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Performing the full angular analysis of Bd → K∗0µ+µ− at LHCb

William Reece∗ and Ulrik Egede†

Imperial College London

Bd → K∗0µ+µ− is a rare electroweak b → s penguin decay that is thought to

have excellent sensitivity to physics beyond the Standard Model. In this note we

present a general method for performing the full angular analysis of the decay which

gives access to a set of observables which are very sensitive to non–Standard Model

right–handed currents. The experimental sensitivity to these observables for 2, 10

and 100 fb−1 of LHCb data is presented. Where possible, these are compared to a

previously investigated method based on angular projections.

I. INTRODUCTION

The search for physics beyond the Standard Model (SM) was one of the primary motiva-

tions for the construction of LHCb. There are two common approaches for these searches;

direct and indirect. LHCb is well suited to the indirect approach where the SM prediction

for a given B decay is compared with experimental observations. Effective field theory tech-

niques can be used to make this comparison in a model independent way so that only general

classes of new physics (NP) need to be studied (see Sec. II) but considerable precision is

required from both theory and experiment. LHCb should provide an excellent laboratory

for conducting these kind of searches and could play a key role in discriminating between

different NP models.

In recent years, interest in b → s quark transitions has increased. The lack of flavor

changing neutral currents in the SM means that these transitions must occur via a loop

diagram. Decays which proceed in this way may be sensitive to many classes of NP as, in

addition to the SM particles, new heavy degrees of freedom can contribute to the amplitudes

in a relatively unconstrained way. Despite the success of the B–factories, experimental limits
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FIG. 1: SM Feynman diagrams for the Bd → K∗0µ+µ− decay.

are currently modest and there are theoretical reasons to think that there may be non–SM

effects present (for a review see [1]). In this note, the technical details for performing a

full angular analysis will be discussed for the rare b → s decay Bd → K∗0µ+µ−. A set

of angular observables with sensitivity to some classes of NP will be extracted. A more

theoretical review of these observables is given in Ref. [2].

The rest of this note is laid out as follows. In the next section we introduce the decay

from a theoretical standpoint and then review some of the observables to be measured.

In Sec. III we give details of a toy Monte–Carlo model of the decay which is then used

to extract sensitivities to the angular observables at LHCb using a full angular analysis.

In Sec. V we review previous work on extracting some of these angular observables and

compare the results obtained, while in Sec. VI we explore how much model discrimination

LHCb could provide if nature indeed has enhanced right–handed currents. Finally in Sec. VII

we summarise our findings and give some outlook for the future.

II. Bd → K∗0µ+µ−

Bd → K∗0µ+µ− 1 is a flavour changing neutral current (FCNC) b → s decay that

proceeds via penguin and box diagrams such as those shown in Fig. 1. It was first observed

at Belle [3] and has a branching ratio of (1.10+ 0.29
− 0.26) × 10−6 [4]. The decay is sensitive

to NP contributions through the addition of new diagrams where charged or neutral NP

particles run in the loop [5–8]. Studies show that the decay can be selected at LHCb, giving

approximately 4000 signal and 1000 signal–like background events in the range 4m2
µ ≤ q2 ≤

1 In this note we deal with the Bd as this contains the b quark. The formalism can be applied equally to

the Bd with appropriate redefinitions which will be indicated explicitly in the text.
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FIG. 2: The angles used to describe the decay Bd → K∗0µ+µ−. θL is the angle between the µ−

and the Bd in the µ+µ− rest frame. θK is the angle between the K− in the K∗ rest frame, and φ

is the angle between the µ+µ− and K∗ decay planes. For the Bd, the angles are measured relative

to the µ+ and K+.

9 GeV2/c4 per 2 fb−1 [9], which corresponds to one nominal year of stable data–taking. Both

BABAR and Belle have published tantalising results for the decay [10–14] and the vastly

increased yields expected at LHCb will allow significant improvement on these.

A. Angular Distribution

We assume that the K∗0 always decays on its mass shell to a K− and a π+, explicitly

ignoring any non–resonant Bd → K−π+µ+µ− contributions2. In this approximation, the

decay is completely kinematically constrained by three decay angles, θL, θK , and φ, and by

the invariant mass of the muon pair, q2. The angles are defined in the intervals

0 ≤ θl ≤ π , 0 ≤ θK ≤ π , −π ≤ φ < π , (1)

where only the φ angle is signed. The decay kinematics are shown in Fig. 2 and the definitions

of the angles are given in the caption. We work in the massless lepton approximation and

avoid consideration of the q2 region below 1 GeV2/c4. In this case, we can derive a simplified

