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A bstract

W e analyze the action of Toric (Seberg) duality on the com bined m esonic and
baryonic m oduli space of quiver gauge theories obtained from D 3 branes at Calbi-
Yau singularities. W e analyze in particular the structure of the m aster space, the
com pletem oduligpace for one brane, fordi erent toric phases of a given singularity.
W e show that the H ibert Serdes for the Jargest com ponent of the m aster space of
di erent phases is the sam e, when re ned with all the non anom alous charges. T his
re ects the fact that the quiver gauge theories associated w ith di erent phases are
related by Seberg duality when the num ber of branes is greater than one.
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1 Introduction

The m oduli space and the BP S operators are very In portant concepts for N = 1 super—
symm etric eld theordes. T hese have been recently analyzed, in the context of D 3 branes
at singularities, using the concepts of M aster space, H ibert series and P lethystic expo—
nential in [1,,12,13,4,5,6,7,8,9]. Themoduli space and the chiral ring are som etim es
m odi ed by non perturbative dynam ics. Tt is interesting to see if we can get som e Infor-
m ation about thisdynam ics using the M aster space and the H ibert serdes|]. In this paper
we focus on Seberg Duality. This isa quantum eld theory duality that it is realized as
Toric D uality in the setup of D 3 branes at singularities. Toric D uality was discovered in
11, analyzed In [12,113,/14]] and denti ed as Selberg duality in [15,/16]. Tt corresoonds
to a situation in which one singular CY m anifold hasm ore than one quiver gauge theory
that has thism anifold as itsm esonic m oduli space of vacua. G ven a CY shgularity, X

there are In fact an in nite num ber of gauge theories that have X as theirm esonicm oduli
gpace of vacua and there are several studies of this in the literature. See for exam ple the
use of Picard Lefshetz transform ations introduced in this context in [17,118] to generate
the corresponding duality trees [19]. T here is however a special subset of quiver gauge
theories that are the focus of the present paper. If the singularity X is toric, then this

40 ne exam ple in this direction is the relation discovered in [10]between stringy instantons and BPS
operators.



goecial subset is characterized by having the ranks of all the gauge groups equal, and each

eld In the quiver appears pr! ecisely twice in the superpotential. Such a quiver theory
is called a toric phase and the singularity X m ay have m ore than one toric phase. The
num ber of toric phases is in fact a nite num ber and it is an interesting problem to count
this num ber for a given singularity X . T he analysis of toric phases for certain classes of
quiver gauge theories called the Y P4 theories was done in [20] and was found to have an
exponential grow th in p for sm all values of g.

From a eld theory perspective, for theories which are not necessarily living on D 3
branes at singularities, Seiberg dual theories have the sam e m oduli space and the sam e
spectrum of chiral operators. T his nicely agrees w ith our understanding of the m esonic
m oduli space for the theories on D 3 branes at singularities. It is X In the abelian case,
and Sym" X i the non-abelian case, ©or all toric phases. This leaves a question on the
baryonic m oduli space or altematively the com bined m esonic and baryonic m oduli space
for this class of theories. T his is the sub Fct of investigation in the present paper.

In this paper we look at a collection of exam ples, X , which have m ore than one
toric phase and we w ill study their full m oduli space, including baryonic directions. A
system atic investigation of the fiill spectrum of chiral operators has been carried out in
the series of papers (3,15,16,17,8,9]. A crucial ingredient in the analysis is the concept
of the m aster space, which is the com plete m oduli space for one brane. In the case
of one brane all gauge groups, being abelian, decouple in the IR and we are keft wih a
theory of chiralm ultiplets and no gauge interactions (these still play a crucial role and
tum Into global baryonic symm etrdes). The m aster gpace is generically reducible into
di erent com ponents that have a variety of structures and a variety ofdim ensions. T here
is one Jarge com ponent called the coherent com ponent and there are a num ber of other
lower din ensional (generically linear) com ponents. Here linear m eans copies of some C*
for som e value of 1. Tn this paper we study the action of toric duality on them aster space
and we com pute the H ibert series for each toric phase. It tums out that the coherent
com ponent of the m aster gpaces of di erent phases are in general not isom orphic and the
num ber of Jower dim ensional com ponents di er between the phases. Furthem ore, the
fully re ned H ibert series for the coherent com ponent, w ritten in term s of fugacities for
all the classical global sym m etries of the theory, are not equal fordi erent phases. This is
a som ew hat disappointing result but there is however a point of Iight. Som e of the global
sym m etries are anom alous and som e are anom aly free. W e discover that the H ilbert serdes
of the coherent com ponent restricted to the set of non-anom alous charges is the sam e In
allphases. In particular, for non-chiral theordes, w here all the abelian sym m etries are non
anom alous, we conclude that the coherent com ponents of di erent phases are isom orphic.
T his is the action of toric duality on the m aster space.

W e interpret this result as a consequence (or a check) of Seberg duality. T heordes
corresponding to di erent phases are Seberg dual for N > 1 (here and henceforth N
denotes the num ber of D 3 branes probing the singularity). D ual theories have the sam e
spectrum of chiral operators, which can be organized into representations of the non-
anom alous global sym m etry group. A nom alous sym m etries, on the other hand, are not
physical and can be di erent in di erent phases. A s argued In [5,[7,19], the generating



function for the largest com ponent of the m oduli space of the theory with N branes can

be reconstructed from the know ledge of the H ibert serdes for the coherent com ponent of
them aster space. T his isdone by decom posing the H ibert series into sectorsw ith de nite
baryonic charge and by counting sym m etric products through the P letystic Exponential
In each sector. It is then an interesting check of the procedure just explained that the
H ibert serdes for the coherent com ponent of di erent phases is the sam e when expressed

in temm s of the non anom alous charges.

