
A
TL

-D
A

Q
-P

R
O

C
-2

00
8-

00
4

12
N

ov
em

be
r

20
08

Control, Test and Monitoring Software Framework for the ATLAS Level-1 Calorimeter
Trigger

R. Achenbachb, P. Adragnad, M. Aharrouchec, V. Andreib, B. Åsmanf, B.M. Barnette, B. Baussc,
M. Bendelc, C. Bohmf, J.R.A. Bootha, J. Bracinika, I.P. Brawne, D.G. Charltona, J.T. Childersb,

N.J. Collinsa, C.J. Curtisa, A.O. Davise, S. Eckweilerc, E. Eisenhandlerd, P.J.W. Faulknera, J. Flecknerc,
F. Föhlischb, C.N.P. Geee, A.R. Gillmane, C. Göringerc, M. Grollc, D.R. Hadleya,

P. Hankeb, S. Hellmanf, A. Hidvégif, S.J. Hilliera, M. Johansenf, E.-E. Klugeb, T. Kuhlc, M. Landond,
V. Lendermannb, J.N. Lilleya, K. Mahboubib, G. Mahouta, K. Meierb, R.P. Middletone, T. Moaf,

J.D. Morrisd, F. Müllerb, A. Neusiedlc, C. Ohmf, B. Oltmannc, V.J.O. Pererae, D.P.F. Prieure, W. Qiane,
S. Riekec, F. Rührb, D.P.C. Sankeye, U. Schäferc, K. Schmittb, H.-C. Schultz-Coulonb, S. Silversteinf,

J. Sjölinf, R.J. Staleya, R. Stamenb, M.C. Stocktona, C.L.A. Tana, S. Tapproggec, J.P. Thomasa,
P.D. Thompsona, P.M. Watkinsa, A. Watsona, P. Weberb, M. Wesselsb, M. Wildtc

a School of Physics and Astronomy, University of Birmingham,Birmingham B15 2TT, UK
b Kirchhoff-Institut für Physik, University of Heidelberg, D-69120 Heidelberg, Germany

c Institut für Physik, University of Mainz, D-55099 Mainz, Germany
d Physics Department, Queen Mary, University of London, London E1 4NS, UK

e STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus,
Didcot, Oxon OX11 0QX, UK

f Fysikum, Stockholm University, SE-106 91 Stockholm, Sweden

m.p.j.landon@qmul.ac.uk

Abstract

The ATLAS first-level calorimeter trigger is a hardware-based
system designed to identify high-pT jets, electron/photon and
tau candidates and to measure total and missingET in the
ATLAS calorimeters. The complete trigger system consists of
over 300 custom designed VME modules of varying complexity.
These modules are based around FPGAs or ASICs with many
configurable parameters, both to initialize the system withcor-
rect calibrations and timings and to allow flexibility in thetrig-
ger algorithms. The control, testing and monitoring of these
modules requires a comprehensive, but well-designed and mod-
ular, software framework, which we will describe in this paper.

I. INTRODUCTION

The ATLAS[1] detector at the CERN Large Hadron Collider
(LHC) consists of an inner tracker surrounded by electromag-
netic (EM) and hadronic calorimeters enclosed by a muon spec-
trometer. The calorimeters provide the trigger with just over
7200 analogue signals.

The first-level calorimeter trigger[2] (L1Calo) is a hardware-
based system with a high degree of adaptability provided by
widespread use of FPGAs to implement the trigger algorithms
that identify high-pT jets, electron/photon and tau candidates
and which measure total and missingET seen in the calorime-
ters.

The real-time path of the L1Calo trigger (see figure 1) is sub-
divided into a Preprocessor which digitizes the analogue signals
from the calorimeters, followed by two digital processor sys-
tems working in parallel: the Jet/Energy-sum processor (JEP)

and the Cluster Processor (CP). The outputs of the digital pro-
cessor are sent to the ATLAS Central Trigger Processor. All
stages of the L1Calo processor chain are read out to the data
acquisition for monitoring the operation of the trigger.