2 The size of these non–resonant contributions is currently unknown, but expected to be small. These

contributions will affect the angular distribution, as it no–longer fully Pseudoscalar→ VectorVector, but

may give additional NP sensitivity [15].
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differential decay width for the Bd, where a sum over final state particle spins has been

included. The distribution for the Bd is

d4ΓBd

dq2 dθl dθK dφ
=

9

32π
I(q2, θl, θK, φ) sin θl sin θK , (2)

where the physical region of phase space is 4m2
l ≤ q2 ≤ (mB − mK∗)2 and

I = I1 + I2 cos 2θl + I3 sin2 θl cos 2φ + I4 sin 2θl cos φ + I5 sin θl cos φ + I6 cos θl

+ I7 sin θl sin φ + I8 sin 2θl sin φ + I9 sin2 θl sin 2φ. (3)

For the Bd

d4ΓBd

dq2 dθl dθK dφ
=

9

32π
I(q2, θl, θK, φ) sin θl sin θk , (4)

and if CP conservation is assumed, we have

I1,2,3,4,6,7 = I1,2,3,4,6,7 , (5a)

I5,8,9 = −I5,8,9 . (5b)

The functions I1−9 in Eq. (3) can be written in terms of the K∗0 spin amplitudes At, A0,

A‖, A⊥; the later three have both left– and right–handed components and all are functions

of q2. At corresponds to the scalar component of the virtual K∗0, which is negligible if the

lepton mass is small in comparison to the mass of the lepton pair. For ml = 0, we find,

I1 =
3

4

(

|A⊥L|2 + |A‖L|2 + (L → R)
)

sin2 θK +
(

|A0L|2 + |A0R|2
)

cos2 θK , (6a)

I2 =
1

4
(|A⊥L|2 + |A‖L|2) sin2 θK − |A0L|2 cos2 θK + (L → R), (6b)

I3 =
1

2

[

(|A⊥L|2 − |A‖L|2) sin2 θK + (L → R)

]

, (6c)

I4 =
1√
2

[

Re(A0LA∗
‖L) sin 2θK + (L → R)

]

, (6d)

I5 =
√

2

[

Re(A0LA∗
⊥L) sin 2θK − (L → R)

]

, (6e)

I6 = 2

[

Re(A‖LA∗
⊥L) sin2 θK − (L → R)

]

, (6f)

I7 =
√

2

[

Im(A0LA∗
‖L) sin 2θK − (L → R)

]

, (6g)

I8 =
1√
2

[

Im(A0LA∗
⊥L) sin 2θK + (L → R)

]

, (6h)

I9 =

[

Im(A∗
‖LA⊥L) sin2 θK + (L → R)

]

. (6i)
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The (L → R) terms above represent a repeat of the previous terms with the left–handed

amplitudes exchanged for right–handed. It is by extracting the values of these amplitudes

that we can detect the effects of physics beyond the SM.

B. Symmetries

The angular distribution has three independent global symmetries in the ml = 0 limit.

In this case there is no interference between right– and left–handed amplitudes so the dis-

tribution is invariant under both L and R global phase transformations,

A
′

⊥L = eiφLA⊥L, A
′

‖L = eiφLA‖L, A
′

0L = eiφLA0L (7)

and

A
′

⊥R = eiφRA⊥R, A
′

‖R = eiφRA‖R, A
′

0R = eiφRA0R . (8)

There is also an additional global symmetry under continuous L ↔ R rotations,

A
′

⊥L = + cos θA⊥L − sin θA∗
⊥R (9a)

A
′

⊥R = + sin θA⊥L + cos θA∗
⊥R (9b)

A
′

0L = + cos θA0L − sin θA∗
0R (9c)

A
′

0R = + sin θA0L + cos θA∗
0R (9d)

A
′

‖L = + cos θA‖L + sin θA∗
‖R (9e)

A
′

‖R = − sin θA‖L + cos θA∗
‖R . (9f)

These relations must be taken into account when constructing both angular observables and

the full angular fit.

C. Angular Observables

Looking for NP through indirect methods is complementary to direct searches. Central

to the indirect method is the operator product expansion (OPE). This allows interactions

to be parameterised through an effective theory made up of effective couplings and their

associated coupling constants, known as the Wilson coefficients. For b → s transitions the

decay amplitude can be written in terms of an effective Hamiltonian,

Heff = −4GF√
2

VtbV
∗
ts

∑

i

[Ci(µ)Oi(µ) + C ′
i(µ)O′

i(µ)] , (10)
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where Vtb and Vts are the relevant CKM factors and primes (no primes) denote right–handed

(left–handed) contributions. The local operators Oi(µ) describe the long–range contributions

to the decay, while the short–range contributions, coming from integrated out heavy degrees

of freedom, are parameterised by the Wilson coefficients Ci(µ).

