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A bstract

W e study supersymm etric Q ED in AdS,; with m assless m atter. At 1-doop the ultra-
violet regqulator of the theory generates a contrbution to the gaugino m ass that isna vely
nconsistent w ith unbroken supersym m etry. W e show that thise ect,known in at gpace
as anom aly m ediated supersymm etry breaking, is required to cancel an infra-red con-—
trbution arising from the boundary conditions In AdS space, which necessarily break
chiral symm etry. W e also discuss an analogous UV /IR cancellation that is independent

of supersym m etry.
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1 Introduction

In phenom encologically interesting m odels the e ects of broken supersymm etry in the visble
sector are conveniently param eterized, working in an o —shell form ulation, by the expectation
values of the auxiliary com ponents of som e hidden sector supem ultiplets. Am ong the auxil-
ary elds, the scalaru, belonging to the graviton supem ultiplt, (g ; ;A ;u),standsoutas
soecial. Indeed, unlke for auxiliary elds belonging to m atter and gauge hidden sector m ulti-
plets, the coupling of u is com pletely xed (at the leading relevant order) once the m asses and
self-couplings of the Iow energy e ective theory, prior to supersymm etry breaking, are speci-

ed. This property Jjust follow s from u being a parther of g whose coupling is equally well
goeci ed by the energy m om entum tensor of the low energy e ective theory. The scenario of
Anomaly M ediated’ (AM ) supersym m etry breaking corresponds to the lim iting case in which
the contribution of u dom inates over all of the others [1,2]. The nam e Anom aly M ediated’ is
due to the fact that in theM SSM u only couples to the visible elds at the quantum level, via
a supersym m etric analogue of the dilatation anom aly of non—supersymm etric eld theory.

T he purpose of this paper w ill not be to build phenom enological m odels based on AM ,
but rather to investigate som e of its m ore am using theoretical agpects. In fact, far away from
the dom ain of phenom enology, we shall be working in four din ensional supersym m etric A nti-
deSitter (AdS) gpace. W e nonetheless believe that our study provides interesting additional
Insight into the properties of AM , In particular its being UV insensitive, in spite of being UV
generated.

To set the stage, it is convenient to derive AM term s via the superconform al approach to
supergravity [3]. At tree Jevel, the m ost general two-derivative Lagrangian m ay be w ritten as
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where D and F are superconform ally invariant densities, provided that the chiral super ed,
S,and thematter elds, ;,haveW eylweights 1 and 0, respectively. Interesting actions are
obtained by consistently taking the lowest com ponent of S with non-vanishing expectation
value. T his breaks the superconform al group down to Poincare supergravity and tums S into
a purely auxiliary eld, form ally restoring scale invariance, hence the nam e ‘superconform al
com pensator’. Indeed a suitable superconform algauge can be chosen where S = 1+ 2u. The
couplings of the auxiliary eld u are thus xed by dilations and R symm etry. In particular a
classically scale invariant subsector, lke the M SSM , couples to u only at the quantum Jlevel.
For a m assless gauge theory the coupling of S is easily read o by dem anding form al scale-
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belongs to a non-local supergravity invariant ‘structure’ (involving In ), and this iswhy it is
convenient to use the 1P I action to detemm ine it. T his is just the supersym m etric generalization
of a dilaton coupling to the trace anom aly, hence the nam e ‘anom aly m ediation’.

In m odels w ith broken supersym m etry and vanishing cosn ological constant, hui= O (m s-,),
In plying a 1-loop contribution of order ( =4 )m 3_, to gaugiho and sferm ion m asses. H ow ever,
onem ay also havehuié 0,w ith unbroken supersymm etry on AdS. In that case, the expectation
value is given by the superpotential: ui= W =M 2 = 1=L ,where L is the AdS radius. Indeed,
at tree level, hui= 1=L generates the m ass splittings, of order of the AdS curvature, that are
required by supersymm etry in AdS. The r®le of a loop e ect lke anom aly m ediation is less
clear In this case, though it ought to be easy to understand, given that the theory still en pys
unbroken supersymm etry.

T he purpose of this note is to explain the rdle played by anom aly m ediation in supersym —
m etric AdS. This issue was brie y considered in [4], iIn the context of a general discussion in
which the short distance origin of AM was em phasized. H owever our explanation for the r0le
of AM in AdS space di ers from the one proposed in [4]. W e w ill argue that the existence of
AM is a necessary consequence of supersym m etry, given the large-distance properties of AdS
Space, In particular the presence of a (conform al) boundary. In this sense, our work represents
yet another way of deriving AM m asses, purely via consideration of IR saturated quantities.
T he outline is as llow s. In section [, we review supersymm etry in AdS and supersym m etric
QED therein. In section [3, we com pute the 1-loop contributions to the gaugino selfenergy in
SQED with m assless m atter, and discuss the in plications for the gaugino m ass. In section [4,
we present conclusions. The case of SQ ED w ith m assive m atter is relegated to the appendix.