T he paper is organized as follows. In Section 2 we discuss the general problem and
present the m ain result of this paper In the form of a con fcture. W e next procead w ith
exam ples. W e analyze chiral and non-chiral theories. T here is a class of toric non-chiral
quiver gauge theoriesw hich is characterized by toric diagram s that have no intemalpoints.
Thisclass iswell studied in the literature and consistsof theC3=(Z, Z,)orbifold, together
with the L®® class of theories, introduced in [211,[22] and further studied in 23,124,25].
TheC3=(Z, Z,)model,beng an orbibd ofC > hasonly one toric phaseﬁ and therefore
is trivial for the discussion at hand that requires toric singularities w hich have m ore than
one toric phase. L®* theories have a num ber of toric phases and their m aster space is
studied in Section 3. T he num ber of toric phases depends on a and b and is com puted
in section [32.]]. Tn Section 4,we rst analyze in detail the case of the two phases of Fy,
which is the sim plest chiralm odel w ith m ore than one phase, and for which we can also
com pute the generating functions forN > 1. W e then analyze selected exam ples of chiral
theories, including dP, and dP3;. In Section 5, we discuss the generating functions for
N > 1. The paper ends w ith conclusions and an A ppendix on technical details about the
H ibert Serdes.

2 The Coherent C om ponent

W e analyze the quiver gauge theordes living on D 3 branes at singularities focusing on toric
phases w here allgauge groups have the sam e rank, N , equal to the num ber of D 3 branes.
The gauge symm etry is thus U (N )7, where g is the num ber of gauge groups.

Them aster space F | isde ned as the set of solutions of the F+erm constraints when
all the chiralm ultiplets are regarded as cnum bers. Since all abelian groups decouple in
the IR , this isthe sam e as the IR m odulispace of the quiver theory forN = 1. Them aster
space F | is a toric variety of din ension g+ 2. The g+ 2 toric action corresponds to the
globalU (1) sym m etries of the quiver theory: three m esonic sym m etries corresponding to
the isom etries of X plusg 1 baryonic sym m etries corresponding to theg 1 U (1) gauge
sym m etries that decouple in the IR . There are g 1 gauge sym m etries since the overall
U (1) In the quiver is decoupled from the Lagrangian. Only d of the U (1) sym m etrdes are
anom aly free, where d is the num ber of extermal points in the toric diagram H T he three

50 rbids of C 3 always have a single toric phase since the num ber of avors per gauge group is alvays
3 and therefore any Seberg duality w ill change the rank of the gauge group.

%d counts the num ber of integer points on the perin eter of the toric diagram ; integer points on the
sides of the diagram , which correspond to orbifold singularities of the base of X , should be counted.



m esonic symm etries are always non-anom alous.

T he m aster space is generically reducible. Tt decom poses into a large non—rivial com —
ponent, called the coherent com ponent and denoted ®F [, plus other Iower din ensional
pieces, typically linear. T his is sin ilar to the fam iliar decom position of the m oduli space
of N = 2 supersymm etric theories Into H iggs and C oulom b branches. A s shown in [5,[7],
Ip [ isa g+ 2 dinensional CalabiYau cone. ForN = 1 there are no gauge groups and
no strong gauge dynam ics. Them oduli space can be com puted at the classical level. T he
Abelian nature does not allow the use of Sedberg duality to argue that theN = 1 m oduli
Space is the sam e fordi erent phases. In fact, we w ill see that, In general, di erent phases
havedi erent N = 1 m oduli spaces. In particular, the structure and the num ber of Iinear
com ponents are di erent. M ore subtle is the fate of the coherent com ponent under toric
duality that we now exam ine.

A very usefill tool to characterize a toric variety is its fully re ned H ibert series.
W e Introduce a set of auxiliary param eters (fugacities) ftigf:f and de ne the generating
function for holom orphic functions

X
g1 (ftlg) = Ny, jiikgy 2 ﬂil ];T;C; (2 1 )

the globalU (1)°" 2 symm etry. The set of holom orphic finctions on the m aster space is
Just given by allpolynom ials in the chiral eldsm odulo the F-tem sand the H ibert series
can be viewed as the generating function for the N = 1 chiral ring that includes both
m esonic and baryonic obfcts. W e can w rite H ibert series for the fullm aster space and
for its coherent com ponent. T he latter being irreducible, a ne, and toric is com pletely
speci ed by its set of holom orphic functions. T he fully re ned H ibert series contains all
Inform ation about the coherent com ponent.

On an am piricalbasis, it was observed in [7] that the coherent com ponents ofdi erent
toric phasesarenotequal. A particular feature is their fully re ned H ibert seriesw hich are
di erent. This fully re ned H ibert series contains how ever both anom alous and anom aly
free charges. Since we are interested in applications to quantum eld theory, a generating
function which is graded by all sym m etries, including the anom alous ones, is too m uch to
require. Anom alous charges are not good quantum num bers in theorieswith N > 1 and
cannot be usad In com paring di erent phases. Only global non-anom alous sym m etries
are Invariant under Seiberg duality. C orrespondingly, the num ber of chiral operators w ith
equalnon-anom alous quantum num bers agree in di erent phases, but nothing can be said
about their anom alous charges. It then m akes sense to consider a H ibert series which is
partially re ned with respect to all the d non-anom alous charges. W e w ill see through
exam ples that this partially re ned H ibert serdes is now an nvariant under toric duality
and we form ulate the ollow Ing

CONJECTURE Toric phases of quiver toric gauge theories have the sam e H ibert
Serdes of the Coherent Com ponent of the m aster space “F |, re ned in tem s of all the
fugacities of the global non anom alous U (1) el theory charges.



A gpecial case of this con ecture is when the quiver theory is non-chiral. In all such
cases allglobal U (1) symm etries are anom aly free and the coherent com ponents of the
various toric phases are invariant under toric (Seiberg) duality. On the other hand, for
chiral theories the coherent com ponents of di erent toric phases are generically di erent.
T he di erent algebraic structure can be leamed and is speci ed by their fully re ned
(Including anom alous charges) H ibert Serdes.

3 Non-Chiral Theories

Q uiver gauge theories are non-chiral if every edge in the quiver has the sam e num ber of
arrow s In both directions. See Figure[ll for sin ple exam ples of non-chiral quivers. The
num ber of non anom alous U (1) global symm etrdes isg+ 2; equal to the din ension of the
coherent com ponent of them aster space ™F . In this case ourgeneralC on jecture in plies
that the coherent com ponents of Selberg dual gauge theories are isom orphic algebraic
varieties.