Bd → K∗0µ+µ− is dominated by the operators O7,9,10, definitions of which can be found

in Ref. [16]. O(′)
7 dominates the low q2 region while O(′)

9,10 are more important at higher q2.

The presence of new and unaccounted for heavy degrees of freedom will shift the values of

the corresponding Wilson coefficients away from their SM values. Additional NP effects can

be included by introducing non–SM operators, for example parameterising possible scalar or

pseudo–scalar contributions [17, 18]. By measuring the values of the Wilson coefficients we

can make a model independent test of the SM, and also powerfully exclude general classes

of NP models.

We are interested in extracting information about NP from the measured angular distri-

bution in the decay. This can be done in several ways:

• The angular distribution can be expressed in terms of the Wilson coefficients and a fit

made to the observed distribution. Due to the large uncertainty in the form factors

introduced by pQCD this approach would leave us with a large theoretical uncertainty

on the extracted Wilson coefficients.

• For a set of NP models one could compute the full angular distribution and compare

it to the observed angular distribution. On a model–by–model basis it would then be

possible to exclude them as being incompatible with the observations. This approach

is obviously not model independent and would make it very difficult to use the quoted

results to exclude models that were not considered at the time of publication.

• One can derive a set of observables which can be extracted directly from the observed

angular distribution but at the same time have the advantage that theoretical uncer-

tainties cancel out. In this way you retain the model independence and also reduce

the theoretical uncertainty in the quoted results. For any new theory these new ob-

servables can be calculated at a later date.

We have chosen the last of these approaches. The observables are carefully constructed com-

binations of the spin amplitudes, which are themselves functions of the Wilson coefficients.
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We need to find observables with good sensitivity to any NP operators, small theoretical

uncertainties and finally good experimental resolutions. We refer the interested reader to

Ref. [2] for more details.

The main source of theoretical uncertainty comes from the form factors that parameterise

the Bd → K∗0 transition and also enter into the spin amplitudes. These are dominated by

long–range effects and have to be treated non–perturbatively using approximate methods [5].

At leading order (LO), the seven a priori independent form factors reduce to two universal

‘soft’ form factors3, ζ|| and ζ⊥ [19–22], valid in the range 1 ≤ q2 ≤ 6 GeV2/c4. These can then

be used to form observables where the universal form factors cancel out, much reducing the

overall theoretical uncertainty (see for example [16]). Outside of the 1 ≤ q2 ≤ 6 GeV2/c4

range these cancellations cannot be made, leading to much greater theoretical uncertainties

on the observables. In this note, only the theoretically clean q2 region specified above will

be considered.

The angular observables to be investigated are:

AFB =
3

2

Re(A‖LA∗
⊥L) − Re(A‖RA∗

⊥R)

Γ′
, (11)

AIm =
Im(A⊥LA∗

‖L) + Im(A⊥RA∗
‖R)

Γ′
, (12)

A
(2)
T =

|A⊥|2 − |A‖|2
|A⊥|2 + |A‖|2

, (13)

A
(3)
T =

|A0LA∗
‖L − A∗

0RA‖R|
√

|A0|2 × |A⊥|2
, (14)

A
(4)
T =

|A0LA∗
⊥L − A∗

0RA⊥R|
|A∗

0LA‖L + A0RA∗
‖R|

, (15)

FL =
|A0|2
Γ′

, (16)

where,

AiA
∗
j ≡ AiL(q2)A∗

jL(q2) + AiR(q2)A∗
jR(q2) (i, j = 0, ‖,⊥), (17)

and,

Γ′ =
dΓ

dq2
=

(

|A0L|2 + |A⊥L|2 + |A‖L|2 + (L → R)
)

. (18)

3 These form factors are calculated in the so called large recoil limit where the the b and s quarks in the

initial and final states are assumed to interact with the spectator quark via the exchange of ‘soft’ gluons.
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The NP sensitivity provided by each of these observables is model and parameter space

dependent, however they have been studied for models with non-SM contributions to C ′
7 in

[2, 8, 16]. In the case of AFB, it is only the point where the distribution crosses the q2 axis

where the universal form factors cancel at LO, while no such cancellations are found for FL.

Further theoretical discussions of the observables will be left to Ref. [2] and so we move on

to experimental considerations.