2 Supersymm etry in AdS Space

Tn this section, we brie y review som e basic features of supersymm etry in fourdim ensional
AdS space which will be relevant for the follow Ing discussion. For m ore details, see [5,6]and
refs. thereln.



T he isom etry group of AdS, isSO (2;3),whose unitary, In nite-din ensional representations
aredenoted by D (E ;s),where E and s represent respectively the energy and spin of the lowest
energy state In the representation. T he Lagrangian m ass param eter of the corresponding elds
(In units of 1=L) are functions of E and s. For instance, for the sin plest cases of s = O;% ,we

have
D (E ;0) ! mg = e (EL2 3); (21)
1 (E  3=2}

Just as In  at space, the sim plest irreducible representations of the supergroup O sp(l;4)
correspond to chiral and vector supem ultiplets. A chiral supem ultiplet decom poses into the
follow ing representations of SO (2;3):

D (Eq;0) D Eg+ =; D (Eo + 1;0); Ey (2.3)
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N ote that the supersym m etry generators raise and lower E by a half-integer. T hen, according
to egs. (2.1),(2.2), the m ass tem s for ferm ions and scalars w ithin the sam e superm ultiplet are
not, in general, the sam e. T hese splittings are m andated by O sp(1;4) and originate w ithin the
lagrangian from two sources. O ne source is the non-vanishing R icci scalar and the other source
ishui= 1=L. Notice, nally, that iIn the special case of the conform ally-coupled superm ulti-
plt,with Eq = 1, the two scalars have the sam e m ass, even though they belong to di erent
representations: nam ely D (1;0) and D (2;0).
Tuming now to the m assless vector superm ultiplet, the SO (2;3) representation content is

D (2;1): (24)
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Thism ultiplet is both conform ally coupled and “short’, corresponding to its being related to a
gauge Invariant lagrangian. A m assive vector m ultiplet, on the other hand, is characterized by

Ey > 3=2, and decom poses as

D EO;} D E0+};O D EO+};1 Eq+ 1;} : (25)
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This is a Jong multiplet that can be viewed as arisihg from a H iggs m echanian . Indeed, it
has the sam e state m ultiplicity as the direct sum of the m assless vector superm ultiplet and the
G oMdstone supem ultiplet, whose content isD (2;0) D 2;2 (3;0). Since it corresponds
to m ultiplet shortening, the m asslessness condition m ust be stable in perturbation theory. In
particular, the gaugino m ass, for an unbroken gauge sym m etry, m ust be zero to all orders.



21 AdS SUSY QED

T he presence of the anom aly m ediated contrdbution to them ass (I3) is, na vely, at odds w ith
the previous obsarvation that the gaugino should bem assless. To clarify therdle of AM ,we shall
focus on the sin plest non-trivial exam ple, that is the m ass of the gaugino in supersym m etric
QED .Our theory consists of N = 1 supergravity with a vector super ed V , and two chiral
super elds , with opposite charges 1. The K ahler and superpotential functions are given
by (throughout the paper we use the conventions of W ess and Bagger [8])

MZe M= 324 Y& L+ Yed s o0( %)
M 2
W = Tp+ m o, (2.6)
f=1+0( . ): (2.7)
Since we shall be working in the neighbourhood of = 0,we neglct the higher order term s
Indicated by O (:::). The constant term in the superpotential gives rise to the A dS,; background

and to the expectation value of the com pensator,
, 1,
hSi= 1+ E : 2.8)

W ewill nd it technically convenient to work in the Poincare patch, w ith m etrdc

L2
ds’= — dx dx + dz’ : (29)
Z
The coordinates x ( = 0;1;2) and z cover only one of an In nite set of sim ilar Poincare

patches of the fullAdS space. H owever Poincare co-ordinates cover the whole euclidean AdS
(FAdS),which can be obtained just by the substitution t! 1 (see for instance the discussion
In ref. [7]). This last property indicates that, if properly interpreted, com putations on the
Poincare patch yield inform ations about the properties of QFT on full AdS.Assum ing L to
be positive, in these co-ordinates the four unbroken supersym m etries are param eterized by the
K illing spinors

3
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where ; isa two-com ponent constant spinor. N otice that the K illing spinors naturally decom —
pose Into two real spinors of SO (1;2). The rst of these corresponds to the standard N = 1
n 2+ 1 din ensions, while the other corresponds to the conform al supersym m etry. ITn fact, for
our purposes it will su ce to consider the at supersymm etries, as the others are In plied by
the AdS isom etrdes.