� � � �
� � � � � � � � 	 � �

 � � � �
 � � � � �
� � � � � � � � 	 � � � � � � � � � � � � � �

� � � � � �
 � � � � �

� � � � 	 � �� � � � � � � � �
� � � � �
 � � � � �

� � 	 � � � � � � �� � � � � � � � �
� � � �
 � � � � �! " # $ % & ' () * * + (

, � � � � � �
� - � �
 � � � � �

, � � � � � �
� � � �
 � � � � �

. � �
 � � 	 � � / � �
 � � � � � 0 � � � 	 � � � � � - � �
 � � � � �

 � 1 � � 2 �
� � � 	 � � �
� � � � � � �� � � � � � � � �

. � � � 	 � � �

. � �
 � � 	

Figure 1: Overview of the L1Calo trigger architecture.

The system comprises over 300 VME modules of about 10
different types, each of which has a unique register and memory
map. The most complex of these modules contains around 2000
individually programmable registers, as well as many kilobytes
of look-up table memory.

It is clear that the software needed to control a system on this
scale needs to be sophisticated enough to manage the different
properties of each module, but also modular enough to be main-
tainable over the long period of commissioning and running of
the ATLAS experiment.

There are several distinct areas of software that can be
clearly separated, but which must have some means of interac-
tion. For example, the configuration parameters must be stored

in a common database framework which is independent of the
rest of the software, but many of the other software components
(e.g. configuration, monitoring) will need access to this infor-
mation. The software framework must also fit into the existing
ATLAS online software environment to successfully participate
in a standard integrated run.

The following sections give an overview of the software ar-
chitecture and provide details of the design choices and imple-
mentations of the main components.

II. L1CALO ONLINE SOFTWARE ARCHITECTURE

The L1Calo online software is designed to control, test and
monitor any configurable subset of the trigger system, from a
single module under test to the complete installation at ATLAS.
The L1Calo software is primarily written in C++ with some
Java libraries included. It consists of about 75 software pack-
ages in our code repository (CVS), built together using the stan-
dard ATLAS code management tool (CMT). These packages are
grouped into about eight main categories whose internal andex-
ternal dependencies are shown in figure 2.

� � � � � � � � � 	
 � � � � � �

 �

� � � � � � � �

� 	
 � � � � �

� � � � � 	
 � � � � � �
� � � � � � � � � � � � � � �

� � � � � �
 � � � �
� 	
 � � � � �

� � � � � � �

 �
 � � ! � � " � � " � �
� � # � � � � $ � ! �

% � � # � � � � � � � � ! !
� � # � � � � � 	 ! � � � !

� 	 # " � � � � $ � � � � � � & " � � � � 	 �
� � # � � ! � � � �

� " � � 	 � � � 	 �

� 	 � � � 	 � � � �

� � � � $ � � � � 	 �
� � 	 � � # " � � !

� � # � � � � � ! � !

' () * + ,
- , . / 0 * 1 2

� � ! 3 � � � !

Figure 2: L1Calo online software architecture.

At the lowest level there is a collection of infrastructure
packages that define basic classes, tools and interfaces to ex-
ternal software such as the ATLAS Trigger and Data Acquisi-
tion (TDAQ) software[3] and the CERN LHC Computing Grid
(LCG) packages. Several database related packages providea
uniform interface between the various ATLAS databases and the
higher layers of L1Calo software.

One of the most fundamental areas is the set of underlying
VME access libraries that encapsulate the detailed programming

models of our modules. They were designed so that they could
be used in several ways: under the ATLAS run control to con-
figure modules at run start, from standalone programs or via
an interactive GUI for expert intervention at the VME register
level. Another large body of the software is dedicated to a de-
tailed simulation of the hardware at the level of data that can be
probed at each stage of the trigger processing.

A further group of packages handles the interaction with
ATLAS run control and other distributed services. The main
module types in the three processors also have dedicated pack-
ages for testing the system and for performing calibrations, both
of the signal timing and the energy of the input signals. These
are based around a common calibration strategy which extends
the run concept to encompass multi-step runs, where parameters
are adjusted between each step of the run.

Finally, and most recently, a set of libraries dedicated to
monitoring and event-by-event analysis has been developed.
These are used to ensure that the trigger is operating correctly
during normal data taking, immediately flagging up errors, in-
consistencies or merely unusual features to the shift crew.The
monitoring area also includes packages for various graphical
tools and displays.

III. D ATABASES

The L1Calo software needs access to several different
databases used in ATLAS.

The TDAQ database describes the hardware and software
configuration that is available for data taking. The hardware
configuration includes the crates, modules and cables connect-
ing them. This database also contains sets of L1Calo “run types”
with the specifications of the test vector configuration to beused
for each type of test run. All calibration values and most con-
figuration settings used to load the L1Calo modules are stored
in a COOL database which provides “interval of validity” his-
tory of the settings. The trigger thresholds are taken from the
ATLAS trigger configuration database, which is a purely rela-
tional database. Volatile information for the current run is also
read from the TDAQ distributed information service (IS).