W e use the L¥* theories as archetypal exam ples of non-chiral theories. They are
particularly easy to analyze in the context of this paper since there arem any toric phases,
allofwhich have a sin ple brane Intervalrealization. Forevery b a, positive integers, we
have a singularity L®*® and a quiver gauge theory that can be realized in Type IIA w ith
D 4 branes on a circle with b NS branes and a N S° branes (see Figure[d). Toric phases
di erby a rearrangem ents of NS and N S° branes on the circle. T he num ber of all possible
arrangem ents is counted in Section [3.2.1.

Before entering into technical details and discussing speci ¢ exam ples of di erent
phases, we summ arize the results of our analysis. D i erent phases have di erent lin-
ear com ponents, corresponding in part to a variety of Coulom b branches. T he coherent
com ponent of them aster space for the L#*? theordes is instead the sam e orall toric phases.
Itisa a+ b+ 2 dinensional m anifold of com plete intersection given by a collection of
2a+ 2bvariableswhich are sub®ct to a+ b 2 quadratic equations. T he corresponding
H ibert serdes in one variable can be sin ply w ritten as

(1 g)aer 2 (1+ t)a+b 2

Hap(0) = (1 t)2(a+ b) - (1  t)+pr 2 Z

(32)

w here tgives weight 1 for each generator and the relations are always quadratic. T his can
be further re ned by realizing that the m aster space has two non-abelian hidden global
sym m etries w hich are induced by the structure of the toric diagram and are related to the
two sihgularities C?=Z, and C?=Z,. There are two hidden global symm etries SU (a) and
SU (b) under which the elds transform as one copy of the fiindam ental of each and one
copy of the antifundam ental of each, giving all together 2a + 2b elds. W ith the abelian
charges the sym m etry of them aster space isSU (a) SU (b) U (1)*. W ecan param etrize
the 4 U (1) charges by assigning a fugacity t;i= 1;:::4 to each of the 4 extemal points
In the toric diagram . Under these charges each copy of the 4 m ultiplets above carries a
di erent charge. The relations are singlets of the non-abelian groups. G etting all this
Inform ation together, the H ibert series takes the form



(33)
A special case iswhen a = 0 and the L% singularity is the N = 2 supersymm etric
orbibd C?=Z, C with its corresponding N = 2 supersym m etric quiver. In this case the
global sym m etry of the m aster space reduces to SU (b) U (1) and the 2b generators of
the coherent com ponent of the m aster space transform as one copy of the fundam ental
[1;0 :::;0] representation and one copy of the antifundam ental [0 :::;0;1 ] representation
of SU (b). There are only 3 extemal points in the toric diagram and the 3 fugacities
t;i= 1;2;3 can again be assigned one per each of the extermalpoints. T he H ibert Series
takes the form

Hop(hitit)= (1 tt)° 'PE [G[1;0;:::0L+ ©0;:::;0;1L+ t1: (34)

T his coincides w ith equation (3.2) with a = 0, allnon-abelian fugacities are set to 1,
and allt = t.

3.1 The double conifold

The double conifold L?%? is the singular Z, quotient of the conifold shgqularity. It is
de ned by the quadric x?y* = wz in C*. The IR dynam ics of a stack of N reqular D 3
branes at the tip of the cone has two possible non-chiralUV descriptions. T hese are the
tw o supersym m etric gauge theordes w ith quivers given in F igure[l] and superpotentials:

W= XXX 14X g1 XX 15X 23K 30+ X 32X 23X 34X 43 X 43X 33X 41X 14

W= X131 XX XuaXg)+ X33(X 30X 03 X34X43)+ X g3X 34X 41X 14 X 01X 15X 23X 3

T hese gauge theories have the sam e m esonic m oduli space of vacua and they are related
by toric (Sedbery) duality.

The IR properties of Sedberg dual gauge theories m ust be equivalent, and it is inter—
esting to understand what is the e ect of Selberg duality on the M aster Space. For this
purpose let us com pute the H ilbert series for the two phases.

T he H ilbert serdes for them aster space for each of the two phases, w ritten asa function
of the fugacity for theR charge, t= t of equation (3.2) are

1+ 2t+ 3% 42+ 2t4.

H (g F [222 = ’
(6 (EF [222)1) 1 o
O L)) = (1+ 2t+ 22 28+ t4)2_ 35)
PV nEE L (1 t)6(1+ t)2 ’

where we give charge 1 to all bifundam ental elds, and charge 2 to allad pint elds ﬁ
The two Hibert series are di erent. This fact gives a rst hint that the two m aster

"Tom atch with R charge 2 for the superpotentialwe need to rescale by a factor of 1/2.
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Figure 1: The quivers for the two phases of the double conifold and the corresponding brane
realizations in Type IIA i tem s ofD 4 branes (in pink),N S5 branes (i green), and N S5 branes
(In blue). A s is iIndicated in the picture Sedberg D uality is perform ed on gauge group 4.

Spaces are Indeed not isom orphic. A direct analysis of the algebraic equations de ning
the two M aster Spaces reveals that they are not isom orphic varieties. They are indeed
both reducible and given by: (FL[222 )= (ImFL[zzz ) [ (Lizzz ) [ (Lizzz )1, Where:

("Flon) = VExX3 XaXuiX1pXa X3aXa3)
(Lioee)r = V(X127X 415X 325X 23)
(Lizz)r = V(X43iX34i%X 21X 12) (36)

and (FL[zzz )1 = (IU:FL[zzz )z [ (Lizzz )z [ (szzz )z [ (Lizzz )11, Where

(MFL[zzz it = V(X gXqs X337X 34X 43 X11X 23X 35 X11;X 10X 51 X33)
(Lizzz it = V(X 437X 34X 327X 03;X117X 12X 01 X 41X 14)
(Lo = V(X1aiX0iX2iX12iX 337X 23X 32 X 34X 43)
(Lizzz it = V(X 147X 415X 437X 345X 327X 237X 217X 12) (3.7)

Here and in the follow ing, V (££;(X )g) denotes the zero locus of the set of algebraic
functions £; (X ).