III. SENSITIVITY AT LHCb

Theoretical treatments of Bd → K∗0µ+µ− at NLO normally make use of the QCD fac-

torisation framework [23–25] as described in Ref. [26]. These calculations are involved and

no currently available software package allows the simulation of events using the full NLO

treatment or the handling of arbitrary NP scenarios from first principles. Instead a toy

Monte–Carlo approach can be used where the results of a full calculation, in this case from

Ref. [2], are used as input to the model. This allows the generation of toy LHCb datasets

which can then be used to verify the fitting methods presented in the next sections and

access their relative sensitivities.

A. A Toy Model of Bd → K∗0µ+µ−

A toy Monte–Carlo model of the decay was created within the RooFit framework using

Eq. (2) as a probability density function (PDF). The function I(q2, θl, θK, φ) is parame-

terised in terms of the real and imaginary parts of the spin amplitudes, A⊥L,R, A‖L,R, and

A0L,R, giving twelve parameters. The symmetry relations introduced in Sec. II B can be

exploited to reduce the number of free parameters in the system. Eq. (7) is used to make

A0L real by setting φL = − arg(A0L) and similarly for A0R with Eq. (8). Eq. (9) can then

be used to remove A0R completely by setting θ = arctan(−A0L/A0R). This leaves nine free

parameters at each point in q2. One more parameter can be eliminated by recognising that

the angular observables are not sensitive to the absolute normalisation which cancels in each

case. Sensitivity can be gained to the relative normalisation, Γ′, by performing an explicit

normalisation at some fixed value of q2, here denoted X0. We choose to divide all spin

amplitudes by the value of Re(A0L) at X0 = 3.5 GeV2/c4. This leaves the eight degrees of
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freedom as expected from inspection of Eq. 6.

Following Ref. [27], the signal is assumed to have a Gaussian distribution in mB with a

width of 14 MeV/c2 in a window of mB ± 50 MeV/c2 and a Breit-Wigner in mKπ with width

48 MeV/c2 in a window of mK∗0 ± 100 MeV/c2. A simplified background model is included.

This is flat in all angles, effectively treating all background as combinatorial, but follows

the q2 distribution of the signal. Acceptance and CP violation effects are neglected allowing

us to treat Bd → K∗0µ+µ− and its charge conjugate simultaneously. Contributions from

non–resonant Bd → K−π+µ+µ− events are not included.

B. Generation of Toy Data

The model described in the last section allows the probability of a particular set of ob-

servables (θl, θK , φ and q2) occurring to be calculated. An accept–reject algorithm can then

be used to generate a dataset of events with the correct distributions. The q2 dependence

of the PDF is included by generating many sub–datasets in 0.05 GeV2/c4 q2 bins and then

combining them, so avoiding the q2 parameterisation introduced in the next section. In each

subbin, Γ′ weighted mean spin amplitudes, found using values taken from Ref. [2], were used

when calculating I(q2, θl, θK , φ). The number of events for a given q2 subbin is

ns,b = N s,b
0

∫ qmax

qmin
Γ′

∫ 9 GeV2/c4

4 m2
µ

Γ′
, (19)

where N s
0 is the number of signal events expected in 2 fb−1 from [9] and Γ′ is derived from

the input amplitude calculation. The number of background events was calculated in the

same way with the value of N b
0 taken from the same full simulation study. In both cases

the value of ns,b is Poisson fluctuated so that not all toy datasets are of the same size. For

10 and 100 fb−1 samples N s
0 and N s

0 were scaled linearly. NP models were dealt with by

supplying input spin amplitude values, again from [2], for a particular NP model.

C. Fitting of Data to Extract Sensitivities

As discussed in Sec. IIIA, the decay PDF has eight unconstrained spin amplitudes which

can be extracted from data using a fit. The q2 dependence of these amplitudes must be taken

into account. We can explicitly parameterise this dependence or divide the experimental
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data into q2 bins and perform an independent fit in each bin, making the assumption that

the q2 dependence can be neglected. The latter approach allows for fewer parameters to

be used, but produces significant systematic fit biases if the q2 dependence across the bin

is non–linear and the effect ignored. These biases arise from the differing q2 dependence of

each of the spin amplitude components and appear even if the fit is properly convergent4.

It was found that the biases could not be eliminated while preserving enough statistics in

each bin to perform the fit reliably. Instead an unbinned approach was used where the q2

dependence of each spin amplitude component is parameterised as a 2nd order polynomial,

the coefficients of which are then extracted.