L1Calo database packages provide read (and where re-
quired, write) access to these databases. The details are en-
capsulated and each type of module in the system has its own
database subclass that provides it with the view of the data it
requires.

In addition to custom code for L1Calo, we have also de-
veloped a browser and “editor”, ACE, for the LCG COOL
database. This is now distributed as part of the LCG software.

IV. HARDWARE ACCESS ANDDIAGNOSTICS

The design philosophy of our hardware access packages ad-
dresses a number of requirements. It needs to provide com-
plete low level access to our VME modules for debugging and
it should also implement a well defined access for higher level
code. Each type of module in the system has its own program-
ming model, i.e. the sets of registers and memories at the level
of the module and its component submodules, some of which

may have their own substructure. The hardware access pack-
ages provide complete descriptions of the VME address struc-
ture of each module together with bit field formats of each reg-
ister and memory type. These descriptions, stored in configu-
ration files, are used dynamically in a graphical diagnosticpro-
gram, HDMC, for debugging down to level of individual register
bits. HDMC reads the hardware configuration from the ATLAS
TDAQ database so that it can show a complete view of all the
modules in one crate.

A code generator uses the configuration files to create
classes for use by higher level code. This layered approach
means that some access checks can be policed by the compiler
– only registers and bits declared in the configuration file can be
accessed. Also some common run-time checks can be imple-
mented at a low level. Restrictions on higher level code are not
imposed at the expert debugging level.

In addition to the completely generic HDMC display, there
is also a dedicated debugging tool for the preprocessor which
uses the higher level access code.

V. SIMULATION AND TESTING

The L1Calo project has evolved through phases of “demon-
strator” and prototype development, preproduction and pro-
duction testing to final installation and commissioning in the
ATLAS cavern. All those phases require the ability to perform
tests on any subset of the trigger system, using arbitrary test vec-
tors. This requirement was met by providing both hardware and
software support.

All modules in the real time path provide both playback and
spy memories to feed generated data into the system and capture
the results at any point in the digital pipeline. A detailed sim-
ulation of the system, down to the bit level, was written using
VHDL-like software components (processes and ports) that can
be connected together to simulate any module or collection of
modules.

Element
Process DataPort

Figure 3: Simulation processes, ports and their interconnections.

Figure 3 shows how part of the system may be connected.
Any “process” box may itself be a container for a complete set
of lower level processes and port connections. The simulation,
like the hardware, is configured from the TDAQ database. A
generic test is performed by the user selecting suitable test vec-
tors, where to load them and from where to capture the outputs.
Bit by bit comparison of the results either verifies the correct
operation of the system or else helps to pinpoint errors. Thetest
vectors used can range from simple, complex or random pat-
terns to events from offline simulation or, eventually, fromreal
Physics data.

VI. M ONITORING

The ATLAS TDAQ monitoring framework allows whole
events or event fragments to be collected from any stage of
the readout and dataflow chain. Monitoring clients can obtain
events from the monitoring system, decode them and fill his-
tograms that can be published on TDAQ histogramming servers.
Any histogram published to any server may then be displayed
to the user via a histogram browser, such as the ATLAS On-
line Histogram Presenter (OHP)[4] which was co-developed by
a member of the L1Calo collaboration.

L1Calo has developed a number of programs that use this
framework to monitor the operation of each of the three L1Calo
subsystems and of the trigger as a whole. These programs pro-
vide a large number of histograms for experts to debug problems
and a set of summary plots for the shift crew to monitor the be-
haviour of the system from run to run.

VII. CALIBRATION PROCEDURES

The L1Calo trigger has about 50 configurable parameters
for each of its 7200 channels. Many of these are configura-
tion choices, but the majority must be determined from cali-
brations. The general procedure for performing a calibration
is to configure the system as normal using the run control and
module libraries, then execute a number of steps changing one
selected parameter at each step. The operation mode (“run pa-
rameters”) of each type of calibration is defined in the COOL
database. The timing parameters for the digital processors(CP
and JEP) are determined by scanning clock phases and counting
parity errors via VME[5]. However the analogue parameters
(pedestals, FADC strobe phase, filter coefficients, latencyde-
lays, noise cuts, etc) require data to be read out via the normal
ATLAS DAQ path[6].