Equations (3.7), (3.d) show two typical behaviors of the m aster space of non-chiral
theories under Seilberg duality: the m aster spaces F ! of di erent toric phases are in
generalnon isom orphic and the num ber of an aller din ensional com ponent L* is in general
di erent; the coherent com ponents ™F [ are instead isom orphic. In the case of the double
conifold it is indeed easy to see that the coherent com ponents de ned by the equations
in (3.7), (3.4) are isom orphic and de ne the product of two conifolds:

(IUSFI_[Izzz )I= (HEF]Ezzz )II= C C: (3.8)

O ne can also com pute the H ilbert series of the coherent com ponents of the tw o phases.
T hey are obviously the sam e, equal to the H ibert series of the product of two conifolds:



1 &) )
H(GYF)=H (G"F )= : 39
GF D) = H G F L) = o (39)
T his is consistent with equations (3.2) and (33), setting a = b= 2;t = tand the
non-abelian fugacities to 1. M oreover one can com pute the fully re ned H ibbert serdes for

charges and xq ;X,, for the non-abelian charges, all of which being non anom alous global
sym m etries:

H (Gt x % F ) = H (Gt ix x0T F L) = (3.10)

1 )l ttu)
1T &x)@ t=x)0 tx)1 t=x)1 tx)1 G=x)1 Gx)(1 G=x)

which is consistent with equation (3.3), with x; and x, weights for the SU (2) SU (2)
symm etry. The fi1ll set of fugacities for the elds in the two phases of L?%? are given
in Tablk[. For a d dim ensional toric variety the fully re ned H ibert serdes, with all
the d fligacities, associated with the U (1) toric action, contains inform ation that is in
one to one correspondence w ith the coordinate ring of holom orphic functions of the toric
variety. Hence also a correspondence to the points In the dualcone ,modulo SL (d;72)
transform ations. This m eans that the fully re ned H ilbert series de nes the algebraic
variety m odulo isom orphisn s ( see A ppendix A form ore details). Indeed equation (3.10)
inplies that ("F ... )r and (F ... )i are isom orphic algebraic varieties, as we already
deduced from the direct analysis of the algebraic equations.

3.2 L=

L% with b a isan in nite class of non isolated sihgularities that includes the double
conifold, previously analized, as a special case: L???. The L®* singularities are described
by the quadric x®y®* = wz in C*. It reduces to the equation for the double conifbld for
the particular values a = b= 2. The L®**® sihgularities contain two lines of non isolated
singularities passing through the tip of the cone: C?=7, and C?=Z,.

3.2.1 The num ber of Toric phases for L#*

W ith the help of the Polya’s Enum eration Theorem we can count the num ber of toric
phases for L% . The om ula does not have an explicit expression but we can write a
generating function which can com pute the num ber of phases for given values of a and
b. To start the counting we use the Type TTA brane realization of this set of theories
with b NS branes and a NS° branes. Toric phases di er by a di erent arrangem ent of
these branes on the circle. W e are thus led to count the num ber ways one can arrange a
ob Fcts of one type and b ob Fcts of another type on a circle. T he problem has obviously
a cyclic symm etry aswe are ordering ob fcts on a circle but in addition it has a dihedral
symm etry as a re ection of these ob fcts on the circle does not change the theory under
discussion and the toric phase rem ains the sam e under the re ection. W e are thus ld to



Phase I =] ) 5 4 X1 X5 fugacities

elds

X 15 1 0 0 0 1 0 %
X 34 1 0 0 0 1 0 §=x;
X 43 0 1 0 0 1 0 X
X 21 0 1 0 0 1 0 =X,
X 53 0 0 1 0 0 1 BX,
X 41 0 0 1 0 0 1 =X,
X 14 0 0 0 1 0 1 X,
X 35 0 0 0 1 0 1 =X,

Phase II =] ) 5 4 X1 X5 fugacities

elds

X 15 1 0 0 0 1 0 %1
X 41 1 0 0 0 1 0 4=x
X 33 1 1 0 0 0 0 0t
X 14 0 1 0 0 1 0 X1
X 21 0 1 0 0 1 0 =X,
X 53 0 0 1 0 0 1 Bx,
X 34 0 0 1 0 0 1 =X,
X 11 0 0 1 1 0 B
X 43 0 0 0 1 0 1 X,
X 37 0 0 0 1 0 1 =X,

Tabl 1: G Iobal charges for the basic elds of the two phases of the quiver gauge theory
living on the D borane probing the CY w ith L??? base. Phase II is com puted from phase
I by dualizing node 4.



use the enum eration theorem w ith the dihedral index. A sin ilar counting is done for the
num ber of toric phases of the Y ! quivers in [26,/120]. D e ne the Cyclic index to be
1X
2 (Zp)= — " (n)xET; (3.11)
P

where ’ is the Euler Totient function de ned by

Y 1
’ (n): n 1 — ; (3.12)
) |
ph
and the D lhedral index to be
8
% %Z (Zp)+ %xlxép l):2; p odd
Z (D)= (3.13)
3 1 1 p=2 2., 2)=2
F 5L (Zp)+ 7 Xyt XX, ; P even:

T he variables x,, keep track of the ob fcts with n elem ents and it is enough to take for
the case at hand
Xp= 1+ 5 (3.14)

T hism eans that for n elem ents there can either be n of one type or n of the other. Now
com es the m agic of Polya’s theorem . W hen evaluating Z (D4, ) we nd a hom ogeneous
polynom ialin 2 variables ; and »,
X
ZDarp) 17 2)=  dap T 3; (3.15)
ab

and the desired result is the integer num ber d, ;, which counts the num ber of toric phases
for the 1.** theories. For am usam ent we list the rst few cases

Z (D) = 1+ 27

Z (Dy) = %Jr 2 17+ é;

Zz (D3) = f+ 2§+ §1+ 3;

Z(Dg) = [+ ,2+25°%2+ 31+ 5;

Z(Ds) = S+ ,i+222+2324 2.4+ 3, (3.16)
ZDg) = S+ ,2+35%+33°+35°%2+ 5.+ %5;

ZD7) = 1+ L %+3%°%+438+45°2+32%2+ 5.+ 1

Z@Dg) = 2+ ,]+42°%+52°1 82844 553,4824 7.4 5,
ZDg) = 4 ,°+457+73°+1052+105 1+753+47°%+ 5+ )
W e recognize the two phases of L?*? as the coe cient of 2 2.
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Figure 2: The quivers for phase I of the L®*® gauge theories, and their brane realizations in
Type ITIA

3.2.2 Toric phases for L% and Seiberg duality

The IR dynam ics of N D 3 branes at the tip of the cone is a non-chiralgauge eld theory
w ith gauge group ‘j:f U (N ). There are m any di erent toric phases depending on the
arrangem ent of the NS and N S° branes on the circle. These theories have di erent UV
Lagrangians, w ith di erent eld content and di erent superpotentials, but they are all
equivalent in the IR and are related by toric (Selberg) dualities.

