
J
H
E
P
0
2
(
2
0
0
9
)
0
4
3

Published by IOP Publishing for SISSA

Received: December 12, 2008

Accepted: January 31, 2009

Published: February 17, 2009

Gaugino mass in AdS space

Ben Gripaios,ab Hyung Do Kim,bc Riccardo Rattazzi,b Michele Redib and

Claudio A. Scruccab

aCERN PH-TH,

CH-1211 Geneva 23, Switzerland
bITPP, EPFL,

CH-1015, Lausanne, Switzerland
cFPRD and Department of Physics and Astronomy,

SNU, 151-747 Seoul, Korea

E-mail: ben.gripaios@cern.ch, hdkim@phya.snu.ac.kr,

riccardo.rattazzi@epfl.ch, michele.redi@epfl.ch, claudio.scrucca@epfl.ch

Abstract: We study supersymmetric QED in AdS4 with massless matter. At 1-loop the

ultra-violet regulator of the theory generates a contribution to the gaugino mass that is
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1. Introduction

In phenomenologically interesting models the effects of broken supersymmetry in the visible

sector are conveniently parameterized, working in an off-shell formulation, by the expec-

tation values of the auxiliary components of some hidden sector supermultiplets. Among

the auxiliary fields, the scalar u, belonging to the graviton supermultiplet, (gµν , ψ
α
µ , Aµ, u),

stands out as special. Indeed, unlike for auxiliary fields belonging to matter and gauge

hidden sector multiplets, the coupling of u is completely fixed (at the leading relevant

order) once the masses and self-couplings of the low energy effective theory, prior to su-

persymmetry breaking, are specified. This property just follows from u being a partner of

gµν whose coupling is equally well specified by the energy momentum tensor of the low en-

ergy effective theory. The scenario of ‘Anomaly Mediated’ (AM) supersymmetry breaking

corresponds to the limiting case in which the contribution of u dominates over all of the

others [1, 2]. The name ‘Anomaly Mediated’ is due to the fact that in the MSSM u only

couples to the visible fields at the quantum level, via a supersymmetric analogue of the

dilatation anomaly of non-supersymmetric field theory.

The purpose of this paper will not be to build phenomenological models based on AM,

but rather to investigate some of its more amusing theoretical aspects. In fact, far away

from the domain of phenomenology, we shall be working in four dimensional supersymmet-

ric Anti-de-Sitter (AdS) space. We nonetheless believe that our study provides interesting

additional insight into the properties of AM, in particular its being UV insensitive, in spite

of being UV generated.

– 1 –



J
H
E
P
0
2
(
2
0
0
9
)
0
4
3

To set the stage, it is convenient to derive AM terms via the superconformal approach

to supergravity [3]. At tree level, the most general two-derivative Lagrangian may be

written as

L =
[

S†S Ω(Φ†
i , e

qiV Φi)
]

D
+
{[

S3W (Φi) + f(Φi)W
αWα)

]

F
+ h.c.

}

, (1.1)

where D and F are superconformally invariant densities, provided that the chiral super-

field, S, and the matter fields, Φi, have Weyl weights 1 and 0, respectively. Interesting

actions are obtained by consistently taking the lowest component of S with non-vanishing

expectation value. This breaks the superconformal group down to Poincaré supergravity

and turns S into a purely auxiliary field, formally restoring scale invariance, hence the

name ‘superconformal compensator’. Indeed a suitable superconformal gauge can be cho-

sen where S = 1+θ2u. The couplings of the auxiliary field u are thus fixed by dilations and

R-symmetry. In particular a classically scale invariant subsector, like the MSSM, couples

to u only at the quantum level. For a massless gauge theory the coupling of S is easily

read off by demanding formal scale- (and R-) invariance of the 1PI action at 1-loop

Γ =
1

4

[

Wα
( 1

g2(µ)
+

b

8π2
ln(

√
�

µS
)
)

Wα

]

F

+ h.c. (1.2)

By expanding in components, one finds a gaugino mass term which is proportional to the

β-function

mλ = − bg2

16π2
u. (1.3)

The dependence of Γ on S is local, compatibly with its being UV generated. However, it

belongs to a non-local supergravity invariant ‘structure’ (involving ln �), and this is why it

is convenient to use the 1PI action to determine it. This is just the supersymmetric gener-

alization of a dilaton coupling to the trace anomaly, hence the name ‘anomaly mediation’.

In models with broken supersymmetry and vanishing cosmological constant, 〈u〉 =

O(m3/2), implying a 1-loop contribution of order (α/4π)m3/2 to gaugino and sfermion

masses. However, one may also have 〈u〉 6= 0, with unbroken supersymmetry on AdS. In

that case, the expectation value is given by the superpotential: 〈u〉 = W/M2
P = 1/L, where

L is the AdS radius. Indeed, at tree level, 〈u〉 = 1/L generates the mass splittings, of order

of the AdS curvature, that are required by supersymmetry in AdS. The rôle of a loop effect

like anomaly mediation is less clear in this case, though it ought to be easy to understand,

given that the theory still enjoys unbroken supersymmetry.

