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A bstract

W e study supersym m etric Q ED in AdS4 with m assless m atter. At 1-loop the ultra-

violetregulatorofthetheory generatesa contribution to thegaugino m assthatisna��vely

inconsistentwith unbroken supersym m etry.W eshow thatthise�ect,known in 
atspace

as anom aly m ediated supersym m etry breaking,is required to cancelan infra-red con-

tribution arising from the boundary conditions in AdS space,which necessarily break

chiralsym m etry. W e also discussan analogous UV/IR cancellation thatisindependent

ofsupersym m etry.
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1 Introduction

In phenom enologically interesting m odels the e�ects ofbroken supersym m etry in the visible

sectorareconveniently param eterized,working in an o�-shellform ulation,by the expectation

valuesofthe auxiliary com ponents ofsom e hidden sectorsuperm ultiplets. Am ong the auxil-

iary �elds,thescalaru,belongingtothegraviton superm ultiplet,(g��; 
�
�;A �;u),standsoutas

special.Indeed,unlike forauxiliary �eldsbelonging to m atterand gaugehidden sectorm ulti-

plets,thecoupling ofu iscom pletely �xed (attheleading relevantorder)oncethem assesand

self-couplings ofthe low energy e�ective theory,priorto supersym m etry breaking,are speci-

�ed. Thisproperty justfollowsfrom u being a partnerofg�� whose coupling isequally well

speci�ed by the energy m om entum tensorofthe low energy e�ective theory. The scenario of

‘Anom aly M ediated’(AM )supersym m etry breaking correspondsto thelim iting casein which

the contribution ofu dom inatesoveralloftheothers[1,2].The nam e‘Anom aly M ediated’is

dueto thefactthatin theM SSM u only couplesto thevisible�eldsatthequantum level,via

a supersym m etric analogueofthedilatation anom aly ofnon-supersym m etric �eld theory.

The purpose ofthis paper willnot be to build phenom enologicalm odels based on AM ,

butratherto investigate som e ofitsm ore am using theoreticalaspects.In fact,faraway from

the dom ain ofphenom enology,we shallbe working in fourdim ensionalsupersym m etric Anti-

de-Sitter(AdS)space. W e nonetheless believe thatourstudy provides interesting additional

insightinto the propertiesofAM ,in particularitsbeing UV insensitive,in spite ofbeing UV

generated.

To setthe stage,itisconvenientto derive AM term svia the superconform alapproach to

supergravity [3].Attreelevel,them ostgeneraltwo-derivativeLagrangian m ay bewritten as

L =

h

S
y
S 
(�

y

i;e
qiV �i)

i

D

+

nh

S
3
W (�i)+ f(�i)W

�
W �)

i

F

+ h:c:

o

; (1.1)

where D and F are superconform ally invariantdensities,provided thatthe chiralsuper�eld,

S,and the m atter�elds,� i,have W eylweights1 and 0,respectively. Interesting actionsare

obtained by consistently taking the lowest com ponent ofS with non-vanishing expectation

value.Thisbreaksthe superconform algroup down to Poincar�e supergravity and turnsS into

a purely auxiliary �eld,form ally restoring scale invariance,hence the nam e ‘superconform al

com pensator’.Indeed a suitablesuperconform algaugecan bechosen whereS = 1+ �2u.The

couplingsofthe auxiliary �eld u are thus�xed by dilationsand R-sym m etry. In particulara

classically scale invariant subsector,like the M SSM ,couples to u only atthe quantum level.

For a m assless gauge theory the coupling ofS is easily read o� by dem anding form alscale-
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(and R-)invarianceofthe1PIaction at1-loop

�=
1

4

"

W
�

�
1

g2(�)
+

b

8�2
ln(

p
�

�S
)

�

W �

#

F

+ h:c: (1.2)

By expanding in com ponents, one �nds a gaugino m ass term which is proportionalto the

�-function

m � = �
bg2

16�2
u: (1.3)

The dependence of� on S is local,com patibly with its being UV generated. However, it

belongsto a non-localsupergravity invariant‘structure’(involving ln�),and thisiswhy itis

convenienttousethe1PIaction todeterm ineit.Thisisjustthesupersym m etricgeneralization

ofa dilaton coupling to thetraceanom aly,hencethenam e‘anom aly m ediation’.

In m odelswith broken supersym m etry and vanishingcosm ologicalconstant,hui= O (m 3=2),

im plying a 1-loop contribution oforder(�=4�)m 3=2 to gaugino and sferm ion m asses.However,

onem ayalsohavehui6= 0,with unbroken supersym m etry on AdS.In thatcase,theexpectation

valueisgiven by thesuperpotential:hui= W =M 2

P = 1=L,where L istheAdS radius.Indeed,

attree level,hui= 1=L generatesthe m asssplittings,oforderofthe AdS curvature,thatare

required by supersym m etry in AdS.The r̂ole ofa loop e�ect like anom aly m ediation is less

clearin thiscase,though itoughtto beeasy to understand,given thatthetheory stillenjoys

unbroken supersym m etry.

The purpose ofthisnote isto explain the r̂ole played by anom aly m ediation in supersym -

m etric AdS.Thisissue wasbrie
y considered in [4],in the contextofa generaldiscussion in

which the shortdistance origin ofAM wasem phasized. Howeverourexplanation forthe r̂ole

ofAM in AdS space di�ersfrom the one proposed in [4]. W e willargue thatthe existence of

AM isa necessary consequence ofsupersym m etry,given the large-distance propertiesofAdS

space,in particularthepresenceofa (conform al)boundary.In thissense,ourwork represents

yet anotherway ofderiving AM m asses,purely via consideration ofIR saturated quantities.

The outline isasfollows.In section 2,we review supersym m etry in AdS and supersym m etric

QED therein.In section 3,we com pute the 1-loop contributionsto the gaugino self-energy in

SQED with m asslessm atter,and discussthe im plicationsforthe gaugino m ass. In section 4,

wepresentconclusions.ThecaseofSQED with m assivem atterisrelegated to theappendix.