Let usdenote by hase I’ the phase w ith the chiral el structure which is shown in

the quiver In F igure[d and superpotential:

X a X+b
j+ 1
W = XX 1 X5 15 XX i)+ (17X 55 1X5 15X 559+ 1X 54155
=1 j=b a+1

(3.17)

w here the index 1 is cyclicm odulo a + band the eldsX j; transform in the ad pint repre-
sentation of the i~th gauge group, while X ;; transform s in the fundam ental representation
of the i-th group and in the anti-fiilndam ental of the j-th group. W e want to study the
coherent com ponent ™F L[aba of the m aster gpace for this particular toric phase. T he co-
herent com ponent isby de nition the locus of the F— at term equations w here generically
each eld hasa non-zero vev.

Let us start w ith the degenerate casea = 0,b= n. In this particular case the gauge
theories have N = 2 supersymmetry and L% = C2?=z, C. It is easy to show that

[ _pl
"Fo,, .=Fi, C,and
Floy, =V&inXng X1pX227:05%nn 1Xn 1n XnaXip): (3.18)
Namely ™F [, , . isa product of equation {318) and the com plex line param etrized

by the adpint elds, which are all equal. To sin plify the discussion we w ill ignore the
adpint elds and the com plex line C in the geom etry transverse to the D 3 branes. Iffwe
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right of every gauge group, the equations (3.18), de ning the m aster space of C =7, , are
X1 = X = m X= Xp.
Letusnow consider the generic L% case. Let usenum erate them onom ialsX e 1X i 15

as follows: those drawn in sold Ine in Figure[d are called x;, i = 1;:::;a; the ones
drawn w ith dotted line are called y;, J = 1;:::;b; and the adpint elds are called ,
k= 1;:::;b  a. The coherent com ponents of the m aster spaces of the L#* theordes is
the locus of the Ftem equations w here generically all the elds are di erent from zero.
It is given by the equations: x; = x, = z =X, and y; = Yo = 5 V= Yo =

1= o= % a21= painC®?, These equations describe algebraic varieties
isom orphic to the zero locus x; = x; = S K= X3, V1= Yo = 5 V= Vb

in C%*" %2, These are the equations describing the m aster space of C%=7, and C?=%Z
respectively, and:
F e = B Pl (3.19)

C2=74 C2=Zy

A s explained above, a given sihgularity generically corresponds to many UV eld
theordes which are related by toric (Seibery) dualities. The L gauge theories have an
easy description in Type ITA in term of D 4,N S5, N S5° branes as shown in Figure[d. In
this setup a Seberg duality corresponds to the exchange of one N S5 brane w ith one N S5
brane. Starting with the branes disposition in Figure[J there are only two exchanges
of NS, N SY branes that can a ect the el theory content and the superpotential of the
theory and they are shown in F igure[3.

d

a
X y w u X y w Q u
X (§ Y g gt X o o W (gt

Seiberg dudlity

Seiberg duality

Figure 3: Two relevant toric phases In paka quiver gauge theories. The labelsx,y,w,z,u, are
for the quadratic m onom ials in the bifindam ental elds, while the labels a, b are for the ad pint
eds.
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Seiberg duality is a local transform ation of the quiver and of the superpotential and
thus it is a Jocal change In the Ftem equations de ning IIIFL[aba . Wewill show that
the local equations for the coherent com ponent of the di erent toric phases in Figure [3
are algebraically equivalent. Because the ram aining part of the quiver is not changed by
Selberg duality the previous obsarvation im plies that Selberg duality is an isom orphism
of MF ...

Let us use the kbelsde ned In the Figure[3 for the quadratic m onom als m ade w ith
the bifundam ental elds. T here are two possible elem entary steps.

T he equations de ning ®F [ for the upper left quiverarex = y= u and a= w,while
the equations de ning the coherent com ponent Imstd: of the Selberg dual quiver on the
upper right arex = w = u and y = a. The two sets of equations are clearly isom orphic,
hence "F [ = ¢ [ .

Sin ilarly, the equations de ning ©F ! for the bottom left quiver are x = w = u, and
y = z,while the equations de ning Imstd: for the bottom rightquiverarex = y= u= b,
and w = z= a.0nce again these two sets of equations de ne isom orphic varieties, hence
IHF = IrrFS[ri:’

A1l the possble Seberg dual phases of L#* can be obtained by combining the two
elam entary transform ations shown in Figure[d. T hism eans that the coherent com ponent
of the m aster space ™F ... is Invariant under Seiberg duality:

T e = FF L, (320)

LS:d:

Because F L[aba is invardiant under Seiberg duality the fully re ned H ibert serdes is invari-
ant under Seiberg duality, and our general C on jecture is right for the in nite class of
the L2® gauge theordes.

4 Chiral theories

Chiral theordes are very comm on in the setup of D 3 branes at singularities and in the
AdS/CFT correspondence. For chiral theordes part of the global U (1) symm etries are
anom alous and they do not have an explicit dual geom etric interpretation. For this
reason part of the U (1) 2 symm etries, which we use to com pltely characterize the toric
varieties TF [, is Jost due to quantum dynam ics. The dual geom etric analysis done in
9,[7] points tow ards the relevance of the coherent com ponents of the m aster space &F |
for the study of the com plete m oduli space and the BPS operators for N > 1. In the
follow ing subsections we w ill do a case by case analysis to see what we can leam about
the quantum dynam ics using the concepts of the M aster space and H ilbert series as tools
of study.