The purpose of this note is to explain the rôle played by anomaly mediation in su-

persymmetric AdS. This issue was briefly considered in [4], in the context of a general

discussion in which the short distance origin of AM was emphasized. However our ex-

planation for the rôle of AM in AdS space differs from the one proposed in [4]. We will

argue that the existence of AM is a necessary consequence of supersymmetry, given the

large-distance properties of AdS space, in particular the presence of a (conformal) bound-

ary. In this sense, our work represents yet another way of deriving AM masses, purely via

consideration of IR saturated quantities. The outline is as follows. In section 2, we review
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supersymmetry in AdS and supersymmetric QED therein. In section 3, we compute the

1-loop contributions to the gaugino self-energy in SQED with massless matter, and discuss

the implications for the gaugino mass. In section 4, we present conclusions. The case of

SQED with massive matter is relegated to the appendix.

2. Supersymmetry in AdS space

In this section, we briefly review some basic features of supersymmetry in four-dimensional

AdS space which will be relevant for the following discussion. For more details, see [5, 6]

and refs. therein.

The isometry group of AdS4 is SO(2, 3), whose unitary, infinite-dimensional repre-

sentations are denoted by D(E, s), where E and s represent respectively the energy and

spin of the lowest energy state in the representation. The Lagrangian mass parameter of

the corresponding fields (in units of 1/L) are functions of E and s. For instance, for the

simplest cases of s = 0, 1
2 , we have

D(E, 0) −→ m2
0 =

E(E − 3)

L2
, (2.1)

D(E,
1

2
) −→ m2

1

2

=
(E − 3/2)2

L2
. (2.2)

Just as in flat space, the simplest irreducible representations of the super-group Osp(1, 4)

correspond to chiral and vector supermultiplets. A chiral supermultiplet decomposes into

the following representations of SO(2, 3):

D (E0, 0) ⊕D

(

E0 +
1

2
,
1

2

)

⊕D (E0 + 1, 0) , E0 ≥ 1

2
. (2.3)

Note that the supersymmetry generators raise and lower E by a half-integer. Then, ac-

cording to eqs. (2.1), (2.2), the mass terms for fermions and scalars within the same super-

multiplet are not, in general, the same. These splittings are mandated by Osp(1, 4) and

originate within the lagrangian from two sources. One source is the non-vanishing Ricci

scalar and the other source is 〈u〉 = 1/L. Notice, finally, that in the special case of the

conformally-coupled supermultiplet, with E0 = 1, the two scalars have the same mass, even

though they belong to different representations: namely D(1, 0) and D(2, 0).

Turning now to the massless vector supermultiplet, the SO(2, 3) representation con-

tent is

D

(

3

2
,
1

2

)

⊕D (2, 1) . (2.4)

This multiplet is both conformally coupled and ‘short’, corresponding to its being related

to a gauge invariant lagrangian. A massive vector multiplet, on the other hand, is charac-

terized by E0 > 3/2, and decomposes as

D

(

E0,
1

2

)

⊕D

(

E0 +
1

2
, 0

)

⊕D

(

E0 +
1

2
, 1

)

⊕
(

E0 + 1,
1

2

)

. (2.5)
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This is a long multiplet that can be viewed as arising from a Higgs mechanism. Indeed, it

has the same state multiplicity as the direct sum of the massless vector supermultiplet and

the Goldstone supermultiplet, whose content is D (2, 0) ⊕D
(

5
2 ,

1
2

)

⊕ (3, 0). Since it corre-

sponds to multiplet shortening, the masslessness condition must be stable in perturbation

theory. In particular, the gaugino mass, for an unbroken gauge symmetry, must be zero to

all orders.

2.1 AdS SUSY QED

The presence of the anomaly mediated contribution to the mass (1.3) is, näıvely, at odds

with the previous observation that the gaugino should be massless. To clarify the rôle of

AM, we shall focus on the simplest non-trivial example, that is the mass of the gaugino in

supersymmetric QED. Our theory consists of N = 1 supergravity with a vector superfield

V , and two chiral superfields Φ±, with opposite charges ±1. The Kähler and superpotential

functions are given by (throughout the paper we use the conventions of Wess and Bagger [8])

Ω ≡ −3M2
P e

−K/3M2

P = −3M2
P + Φ†

+e
gV Φ+ + Φ†

−e
−gV Φ− +O(Φ4),

W =
M2

p

L
+mΦ+Φ−, (2.6)

f = 1 +O(Φ+Φ−). (2.7)

Since we shall be working in the neighbourhood of Φ± = 0, we neglect the higher order

terms indicated by O(. . . ). The constant term in the superpotential gives rise to the AdS4

background and to the expectation value of the compensator,

〈S〉 = 1 +
1

L
θ2 . (2.8)

We will find it technically convenient to work in the Poincaré patch, with metric

ds2 =
L2

z2

(

dxµdxµ + dz2
)

. (2.9)

The co-ordinates xµ (µ = 0, 1, 2) and z cover only one of an infinite set of similar Poincaré

patches of the full AdS space. However Poincaré co-ordinates cover the whole euclidean

AdS (EAdS), which can be obtained just by the substitution t → iτ (see for instance the

discussion in ref. [7]). This last property indicates that, if properly interpreted, computa-

tions on the Poincaré patch yield informations about the properties of QFT on full AdS.

Assuming L to be positive, in these co-ordinates the four unbroken supersymmetries are

parameterized by the Killing spinors

ξ = z
1

2 [ǫ0 − iσ3ǭ0] + z−1/2xµσ
µ[ǫ0 + iσ3ǭ0], (2.10)

where ǫ0 is a two-component constant spinor. Notice that the Killing spinors naturally

decompose into two real spinors of SO(1, 2). The first of these corresponds to the standard

N = 1 in 2+1 dimensions, while the other corresponds to the conformal supersymmetry.

