofde�nite degree we denote the degree by jM jand we

have

�2M �1 = (� 1)jM j
M :

T he graded transpose

To an elem ent M 2 Hom (V1;V2) we can associate a dualhom om orphism

in Hom (V�2;V
�
1),the graded transposeM

T,via

(113)


M

T
f;v

�

V1
:= (� 1)jM j(jfj+ m )



f;M v

�

V2
:

13In the m ain textthe degree correspondsto the R-charge.
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Here v 2 V1 and f 2 V�2. In an even/odd basis, in which �1 = �2 =

diag(id;� id),a hom om orphism and itsgraded transposeare14

(114) M =

�
a b

c d

�

; M
T =

�
at � ct

bt dt

�

;

where t isthe ordinary transposition ofm atrices. In view ofthe shiftm in

grading between the vector space and its dual,the involution on the dual

vectro space V� is(� 1)m �T.

Letussubsum esom e propertiesforthe graded transposethatare useful

forthem ain partofthiswork.Forcom positionsofhom om orphism swehave

(115) (AB )T = (� 1)jA jjB jB T
A
T
:

Itsbehaviourwith respectto m atrix inversion is

(116) (M T)� 1 = �
T
2 (M

� 1)T�T1 = (� 1)jM j(M � 1)T

For even hom om orphism swe do notpick up a sign on the right-hand side

and wecan usetheabbreviation M � T := (M T)� 1 unam biguously.Theher-

m itian conjugation on thedualspaceisde�ned by requiring thatherm itian

conjugation com m uteswith the graded transpose,

(117) (M T)y
�

:= (M y)T :

D ouble transpose

ThedoubledualV� �ofa vectorspaceV iscanonically isom orphicto V via

thecanonicalisom orphism e:V ! V� �de�ned by


e(v);f

�

V � :=


f;v

�

V
.15

In thefollowing and in them ain partofthiswork wedo notexplicitly write

outthisisom orphism .

The double transpose ofa hom om orphism M :V1 ! V2 acts via the

canonicalisom orphism asM TT :V1 ! V2.Letusdeterm ine itsrelation to

M ,


M

TT
v;f

�

V � = (� 1)jM j(jvj+ m )


v;M

T
f
�

V � =

= (� 1)jM j(jvj+ m )


M

T
f;v

�

V
=

= (� 1)jM j(jvj+ jfj)


f;M v

�

V
=

= (� 1)jM j(jvj+ jfj)


M v;f

�

V � :

14
The slightly non-standard de�nition ofthe graded transpose in (113),including the

sign (�1)
jM jm

,ensuresthatM
T
hasthe sam e form forboth m even and odd.

15
Notethatthisisom orphism isde�ned withoutsign ascom pared to [17],and therefore

{there = ehere ��.
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W e therefore �nd,using jM j+ jfj+ jvj= m ,that

(118) M
TT = (� 1)(m + 1)jM j

M = �
m + 1
2

M �
m + 1
1

:

Alternatively,thiscan beseen directly with (114),keeping in m ind thatthe

grading operatoron the dualvectorspace is(� 1)m �T.

G raded tensor products

Thegraded tensorproduct,V = V1 b
 V2 can bede�ned forendom orphism s

A and B in term softheordinary (non-graded)tensorproduct,

(A b
 B ):= A 
 �
jA j

2
B :

Thegrading operatoron theright-hand sideensuresthem ultiplication rule

(A b
 B )(C b
 D )= (� 1)jB jjC j(AC ) b
 (B D ):

However,thegraded transposeisnotthenaiveone,an explicitcom puta-

tion in theeven/odd basisreveals

(119) (A b
 B )T = A
T(�T1 )

jB j b
 (�T2 )
jA j
B
T = A

T(�T1 )
jB j
 B

T
:
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