By taking the Imit M, ! 1 with I, xed, we decouple gravity and focus on quantum
e ects that are purely due to SQED on AdS,. T he relevant Lagrangian is, therefore,

L=p§= kinetic+ gaugeD term s] m ( 4 + 4 )
2
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w here, w ithout loss of generality, we have taken m to be real. O ne sees that the scalars acquire
non-holom orphicm ass tem s, originating from the non-vanishing R icci scalar, and holom orphic
(B 4ype) m asses, arising from the com pensator F-term . (T he farm ionic m ass and interaction
term s, by contrast, retain the same form as in  at space.) The scalar m ass eigenstates and

their m asses are given by

1

12=19—§(+ ); (212)
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Egs. (I1.3),(2.8) in pX the presence ofan AM contrbution to the gaugino m ass, given by

g’ 1
ﬂ + hwx: EmUV + hc:: (2.14)

vvL =
A s explained above and em phasized in [4], a gaugino m ass would be incom patible w ith super—
symm etry In AdS,. Indeed, form 6§ 0, there isan additional contribbution tom , corresponding
to a nite threshold e ect at the scale m , where m atter is iIntegrated out. This is due to the
presence of both a ferm ion m ass and an R Joreaking B-type m ass for the scalars. By the well
known property ofAM In at space, we can directly conclide that, at least form L 1, the
threshold e ect cancels eg. (2.14)), at Jeast up to sublading e ects of O (I=m L ). However, it
would be nice to see the exact cancellation in an explicit com putation. M oreover, In the lin it
m = 0, corresponding to conform alm ultiplets, there seem s to be a puzzle, in that all sources of
R —sym m etry breaking disappear from them atter lagrangian! In otherwords, form = 0 there is,
at st sight, no cbvious contribution in addition to eg. (2.14). In [4], it was concluded that the
contrdbution in eg. (2.14)) doesnota ect the physicalm ass (de ned in the sense of the represen—
tation of AdS), since g% runs to zero in the infrared. This explanation is, however, puzzling, as
it requires an allorders resum m ation of diagram s, w hile we expect the supersym m etry algebra
to be satis ed at each nite order in perturbation theory. Furthem ore, this argum ent cannot
be applied to the non-A belian case. In actual fact, the resolution of the gaugino m asspuzzle has
to do w ith the boundary conditions in AdS, which shallbe discussed In the next section. W hat
we shall nd there is that boundary e ects provide a calculable, IR saturated, contribution to



the gaugino bilinear in the 1-Joop 1P I e ective action. T his contribution corresponds to a m ass
m ;g which exactly cancels the UV one

mUv‘l'mIR:O: (2.15)

2.2 Boundary conditions

T he m ost relevant feature of AdS space, for our discussion, is the presence of a (conform al)
boundary located at z = 0 in the Poincare patch (2.9). One Inm ediate consequence of the
presence of a 2+ 1-din ensionalboundary is that chiral sym m etry isalways broken in AdS, [14].
T his is fully analogous to what happens n a eld theory on halfof at space: when a ferm ion
travelling tow ards the boundary is re ected, the m om entum ips sign, while J, is conserved.
T hus, helicity is not conserved.

M ore form ally, chiral sym m etry is broken by the boundary conditions that are necessary to
de ne the theory. T his can be seen by considering a two com ponent spinor propagating on half
of at space, w ith action

d*x i "D, m + he: (2.16)

T he variation of the action is

i
S=(EOM) - °  ho:: (217)

In oerer to obtain sensible boundary conditions (i.e. not overconstraining), a boundary term
1 v + hrc:must be added to the action, where ’ is an arbitrary phase. The

= e
4 z=0
variational principle then dem ands that

=" 7 - (218)
z=0 - z=0

In plying that chiral symm etry is broken even for vanishing bulk m as@ .

The generalization to AdS requires som e care, because of the divergent scale factor at
z = 0. The boundary conditions in this case can be derived by considering the behavior of the
solutions close to z = 0. W ithout loss of generality, we can choosem L > 0. Nom alizability of
the solution requires that

1
mL —: / z3*mb =) = i’ -
2 -
1 S mL ¢ 3
0 mL<5: / z2 =) = i~ - (2.19)
Form = 0, w ithout loss of generality one can choose ' = 0.



and again chiralsym m etry isnecessarily broken. N ote that for the A dS case, there isno freedom
to chose the phase ’ . This is basically because the buk m ass operator itself plays the ol of
a boundary m ass tem . T his is easily seen by perform ing a W eylrescaling, = (z=L)*? :the
lagrangian for is just given by eg. (2.14), but w ith a position dependent massm ! M L=z,
which blows up at z = 0. The exponent in the asym ptotic behavior is precisely the index
E of the corresponding representation. Note that form L < 1=2, two nequivalent boundary
conditions are possible, corresponding to a double quantization, as happens for scalars in AdS
[5]. The existence of one and two solutions respectively form L 1=2 and O mL < 1=2,
nicely m atches eg. (2.2) and the unitarity bound E 1.