2 Supersym m etry in A dS Space

In this section,we brie
y review som e basic features ofsupersym m etry in four-dim ensional

AdS space which willbe relevantforthe following discussion. Form ore details,see [5,6]and

refs.therein.
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Theisom etry group ofAdS4 isSO (2;3),whoseunitary,in�nite-dim ensionalrepresentations

aredenoted by D (E ;s),whereE and srepresentrespectively theenergy and spin ofthelowest

energy statein therepresentation.TheLagrangian m assparam eterofthecorresponding �elds

(in unitsof1=L)arefunctionsofE and s.Forinstance,forthe sim plestcasesofs= 0;1
2
,we

have

D (E ;0) � ! m
2

0
=
E (E � 3)

L2
; (2.1)

D (E ;
1

2
) � ! m

2
1

2

=
(E � 3=2)2

L2
: (2.2)

Just as in 
at space, the sim plest irreducible representations of the super-group O sp(1;4)

correspond to chiraland vectorsuperm ultiplets. A chiralsuperm ultipletdecom posesinto the

following representationsofSO (2;3):

D (E 0;0)� D

�

E 0 +
1

2
;
1

2

�

� D (E0 + 1;0); E 0 �
1

2
: (2.3)

Notethatthesupersym m etry generatorsraiseand lowerE by a half-integer.Then,according

to eqs.(2.1),(2.2),them assterm sforferm ionsand scalarswithin thesam esuperm ultipletare

not,in general,thesam e.Thesesplittingsarem andated by O sp(1;4)and originatewithin the

lagrangian from two sources.Onesourceisthenon-vanishing Ricciscalarand theothersource

ishui= 1=L. Notice,�nally,thatin the specialcase ofthe conform ally-coupled superm ulti-

plet,with E 0 = 1,the two scalarshave the sam e m ass,even though they belong to di�erent

representations:nam ely D (1;0)and D (2;0).

Turning now to them asslessvectorsuperm ultiplet,theSO (2;3)representation contentis

D

�
3

2
;
1

2

�

� D (2;1): (2.4)

Thism ultipletisboth conform ally coupled and ‘short’,corresponding to itsbeing related to a

gaugeinvariantlagrangian.A m assivevectorm ultiplet,on theotherhand,ischaracterized by

E 0 > 3=2,and decom posesas

D

�

E 0;
1

2

�

� D

�

E 0 +
1

2
;0

�

� D

�

E 0 +
1

2
;1

�

�

�

E 0 + 1;
1

2

�

: (2.5)

This is a long m ultiplet that can be viewed as arising from a Higgs m echanism . Indeed,it

hasthesam estatem ultiplicity asthedirectsum ofthem asslessvectorsuperm ultipletand the

Goldstone superm ultiplet,whose content is D (2;0)� D
�
5

2
;1
2

�
� (3;0). Since it corresponds

to m ultipletshortening,the m asslessness condition m ustbe stable in perturbation theory. In

particular,thegaugino m ass,foran unbroken gaugesym m etry,m ustbezero to allorders.
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2.1 A dS SU SY Q ED

Thepresenceoftheanom aly m ediated contribution to them ass(1.3)is,na��vely,atoddswith

thepreviousobservation thatthegauginoshould bem assless.Toclarifyther̂oleofAM ,weshall

focuson the sim plestnon-trivialexam ple,thatisthe m assofthe gaugino in supersym m etric

QED.Ourtheory consists ofN = 1 supergravity with a vector super�eld V ,and two chiral

super�elds� � ,with opposite charges� 1. The K�ahlerand superpotentialfunctionsare given

by (throughoutthepaperweusetheconventionsofW essand Bagger[8])


� � 3M 2

P e
� K =3M 2

P = � 3M 2

P + �
y

+ e
gV �+ + �

y

� e
� gV �� + O (�4);

W =
M 2

p

L
+ m �+ �� ; (2.6)

f = 1+ O (�+ �� ): (2.7)

Since weshallbeworking in the neighbourhood of�� = 0,we neglectthe higherorderterm s

indicated byO (:::).Theconstantterm in thesuperpotentialgivesrisetotheAdS4 background

and to theexpectation valueofthecom pensator,

hSi= 1+
1

L
�
2
: (2.8)

W ewill�nd ittechnically convenientto work in thePoincar�epatch,with m etric

ds
2 =

L2

z2

�
dx

�
dx� + dz

2
�
: (2.9)

The co-ordinates x� (� = 0;1;2)and z cover only one ofan in�nite set ofsim ilar Poincar�e

patchesofthe fullAdS space. HoweverPoincar�e co-ordinatescoverthe whole euclidean AdS

(EAdS),which can beobtained justby thesubstitution t! i� (seeforinstancethediscussion

in ref.[7]). This last property indicates that,ifproperly interpreted,com putations on the

Poincar�e patch yield inform ations about the properties ofQFT on fullAdS.Assum ing L to

bepositive,in theseco-ordinatesthefourunbroken supersym m etriesareparam eterized by the

Killing spinors

� = z
1

2[�0 � i�
3��0]+ z

� 1=2
x��

�[�0 + i�
3��0]; (2.10)

where�0 isa two-com ponentconstantspinor.NoticethattheKilling spinorsnaturally decom -

pose into two realspinorsofSO (1;2). The �rstofthese correspondsto the standard N = 1

in 2+1 dim ensions,while the othercorrespondsto the conform alsupersym m etry. In fact,for

ourpurposesitwillsu�ce to considerthe 
atsupersym m etries,asthe othersare im plied by

theAdS isom etries.
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By taking the lim it M P ! 1 with L �xed,we decouple gravity and focus on quantum

e�ectsthatarepurely dueto SQED on AdS4.TherelevantLagrangian is,therefore,

L=
p
g = [kinetic+ gaugeD term s]� m ( +  � + � + � � )