The parameterisation is as follows. For Re(A0L) we use a standard polynomial

fp(q
2) = Ap(q

2 − X0)
2 + Bp(q

2 − X0) + Cp, (20)

while for the other amplitude components we use a Chebyshev polynomial,

fc(q
2) = Ac(2(q2 − X0)

2 − 1) + Bc(q
2 − X0) + Cc. (21)

In this parameterisation f
Re(A0R)
c = f

Im(A0L)
c = f

Im(A0R)
c = 0 and C

Re(A0L)
p = 1 once the sym-

metry transforms and normalisation, introduced in Sec. IIIA, have been applied. Making a

measurement in this framework requires that the polynomial ansatz be satisfied for all spin

amplitude components in the range q2
min− q2

max. This was verified for the five physics models

considered in Ref. [2], but clearly introduces a weak source of model dependence. Fig. 11

of Appendix B shows an example dataset, generated following Sec. III B, where numerical

projections of the final polynomial PDF for each of the experimental observables can be

seen. The background component is also shown separately. The agreement between the

binned generation PDF and the unbinned fitting PDF can be seen to be excellent.

By generating an ensemble of toy–LHCb datasets and then fitting them with the polyno-

mial model, the experimental sensitivities for a given integrated luminosity can be estimated

and any biases introduced by the method can be found. The fit was well behaved but could

be sensitive to the initial values chosen for the fit parameters. To deal with this, the fit was

run repeatedly with randomly chosen initial values until an accurate covariance matrix was

4 If it was possible to integrate Eq. (2) over q2 then these problems could be avoided. However it is not

possible to do this in a model independent way as the q2 dependence of the spin amplitudes must be

explicitly known.
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found5. Each refit was initialised from scratch so that each refit result was independent of

the last. For an ensemble of 1076 10 fb−1 experiments, each of which assumed the SM, the

mean number of refits required was 2.97, and the maximum was 103. For 1006 2 fb−1 SM

datasets the mean increased to 6.81 and 0.7% of experiments failed to converge at all6. It

was verified that the final fit results were independent of the starting values by performing

several refits of each dataset. Any variation on the output of repeated successful refits was

seen to be small compared to the errors on the fit parameters.

There were significant correlations between parameters in some of the experiments. The

constant terms of Re(A‖R) and Re(A⊥R) and to a lesser extent those of Im(A‖R) and Im(A⊥R)

were anti–correlated, leading to significant biases on these parameters. The biases were not

seen in the angular observables, as the correlations meant that they cancelled out, but can

be seen in the individual amplitude components shown in Appendix A. These correlations

also seem not to affect the angular distribution, which is well reproduced by the fit, as shown

in Appendix B for a randomly chosen toy experiment.

IV. RESULTS

The methods described in Sec. III were used to generate and fit ensembles of experiments

for three different LHCb integrated luminosities, 2, 10 and 100 fb−1. These are the expected

dataset sizes for a nominal year of data–taking, at the end of LHCb data–taking and at the

end of a run with an upgraded SuperLHCb detector respectively. The results for 10 fb−1

will be presented here, while those for the other integrated luminosities are available in

Appendix C.

Fig. 3(a) shows the experimental sensitivity to AFB in the SM as derived from the en-

semble of 10 fb−1 experiments. The median value is shown as the solid (red) line while the

light and dark (blue) regions mark the contours of 1 and 2 σ significance at their external

boundaries. These are calculated by ordering the ensemble of results and then selecting 33%

and 47.5% of experiments either side of the median at any given q2 value.

5 Signified by a Minuit covariance quality of three.
6 The maximum number of allowed refits was fixed at 1600 in order to limit the amount of Grid resources

used. This number could be dramatically increased if required when the real measurement was made.
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FIG. 3: (a) The estimated experimental sensitivity to AFB as a function of q2 for a 10 fb−1 sample

of LHCb data, assuming the SM. The dashed (black) line is the SM input distribution. The solid

(red) line shows the median result over an ensemble of a thousand toy experiments, while the light

and dark bands show the 1σ and 2σ confidence levels. (b) The ensemble of AFB zero–crossing

points found from each experiment, giving an estimated value of 4.33+0.18
−0.16 GeV2/c4. The colour

scheme is the same as in (a), but zero–crossings outside the 95% confidence are also shown in the

outer (dark blue) regions.

Fig. 3(b) shows explicitly the ensemble of AFB zero–crossing point results7. By comparing

the dashed (black) SM and median lines in both figures, the agreement between input and

output distributions can be seen. The fit fails to reproduce the input exactly, but the

discrepancy is small compared to the overall experimental uncertainty. These discrepancies

seem to be due to the failure of the polynomial ansatz, and are particularly significant at the

edges of the q2 region under consideration as seen by the deviation of the solid red (input)

and dashed black (median fit result) lines in the figure.