In the QED case, the boundary condition (2.19) for a sihgle charged spinor would break
electric charge; In order to conserve electric charge, the boundary conditions m ust relate
to E R epeating the exercise above with the two spinors, nom alizability of the solutions

requires
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G wen the boundary conditions for the ferm ions, supersym m etry then determ ines the bound-
ary conditions for the scalars. By acting with the unbroken supersymm etries (2.10) on the

ferm ionic boundary conditions, one nds
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w here the sign in the second eg. is correlated w ith the sign for the ferm ions. W e can see that
this is consistent w ith the equations of m otion for the scalars: In the scalar sector, by solving
the wave equation for the two m ass eigenstates, ; and ,,we nd that

l_'-[no 1= ZZ+I‘[‘1LA2(X)+ Zl mLBZ(X)
Z.

l:'mo ,= 7P EA L (x)+ 722 "B, (%) : (222)

FormL > 1=2, nom alizability alone implies that B; = B, = 0, corresponding to the st
solution n eg. (2.21]). Form L < 1=2, them ass of the two scalars is In the range w here double

°Indeed, form L > 1=2 the charge preserving boundary condition is forced on us by nom alizability. For
0 mL < 1=2,com patibly with nom alizability, there exist two other, nequivalent, chargebreaking boundary
conditions. W e w ill consider these other possibilities elsew here.



quantization isallowed, and so we can choose A, = A, = 0 (consistently w ith supersym m etry),
corresponding to the second solution in (2.211). N ote that, asa combined e ect of the boundary
conditions for ferm ionsand scalars,R  symm etry isbroken in them atter sector even form = 0.

Finally,wecan also x theboundary condition for the vectorm ultjplet. By taking N eum ann
boundary conditions for the gauge eld and acting with the supersym m etry transform ations,
we nd that the appropriate sign of the gaugino boundary condition is

Q,F =0 F 3 =0 =1i3 - (223)

z=0 z=0 — z=0

To summ arize, the presence of the boundary in AdS; aWways breaks chirality and R sym —
m etry, even when there is no source of explicit breaking in the buk action. The physics is
essentially that of half of at space. W hat is special to AdS, is that the chiral symm etry is
broken, while the m axin al num ber of isom etries is preserved. T his is, of course, crucial to give

ameaning to am ass an aller than the curvature of the space.

3 Gaugino M ass

T he boundary conditions derived above provide the necessary fn ass insertions’ to give rise to
an IR contribution to the gaugino m ass. Focussing on the case of m assless SQ ED , let us now

com pute the gaugino m ass at 1-loop order.

3.1 Chiralbreaking correction to the self energy

T he com putation is particularly trangparent in the case of m assless m atter, where the chiral
symm etry breaking is entirely due to the boundary e ects. (W e present the m assive case In
the appendix.) W hen m = 0, the chiralm atter supem ultiplet is conform ally coupled. As a
consequence, the ull SQED action in this case is invardiant under W eyl transform ations at the
classical level. Thisallow s us tom ap the theory in AdS space to one living on halfof at space
and perform all the com putations using fam iliar at space form ulae. This is achieved via the

superconform al rescaling
i Aw = Ay (3.1)

a; Qun = Gu v : (32)

Z
L
A fter the rescaling, Gy v wy and $ = (L=z)(1+ ?=z). Sinhce SQED isW eyl nvariant (at
tree level), the com pensator decouples, and we are left w ith the tree level action for m assless,
SQED in halfof at space, with a boundary at z = 0. The boundary conditions on the elds



are m ost easily In plem ented by perform ing an orbifold profction. From the results in the

previous section, we have (dropping the circum exes on the elds ),

X)=1i’ &); (33)

whereX = (x; 2z) istheposition of the in age point. The at space propagators can bew ritten
down directly using the m ethod of im age charges. For the scalars, one has

L L L ]
By L @eis b () Ko S (34)
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Sin ilarly, for the ferm ions,

h, X X,)i=h (X X ,)i i %1 Xk T 35
LX), (Kp)i= (1) o= o (35)
1 X X M3
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Onecan ssethatthei prescription In Feynm an’s propagator selects in plicitly boundary condi-
tionsatz = 1 : thessare theH artleH aw king boundary conditions, appropriate to the Poincare
patch [101].