� (m2 �
2

L2
)(j�+ j

2 + j�� j
2)+

m

L
(�+ �� + �

�
+ �

�
� )

+ ig
p
2�( + �

�
+
�  � �

�
� )� ig

p
2��(� + �+ � � � �� ); (2.11)

where,withoutlossofgenerality,wehavetaken m to bereal.Oneseesthatthescalarsacquire

non-holom orphicm assterm s,originatingfrom thenon-vanishingRicciscalar,and holom orphic

(B-type)m asses,arising from the com pensatorF-term . (The ferm ionic m assand interaction

term s,by contrast,retain the sam e form as in 
at space.) The scalar m ass eigenstates and

theirm assesaregiven by

�1;2 =
1
p
2
(�+ � �

�
� ); (2.12)

m
2

1;2 =
1

L2

�
� 2� m L + (m L)2

�
: (2.13)

Eqs.(1.3),(2.8)im ply thepresence ofan AM contribution to thegaugino m ass,given by

� U V L = �
g2

16�2L
�� + h:c:� �

1

2
m U V �� + h:c:: (2.14)

Asexplained aboveand em phasized in [4],a gaugino m asswould beincom patiblewith super-

sym m etry in AdS4.Indeed,form 6= 0,thereisan additionalcontribution tom �,corresponding

to a �nite threshold e�ectatthe scale m ,where m atterisintegrated out. Thisisdue to the

presence ofboth a ferm ion m assand an R-breaking B-type m assforthe scalars. By the well

known property ofAM in 
atspace,we can directly conclude that,atleastform L � 1,the

threshold e�ectcancelseq.(2.14),atleastup to subleading e�ectsofO (1=m L). However,it

would benice to see the exactcancellation in an explicitcom putation.M oreover,in the lim it

m = 0,corresponding toconform alm ultiplets,thereseem stobea puzzle,in thatallsourcesof

R-sym m etry breakingdisappearfrom them atterlagrangian!In otherwords,form = 0thereis,

at�rstsight,noobviouscontribution in addition toeq.(2.14).In [4],itwasconcluded thatthe

contribution in eq.(2.14)doesnota�ectthephysicalm ass(de�ned in thesenseoftherepresen-

tation ofAdS),sinceg2 runsto zero in theinfrared.Thisexplanation is,however,puzzling,as

itrequiresan all-ordersresum m ation ofdiagram s,whileweexpectthesupersym m etry algebra

to besatis�ed ateach �nite orderin perturbation theory.Furtherm ore,thisargum entcannot

beapplied tothenon-Abelian case.In actualfact,theresolution ofthegauginom asspuzzlehas

to dowith theboundary conditionsin AdS,which shallbediscussed in thenextsection.W hat

we shall�nd thereisthatboundary e�ectsprovidea calculable,IR saturated,contribution to
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thegauginobilinearin the1-loop 1PIe�ectiveaction.Thiscontribution correspondstoam ass

m IR which exactly cancelstheUV one

m U V + m IR = 0: (2.15)

2.2 B oundary conditions

The m ost relevant feature ofAdS space,for our discussion,is the presence ofa (conform al)

boundary located at z = 0 in the Poincar�e patch (2.9). One im m ediate consequence ofthe

presenceofa2+1-dim ensionalboundary isthatchiralsym m etry isalwaysbroken in AdS4 [14].

Thisisfully analogousto whathappensin a �eld theory on halfof
atspace:when a ferm ion

travelling towardsthe boundary isre
ected,the m om entum 
ipssign,while Jz isconserved.

Thus,helicity isnotconserved.

M oreform ally,chiralsym m etry isbroken by theboundary conditionsthatarenecessary to

de�nethetheory.Thiscan beseen by considering a two com ponentspinorpropagatingon half

of
atspace,with action

S =
1

2

Z

z� 0

d
4
x
��
� i �

m
D m

� � m   
�
+ h:c:

�
: (2.16)

Thevariation oftheaction is

�S = (E O M )�
i

2

�
� �

3 � � h:c:
�

z= 0
: (2.17)

In orderto obtain sensible boundary conditions(i.e.notover-constraining),a boundary term

� 1

4

R

z= 0
e� i’   + h:c:m ust be added to the action,where ’ is an arbitrary phase. The

variationalprinciple then dem andsthat

 �

�
�
�
z= 0

= ie
i’
�
3

�_�
� _�

�
�
�
z= 0

; (2.18)

im plying thatchiralsym m etry isbroken even forvanishing bulk m ass1.

The generalization to AdS requires som e care, because of the divergent scale factor at

z = 0.Theboundary conditionsin thiscasecan bederived by considering thebehaviorofthe

solutionscloseto z = 0.W ithoutlossofgenerality,wecan choosem L > 0.Norm alizability of

thesolution requiresthat

m L �
1

2
:  / z

3

2
+ m L

� =) �� = � i�
3

�_�
��_�

0� m L <
1

2
:  / z

3

2
� m L

� =) �� = � i�
3

�_�
��_� (2.19)

1Form = 0,withoutlossofgenerality onecan choose’ = 0.
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and again chiralsym m etryisnecessarily broken.NotethatfortheAdS case,thereisnofreedom

to chose the phase ’.Thisisbasically because the bulk m assoperatoritselfplaysthe r̂ole of

a boundary m assterm .Thisiseasily seen by perform ing a W eylrescaling, = (z=L)3=2�:the

lagrangian for� isjustgiven by eq.(2.16),butwith a position dependentm assm ! M L=z,

which blows up at z = 0. The exponent in the asym ptotic behavior is precisely the index

E ofthe corresponding representation. Note thatform L < 1=2,two inequivalent boundary

conditionsarepossible,corresponding to a doublequantization,ashappensforscalarsin AdS

[5]. The existence ofone and two solutions respectively for m L � 1=2 and 0 � m L < 1=2,

nicely m atcheseq.(2.2)and theunitarity bound E � 1.