In fact, for our purposes it will suffice to consider the flat supersymmetries, as the others

are implied by the AdS isometries.
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By taking the limit MP → ∞ with L fixed, we decouple gravity and focus on quantum

effects that are purely due to SQED on AdS4. The relevant Lagrangian is, therefore,

L/√g = [kinetic + gaugeD terms] −m(ψ+ψ− + ψ̄+ψ̄−)

−(m2 − 2

L2
)(|φ+|2 + |φ−|2) +

m

L
(φ+φ− + φ∗+φ

∗
−)

+ig
√

2λ(ψ+φ
∗
+ − ψ−φ

∗
−) − ig

√
2λ̄(ψ̄+φ+ − ψ̄−φ−), (2.11)

where, without loss of generality, we have taken m to be real. One sees that the scalars

acquire non-holomorphic mass terms, originating from the non-vanishing Ricci scalar, and

holomorphic (B-type) masses, arising from the compensator F-term. (The fermionic mass

and interaction terms, by contrast, retain the same form as in flat space.) The scalar mass

eigenstates and their masses are given by

φ1,2 =
1√
2
(φ+ ∓ φ∗−), (2.12)

m2
1,2 =

1

L2

(

−2 ±mL+ (mL)2
)

. (2.13)

Eqs. (1.3), (2.8) imply the presence of an AM contribution to the gaugino mass,

given by

∆UV L = − g2

16π2L
λλ+ h.c. ≡ −1

2
mUV λλ+ h.c. . (2.14)

As explained above and emphasized in [4], a gaugino mass would be incompatible with

supersymmetry in AdS4. Indeed, for m 6= 0, there is an additional contribution to mλ,

corresponding to a finite threshold effect at the scale m, where matter is integrated out.

This is due to the presence of both a fermion mass and an R-breaking B-type mass for

the scalars. By the well known property of AM in flat space, we can directly conclude

that, at least for mL≫ 1, the threshold effect cancels eq. (2.14), at least up to subleading

effects of O(1/mL). However, it would be nice to see the exact cancellation in an explicit

computation. Moreover, in the limit m = 0, corresponding to conformal multiplets, there

seems to be a puzzle, in that all sources of R-symmetry breaking disappear from the matter

lagrangian! In other words, for m = 0 there is, at first sight, no obvious contribution in

addition to eq. (2.14). In [4], it was concluded that the contribution in eq. (2.14) does not

affect the physical mass (defined in the sense of the representation of AdS), since g2 runs

to zero in the infrared. This explanation is, however, puzzling, as it requires an all-orders

resummation of diagrams, while we expect the supersymmetry algebra to be satisfied at

each finite order in perturbation theory. Furthermore, this argument cannot be applied to

the non-Abelian case. In actual fact, the resolution of the gaugino mass puzzle has to do

with the boundary conditions in AdS, which shall be discussed in the next section. What

we shall find there is that boundary effects provide a calculable, IR saturated, contribution

to the gaugino bilinear in the 1-loop 1PI effective action. This contribution corresponds to

a mass mIR which exactly cancels the UV one

mUV +mIR = 0 . (2.15)

– 5 –
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2.2 Boundary conditions

The most relevant feature of AdS space, for our discussion, is the presence of a (conformal)

boundary located at z = 0 in the Poincaré patch (2.9). One immediate consequence of

the presence of a 2+1-dimensional boundary is that chiral symmetry is always broken in

AdS4 [14]. This is fully analogous to what happens in a field theory on half of flat space:

when a fermion travelling towards the boundary is reflected, the momentum flips sign,

while Jz is conserved. Thus, helicity is not conserved.

More formally, chiral symmetry is broken by the boundary conditions that are nec-

essary to define the theory. This can be seen by considering a two component spinor

propagating on half of flat space, with action

S =
1

2

∫

z≥0
d4x

[(

−iψσmDmψ̄ −mψψ
)

+ h.c.
]

. (2.16)

The variation of the action is

δS = (EOM) − i

2

[

δψσ3ψ̄ − h.c.
]

z=0
. (2.17)

In order to obtain sensible boundary conditions (i.e. not over-constraining), a boundary

term −1
4

∫

z=0 e
−iϕ ψψ + h.c. must be added to the action, where ϕ is an arbitrary phase.

The variational principle then demands that

ψα

∣

∣

∣

z=0
= ieiϕσ3

αα̇ψ̄
α̇
∣

∣

∣

z=0
, (2.18)

implying that chiral symmetry is broken even for vanishing bulk mass.1

The generalization to AdS requires some care, because of the divergent scale factor at

z = 0. The boundary conditions in this case can be derived by considering the behavior

of the solutions close to z = 0. Without loss of generality, we can choose mL > 0.

Normalizability of the solution requires that

mL ≥ 1

2
: ψ ∝ z

3

2
+mLξ =⇒ ξα = −iσ3

αα̇ξ̄
α̇

0 ≤ mL <
1

2
: ψ ∝ z

3

2
±mLξ =⇒ ξα = ∓iσ3

αα̇ξ̄
α̇ (2.19)

and again chiral symmetry is necessarily broken. Note that for the AdS case, there is no

freedom to chose the phase ϕ. This is basically because the bulk mass operator itself plays

the rôle of a boundary mass term. This is easily seen by performing a Weyl rescaling, ψ =

(z/L)3/2χ: the lagrangian for χ is just given by eq. (2.16), but with a position dependent

mass m → ML/z, which blows up at z = 0. The exponent in the asymptotic behavior is

precisely the index E of the corresponding representation. Note that for mL < 1/2, two

inequivalent boundary conditions are possible, corresponding to a double quantization, as

happens for scalars in AdS [5]. The existence of one and two solutions respectively for

mL ≥ 1/2 and 0 ≤ mL < 1/2, nicely matches eq. (2.2) and the unitarity bound E ≥ 1.