The o diagonalpropagatorsdeterm ine the chiralHoreaking contribution to the gaugino self-
energy in Fig.[]

X1iXo)= 1T X1)J (X3)i; (3.6)
P_
whereJR= i 2g9(, . ) and where our convention on the sslfenergy is de ned by
1P T % (X 1) X 1;X2) (X3).Perform Ing the W ick contractions, we have

(X1;X,)= 4ig’h , (X1) X2)ih , (X1) (X2)i;

ig (X Xow (M?)
= — (3.7)
(X, X)P+ 17

N otice that this contrdbution is non—local, and com es from long-distance physics, as opposad to
eq. (214). Ih order to extract from (X 1;X 5) the correction to the gaugino m ass, we m ust
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Figure 1: Chiral breaking 1-loop correction to the gaugino self energy. The \m ass" insertions
correspond to boundary e ects.

evaluate it on a solution of the m assless (tree level) wave equation. This is the analogue of
com puting the selfenergy at zero mom entum in  at space. T he general solution of the bulk
D irac equation for a m assless gaugino is

o(X )= e Xt "oy =0; Hp=0: (3.8)

Physical states m ust also satisfy the boundary condition in eg. (2.23). In order to achieve
that, two solutions w ith opposite velocity, p’=p°, in the z-direction should be superin posed.
However, aswe shallexplain in a m om ent, the correct procedure wem ust follow in the Poincare
patch in order to study the 1-loop corrected wave equation is to work w ith solutionsofthe D irac
equation that satisfy boundary conditions at the horizon z ! 1 rather than at the boundary
z = 0. This is closely related to the AdS/CFT prescription. A ltematively we could overcom e
this issue by perform ing an euclidean com putation, as in this case Poincare co-ordinates cover
the whole space, but we nd it m ore physical to address directly the Lorentzian point of view .

To cbtain the IR contribution to the gaugino m ass, we m ust convolute eq. (3.7) with (3.8).

W e thus nd,
Z Z
. 2 M3
ig @ ( )
d'x , X1iX2) 0 X2)= - d'X , , 0o X2)

8Z ex (X1 X502+ 11

. 2

g 3 1 ip x

= — dx eP *2 39
8 ¢ Iy %)+ z2+ 13 (39)

where in the last step we integrated by partsand used ™ @y = 0. In the resulting boundary
integral, we used the explicit expression for , in (3.8). Notice that x are coordinates on the
boundary. Perform ing the last integral explicitly we thus nd,
Z
1 g2 1 . .
= dx X 1 ;X X )= —el® ), 3.10
> 2 X1;X2) o X2) 6 72 ( )

where the 1 in the originhal integral xes the sign of @ = P PP to be positive. The right
hand side of eg. (3.10) is proportional to the original spinor if this satis es the H artleH aw king
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boundary conditions: positive frequencies purely outgoing and negative frequencies purely in—
com ing. Thism eans that when evaluated on this class of solutions of the buk D irac equation,
the IR contrbution to the selfenergy ,acts like a mass term m ;g which is precisely equal
and opposite to the anom aly m ediated contrbution (see eq. (2.14) after perform ing the W eyl
rescaling In egs. (3.1),(32)). Thus an exact cancellation between UV and IR e ects arises, as
prom ised In . (2.19). It is the clever relation am ong these two contributions that ensures the
m asslessness of the gaugino, as dem anded by supersymm etry. This is the m ain result of our
paper.

Tt ram ains to be explained why our com putation works only for the class of solutions of the
form (3.10). T hese solutions correspond to the creation of lncom ing particles at the past horizon
H and to the destruction of outgoing particles at the future horizon H * that separate the
Poincare patch from the rest of AdS. Intuitively such processes can be described by causality
using sokely the eldsin thePoincarepatch. O ther solutions correspond to processes that arenot
captured by the Poincare patch alone and probe other regions of globalA dS. In this case there
w ill be extra-contributions from the rest of the space and a com putation In global coordinates
would be required. That such contrlbutions exist follow s from the fact that the Feynm an
propagator is non-vanishing between a point inside the Poincare patch and one outside. Had
we worked in global coordinates we could have directly checked that the cancellation of the
gaugino m ass occurs for arbitrary physical states (ie. solutions of the wave equation that
satisfy the boundary conditions).

O ur result can however be readily interpreted from the viewpoint of the AdS/CFT corre—
soondence [9]. Even though Lorentzian AdS/CFT is not nearly as developed as on Euclidean
Space, we do not see obvious obstructions in the case at handll From this perspective, the
boundary eld combination

®)= (®) i’ (x) (311)

should be viewed as an extemal source probing the systam (the dualCFT ). Notice that

is precisely the com bination that is set equal to zero for the AdS quantum elds. Perform ing
a path integral over the bulk elds with vacuum boundary conditions at H one obtains a
functionalZ ( ) which generates the correlators of the associated dual operator in the CFT .
G iven , a classical source localized at the boundary, the choice of initial and nal vacuum
states for our path integral xes the boundary condition for the corresponding buk eld at
z ! 1 . Working with plane waves, this prescription corresoonds precisely to the Hartle-
H aw king boundary condition we encountered previously. T his gives a prescription for nding