41 F

The Fy theory is our st exam pl of chiral gauge theory. It describes the low energy
dynam ics of a stack of D 3 branes at the tip of the com plex cone over P P!. It hastwo
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toric phases [11],[12]w ith the quivers in F igure[d, and the superpotentials:

Wei = 4 pgPiBpC3Dg

i Jn i Jn
w FITT ijm nX X 35X 5 35 mnX 14X 35X 31
1 Ai 1
]
_ v
Dy / Bp < Y
< —0
Cj 3 4 3

Figure 4: The toric diagram and the quivers for phases Tand ITof Fy. Phase II is com puted
by dualizing node 4 of phase L

The M aster Spaces of the two phases, F |

F(I),FF[(I)I,were com puted in [7],

[ _ [ 1 2 .
Frg= Ty o [l
InaE. 1 2 3
FE[%I = E[%I [ LFgl [ LFgl [ LFgI;

where the L* com ponents are jist copies of C*, while the two coherent com ponents &F |
are de ned by the follow ing equations In elds of the gauge theory:

Fl =V®BD; BiD,;AC; AC,) (421)
0
for the rst phase, and:

BEFF[gI = V(X 124X 213 X114X 223 iX §3X 112 XLX 122 iX 114X i3 XllZX 213 iX 124X iz; XllZX 223/'
X114X 53 X122X 2137X 124X 53 X122X 2237X 3%12X 213 X§11X 2237X 3112X 213 X3111X 2237
X3212X 112 X3112X 1227X 3211X 112 X%llx 1227X §}12X 53 X3212X iﬁx 3111X 53 X3211X i3;
XX X3X XXy, XX pXgXg XX
(4.22)
for the second phase. From the equations (£.21]), (£22) it is easy to to see thatImFF[g is
a com plete intersection in C® and it is isom orphic to the product of two conifods: C  C;
while ImFF[gI is a quite com plicated not com plete intersection in C*2.
W e would like to get an understanding on how di erent these two varieties are. The
rst step is to use a \m ore toric" description. Indeed the coherent com ponent of the
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m aster space ¥F ! is in generala toric, g+ 2 dim ensional, C alabiYau cone, and it can be
described by a sym plectic quotient or a linear sigm a m odel language. In [/] it is shown
that:
ImFng 1 ct'=0%; I‘IFF[(I)I 1 Cc’=0°%; (4 23)

w here the charge m atrices Q are respectively:

0F= 10 % L T Pl Qb= oo dooo 110 (424)
ImFF[g can be described by a toric diagram in Z¢ (in this speci ccase g+ 2= 6),with 8
vectors that satisfy 2 Iinear relations, while ™F F[H can be described by a toric diagram In
Z¢,with 9 vectors that satisfy 3 constraints. T Ious m eans that the coherent com ponents
of the M aster Spaces for the two phases of Fy are di erent toric varieties. Tndeed the two
=3 [ have two di erent toric diagram s that cannot be m apped one into the other by an
SL (6,7 ) transform ation. Tt is natural to wonder how much they are di erent.

To answer this question let us com pute som e H ibert Serdes as explained in the Ap-—
pendix. T he toric varieties ¥F | are g+ 2 din ensionaland naturally adm it g+ 2 figacities
associated to the Inagihary U (1) part of each C in the (C ¥t 2 action. From the eld
theory point of view we can divide the fugacities into a set associated to the non anom a—
Jous sym m etries and a set associated to the anom alous sym m etries. Let us assign charges
and fugacities to the elem entary elds as in Tabk[d. F., F, are the avor symm etries,
R is the R symm etry, B is the baryonic symmetry and A, A, are two anom alous U (1)
symm etries. W e introduce a fugacity t for the R charge, x;y for the avor charges, b for
the non anom alous baryonic symm etry and a; ;a, for the anom alous ones w ith the nor-
m alization Indicated In the table. W e can com pute the com pletely re ned H ilbert Serdes
for the two phases obtaining the result:

H (xjyitibjajaz; TF ;) = (4.25)
1 51 ¥e) .
1 2 =Ha =) a5 2Hao Lo 22y

P (x;yitibja;;az)

H (xjyitibjasjaz; "F g ) =

£xy £x £y e
1 =50 i Ha 2o
1
(1 fwaia)l =)0 21 5@ =R 25 A £

with P (x;y;tb;a1 ;a2 ) a polynom ial in the fugacities. O ne can check that the two H ibert
Serdes are really di erent. Now the interesting obsarvation is that if we restrict just to
the non anom alous charges, nam ely we put a; = a, = 1, the two H ibert Serdes becom e
exactly the sam e:

&
T N S 2
H (x;v;tb; %Fé) H x;y:tb; ItrFFéI ) (1 @)2 a m)Z (1
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PhaseI | F; | F, | R | B | A, | A, | fugaciies
A, 2 0 2 1 1 0 tixa,
A, : 0 2 1 1 0 5
B 0 2 2 1 0 1 2oz
B, 0 2 2 1 0 1 T
C, 2 0 2 1 1 0 o
C, 2 0 2 1 1 0 —
D 0 2 2 1 0 1 —
D 0 2 2 1 0 1 e

PhaseII | F; | F, | R | B | A, | A, | fugacities
X1, 2 0 2 1 1 1 txa; a,
X%, 2 0 2 1 1 1 s
X 35 0 : < 1 0 1 —
X35 0 2 2 1 0 1 e
X 1t ! ! 1 | o 1| o e
X 12 : ! 0 1| o e
X 21 1] 2 1] o0 1| o —
X 5t : : 1 0 1 0 =
X3, 0 2 2 1 0 1 T
X1, 0 2 2 1 0 1 2o
X 7 2 0 2 1 1 1 T
X 43 2 0 2 1 1 1 e

Table 2: G Iobal charges for the basic elds of the two phases of the quiver gauge theory
1living on the D brane probing the CY with Fj base.