1For m = 0, without loss of generality one can choose ϕ = 0.
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In the QED case, the boundary condition (2.19) for a single charged spinor would

break electric charge; in order to conserve electric charge, the boundary conditions must

relate ψ+ to ψ̄−.2 Repeating the exercise above with the two spinors, normalizability of

the solutions requires

mL ≥ 1

2
: ψ−, ψ+ ∝ z

3

2
+mL =⇒ ψ+α = −iσ3

αα̇ψ̄
α̇
−

0 ≤ mL <
1

2
: ψ−, ψ+ ∝ z

3

2
±mL =⇒ ψ+α = ∓iσ3

αα̇ψ̄
α̇
− (2.20)

Given the boundary conditions for the fermions, supersymmetry then determines the

boundary conditions for the scalars. By acting with the unbroken supersymmetries (2.10)

on the fermionic boundary conditions, one finds

mL ≥ 1

2
: z → 0 =⇒ φ+ = φ∗− [1 +O(z)]

0 ≤ mL <
1

2
: z → 0 =⇒ φ+ = ±φ∗− [1 +O(z)] (2.21)

where the sign in the second eq. is correlated with the sign for the fermions. We can see

that this is consistent with the equations of motion for the scalars: In the scalar sector, by

solving the wave equation for the two mass eigenstates, φ1 and φ2, we find that

lim
z→0

φ1 = z2+mLA2(x) + z1−mLB2(x)

lim
z→0

φ2 = z1+mLA1(x) + z2−mLB1(x) . (2.22)

For mL > 1/2, normalizability alone implies that B1 = B2 = 0, corresponding to the first

solution in eq. (2.21). For mL < 1/2, the mass of the two scalars is in the range where

double quantization is allowed, and so we can choose A1 = A2 = 0 (consistently with

supersymmetry), corresponding to the second solution in (2.21). Note that, as a combined

effect of the boundary conditions for fermions and scalars, R−symmetry is broken in the

matter sector even for m = 0.

Finally, we can also fix the boundary condition for the vector multiplet. By taking

Neumann boundary conditions for the gauge field and acting with the supersymmetry

transformations, we find that the appropriate sign of the gaugino boundary condition is

∂zF
µν
∣

∣

z=0
= 0 Fµ3

∣

∣

z=0
= 0 λα = iσ3

αα̇λ̄
α̇
∣

∣

z=0
(2.23)

To summarize, the presence of the boundary in AdS4 always breaks chirality and

R−symmetry, even when there is no source of explicit breaking in the bulk action. The

physics is essentially that of half of flat space. What is special to AdS4 is that the chiral

symmetry is broken, while the maximal number of isometries is preserved. This is, of

course, crucial to give a meaning to a mass smaller than the curvature of the space.

2Indeed, for mL > 1/2 the charge preserving boundary condition is forced on us by normalizability.

For 0 ≤ mL < 1/2, compatibly with normalizability, there exist two other, inequivalent, charge-breaking

boundary conditions. We will consider these other possibilities elsewhere.
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3. Gaugino mass

The boundary conditions derived above provide the necessary ‘mass insertions’ to give rise

to an IR contribution to the gaugino mass. Focussing on the case of massless SQED, let

us now compute the gaugino mass at 1-loop order.

3.1 Chiral breaking correction to the self energy

The computation is particularly transparent in the case of massless matter, where the chiral

symmetry breaking is entirely due to the boundary effects. (We present the massive case in

the appendix.) When m = 0, the chiral matter supermultiplet is conformally coupled. As

a consequence, the full SQED action in this case is invariant under Weyl transformations

at the classical level. This allows us to map the theory in AdS space to one living on half

of flat space and perform all the computations using familiar flat space formulae. This is

achieved via the superconformal rescaling

φ =
( z

L

)

φ̂, ψ =
( z

L

)
3

2

ψ̂, λ =
( z

L

)
3

2

λ̂, AM = ÂM , (3.1)

s =
( z

L

)

ŝ, u =
( z

L

)2
û, gMN =

( z

L

)2
ĝMN . (3.2)

After the rescaling, ĝMN ≡ ηMN and Ŝ = (L/z)(1 + θ2/z). Since SQED is Weyl invariant

(at tree level), the compensator decouples, and we are left with the tree level action for

massless, SQED in half of flat space, with a boundary at z = 0. The boundary conditions

on the fields are most easily implemented by performing an orbifold projection. From the

results in the previous section, we have (dropping the circumflexes on the fields ),

ψ+(X) = −iσ3ψ̄−(X̃),

φ+(X) = φ∗−(X̃),

Aµ(X) = Aµ(X̃),

Az(X) = −Az(X̃),

λ(X) = iσ3λ̄(X̃), (3.3)

where X̃ = (x,−z) is the position of the image point. The flat space propagators can be

written down directly using the method of image charges. For the scalars, one has

〈φ+(X1)φ
∗
+(X2)〉 = 〈φ−(X1)φ

∗
−(X2)〉 =

1

4π2

1

(X1 −X2)2 + iǫ
, (3.4)

〈φ+(X1)φ−(X2)〉 = 〈φ∗−(X1)φ
∗
+(X2)〉 =

1

4π2

1

(X1 − X̃2)2 + iǫ
.