3Indeed it is to be expected that, just as there is a procedure to analytically continuea CFT from Euclidean
to Lorentzian space, there should also exist a sim ilar procedure to analytically continue the correspondence
from Euclidean to Lorentzian AdS.At least In som e sim ple cases this was outlined for instance in Refs. [10,111].
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a unigue extension of Into the bulk, by requiring that its (e ective) action be stationary.
At tree level, we have the boundary e ective action

Z Z
1 3
nZz =S8Sy= - x + = x ———— ; (3.12)
4 @+ i
corresponding to the correlator of a dual farm jonic current of scaling din ension % :
ox (7))
n x)O 0)i= —————: (3.13)
(x?+ 1 ¥

T he 1-loop com putation we have perform ed is directly translated into a 1-loop com putation of
the boundary e ective action. The only di erence from before is that we need to consider also
solutions w ith Euclidean boundary momenta p p > 0. In this case the solution in the buk
corregponds to the unique regular solution at z ! 1 as prescrbed by Euclidean AdS/CFEFT .
N eadless to say the previous com putation can be continued to the Euclidean region so that the
self energy is diagonalon these solutions. W orking at 1-loop accuracy, the corrected boundary
e ective action is sin ply obtained by substituting the tree level buk solution into the 1PIT
buk e ective action. However our previous result was precisely that the total (UV + 1R)
1P I vanishes on the very solution of the m assless D frac equation that satis ed the AdS/CFT
boundary conditions at z ! 1 (that is with the sam e exponent as in eg. (3.10)). Thus we
conclude that at the 1-loop level the boundary action isuna ected and thus thedim ension ofthe
CFT operatordual to the gaugino eld is not renomm alized, consistently w ith supersym m etry.

W hat we have leamed is an am using lesson on the r®le of the anom aly m ediated gaugino
m ass. T he basic reason for its existence isthat A dS, behaves as 2+ 1-din ensional el theory as
faras chirality is concemed. T hem ass of farm ions is thus add itively renomm alized by calculable
boundary e ects. On the other hand, supersymm etry m andates the gaugino to be exactly
m assless. The sinple SQED case, In the end, show s that the only way to achieve this isvia the
existence of suitable short distance e ects, In oneto-one correspondence w ith the long distance
e ects. This is yet another illustration of the UV insensitivity of anom aly m ediation.

3.2 Chiral preserving correction: wave function renorm alization

In the previous section we have shown that the chiral breaking part in the 1-loop self energy
does not correct the gaugino m ass, nor, sin ilarly, does it correct the boundary e ective action.
H ow ever, strictly speaking there is yet another contribution to the gaugino sslfenergy thatwe
need to consider. This is the chirality-preserving’ contrdbution, , the one associated with
wave-function renom alization. T he issue at hand arises even in the absence of supersym m etry.
W ew ill show that this contrdbution vanishes when acting on a m assless spinor. T his resultm ay
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Seam obvious at rst sight, based on our usual at space intuition. Tndeed, In at M inkow sky
Space, Lorentz invariance constrains this tem to be proportional to £( ) @&, which vanishes
on-shell as long as £ is not too sihgular (In fact, £ is a logarithm ic function). However, the
situation is m ore subtle In AdS, since, at the quantum Jlevel, the boundary m akes itself felt
even inside the bul, and therefore the z direction is not m anifestly equivalent to the others.
T he purpose of this section is to clarify this issue. An extra com plication com es from the ne=d
to regularize the divergent part of . W e shallagain focus on m assless SQED , for which we
can work in the conform ally rescaled basis (3.2). T he general case is brie y considered in the
appendix. W orking in position space, we nd it convenient to use the m ethod of di erential
regularization [12].
The unregulated _ isgiven by,

X q1;X,)= 1T X1)J X)i
= 4igh, (X1) , X,)ih ., X1) , Xi (3.14)

T his corresponds to the follow ing correction to the e ective action

2Z
g 4 4
= 71 d'Xd'X; (X1)

X 1om

whereX 1, = (X1 X;)v . Thisexpression has, however, a non-integrable sinqularity atX 1, = 0,
which must be regulated. Na vely, using di erential regqularization am ounts to replacing
X 104 1 1 X LM ?)