Figs. 4(a) and 4(b) show the sensitivity bands for the new observables A
(3)
T and A

(4)
T .

The limitations of the polynomial ansatz can again be seen, but the overall shape is well

reproduced, and the deviation is small compared to the statistical errors. Figs. 5(a), 5(b) and

5(c) show respectively the sensitivity bands for AIm, A
(2)
T and FL. Like AFB, these observables

7 One of the thousand toy experiments did not have a zero–crossing point and so is excluded from the

distribution.
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FIG. 4: Estimated experimental sensitivities to (a) A
(3)
T and (b) A

(4)
T as a function of q2 for 10 fb−1

of LHCb data assuming the SM. The colour scheme is the same as in Fig. 3.

are also accessible by making projection fits as discussed in Sec. V. Finally Fig. 5(d) shows

the sensitivity band for Γ′ relative to the point X0 = 3.5 GeV2/c4, the midpoint of the q2

range.

V. COMPARISON WITH A SIMULTANEOUS PROJECTION FIT

A. AFB, AIm, A
(2)
T and FL

In Ref. [27], angular projections over Eq. (2) were used to extract the parameters AFB,

AIm, A
(2)
T and FL in bins of q2. For the Bd decay:

dΓ′

dφ
=

Γ′

2π

(

1 +
1

2
(1 − FL)A

(2)
T cos 2φ + AIm sin 2φ

)

(22a)

dΓ′

dθl

= Γ′

(

3

4
FL sin2 θl +

3

8
(1 − FL)(1 + cos2 θl) + AFB cos θl

)

sin θl (22b)

dΓ′

dθK
=

3Γ′

4
sin θk

(

2FL cos2 θK + (1 − FL) sin2 θK

)

(22c)

These differential widths were used as PDFs in the construction of three new RooFit models

with the same physics and background treatment as that described in Sec. IIIA. Simulta-

neous fits to the three decay angles were performed in single bins of q2 from 1 − 6 GeV2/c4

to find rate weighted averages of each observable across the bin. Input datasets were gen-
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FIG. 5: Estimated experimental sensitivities to (a) AIm, (b) A
(2)
T , (c) FL and (d) Γ′, as a function

of q2 for 10 fb−1 of LHCb data assuming the SM. The colour scheme is the same as in Fig. 3.

erated as in Sec. III B. A reasonable comparison can be made between the full angular and

projection fit approaches by explicitly calculating the rate average over the q2 range for each

observable, A, using

〈A〉 =

∫ q2
max

q2
min

dΓ
dq2 A(q2)

∫ q2
max

q2
min

dΓ
dq2

, (23)

where dΓ/dq2 is extracted directly from the fit, as shown in Fig. 5(d).

In Tab. 6 resolution estimates from an ensemble of a thousand fits are shown for both

full angular and projection fits. It can be seen that the full angular approach provides a

significant increase in experimental resolution for all observables considered. The difference
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Input Projection Full Angular (σ̂F−σP)
σP

〈A〉I 〈A〉P σP 〈A〉F σF %

AFB 0.036 0.0325 ±0.0078 0.0344 +0.0047
−0.0050 38

AIm 0.000 0.000 ±0.015 0.0004 +0.0060
−0.0057 61

A
(2)
T -0.030 -0.03 ±0.26 -0.043 +0.095

−0.094 64

FL 0.865 0.8799 ±0.0064 0.8582 +0.0052
−0.0058 14

FIG. 6: Comparison between integrated values for the angular observables AFB, AIm, A
(2)
T and FL in

the range 1 ≤ q2 ≤ 6GeV2/c4 from an ensemble of a thousand 10 fb−1 LHCb datasets with averaged

input values 〈A〉I. 〈A〉P,F are the median values of the averages as calculated using Eq. (23), while

σP,F are estimates of the 1σ uncertainty for both methods. The percentage resolution improvement

offered by the full angular analysis relative to the projection fit method is shown in the last column,

where σ̂F is the mean of the asymmetric uncertainties for each observable.

in resolutions between the full angular and projection fit approaches, shown in the table,

is particularly significant for A
(2)
T . This arises from the (1 − FL) suppression in Eq. (22a)

where FL ≈ 0.87 in the SM. In contrast, FL is well constrained in the projections and the

full angular fits do not significantly improve the resolutions attainable.

B. The AFB zero–crossing Point

A comparison of the sensitivity to the AFB zero–crossing point can also be found by

following the methods of Ref. [28], but fitting the three angles simultaneously. In this case a

thousand 10 fb−1 datasets were binned into five q2 bins in the range 1 ≤ q2 ≤ 6 GeV2/c4, each

with width of 1 GeV2/c4. For each dataset an independent simultaneous projection fit was

performed in each of the q2 bins and the resulting points fit to a straight line in the range

2 ≤ q2 ≤ 6 GeV2/c4 to extract the zero–crossing point. An example of this is shown in Fig. 7.