In the QED case,the boundary condition (2.19) fora single charged spinor would break

electric charge;in order to conserve electric charge,the boundary conditions m ust relate  +

to � � .
2 Repeating the exercise above with the two spinors,norm alizability ofthe solutions

requires

m L �
1

2
:  � ; + / z

3

2
+ m L =)  + � = � i�

3

�_�
� _�
�

0� m L <
1

2
:  � ; + / z

3

2
� m L =)  + � = � i�

3

�_�
� _�
� (2.20)

Given theboundaryconditionsfortheferm ions,supersym m etry then determ inesthebound-

ary conditions for the scalars. By acting with the unbroken supersym m etries (2.10) on the

ferm ionicboundary conditions,one�nds

m L �
1

2
: z! 0 =) �+ = �

�
� [1+ O (z)]

0� m L <
1

2
: z! 0 =) �+ = � �

�
� [1+ O (z)] (2.21)

where the sign in thesecond eq.iscorrelated with thesign fortheferm ions.W ecan see that

thisisconsistentwith theequationsofm otion forthe scalars:In thescalarsector,by solving

thewave equation forthetwo m asseigenstates,�1 and �2,we�nd that

lim
z! 0

�1 = z
2+ m L

A 2(x)+ z
1� m L

B 2(x)

lim
z! 0

�2 = z
1+ m L

A 1(x)+ z
2� m L

B 1(x): (2.22)

For m L > 1=2,norm alizability alone im plies that B 1 = B 2 = 0,corresponding to the �rst

solution in eq.(2.21).Form L < 1=2,them assofthetwo scalarsisin therangewheredouble

2Indeed,for m L > 1=2 the charge preserving boundary condition is forced on us by norm alizability. For

0 � m L < 1=2,com patibly with norm alizability,there existtwo other,inequivalent,charge-breaking boundary

conditions.W e willconsiderthese otherpossibilitieselsewhere.
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quantization isallowed,and so wecan chooseA 1 = A 2 = 0(consistently with supersym m etry),

corresponding tothesecond solution in (2.21).Notethat,asacom bined e�ectoftheboundary

conditionsforferm ionsand scalars,R� sym m etry isbroken in them attersectoreven form = 0.

Finally,wecan also�xtheboundarycondition forthevectorm ultiplet.BytakingNeum ann

boundary conditionsforthe gauge �eld and acting with the supersym m etry transform ations,

we�nd thattheappropriatesign ofthegaugino boundary condition is

@zF
��
�
�
z= 0

= 0 F
�3
�
�
z= 0

= 0 �� = i�
3

�_�
�� _�
�
�
z= 0

(2.23)

To sum m arize,the presence ofthe boundary in AdS4 alwaysbreakschirality and R� sym -

m etry,even when there is no source ofexplicit breaking in the bulk action. The physics is

essentially thatofhalfof
atspace. W hatis specialto AdS4 is thatthe chiralsym m etry is

broken,whilethem axim alnum berofisom etriesispreserved.Thisis,ofcourse,crucialto give

a m eaning to a m asssm allerthan thecurvatureofthespace.

3 G augino M ass

The boundary conditionsderived above provide the necessary ‘m assinsertions’to give rise to

an IR contribution to the gaugino m ass. Focussing on the case ofm asslessSQED,letusnow

com putethegaugino m assat1-loop order.

3.1 C hiralbreaking correction to the selfenergy

The com putation isparticularly transparentin the case ofm assless m atter,where the chiral

sym m etry breaking is entirely due to the boundary e�ects. (W e present the m assive case in

the appendix.) W hen m = 0,the chiralm attersuperm ultiplet isconform ally coupled. Asa

consequence,thefullSQED action in thiscaseisinvariantunderW eyltransform ationsatthe

classicallevel.Thisallowsusto m ap thetheory in AdS spacetooneliving on halfof
atspace

and perform allthe com putationsusing fam iliar
atspace form ulae. Thisisachieved via the

superconform alrescaling

� =

�
z

L

�

�̂;  =

�
z

L

� 3

2

 ̂; � =

�
z

L

� 3

2

�̂; AM = Â M ; (3.1)

s =

�
z

L

�

ŝ; u =

�
z

L

�2
û; gM N =

�
z

L

�2
ĝM N : (3.2)

Afterthe rescaling,ĝM N � �M N and Ŝ = (L=z)(1+ �2=z). Since SQED isW eylinvariant(at

tree level),the com pensatordecouples,and we are leftwith the tree levelaction form assless,

SQED in halfof
atspace,with a boundary atz = 0.The boundary conditionson the �elds
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are m ost easily im plem ented by perform ing an orbifold projection. From the results in the

previoussection,wehave(dropping thecircum 
exeson the�elds),

 + (X )= � i�
3 � � (~X );

�+ (X )= �
�
� (

~X );

A �(X )= A �(~X );

A z(X )= � Az(~X );

�(X )= i�
3��(~X ); (3.3)

where ~X = (x;� z)istheposition oftheim agepoint.The
atspacepropagatorscan bewritten

down directly using them ethod ofim agecharges.Forthescalars,onehas

h�+ (X 1)�
�
+
(X 2)i= h�� (X 1)�

�
� (X 2)i=

1

4�2

1

(X 1 � X2)
2 + i�

; (3.4)

h�+ (X 1)�� (X 2)i= h��� (X 1)�
�
+
(X 2)i=

1

4�2

1

(X 1 � ~X 2)
2 + i�

:

Sim ilarly,fortheferm ions,

h + �(X 1)� + _�(X 2)i= h � �(X 1)� � _�(X 2)i=
i

2�2

(X 1 � X2)M �
M

� _�

[(X 1 � X2)
2 + i�]2

; (3.5)

h + �(X 1) 
�

� (X 2)i= �
1

2�2

(X 1 � ~X 2)M (�
M ��3)��

[(X 1 � ~X 2)
2 + i�]2

:

Onecan seethatthei� prescription in Feynm an’spropagatorselectsim plicitly boundarycondi-

tionsatz= 1 :thesearetheHartle-Hawkingboundaryconditions,appropriatetothePoincar�e

patch [10].