The data is analysed and the results of each calibration are
stored to the COOL database. A separate validation procedure
checks the quality of the calibration. A calibration may be
marked as “validated” for use in the next run if it passes the
checks and if the new calibration constants are significantly dif-
ferent from the previous set.

� � � � � � � �
� � � 	 �
 �
 �

� �
 �
 � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � �

� � � � � � � � � �
� � � � � � � �

� � � � � � � �
� �
 � �
 � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � ! � "
$ % & ' % () ' *

+) , - . / ') 0

Figure 4: Overview of run control classes and aspects of module and hardware access libraries.

VIII. R UN CONTROL AND MODULE SERVICES

The normal operation of the L1Calo trigger is handled un-
der the ATLAS TDAQ run control framework. This provides
initialisation of the distributed environment with numerous in-
formation, histogramming, monitoring and other services.Con-
figuration and periodic status monitoring of L1Calo and other
ATLAS subsystems is carried out via synchronous run control
commands, most of which result in state transitions. Under the
run control framework, each ATLAS component to be config-
ured is controlled by a run control application.

In the L1Calo system, there is one such application per VME
crate. This is responsible for loading and monitoring all the
modules in that crate. An overview of the main classes involved
is shown in figure 4. To insulate the module libraries from the
TDAQ services, the functions required of each module are split
into two distinct classes. TheRcModule class is completely
generic and acts as a façade for any hardware module subclass.
Together with its parent run controller object, it is responsible
for accessing the database, responding to run control commands
and publishing the status, trigger rates and (soon) onboardhis-
tograms to the corresponding TDAQ servers.HwModule sub-
classes are responsible for configuring one type of module via
VME and collecting data from it. This split has proved usefulin
hiding changes in the TDAQ API from the bulk of the hardware
access libraries. The information published by the run control
packages is available for display via run control panels andother
tools.

IX. D ISPLAYS

A number of graphical displays have been developed in ad-
dition to those, such as ACE, HDMC and OHP, which have al-
ready been mentioned.

The TDAQ run control GUI allows ATLAS subdetectors to
add their own panels. The L1Calo panel in this GUI displays

the detailed status of each module in the system in a hierarchi-
cal tree view with a colour code to propogate an error state up
the tree.

Monitoring of trigger rates at the level of individual towers
and for the whole system is crucial. The ATLAS TDAQ soft-
ware includes a display for the final Level-1 trigger rates. In ad-
dition the L1Calo software provides a tabular display of many
detailed rates from L1Calo and other parts of the Level-1 trigger.

Finally, there is a visualisation tool displaying the space
of L1Calo trigger towers in pseudorapidity and azimuth. This
shows the mapping of towers to hardware and cables through-
out the system. It can also show database settings, status and
trigger rate for each tower and can act as simple event display.

X. SUMMARY

A large body of software has been written for configuring,
testing, calibrating and monitoring the ATLAS level-1 calorime-
ter trigger. This has been successfully used at several stages of
the L1Calo project. Initially for testing prototype and produc-
tion modules, subsequently for the installation and commission-
ing the final trigger system in ATLAS and most recently for con-
figuring it to trigger on events from the first beam in the LHC.

XI. A CKNOWLEDGEMENTS

We would like to thank the wider ATLAS Trigger/DAQ
community and also the ATLAS Liquid Argon and Tile
calorimeter groups for their helpful collaboration over many
years.

REFERENCES

[1] The ATLAS Collaboration, G. Aadet al., The ATLAS Ex-
periment at the CERN Large Hadron Collider, JINST 3
(2008) S08003.

[2] R. Achenbachet al., The ATLAS Level-1 Calorimeter
Trigger, JINST 3 (2008) P03001.

[3] The ATLAS Collaboration, ATLAS High Level Trigger,
Data Acquisition and Controls, CERN/LHCC/2003-022.

[4] A. Dotti et al., OHP: an Online Histogram Presenter for the
ATLAS experiment, CERN/ATL-DAQ-CONF-2006-006.

[5] R. Achenbachet al., Digital Signal Integrity and Stability
in the ATLAS Level-1 Calorimeter Trigger, these proceed-
ings.

[6] R. Achenbachet al., Testing and calibrating analogue in-
puts to the ATLAS Level-1 Calorimeter Trigger, these pro-
ceedings.