! 1

— ! = 316
X2+17¥  leext 516)

X2+ 1
where M plays the r®le of the renom alization m ass scale. T his cannot, however, be the full
story, sihce the explicit m ass scale M breaks dihtation invariance X ! kX . In the rescaled
basis, SO (3;2) arises as the subgroup of SO (4;2) which is left unbroken by the com pensator
background s = L=z [13]. C onsequently the requlated selfenergy in eg. (3.18) does not respect
the AdS isom etrdes. A s the lack of Invariance follow s from the regularization, the countertem

needed to restore the symm etry m ust be local, and m ust of course involkre the com pensator. By
sim ple reasoning one can quickly derive the unique form of this counterterm . Th order to do so,
let us m agine that we had regulated the Ioop In a m anifestly covariant fashion, by introducing
PauliVilars edswithmassM . Thecrucialaspect of PauliV illars eldsisthat,beingm assive,
their quadratic lJagrangian depends directly on the com pensator, s, via the substitution

M ! M s(z)=M —; (3.17)

which form ally restores conform al invariance. However it does not m ake any sense to sin ply
perform this replacam ent in eg. (3.14d). To nd out how eg. (3.18) ismodi ed we must be a
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tad m ore careful. W e just need to focus on the M -dependent part of the requlated selfenergy.
U sing the dentity

1 2. 4
T = 4 “1°(x); (3.18)
X4+ 1
the M -dependent part of the e ective action is given by
. 5 Z
g 2 4 M
gy = W]nM dX X)) Qy X); (319)
whose unique local covariantization Jf@
jg2
o= gphMsE) e & Y (321)

The Iocal In s term gives the follow ing correction to =

s 2 s 2
g M 9" 1
—@y Ins = —— : 322
g 2 e ( )
On the other hand, from eg. (3.1d) the ‘IR ’ contrdbution to the equation ofm otion is
Z
2 2 2
P 17, @ N M 2)
—— dX X5): 3.23
> 11¢ 2 ax & 1 X2, X2) ( )

To investigate how this non—localcontribution a ects the gaugino m ass we m ust com pute it on
the solution  of them assless wave equation speci ed by (3.8). Integrating by parts and using
M@y o= 0,eq.(323) becomes

= = oX1); (324)

where the nal integral is dentical to the one com puted In the previous section, eg. (3.9).
Again the last dentity is only vald for solutions satisfying the H artleH aw king boundary con—
ditions. W e thus nd that the contributions in egs. (3.22) and (3.24) again cancel so that the
propagation of the gaugino is not a ected. In particular the gaugino rem ains m assless. Note
that, while the cancellation in the previous section relies on supersym m etry, this e ect is inde-
pendent of supersymm etry. T his cancellation between UV and IR contributions, dictated by

4Indeed, com patbly w ith Jocality and power counting, another term is na vely possible:
@, ns(z)] > : (320)

T his term m ust how ever be discarded as it explicitly breaks CP (the requlated theory is form ally C P —invariant,
even though parity is, of course, ‘spontaneously’ broken by the expectation value of s).
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the AdS isom etry (a subgroup of the conform algroup), can be viewed asan N = 0 counterpart
of the one found previously. T his is perhaps not surprising, as anom aly m ediation is itself the
supersym m etric counterpart of the trace anom aly. Indeed, In a super eld form alism , these two
separate cancellations would be m anifestly related.

4 Summ ary

W e studied the 0k played by anom aly m ediated (AM )massterm s iIn N = 1 theorieson AdS,

w ith unbroken supersym m etry. For sim plicity we focussed on the gauginom ass term in SQED

w ith m asslessm atter. W e showed that the AM gauginom ass tem is required by the superA dS
algebra in order to exactly cancel another 1-loop contribution, of nfrared origin and associated
w ith the AdS boundary. The latter e ect originates because chirality (R symmetry in this
case) is necessarily broken by re ection at a 2+ 1-dim ensional boundary.

Indeed, by com puting rst this nite IR e ect (which does not require the introduction of
a regulator) and by using the fact that the algebra dictates a m assless gaugino, we could have
argued the need fora local, UV generated, AM contribution. Since the latter is Independent of
w hether the theory lives in  at or curved space, that would have provided yet another deriva-
tion of AM gaugino m asses. T he possibility of relating the AM m ass to purely IR quantities
ilustrates the \UV insensitivity" of this e ect, a property which m akes it potentially relevant
in phenom enological applications. The fact that AM e ects represent local parts of non-local
structures in the 1P T action iswellknown. O ur result provides a new tw ist on that perspective:
the AM gaugino m ass is just a re ection of the breakdown of chirality at the 2+ 1-d boundary
of AdS,.

T here are severaldirections in which onem ight extend and in prove our result. O ne cbvious
possibility is to perform the sam e com putation in the non-abelian case, where, unlke in the
abelian case, proper gauge- xing w illbe needed . A nother problem concems the rOle of all other
AM tem s, such as sferm fon m asses and \A -term s": it should be possble to derive them from
consistency conditions as well, but probably in a m ore subtle way than for the gaugino m ass.