The median zero–crossing found was 4.35+0.23
−0.24 GeV2/c4 for an input value of 4.39 GeV2/c4.

The quoted sensitivity is in reasonable agreement with that found in Ref. [28], although the

two results are not directly comparable. Comparing now with the full angular fit, we see a

28% improvement in the resolution relative to the projections result.

The value of AFB at a given q2 value is a quadratic function of the universal form factor
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FIG. 7: An example toy experiment in which an AFB value has been extracted in five independent

1GeV2/c4 q2 bins using a simultaneous projection fit to the three decay angles. The points show

the AFB value found for each q2 bin and its error. The x error bar shows the width of the q2 bin.

The solid (red) line shows a fit to the linear function y = p1x + p0 in the range 2 ≤ q2 ≤ 6GeV2/c4

as used in [28]. This allows a zero–crossing point of q2
0 = 4.09 ± 0.21GeV2/c4 to be extracted for

this particular experiment.

ζ⊥ [26], introduced in Sec. II C. Again, following [26], the energy dependence of the form

factor can be parameterised as

ζ⊥(q2) = ζ⊥(0)

(

1

1 − q2/M2
B

)2

, (24)

where MB is the mass of the Bd and ζ⊥(0) gives the normalisation at q2 = 0. This can be

extracted from experiment by performing a fit to Bd → K∗0γ measurements or from QCD

factorisation [26, 29]. At the zero–crossing point, these form–factors cancel at LO, however

the particular value of ζ⊥(0) used to generate the AFB spectrum will affect the gradient of

AFB going through the zero–crossing point quadratically.

The experimental sensitivity for the zero–crossing point should be an approximately

linear function of the AFB gradient, so the value of ζ⊥(0), both in our studies and in nature,

strongly affects the experimental sensitivity to the zero–crossing point. The zero–crossing

sensitivities we quote are extracted from toy input data where ζ⊥(0) = 0.26, based on the

updated value from [30]. This should be contrasted with the model used in [28] and based

upon [5], which uses a value of ζ⊥(0) = 0.34. If this value had instead been used in our study
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then an improvement in the zero–crossing resolution by a factor two would be expected. The

observables A
(2−4)
T are constructed to have no sensitivity to the form factors over the complete

q2 range under study and so no major change in their resolutions is expected as we vary

ζ⊥(0).

VI. NEW PHYSICS MODEL DISCRIMINATION

In this section the methods in Sec. III will be applied to a generic NP model with right–

handed currents in order to demonstrate the discriminating power of the angular observables.

Sensitivities to the observables introduced in Sec. II C are extracted and compared to the

SM theoretical distributions.

The NP model to be examined, SUSY–b, is a non–minimal flavour changing version

of the MSSM with R–parity conservation, where the gluino mass is large, mg̃ = 1 TeV,

the down squark mass is md̃ = 250 GeV and there is a low value of tanβ = 5 [8]. In

addition, there is a single insertion in the down squark mass matrix, parameterised by

(δd
LR)32 = 0.036, which generates right–handed currents. The flavour diagonal parameters

are fixed at µ = M1 = M2 = MH+ = mũ = 1 TeV. It has been recently re–verified that this

scenario is within current experimental and theoretical bounds [2].

This model has been chosen as it generates non–SM values of C ′
7; (C7, C

′
7) = (−0.32, 0.24)

which should be compared with the SM values of (−0.31, 0.00). The observables AIm, AFB

(and its zero–crossing) and FL are not very sensitive to deviations in C ′
7 and so offer little

discrimination power. However, A
(2)
T , A

(3)
T and A

(4)
T have been constructed in such as way as

to maximise the sensitivity to this Wilson coefficient and hence allow better discrimination

between SUSY–b and the SM.