Thisveri esour C on cture. W e leam that the coordinate rings of the two varieties are
exactly the sam e if labeled jast in term s of the non anom alous charges. This fact, in a
sense, de nes how sin ilar the two varieties are. If the two toric varieties ©F F[g , MFF[éI are
isom orphic then therem ust exist an SL (2;7 ) transform ation on the a; , a, fugacities that
m aps the H ibert Series for the two phases. To see if this is possible let us expand the

two functions iIn powers of tnear t= 0,

[ 1 1 t 1 1
H (xjyitiarjaz; “Fy) = 1+t A R AL Lt
1 2
[ 1 1 t 1 1
H (xjyjtibjarjaz; "Fpn) = 1+ toa X+ — At — 4o y+§ ap+ — o
2 2

It is easy to realize that the two series are quite sin flar in tem s of the non anom alous
charges but di er for the anom alous charges a;, and there isno SL (2;Z ) transform ation
that can m ap one series into the other.
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4.2 dPy

T he dP, theory is our second exam ple of a chiral theory. Tt is the Jow energy gauge theory
living on a stack of D 3 branes at the tip of the com plex cone over the second del Pezzo
surface: C. (dP,). Tt has two toric phases [11,112] w ith the m atter content given by the
quivers in Figure[d and superpotentials:

(2, a2 B
PN
V] N

Figure 5: The toric diagram and the quiers for phases Tand ITof dP,. W e use a blck
notation where num bers on the arnrow s denote num ber of elds between gauge groups. Phase
1T is com puted from phase Thy dualizing node 5.

Wi = X13X34Xy41 Y12X 24X g1 + X 12X 24X 45¥s51 X 13X 35Y5;
+ Y 15X 23X 35X 51 X 1X 23X 33X 45X 515

Wi = Y4X 15X 54 X31X 15X 53+ Y12X 23X 31 Y12X 04X g1 + Yi5X 53X 33X 41
Z41Y15X 54 + X 10X 24241 X 12X 23K 34Yy15
(4.26)

To analyze the M aster Spaces and its coherent com ponents we use the H ibert Series.
T hem aster space is 7 din ensional and therefore we expect 7 U (1) global sym m etries, 4 of
w hich are baryonic that furtherdivide to 2 anom alous and 2 anom aly free charges. T hese
last two U (1) charges are expected to enhance to E, = SU (2) U (1) 27]. Letusre ne
the H ibert Series w ith all the fugacities associated w ith the non-anom alous U (1) global
symm etries. W e denote the 5 anom aly free fiigacities by t, as given in Tabk[d. Note
that, in this notation, the symm etrdes Q ; are allR charges. The two baryonic charges
x;bofE, are related to the i’sby g = x=bjtb = P=x;5 = 1=0';ty = xb ;5 = 1=x:We
sum m arize the translation between anom aly free charges in Table[4.

Let us start by com puting the H ibbert Series for the com plete M aster Space F | of the
two phases In temm s of just one anom aly free charge, obtained by setting allty = t. It is
In portant to stress that t is not a fugacity for the exact R symm etry, which is given in
Table[4, but rather it is a fugacity for a com putationally convenient R -symm etry. The
H ibbert Serdes for the coherent com ponent ™F ! tum out to be exactly the sam e in the
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PhaseI | 0 | 0, | 05 | 0. | 05| A&, | A, | fiugacities
X 12 1 0 0 0 0 2 1 ta,=a’
X 35 1 0 0 0 0 2 1 ta,=a’
X 41 1 1 0 0 0 1 1 thaja,
X 33 0 1 0 0 0 3 0 taj
Y 51 0 1 1 0 0 1 2 | tbta=aj
X 34 0 0 1 0 0 2 2 ty=a‘a3
Y 1o 0 0 1 1 0 2 1 tha,=a’
X 45 0 0 0 1 0 0 3 waj
X 13 0 0 0 1 1 1 1 tysaa,
X 54 0 0 0 0 1 1 2 tsa;=a3
X 51 0 0 0 0 1 1 2 tsa;=aj3

PhaseII | 01 | 0, | 05 | 0« | 0s | A1 | A, | fagacities]
X 31 1 0 0 0 1 1 1 | ts=aa
X 15 1 0 0 0 0 2 1 ta,=a’
X 54 1 0 0 0 0 1 2 ta;=a3
X 41 1 1 0 0 0 1 1 thaja,
X 53 0 1 0 0 0 3 0 tas
X 15 0 1 1 0 0 2 1 tza,=a’
241 0 1 1 1 0 1 1 bhtyaas
Y, 0 0 1 1 0 2 1 ta=al
X 53 0 0 0 1 0 3 0 tya3
Y 41 0 0 0 1 1 1 1 tytsaa,
X 54 0 0 0 0 1 1 2 tsa;=aj3
Y s 0 0 0 0 1 2 1 tsa,=a’
X 34 0 0 1 0 0 2 2 =a‘a3

Table 3: G Iobal charges for the basic elds for the two phases of the quiver gauge theory
Iiving on the D -brane probing the CY w ith dP, base. Phase IT is com puted from phase I
by dualizing node 5.
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P —
5 33 21 1
Ql 16 5 0 1 1
0 57 9 33 0 1 1 3
2 16 2
33 5 2
Q3 2 3 0 0 4
0 m 0 0 1 3
4 16
£33 21 1 1
Qs 16 3 2 1 1

Tabl 4: A possible choice for the anom aly free baryonic and m esonic charges in term s of
the 5 charges Q ; of Tablk[3d for the dP, theory. T he baryonic sym m etries can be enhanced
to a non abelian symm etry SU (2)4 B [27]; the role of this hidden symm etry, which
does not comm ute w ith the avor sym m etries, is still to be elucidated.

wo phasesE:

1+ 2t+ 52+ 28 + t4.
@ 2ra t

O n the other hand one can easily check that the filllH ibert serdes for the m aster space is

di erent, H (t; F (i, , )6 H (5 F [, , ), meaning that F ' for the two phases isdi erent

and possibly reducilble into di erent reducible com ponents.
T he H ibert Series for ¥F [ and TF | , re ned with the flgacities for all the

(dP2)1 (dP2)r1
non-anom alous sym m etries are exactly the sam e:

. [ _ . [ _
H (t’ II%(61?2)1)_ H (& I]:]SJ:T‘(sz)H)_

) [ _ . [
H (t; ©F @, )= H (&5 UF @2 )y: )

1 87201 )1 )1 wd Pe tt)d )d twld k)
where Q (f) is the palindrom ic polynom ial:

Q) = 1 (ubb+ bbb+ bbb+ bbb+ bk + bhb)
+ (tbbb tbbht tbhub+ bbbt tiut)
+ (Cobh+ thtut+ tbot+ bbbt + Buk + bt + bt + LbLt + 4ubbut)
+ ( fhbutb+ tEbut tbtub+ thits thtut)
(

EOtht + bttt + bttt + bttt + €htts + ttuut)+ €E8GE

8T he H ibert series for the coherent com ponent can be com puted using the m atrix K de ned in [7]
w hich can be extracted from the F-tem equationsor,altematively, from a sym plectic quotient description
of them aster space using a M olien integral. W e refer to [/]fora detailed explanation of the com putational
technigues.
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Figure 6: The toric diagram and the quivers for phases I, II, I, ¥ of dP3;. W e use a blck
notation where num bers on the arrow s denote num ber of els between gauge groups. Phases
(IT, I, V) are com puted from phases (I, II, 1) by dualizing nodes (6, 4, 1) respectively.

thus con m ing our general C on cture.