Theo�-diagonalpropagatorsdeterm inethechiral-breakingcontribution tothegauginoself-

energy in Fig.1

� �
� (X 1;X 2)= ihJ�(X 1)J

�(X 2)i; (3.6)

where J� = i
p
2g(��+  + � � ���  � �)and where ourconvention on the self-energy isde�ned by

�1P I �
R

1

2
��(X 1)�

�
� (X 1;X 2)��(X 2).Perform ing theW ick contractions,wehave

� �
� (X 1;X 2)= 4ig2h��

+
(X 1)�

�
� (X 2)ih + �(X 1) 

�

� (X 2)i;

= �
ig2

2�4

(X 1 � ~X 2)M (�
M ��3)��

[(X 1 � ~X 2)
2 + i�]3

: (3.7)

Noticethatthiscontribution isnon-local,and com esfrom long-distancephysics,asopposed to

eq.(2.14). In orderto extractfrom � �
� (X 1;X 2)the correction to the gaugino m ass,we m ust

9



Figure 1:Chiralbreaking 1-loop correction to the gaugino selfenergy. The \m ass" insertions

correspond to boundary e�ects.

evaluate it on a solution ofthe m assless (tree level) wave equation. This is the analogue of

com puting the self-energy atzero m om entum in 
atspace. The generalsolution ofthe bulk

Diracequation fora m asslessgaugino is

�0(X )= e
ipM X M

�; ��M pM � = 0; p
M
pM = 0: (3.8)

Physicalstates m ust also satisfy the boundary condition in eq.(2.23). In order to achieve

that,two solutions with opposite velocity,p3=p0,in the z-direction should be superim posed.

However,asweshallexplain in am om ent,thecorrectprocedurewem ustfollow in thePoincar�e

patch in ordertostudy the1-loop corrected waveequation istoworkwith solutionsoftheDirac

equation thatsatisfy boundary conditionsatthehorizon z ! 1 ratherthan attheboundary

z = 0.Thisisclosely related to the AdS/CFT prescription. Alternatively we could overcom e

thisissueby perform ing an euclidean com putation,asin thiscasePoincar�eco-ordinatescover

thewholespace,butwe�nd itm orephysicalto addressdirectly theLorentzian pointofview.

To obtain theIR contribution to thegaugino m ass,wem ustconvoluteeq.(3.7)with (3.8).

W ethus�nd,

Z

d
4
X 2�

�
� (X 1;X 2)�0�(X 2)= �

ig2

8�4

Z

d
4
X 2

@

@ ~X M
2

�
(�M ��3)��

[(X 1 � ~X 2)
2 + i�]2

�

�0�(X 2)

=
ig2

8�4

Z

d
3
x2

1

[(x1 � x2)
2 + z21 + i�]2

e
ip� x

�

2�� (3.9)

wherein thelaststep weintegrated by partsand used ��M @M �0 = 0.In theresulting boundary

integral,we used the explicitexpression for�0 in (3.8). Notice thatx are coordinateson the

boundary.Perform ing thelastintegralexplicitly wethus�nd,

1

2

Z

d
4
X 2�

�
� (X 1;X 2)�0�(X 2)=

g2

16�2

1

z1
e
i(p� x

�

1
+ jpjz1)��; (3.10)

where the i� in the originalintegral�xes the sign ofp3 =
p
� p�p

� to be positive. The right

hand sideofeq.(3.10)isproportionalto theoriginalspinorifthissatis�estheHartle-Hawking

10



boundary conditions:positive frequenciespurely outgoing and negative frequenciespurely in-

com ing.Thism eansthatwhen evaluated on thisclassofsolutionsofthebulk Diracequation,

the IR contribution to the self-energy � �
� ,actslike a m assterm m IR which isprecisely equal

and opposite to the anom aly m ediated contribution (see eq.(2.14)afterperform ing the W eyl

rescaling in eqs.(3.1),(3.2)).Thusan exactcancellation between UV and IR e�ectsarises,as

prom ised in eq.(2.15).Itisthecleverrelation am ong thesetwo contributionsthatensuresthe

m asslessness ofthe gaugino,asdem anded by supersym m etry. This isthe m ain result ofour

paper.

Itrem ainsto beexplained why ourcom putation worksonly fortheclassofsolutionsofthe

form (3.10).Thesesolutionscorrespond tothecreation ofincom ingparticlesatthepasthorizon

H � and to the destruction ofoutgoing particles atthe future horizon H + that separate the

Poincar�e patch from the restofAdS.Intuitively such processescan be described by causality

usingsolelythe�eldsinthePoincar�epatch.Othersolutionscorrespondtoprocessesthatarenot

captured by thePoincar�epatch aloneand probeotherregionsofglobalAdS.In thiscasethere

willbeextra-contributionsfrom therestofthespaceand a com putation in globalcoordinates

would be required. That such contributions exist follows from the fact that the Feynm an

propagatorisnon-vanishing between a pointinside the Poincar�e patch and one outside. Had

we worked in globalcoordinates we could have directly checked that the cancellation ofthe

gaugino m ass occurs for arbitrary physicalstates (i.e. solutions ofthe wave equation that

satisfy theboundary conditions).

Ourresultcan howeverbe readily interpreted from the viewpointofthe AdS/CFT corre-

spondence [9].Even though Lorentzian AdS/CFT isnotnearly asdeveloped ason Euclidean

space,we do not see obvious obstructions in the case at hand.3 From this perspective,the

boundary �eld com bination

�� (x)= �(x)� i�
3��(x) (3.11)

should be viewed as an externalsource probing the system (the dualCFT).Notice that ��

isprecisely the com bination thatissetequalto zero forthe AdS quantum �elds. Perform ing

a path integralover the bulk �elds with vacuum boundary conditions at H � one obtains a

functionalZ(�� )which generatesthe correlatorsofthe associated dualoperatorin the CFT.