Fig. 8 shows the comparison between the estimated sensitivities to SUSY–b, as extracted

from an ensemble of a thousand 10 fb−1 LHCb datasets and the SM theoretical distribution

from Ref. [2] for A
(2)
T , A

(3)
T , A

(4)
T . The power of these observables is clear for observing non–

SM values of C ′
7, particularly in the low q2 region where the operator O(′)

7 dominates. Due to

the correlations along the band for both the theory and experimental curves, careful thought

is needed to turn these measurements into a confidence level that the SM could be rejected if

indeed nature turned out to be supersymmetric in the way modelled by SUSY–b. However,

it seems clear that such a measurement could be of great interest if NP is discovered at the
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FIG. 8: Comparison between the estimated experimental sensitivities to A
(2)
T , A

(3)
T , A

(4)
T and the

theoretical SM distribution. The solid (red) line shows the median of values extracted from an

ensemble of a thousand 10 fb−1 LHCb datasets where SUSY–b was used as the input model, shown

as the (dark blue) dotted line. The (light and dark blue) bands either side of the median show

asymmetric 1 and 2 σ confidence levels as in Fig. 3. The SM theory bands are explained in more

detail in Ref. [2]. The dashed (black) line is the SM central value, while the surrounding bands

(orange, light green, dark green), are respectively the theoretical uncertainties excluding O(Λ/mb)

corrections, and those including 5% and 10% Λ/mb corrections.
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FIG. 9: Comparison between the estimated experimental sensitivities to AFB and FL and the

theoretical SM distribution. The colour scheme used is the same as in Fig. 8.

LHC.

Fig. 9 shows the same comparison for the angular observables AFB and FL. As expected,

these observables offer poor sensitivity to C ′
7 across the entire q2 range. FL looks more

promising than AFB for this particular NP scenario, but is hindered by the large theoretical

uncertainties on the SM prediction.

VII. SUMMARY AND OUTLOOK

The full angular fit for Bd → K∗0µ+µ− allows access to any arbitrary combination of the

spin amplitudes as a function of q2 in the region 1 ≤ q2 ≤ 6 GeV2/c4. A set of angular observ-

ables can be constructed from these amplitudes which give LHCb great power to discover

NP and to discriminate between models in a model independent way. In this note, several

of these observables have been studied in order to estimate the experimental sensitivities

at LHCb for 2, 10 and 100 fb−1 datasets. It was seen that the method could be applied

successfully in a simplified Monte–Carlo treatment for even the smallest of these datasets,

and that for larger integrated luminosities, these observables offer powerful discrimination

in the case where C ′
7 6= C ′

7SM.

Putting these methods into practise at LHCb will be a great technical challenge, and the

success of the analysis will depend on our ability to understand the detector acceptance and
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the angular shapes of our backgrounds. This note has demonstrated that the sensitivity

gained by performing the full angular analysis makes this a very interesting measurement to

make at LHCb, and one that could potentially be done after a few years of stable running.
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APPENDIX A: SENSITIVITIES TO AMPLITUDE COMPONENTS
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FIG. 10: Sensitivity bands for the individual spin amplitude components as a function of q2 for

10 fb−1 of SM data. The colour scheme is the same as in Fig. 3. The effect of the normalisation

at q2 = X0 = 3.5GeV2/c4 can be seen on Re(A0L), as can the strong anti–correlation between

Re(A‖R) and Re(A⊥R).
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APPENDIX B: ANGULAR PROJECTIONS AND FIT QUALITY
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FIG. 11: Numerical projections of the full polynomial fit PDF over an example toy dataset for each

of the experimental observables. The points show a randomly chosen 10 fb−1 dataset, generated

assuming the SM as described in Sec. IIIB. The solid red line shows numerical projections over

this dataset with the full angular polynomial PDF, described in Sec. IIIA, with its parameters set

via a fit to the dataset. The dashed line shows only the background contribution. Underlayed on

each plot is the blue line showing the input PDF. The parameters of this PDF have been set by

performing a polynomial fit to each of the K∗0 spin amplitudes. Comparing these two lines we see

that the full angular fit is able to extract the PDF parameters with good accuracy. The differences

are largest for the q2 distribution.
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APPENDIX C: RESULTS FOR 2 AND 100 fb−1

1. 2 fb−1
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FIG. 12: Estimated experimental sensitivities for 2 fb−1 of LHCb data assuming the SM. The

zero–crossing point extracted from (b) is 4.34+0.39
−0.34 GeV2/c4. The colour scheme is the same as in

Fig. 3.
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2. 100 fb−1
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FIG. 13: Estimated experimental sensitivities for 100 fb−1 of LHCb data assuming the SM. The

zero–crossing point extracted from (b) is 4.34+0.054
−0.048 GeV2/c4; the bias on its value is now significant

and could perhaps be improved by increasing the order of the polynomials used in the full angular

fit. The colour scheme is the same as in Fig. 3.
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FIG. 14: Comparison between the estimated experimental sensitivities to A
(2)
T , A

(3)
T , A

(4)
T , AFB and

FL and the theoretical SM distribution for 100 fb−1 of LHCb data assuming the SUSY–b scenario.

The colour scheme is the same as in Fig. 8.
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