In this paper we worked on the Poincare patch. This procedure is clean for the euclidean
case and from the AdS/CFT standpoint: our com putation corresponds to checking that, as
expected by supersymm etry, the scaling dim ension of the operator dual to the gaugino eld
is not renom alized. The Lorentzian com putation is m ore delicate, as we have to deal w ith
boundary conditions at the horizons which separate the chosen patch from the rest of AdS.
Tt would then be interesting to try to perform the sam e com putation in global coordinates,
and check that, In that case, the 1-Joop s=lIf energy does vanish when convoluted with the
nom alizable solutions. Finally, it would be interesting to understand the rdle of anom aly

15



m ediation purely from the CFT viewpoint. The AdS bulk picture is that the gaugino m ust be
m assless even though chirality is broken, corresponding to non-vanishing o0 —chell. In the
CFT picture, the non-vanishing of , show s up In the 4-point function of operators dual to
the AdS matter elds. However it isnot in m ediately obvious how to transhte the bulk picture
to the boundary, since there is no notion of chirality in 2+ 1-d el theory.
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A ppendix: M assive C harged M atter

The cancellation of the UV and IR contributions to the gaugino m ass, being a consequence
of the algebra, is a general e ect which must hold for any m ass of the m atter elds. In this
appendix we check explicitly the cancellation for arbitrary values of m in the superpotential.
T his com putation can also be interpreted as the derivation of the anom aly m ediated UV con-
trbutions (2.14), (3.21]) using PauliV illars elds.

Form assless m atter, the only source of chiral sym m etry breaking is due to the presence of
the boundary, while when m & 0, chiral symm etry is broken also in the buk. In this case,
the m atter is not conform ally-coupled and, therefore, the propagators cannot be obtained by
sin ply rescaling the at space results. A fullAdS com putation is required.

W e will nead the propagators for a chiralm ultiplet w ith arbitrary m ass. T he scalar propa—
gator associated to the representation D (E ;0) (mL)>= E(E  3))isgiven b

1 1] 2
E;0)= E1E ) 2 2F1 EGE ;28 2, —
(4 yYL? [2E 2] u u
w here we have Introduced the AdS invariant length,
X X, )% + i
g (X1 2) ; @ 1)

221 Zy

5This form ulae hod ©rE > 3=2 where both scalars in the chiralm ultiplet have standard boundary condi-
tions. T his is the range where a single quantization is possible.
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The fermm on propagator associated to the representation D (E + 1=2;1=2) can be found in
Ref. [14],

h, X;) &Xy)i= RN 2 E+1F E+ 1;E  1;2E 1-2 ;
Lo ? (32 2L3) RE 1] u+ 2 o ' ' b+ 2 ’
. +1 2 E+1
h X)) _Xyi= lEEHE ] ,F1 E + 1;E ;2E 1; B
(32 2L3) RE 1] u+ 2 U+ 2
A 2)
where,
XL X (M2
Z1Zp
X1 Xou M
_= P (A 3)
142

A s in them assless case, the contribution of them atter loop to the gaugino m ass arises from
the the selfenergy (3.4),

(X1;X2)= 4ig’h , X1) (X)dih . K1) (X1 @ 4)

w here now

. E + 1;0) (E ;0)
h,X;) X)i= > H (A 5)

and the ferm ion belongs to the representation D (E + 1=2;1=2).

In order to com pute the contribution to the gaugino m ass, we evaluate the selfenergy on
the solution of the m assless gaugino equation as in section 3.1. This highly non-trivial integral
of hypergeom etric fiilnctions can be evaluated num erically by choosing the sim plest solution of
the m assless equation ofm otion, (X1)= z>2 ,,

Z
p— g

dX g X1;X3) 0 Xy)= g 2L ° X1): A 6)

Follow iIng the discussion in section 3.1 we expect the sam e to hold for any solution satisfying
the appropriate boundary conditions. This contribution as expected does not depend on the
m ass and cancels the anom aly-m ediated UV contribution, proving for generalm that this tem
is necessary for the consistency of the supersymm etric theory. A s a check of this result, one
can consider the Ilim it m 1=L,asdone In 4]. In this lm it, the curvature isa analle ect
and the loop can be com puted using at-gpace propagators, but w ith the A dS m ass splitting.
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For com pleteness we also checked the wave functions contribution. The chiral pressrving
contrlbution to selfenergy In general reads,

(X 1iX2)= 2iFh 1 (X,) 1X2)i+ h o(Xq) ,X2)ilh o X1) , _(X2)1 (A7)

R epeating the sam e steps as In section 3.2, we nd num erically,

Z 2
;TG KXo (Xg)= 8g2L (X1): (A 8)

Independently of the mass. This calculation also proves that by regqulating the theory w ith
PauliV illars elds there isan N = 0 anom aly m ediated contribution of the form considered
before. In this case the contribution of the heavy eldswith m 1=, cannotbe obtained w ith
the at space propagators since this e ect is entirely due to the fact that the theory lives in

curved space.
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