Given �� ,a classicalsource localized atthe boundary,the choice ofinitialand �nalvacuum

states for our path integral�xes the boundary condition for the corresponding bulk �eld at

z ! 1 . W orking with plane waves, this prescription corresponds precisely to the Hartle-

Hawking boundary condition we encountered previously. Thisgivesa prescription for�nding

3Indeed itisto beexpected that,justasthereisa procedureto analytically continuea CFT from Euclidean

to Lorentzian space,there should also exist a sim ilar procedure to analytically continue the correspondence

from Euclidean to Lorentzian AdS.Atleastin som esim plecasesthiswasoutlined forinstancein Refs.[10,11].
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a uniqueextension of�� into thebulk,by requiring thatits(e�ective)action bestationary.

Attreelevel,wehavetheboundary e�ectiveaction

lnZ = Sbd = �
1

4

Z

d
3
x
�
�� + ����

�
=

Z

d
3
x��

�3���
p
@2 + i�

@��� ; (3.12)

corresponding to thecorrelatorofa dualferm ioniccurrentofscaling dim ension 3

2
:

hO �(x)O
�(0)i=

x�(�3���)
�
�

(x2 + i�)2
: (3.13)

The1-loop com putation wehaveperform ed isdirectly translated into a 1-loop com putation of

theboundary e�ectiveaction.Theonly di�erencefrom beforeisthatweneed to consideralso

solutions with Euclidean boundary m om enta p�p
� > 0. In thiscase the solution in the bulk

corresponds to the unique regularsolution atz ! 1 asprescribed by Euclidean AdS/CFT.

Needlessto say thepreviouscom putation can becontinued to theEuclidean region so thatthe

selfenergy isdiagonalon thesesolutions.W orking at1-loop accuracy,thecorrected boundary

e�ective action is sim ply obtained by substituting the tree levelbulk solution into the 1PI

bulk e�ective action. However our previous result was precisely that the total(UV + IR)

1PIvanisheson the very solution ofthe m asslessDirac equation thatsatis�ed the AdS/CFT

boundary conditions atz ! 1 (thatis with the sam e exponent as in eq.(3.10)). Thus we

concludethatatthe1-loopleveltheboundaryactionisuna�ected and thusthedim ension ofthe

CFT operatordualto thegaugino �eld isnotrenorm alized,consistently with supersym m etry.

W hatwe have learned isan am using lesson on the r̂ole ofthe anom aly m ediated gaugino

m ass.Thebasicreason foritsexistenceisthatAdS4 behavesas2+1-dim ensional�eld theoryas

faraschirality isconcerned.Them assofferm ionsisthusadditively renorm alized by calculable

boundary e�ects. On the other hand,supersym m etry m andates the gaugino to be exactly

m assless.Thesim pleSQED case,in theend,showsthattheonly way to achievethisisvia the

existenceofsuitableshortdistancee�ects,in one-to-onecorrespondencewith thelong distance

e�ects.Thisisyetanotherillustration oftheUV insensitivity ofanom aly m ediation.

3.2 C hiralpreserving correction: wave function renorm alization

In the previoussection we have shown thatthe chiralbreaking partin the 1-loop selfenergy

doesnotcorrectthegaugino m ass,nor,sim ilarly,doesitcorrecttheboundary e�ectiveaction.

However,strictly speaking thereisyetanothercontribution to thegaugino self-energy thatwe

need to consider. Thisisthe ‘chirality-preserving’contribution,�
� _�
,the one associated with

wave-function renorm alization.Theissueathand ariseseven in theabsenceofsupersym m etry.

W ewillshow thatthiscontribution vanisheswhen actingon am asslessspinor.Thisresultm ay

12



seem obviousat�rstsight,based on ourusual
atspace intuition.Indeed,in 
atM inkowsky

space,Lorentz invariance constrains this term to be proportionalto f(�)6@,which vanishes

on-shellaslong as f is nottoo singular (in fact,f is a logarithm ic function). However,the

situation is m ore subtle in AdS,since,at the quantum level,the boundary m akes itselffelt

even inside the bulk,and therefore the z direction isnotm anifestly equivalentto the others.

Thepurposeofthissection isto clarify thisissue.An extra com plication com esfrom theneed

to regularizethedivergentpartof�
� _�
.W eshallagain focuson m asslessSQED,forwhich we

can work in the conform ally rescaled basis(3.2).The generalcase isbrie
y considered in the

appendix. W orking in position space,we �nd itconvenient to use the m ethod ofdi�erential

regularization [12].

Theunregulated �
� _�

isgiven by,

�
� _�
(X 1;X 2)= ihJ�(X 1)J_�

(X 2)i

= � 4ig2h�+ (X 1)�
�
+
(X 2)ih + �(X 1)� + _�

(X 2)i (3.14)

Thiscorrespondsto thefollowing correction to thee�ectiveaction

�= �
g2

2�4

Z

d
4
X 1d

4
X 2

��(X 1)
X 12M ��

M

(X 2
12
+ i�)3

�(X 2); (3.15)

whereX 12 = (X 1� X2)M .Thisexpression has,however,anon-integrablesingularityatX 12 = 0,

which m ustberegulated.Na��vely,using di�erentialregularization am ountsto replacing

X 12M

(X 2
12 + i�)3

!
1

16

1

@X M
1

�

� 1

ln(X 2
12
M 2)