Similarly, for the fermions,

〈ψ+α(X1)ψ̄+β̇(X2)〉 = 〈ψ−α(X1)ψ̄−β̇(X2)〉 =
i

2π2

(X1 −X2)MσM
αβ̇

[(X1 −X2)2 + iǫ]2
, (3.5)

〈ψ+α(X1)ψ
β
−(X2)〉 = − 1

2π2

(X1 − X̃2)M (σM σ̄3)βα

[(X1 − X̃2)2 + iǫ]2
.

– 8 –
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Figure 1: Chiral breaking 1-loop correction to the gaugino self energy. The “mass” insertions

correspond to boundary effects.

One can see that the iǫ prescription in Feynman’s propagator selects implicitly boundary

conditions at z = ∞: these are the Hartle-Hawking boundary conditions, appropriate to

the Poincaré patch [10].

The off-diagonal propagators determine the chiral-breaking contribution to the gaugino

self-energy in figure 1

Σ β
α (X1,X2) = i〈Jα(X1)J

β(X2)〉, (3.6)

where Jα = i
√

2g(φ∗+ψ+α −φ∗−ψ−α) and where our convention on the self-energy is defined

by Γ1PI ⊃
∫

1
2λ

α(X1)Σ
β

α (X1,X2)λβ(X2). Performing the Wick contractions, we have

Σ β
α (X1,X2) = 4ig2〈φ∗+(X1)φ

∗
−(X2)〉〈ψ+α(X1)ψ

β
−(X2)〉,

= − ig2

2π4

(X1 − X̃2)M (σM σ̄3)βα

[(X1 − X̃2)2 + iǫ]3
. (3.7)

Notice that this contribution is non-local, and comes from long-distance physics, as opposed

to eq. (2.14). In order to extract from Σ β
α (X1,X2) the correction to the gaugino mass,

we must evaluate it on a solution of the massless (tree level) wave equation. This is the

analogue of computing the self-energy at zero momentum in flat space. The general solution

of the bulk Dirac equation for a massless gaugino is

λ0(X) = eipM XM

ξ, σ̄MpMξ = 0, pMpM = 0 . (3.8)

Physical states must also satisfy the boundary condition in eq. (2.23). In order to achieve

that, two solutions with opposite velocity, p3/p0, in the z-direction should be superim-

posed. However, as we shall explain in a moment, the correct procedure we must follow in

the Poincaré patch in order to study the 1-loop corrected wave equation is to work with

solutions of the Dirac equation that satisfy boundary conditions at the horizon z → ∞
rather than at the boundary z = 0. This is closely related to the AdS/CFT prescription.

Alternatively we could overcome this issue by performing an euclidean computation, as

in this case Poincaré co-ordinates cover the whole space, but we find it more physical to

address directly the Lorentzian point of view.

To obtain the IR contribution to the gaugino mass, we must convolute eq. (3.7)
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with (3.8). We thus find,

∫

d4X2 Σ β
α (X1,X2)λ0β(X2) = − ig2

8π4

∫

d4X2
∂

∂X̃M
2

(

(σM σ̄3)βα

[(X1 − X̃2)2 + iǫ]2

)

λ0β(X2)

=
ig2

8π4

∫

d3x2
1

[(x1 − x2)2 + z2
1 + iǫ]2

eipµxµ
2 ξα (3.9)

where in the last step we integrated by parts and used σ̄M∂Mλ0 = 0. In the resulting

boundary integral, we used the explicit expression for λ0 in (3.8). Notice that x are

coordinates on the boundary. Performing the last integral explicitly we thus find,

1

2

∫

d4X2 Σ β
α (X1,X2)λ0β(X2) =

g2

16π2

1

z1
ei(pµxµ

1
+|p|z1)ξα, (3.10)

where the iǫ in the original integral fixes the sign of p3 =
√−pµpµ to be positive. The

right hand side of eq. (3.10) is proportional to the original spinor if this satisfies the

Hartle-Hawking boundary conditions: positive frequencies purely outgoing and negative

frequencies purely incoming. This means that when evaluated on this class of solutions

of the bulk Dirac equation, the IR contribution to the self-energy Σ β
α , acts like a mass

term mIR which is precisely equal and opposite to the anomaly mediated contribution

(see eq. (2.14) after performing the Weyl rescaling in eqs. (3.1), (3.2)). Thus an exact

cancellation between UV and IR effects arises, as promised in eq. (2.15). It is the clever

relation among these two contributions that ensures the masslessness of the gaugino, as

demanded by supersymmetry. This is the main result of our paper.

It remains to be explained why our computation works only for the class of solutions

of the form (3.10). These solutions correspond to the creation of incoming particles at

the past horizon H− and to the destruction of outgoing particles at the future horizon

H+ that separate the Poincaré patch from the rest of AdS. Intuitively such processes can

be described by causality using solely the fields in the Poincaré patch. Other solutions

correspond to processes that are not captured by the Poincaré patch alone and probe other

regions of global AdS. In this case there will be extra-contributions from the rest of the

space and a computation in global coordinates would be required. That such contributions

exist follows from the fact that the Feynman propagator is non-vanishing between a point

inside the Poincaré patch and one outside. Had we worked in global coordinates we could

have directly checked that the cancellation of the gaugino mass occurs for arbitrary physical

states (i.e. solutions of the wave equation that satisfy the boundary conditions).