X 2
12 + i�

�

; (3.16)

where M playsthe r̂ole ofthe renorm alization m assscale. Thiscannot,however,be the full

story,since the explicitm assscale M breaksdilatation invariance X ! kX . In the rescaled

basis,SO (3;2)arisesasthe subgroup ofSO (4;2)which isleftunbroken by the com pensator

background ~s= L=z [13].Consequently theregulated self-energy in eq.(3.16)doesnotrespect

theAdS isom etries.Asthelack ofinvariancefollowsfrom theregularization,thecounterterm

needed torestorethesym m etry m ustbelocal,and m ustofcourseinvolvethecom pensator.By

sim plereasoning onecan quickly derivetheuniqueform ofthiscounterterm .In orderto do so,

letusim aginethatwehad regulated theloop in a m anifestly covariantfashion,by introducing

PauliVillars�eldswith m assM .ThecrucialaspectofPauli-Villars�eldsisthat,beingm assive,

theirquadraticlagrangian dependsdirectly on thecom pensator,~s,via thesubstitution

M ! M � ~s(z)= M �
L

z
; (3.17)

which form ally restoresconform alinvariance. Howeveritdoesnotm ake any sense to sim ply

perform thisreplacem ent in eq.(3.16). To �nd outhow eq.(3.16)ism odi�ed we m ust be a
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tad m orecareful.W ejustneed to focuson theM -dependentpartoftheregulated self-energy.

Using theidentity

�
1

x2 + i�
= 4�2i�4(x); (3.18)

theM -dependentpartofthee�ectiveaction isgiven by

�� U V = �
ig2

8�2
lnM 2

Z

d
4
X ��(X )��M @M �(X ); (3.19)

whoseuniquelocalcovariantization is4

�� U V = �
ig2

8�2
ln(M ~s(z))

�
����M @M � � @M

����M �
�
: (3.21)

Thelocalln~s term givesthefollowing correction to ��=���

�
ig2

8�2
@M ln~s��M � =

ig2

8�2

1

z
��3�: (3.22)

On theotherhand,from eq.(3.16)the‘IR’contribution to theequation ofm otion is

g2

2�4

1

16

Z

d
4
X 2

@

@X M
2

�

� 1

ln(X 2
12
M 2)

X 2
12

�

��M �(X 2): (3.23)

To investigatehow thisnon-localcontribution a�ectsthegaugino m asswem ustcom puteiton

thesolution �0 ofthem asslesswaveequation speci�ed by (3.8).Integrating by partsand using

��M @M �0 = 0,eq.(3.23)becom es

�
g2

32�4

Z

d
3
x2

�

� 1

lnM 2X 2
12

X 2
12

�

��3�0(X 2)
�
�
z2= 0

=
g2

8�4

Z

d
3
x2

1

(X 2
12
+ i�)2

��3�0(X 2)

= �
ig2

8�2

1

z1
��3�0(X 1); (3.24)

where the �nalintegralis identicalto the one com puted in the previous section,eq. (3.9).

Again thelastidentity isonly valid forsolutionssatisfying theHartle-Hawking boundary con-

ditions.W ethus�nd thatthecontributionsin eqs.(3.22)and (3.24)again cancelso thatthe

propagation ofthe gaugino isnota�ected. In particularthe gaugino rem ainsm assless. Note

that,whilethecancellation in theprevioussection relieson supersym m etry,thise�ectisinde-

pendentofsupersym m etry. Thiscancellation between UV and IR contributions,dictated by

4Indeed,com patibly with locality and powercounting,anotherterm isna��vely possible:

[@z ln~s(z)]����
3
�: (3.20)

Thisterm m usthoweverbediscarded asitexplicitly breaksCP (theregulated theory isform ally CP-invariant,

even though parity is,ofcourse,‘spontaneously’broken by the expectation valueof~s).
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theAdS isom etry (asubgroup oftheconform algroup),can beviewed asan N = 0counterpart

oftheonefound previously.Thisisperhapsnotsurprising,asanom aly m ediation isitselfthe

supersym m etriccounterpartofthetraceanom aly.Indeed,in a super�eld form alism ,thesetwo

separatecancellationswould bem anifestly related.

4 Sum m ary

W estudied the r̂oleplayed by anom aly m ediated (AM )m assterm sin N = 1 theorieson AdS4

with unbroken supersym m etry.Forsim plicity wefocussed on thegaugino m assterm in SQED

with m asslessm atter.W eshowed thattheAM gauginom assterm isrequired by thesuper-AdS

algebra in ordertoexactly cancelanother1-loop contribution,ofinfrared origin and associated

with the AdS boundary. The latter e�ect originates because chirality (R� sym m etry in this

case)isnecessarily broken by re
ection ata 2+1-dim ensionalboundary.

Indeed,by com puting �rstthis�nite IR e�ect(which doesnotrequire the introduction of

a regulator)and by using thefactthatthealgebra dictatesa m asslessgaugino,wecould have

argued theneed fora local,UV generated,AM contribution.Sincethelatterisindependentof

whetherthetheory livesin 
atorcurved space,thatwould have provided yetanotherderiva-

tion ofAM gaugino m asses. The possibility ofrelating the AM m assto purely IR quantities

illustratesthe\UV insensitivity" ofthise�ect,a property which m akesitpotentially relevant

in phenom enologicalapplications. The factthatAM e�ectsrepresentlocalpartsofnon-local

structuresin the1PIaction iswellknown.Ourresultprovidesanew twiston thatperspective:

theAM gaugino m assisjusta re
ection ofthebreakdown ofchirality atthe2+1-d boundary

ofAdS4.

Thereareseveraldirectionsin which onem ightextend and im proveourresult.Oneobvious

possibility is to perform the sam e com putation in the non-abelian case,where,unlike in the

abelian case,propergauge-�xingwillbeneeded.Anotherproblem concernsther̂oleofallother

AM term s,such assferm ion m assesand \A-term s":itshould bepossibleto derive them from

consistency conditionsaswell,butprobably in a m oresubtleway than forthegaugino m ass.