Our result can however be readily interpreted from the viewpoint of the AdS/CFT

correspondence [9]. Even though Lorentzian AdS/CFT is not nearly as developed as on

Euclidean space, we do not see obvious obstructions in the case at hand.3 From this

perspective, the boundary field combination

λ−(x) = λ(x) − iσ3λ̄(x) (3.11)

3Indeed it is to be expected that, just as there is a procedure to analytically continue a CFT from

Euclidean to Lorentzian space, there should also exist a similar procedure to analytically continue the

correspondence from Euclidean to Lorentzian AdS. At least in some simple cases this was outlined for

instance in refs. [10, 11].
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should be viewed as an external source probing the system (the dual CFT). Notice that λ−
is precisely the combination that is set equal to zero for the AdS quantum fields. Performing

a path integral over the bulk fields with vacuum boundary conditions at H± one obtains

a functional Z(λ−) which generates the correlators of the associated dual operator in the

CFT. Given λ−, a classical source localized at the boundary, the choice of initial and final

vacuum states for our path integral fixes the boundary condition for the corresponding bulk

field at z → ∞. Working with plane waves, this prescription corresponds precisely to the

Hartle-Hawking boundary condition we encountered previously. This gives a prescription

for finding a unique extension of λ− into the bulk, by requiring that its (effective) action

be stationary.

At tree level, we have the boundary effective action

lnZ = Sbd = −1

4

∫

d3x
(

λλ+ λ̄λ̄
)

=

∫

d3xλ−
σ3σ̄µ

√
∂2 + iǫ

∂µλ−, (3.12)

corresponding to the correlator of a dual fermionic current of scaling dimension 3
2 :

〈Oα(x)Oβ(0)〉 =
xµ(σ3σ̄µ)βα
(x2 + iǫ)2

. (3.13)

The 1-loop computation we have performed is directly translated into a 1-loop computation

of the boundary effective action. The only difference from before is that we need to consider

also solutions with Euclidean boundary momenta pµp
µ > 0. In this case the solution in

the bulk corresponds to the unique regular solution at z → ∞ as prescribed by Euclidean

AdS/CFT. Needless to say the previous computation can be continued to the Euclidean

region so that the self energy is diagonal on these solutions. Working at 1-loop accuracy, the

corrected boundary effective action is simply obtained by substituting the tree level bulk

solution into the 1PI bulk effective action. However our previous result was precisely that

the total (UV + IR) 1PI vanishes on the very solution of the massless Dirac equation that

satisfied the AdS/CFT boundary conditions at z → ∞ (that is with the same exponent as

in eq. (3.10)). Thus we conclude that at the 1-loop level the boundary action is unaffected

and thus the dimension of the CFT operator dual to the gaugino field is not renormalized,

consistently with supersymmetry.

What we have learned is an amusing lesson on the rôle of the anomaly mediated gaug-

ino mass. The basic reason for its existence is that AdS4 behaves as 2+1-dimensional field

theory as far as chirality is concerned. The mass of fermions is thus additively renormalized

by calculable boundary effects. On the other hand, supersymmetry mandates the gaugino

to be exactly massless. The simple SQED case, in the end, shows that the only way to

achieve this is via the existence of suitable short distance effects, in one-to-one correspon-

dence with the long distance effects. This is yet another illustration of the UV insensitivity

of anomaly mediation.

3.2 Chiral preserving correction: wave function renormalization

In the previous section we have shown that the chiral breaking part in the 1-loop self energy

does not correct the gaugino mass, nor, similarly, does it correct the boundary effective
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action. However, strictly speaking there is yet another contribution to the gaugino self-

energy that we need to consider. This is the ‘chirality-preserving’ contribution, Σαβ̇, the

one associated with wave-function renormalization. The issue at hand arises even in the

absence of supersymmetry. We will show that this contribution vanishes when acting on a

massless spinor. This result may seem obvious at first sight, based on our usual flat space

intuition. Indeed, in flat Minkowsky space, Lorentz invariance constrains this term to be

proportional to f(�) 6 ∂, which vanishes on-shell as long as f is not too singular (in fact,

f is a logarithmic function). However, the situation is more subtle in AdS, since, at the

quantum level, the boundary makes itself felt even inside the bulk, and therefore the z

direction is not manifestly equivalent to the others. The purpose of this section is to clarify

this issue. An extra complication comes from the need to regularize the divergent part of

Σαβ̇ . We shall again focus on massless SQED, for which we can work in the conformally

rescaled basis (3.2). The general case is briefly considered in the appendix. Working in

position space, we find it convenient to use the method of differential regularization [12].

The unregulated Σαβ̇ is given by,

Σαβ̇(X1,X2) = i〈Jα(X1)Jβ̇(X2)〉
= −4ig2〈φ+(X1)φ

∗
+(X2)〉〈ψ+α(X1)ψ̄+β̇(X2)〉 (3.14)

This corresponds to the following correction to the effective action

Γ = − g2

2π4

∫

d4X1d
4X2λ̄(X1)

X12M σ̄
M

(X2
12 + iǫ)3

λ(X2), (3.15)

where X12 = (X1 − X2)M . This expression has, however, a non-integrable singularity at

X12 = 0, which must be regulated. Näıvely, using differential regularization amounts to

replacing
X12M

(X2
12 + iǫ)3

→ 1

16

1

∂XM
1

(

�1
ln(X2

12M
2)

X2
12 + iǫ

)

, (3.16)

where M plays the rôle of the renormalization mass scale. This cannot, however, be

the full story, since the explicit mass scale M breaks dilatation invariance X → kX. In

the rescaled basis, SO(3, 2) arises as the subgroup of SO(4, 2) which is left unbroken by

the compensator background s̃ = L/z [13]. Consequently the regulated self-energy in

eq. (3.16) does not respect the AdS isometries. As the lack of invariance follows from the

regularization, the counterterm needed to restore the symmetry must be local, and must

of course involve the compensator. By simple reasoning one can quickly derive the unique

form of this counterterm. In order to do so, let us imagine that we had regulated the

loop in a manifestly covariant fashion, by introducing Pauli Villars fields with mass M .

The crucial aspect of Pauli-Villars fields is that, being massive, their quadratic lagrangian

depends directly on the compensator, s̃, via the substitution

M →M × s̃(z) = M × L

z
, (3.17)

which formally restores conformal invariance. However it does not make any sense to simply

perform this replacement in eq. (3.16). To find out how eq. (3.16) is modified we must be
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a tad more careful. We just need to focus on the M -dependent part of the regulated

self-energy. Using the identity

�
1

x2 + iǫ
= 4π2iδ4(x), (3.18)

the M -dependent part of the effective action is given by

∆ΓUV = − ig2

8π2
lnM2

∫

d4Xλ̄(X)σ̄M∂Mλ(X), (3.19)

whose unique local covariantization is4

∆ΓUV = − ig2

8π2
ln(Ms̃(z))

[

λ̄σ̄M∂Mλ− ∂M λ̄σ̄
Mλ
]

. (3.21)

The local ln s̃ term gives the following correction to δΓ/δλ̄

− ig2

8π2
∂M ln s̃σ̄Mλ =

ig2

8π2

1

z
σ̄3λ. (3.22)

On the other hand, from eq. (3.16) the ‘IR’ contribution to the equation of motion is

g2

2π4

1

16

∫

d4X2
∂

∂XM
2

(

�1
ln(X2

12M
2)

X2
12

)

σ̄Mλ(X2). (3.23)

To investigate how this non-local contribution affects the gaugino mass we must compute

it on the solution λ0 of the massless wave equation specified by (3.8). Integrating by parts

and using σ̄M∂Mλ0 = 0, eq. (3.23) becomes

− g2

32π4

∫

d3x2

(

�1
lnM2X2

12

X2
12

)

σ̄3λ0(X2)
∣

∣

z2=0
=

g2

8π4

∫

d3x2
1

(X2
12 + iǫ)2

σ̄3λ0(X2)

= − ig2

8π2

1

z1
σ̄3λ0(X1), (3.24)

where the final integral is identical to the one computed in the previous section, eq. (3.9).

Again the last identity is only valid for solutions satisfying the Hartle-Hawking boundary

conditions. We thus find that the contributions in eqs. (3.22) and (3.24) again cancel so that

the propagation of the gaugino is not affected. In particular the gaugino remains massless.

Note that, while the cancellation in the previous section relies on supersymmetry, this effect

is independent of supersymmetry. This cancellation between UV and IR contributions,

dictated by the AdS isometry (a subgroup of the conformal group), can be viewed as an

N = 0 counterpart of the one found previously. This is perhaps not surprising, as anomaly

mediation is itself the supersymmetric counterpart of the trace anomaly. Indeed, in a

superfield formalism, these two separate cancellations would be manifestly related.

4Indeed, compatibly with locality and power counting, another term is näıvely possible:

[∂z ln s̃(z)]λ̄σ̄3λ . (3.20)

This term must however be discarded as it explicitly breaks CP (the regulated theory is formally CP-

invariant, even though parity is, of course, ‘spontaneously’ broken by the expectation value of s̃).
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4. Summary

We studied the rôle played by anomaly mediated (AM) mass terms in N = 1 theories

on AdS4 with unbroken supersymmetry. For simplicity we focussed on the gaugino mass

term in SQED with massless matter. We showed that the AM gaugino mass term is

required by the super-AdS algebra in order to exactly cancel another 1-loop contribution,

of infrared origin and associated with the AdS boundary. The latter effect originates

because chirality (R−symmetry in this case) is necessarily broken by reflection at a 2+1-

dimensional boundary.

Indeed, by computing first this finite IR effect (which does not require the introduction

of a regulator) and by using the fact that the algebra dictates a massless gaugino, we could

have argued the need for a local, UV generated, AM contribution. Since the latter is

independent of whether the theory lives in flat or curved space, that would have provided

yet another derivation of AM gaugino masses. The possibility of relating the AM mass

to purely IR quantities illustrates the “UV insensitivity” of this effect, a property which

makes it potentially relevant in phenomenological applications. The fact that AM effects

represent local parts of non-local structures in the 1PI action is well known. Our result

provides a new twist on that perspective: the AM gaugino mass is just a reflection of the

breakdown of chirality at the 2+1-d boundary of AdS4.

There are several directions in which one might extend and improve our result. One

obvious possibility is to perform the same computation in the non-abelian case, where,

unlike in the abelian case, proper gauge-fixing will be needed. Another problem concerns

the rôle of all other AM terms, such as sfermion masses and “A-terms”: it should be

possible to derive them from consistency conditions as well, but probably in a more subtle

way than for the gaugino mass.