In thispaperwe worked on the Poincar�e patch. Thisprocedure isclean forthe euclidean

case and from the AdS/CFT standpoint: our com putation corresponds to checking that,as

expected by supersym m etry,the scaling dim ension ofthe operator dualto the gaugino �eld

is not renorm alized. The Lorentzian com putation is m ore delicate,as we have to dealwith

boundary conditions at the horizons which separate the chosen patch from the rest ofAdS.

It would then be interesting to try to perform the sam e com putation in globalcoordinates,

and check that,in that case,the 1-loop selfenergy does vanish when convoluted with the

norm alizable solutions. Finally,it would be interesting to understand the r̂ole ofanom aly
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m ediation purely from theCFT viewpoint.TheAdS bulk pictureisthatthegaugino m ustbe

m asslesseven though chirality isbroken,corresponding to non-vanishing � �
� o�-shell. In the

CFT picture,the non-vanishing of� �
� ,showsup in the 4-pointfunction ofoperatorsdualto

theAdS m atter�elds.Howeveritisnotim m ediately obvioushow totranslatethebulk picture

to theboundary,sincethereisno notion ofchirality in 2+1-d �eld theory.
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A ppendix: M assive C harged M atter

The cancellation ofthe UV and IR contributions to the gaugino m ass,being a consequence

ofthe algebra,isa generale�ectwhich m ust hold forany m assofthe m atter�elds. In this

appendix we check explicitly the cancellation forarbitrary valuesofm in the superpotential.

Thiscom putation can also beinterpreted asthederivation oftheanom aly m ediated UV con-

tributions(2.14),(3.21)using Pauli-Villars�elds.

Form asslessm atter,theonly sourceofchiralsym m etry breaking isdueto thepresence of

the boundary,while when m 6= 0,chiralsym m etry is broken also in the bulk. In this case,

the m atterisnotconform ally-coupled and,therefore,the propagatorscannotbe obtained by

sim ply rescaling the
atspaceresults.A fullAdS com putation isrequired.

W ewillneed thepropagatorsfora chiralm ultipletwith arbitrary m ass.Thescalarpropa-

gatorassociated to therepresentation D (E ;0)((m L)2 = E (E � 3))isgiven by5

�(E ;0)=
1

(4�)2L2

�[E ]�[E � 1]

�[2E � 2]

�
2

u

� E

2F1

�

E ;E � 1;2E � 2;�
2

u

�

;

wherewehaveintroduced theAdS invariantlength,

u =
(X 1 � X2)

2 + i�

2z1z2
; (A.1)

5Thisform ulae hold forE > 3=2 where both scalarsin the chiralm ultiplethave standard boundary condi-

tions.Thisisthe rangewherea singlequantization ispossible.
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The ferm ion propagator associated to the representation D (E + 1=2;1=2) can be found in

Ref.[14],

h + �(X 1) 
�

� (X 2)i=
� �[E ]�[E + 1]

(32�2L3)�[2E � 1]

�
2

u + 2

� E + 1

2F1

�

E + 1;E � 1;2E � 1;
2

u+ 2

�

� ��
� ;

h � �(X 1)� � _�
(X 2)i=

i�[E ]�[E + 1]

(32�2L3)�[2E � 1]

�
2

u + 2

� E + 1

2F1

�

E + 1;E ;2E � 1;
2

u + 2

�

� �
� _�

(A.2)

where,

� �
� =

(X 1 � ~X 2)M (�
M ��3)�

�
p
z1z2

�
� _�

=
(X 1 � X2)M �

M

� _�
p
z1z2

(A.3)

Asin them asslesscase,thecontribution ofthem atterloop tothegauginom assarisesfrom

thetheself-energy (3.6),

� �
� (X 1;X 2)= 4ig2h��

+
(X 1)�

�
� (X 2)ih + �(X 1) 

�

� (X 2)i (A.4)

wherenow

h�+ (X 1)�� (X 2)i=
�(E + 1;0)� �(E ;0)

2
; (A.5)

and theferm ion belongsto therepresentation D (E + 1=2;1=2).

In orderto com pute the contribution to the gaugino m ass,we evaluate the self-energy on

thesolution ofthem asslessgaugino equation asin section 3.1.Thishighly non-trivialintegral

ofhypergeom etric functionscan beevaluated num erically by choosing thesim plestsolution of

them asslessequation ofm otion,�0(X 1)= z3=2�0,

Z

dX 2

p
� g� �

� (X 1;X 2)�0�(X 2)= �
g2

8�2L
�0�(X 1): (A.6)

Following the discussion in section 3.1 we expectthe sam e to hold forany solution satisfying

the appropriate boundary conditions. Thiscontribution asexpected doesnotdepend on the

m assand cancelstheanom aly-m ediated UV contribution,proving forgeneralm thatthisterm

isnecessary forthe consistency ofthe supersym m etric theory. Asa check ofthisresult,one

can considerthe lim itm � 1=L,asdone in [4]. In thislim it,the curvature isa sm alle�ect

and theloop can becom puted using 
at-spacepropagators,butwith theAdS m asssplitting.
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Forcom pleteness we also checked the wave functions contribution. The chiralpreserving

contribution to self-energy in generalreads,

�
� _�
(X 1;X 2)= � 2ig2[h�1(X 1)�

�
1(X 2)i+ h�2(X 1)�

�
2(X 2)i]h + �(X 1) + _�

(X 2)i (A.7)

Repeating thesam estepsasin section 3.2,we�nd num erically,

Z

dX 2

p
� g�

� _�
(X 1;X 2)�

_�(X 2)= �
g2

8�2L
��(X 1): (A.8)

independently ofthe m ass. This calculation also proves that by regulating the theory with

Pauli-Villars �elds there isan N = 0 anom aly m ediated contribution ofthe form considered

before.In thiscasethecontribution oftheheavy �eldswith m � 1=L cannotbeobtained with

the 
atspace propagatorssince thise�ectisentirely due to the factthatthe theory lives in

curved space.
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