In this paper we worked on the Poincaré patch. This procedure is clean for the eu-

clidean case and from the AdS/CFT standpoint: our computation corresponds to checking

that, as expected by supersymmetry, the scaling dimension of the operator dual to the

gaugino field is not renormalized. The Lorentzian computation is more delicate, as we

have to deal with boundary conditions at the horizons which separate the chosen patch

from the rest of AdS. It would then be interesting to try to perform the same computation

in global coordinates, and check that, in that case, the 1-loop self energy does vanish when

convoluted with the normalizable solutions. Finally, it would be interesting to understand

the rôle of anomaly mediation purely from the CFT viewpoint. The AdS bulk picture

is that the gaugino must be massless even though chirality is broken, corresponding to

non-vanishing Σ β
α off-shell. In the CFT picture, the non-vanishing of Σ β

α , shows up in the

4-point function of operators dual to the AdS matter fields. However it is not immediately

obvious how to translate the bulk picture to the boundary, since there is no notion of

chirality in 2+1-d field theory.
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A. Massive charged matter

The cancellation of the UV and IR contributions to the gaugino mass, being a consequence

of the algebra, is a general effect which must hold for any mass of the matter fields. In this

appendix we check explicitly the cancellation for arbitrary values ofm in the superpotential.

This computation can also be interpreted as the derivation of the anomaly mediated UV

contributions (2.14), (3.21) using Pauli-Villars fields.

For massless matter, the only source of chiral symmetry breaking is due to the presence

of the boundary, while whenm 6= 0, chiral symmetry is broken also in the bulk. In this case,

the matter is not conformally-coupled and, therefore, the propagators cannot be obtained

by simply rescaling the flat space results. A full AdS computation is required.

We will need the propagators for a chiral multiplet with arbitrary mass. The scalar

propagator associated to the representation D(E, 0) ((mL)2 = E(E − 3)) is given by5

∆(E, 0) =
1

(4π)2L2

Γ[E]Γ[E − 1]

Γ[2E − 2]

(

2

u

)E

2F1

(

E,E − 1; 2E − 2,−2

u

)

,

where we have introduced the AdS invariant length,

u =
(X1 −X2)

2 + iǫ

2z1z2
, (A.1)

The fermion propagator associated to the representation D(E + 1/2, 1/2) can be found in

ref. [14],

〈ψ+α(X1)ψ
β
−(X2)〉=

−Γ[E]Γ[E+1]

(32π2L3)Γ[2E−1]

(

2

u+2

)E+1

2

F1

(

E+1, E−1; 2E−1,
2

u+2

)

×Γ β
α ,

〈ψ±α(X1)ψ̄±β̇(X2)〉=
iΓ[E]Γ[E+1]

(32π2L3)Γ[2E−1]

(

2

u+2

)E+1

2

F1

(

E+1, E; 2E−1,
2

u+2

)

×Γαβ̇

(A.2)

where,

Γ β
α =

(X1 − X̃2)M (σM σ̄3) β
α√

z1z2

Γαβ̇ =
(X1 −X2)Mσ

M
αβ̇√

z1z2
(A.3)

5This formulae hold for E > 3/2 where both scalars in the chiral multiplet have standard boundary

conditions. This is the range where a single quantization is possible.
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As in the massless case, the contribution of the matter loop to the gaugino mass arises

from the the self-energy (3.6),

Σ β
α (X1,X2) = 4ig2〈φ∗+(X1)φ

∗
−(X2)〉〈ψ+α(X1)ψ

β
−(X2)〉 (A.4)

where now

〈φ+(X1)φ−(X2)〉 =
∆(E + 1, 0) − ∆(E, 0)

2
, (A.5)

and the fermion belongs to the representation D(E + 1/2, 1/2).

In order to compute the contribution to the gaugino mass, we evaluate the self-energy

on the solution of the massless gaugino equation as in section 3.1. This highly non-trivial

integral of hypergeometric functions can be evaluated numerically by choosing the simplest

solution of the massless equation of motion, λ0(X1) = z3/2ξ0,

∫

dX2
√−gΣ β

α (X1,X2)λ0β(X2) = − g2

8π2L
λ0α(X1). (A.6)

Following the discussion in section 3.1 we expect the same to hold for any solution satisfying

the appropriate boundary conditions. This contribution as expected does not depend on

the mass and cancels the anomaly-mediated UV contribution, proving for general m that

this term is necessary for the consistency of the supersymmetric theory. As a check of this

result, one can consider the limit m≫ 1/L, as done in [4]. In this limit, the curvature is a

small effect and the loop can be computed using flat-space propagators, but with the AdS

mass splitting.

For completeness we also checked the wave functions contribution. The chiral preserv-

ing contribution to self-energy in general reads,

Σαβ̇(X1,X2) = −2ig2 [〈φ1(X1)φ
∗
1(X2)〉 + 〈φ2(X1)φ

∗
2(X2)〉] 〈ψ+α(X1)ψ+β̇(X2)〉 (A.7)

Repeating the same steps as in section 3.2, we find numerically,

∫

dX2
√−gΣαβ̇(X1,X2)λ

β̇(X2) = − g2

8π2L
λα(X1). (A.8)

independently of the mass. This calculation also proves that by regulating the theory with

Pauli-Villars fields there is an N = 0 anomaly mediated contribution of the form considered

before. In this case the contribution of the heavy fields with m≫ 1/L cannot be obtained

with the flat space propagators since this effect is entirely due to the fact that the theory

lives in curved space.
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