W ecan also re ne the H ibert seriesw ith the rem aining two fugacities a; , a, associated
to the el theory anom alousU (1) symm etries. A com putation using the charges in Table
[3 show s that the com pletely re ned H ibert series are di erent: H (t;;a;;a,; °F | ) &

(dP2)1
2323, T L
H (tilal 7327 dP2)rr )

4.3 dPs

T he dP3 theory is our last exam ple of a chiral theory. Tt is the Iow energy gauge theory
living on a stack of D 3 branes at the tip of the com plex cone over the third del Pezzo
surface: C¢ (dP3). It has four toric phases w ith the m atter content given by the quivers
in Figureld and superpotentials [15,16]

Wi = X13X3aX46X61 XXX+ X 12X 24X 45X 51 X 13X 35X 51

+ X 23X 35X 56X 62 X 12X 23X 34X 45X 56X 617

(4.27)

Wi = X13X34X41  X13X 35X 51 + X 3K 35X 55 X 26X 65X 52+ X 16X 65751
X 16X 6aX a1 + X 12X 26X 64X 45X 51 X 12X 23X 34X 4551 ;
(4.28)
Wir = X23X 35X 52 X6Xg5X 52+ X 14X 46X 65Y51 X 12X 23Y35¥51 + X 43¥35K 54

YesX 54X a6 + X 12X 26Y65X 51 X 14X 43X 35K 515

(429)
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Wi = X23X35Xs53 X5aX X 65+ Xgs5hs5aXgs Z5aX41Y¥15+ Yi525,X 21 Z52X 23¥35
+ ¥35X 54X 43 X5gX 46¥65 + Ye5¥52XK 26 Y5uX 01X 15+ X 15Y¥54X 41 Y5aX 43X 352
(4.30)

T here are six non anom alous charges corresponding to the six extermal points of the
toric diagram . W e use the assignm ent of charges given in [27]and reported in Tabk[d. W e
use the fugacity tto labeltheR symm etry and fugacities t;i= 1 :::6 for the 6 anom aly
free symmetries Q ;;i= 1:::6.AsfordP, theQ; areR <charges. A choice form esonic and
baryonic anom aly free charges is reported in Table[d.

For sim plicity, we consider only the coherent com ponent of the four phases. The
H ibert series can be com puted w ith them ethods explained in [/]. Re ning w ith only one
fugacity t; = twe nd

1+ 42+ ¢
. [ _ . [ _ . [ _ . [ _
H (5 IU:F (dP3)r )=H (& IU:F (dP3)11 )=H (& IU:F (dP3)r11 )=H (& % (dP3)rv )= (1 t)6 (1 2 )2

W e see that, as expected, the coherent com ponents have the sam e H ibert series. The
sam e is true for the H ibert serdes re ned w ith all the six non anom alous charges which is
given for all phases by
H (& F (g,)) =
P ()
1 @)1 )1 Bl wad ) )T )l tt)d tw)d )l L)l L)
where P (t) is the palindrom ic polynom ial

P(t) = 1 (tbbb+ bbb+ bbb+ bbb+ bbb+ bbbk + bbbk + tublk + Luty)
+ (GBbub+ bbbt + thbut+ thuk + thbbt + Shubt + dubbubt
+ bbubb+ bbbt + thutft + bhutlt + bbbt + tbutt)
(Eothbt + 2Lt + Cotltt + bbbttt + tEthtt + tbuttt
+ thttubt+ tbfubt + thbutit)+ EEEEY

The fully re ned H ibert series depending on eight fugacities is instead di erent for
the various phases.

T he H ibert series sin pli es if the avor charges F 1 ;F, are neglected. The eldscan
be organized into representations of a symm etry SU (3)y SU (2) , with yi;y, welghts
for SU (3) and x weight for SU (2) asdiscussed in [27]. T he H ibert series can be w ritten
as

H (Gy1iv2ixi "F (p,,) = 1+ £0;1;0] [1;0;0F ¢ PE t[1;0;1]+ £[0;1;0] (431)

It is not clear whether this expression in plies the existence of a hidden sym m etry, since
the series expansion in representations contains negative signs. M oreover the SU (3)y
SU (2)y symm etry does not comm ute with the avor symmetry. A di erent SU (3)
SU (2), enhancing also anom alous symm etries, was used In [/] to nd a positive sign
expansion for the H ibert series of dP3 into frreducible representations.
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X o4 0 0 0 0 1 1 X 45 0 0 0 1 0 0
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Yss| O | 0 | 1| 1| o 0 |vis| o 2| 2] 0o oo
X 55 0 0 1 1 1 0 Y o4 0 1 1 1 0 0
Yes | O [ 0| 0| 1] 1 0 | X4| 0] 0] 2| 0| 0o} o0
X 14 0 0 0 1 0 0 Y 35 0 0 1 1 0 0
X 43 0 0 0 0 1 0 X 55 0 0 1 1 1 0
Yo | 0O 0 0] 0] 1 1 | x| 0o o] of 1| 0| o0
Xs| O 0 0] 0] 0 1 | Yes| O] 0] 0o 12| 1|0

Z 54 0 0 0 1 1 1

X 43 0 0 0 0 1 0

X 15 0 0 0 0 1 1

X 26 0 0 0 0 0 1

Tabl 5: G lobal charges for the basic elds for the four phases of the quiver gauge theory
living on the D brane probing the CY w ith dP; base.

5 The partition function for N > 1

T he plethystic program can be e ciently applied to the study of the coherent com ponent
of the m oduli space for N > 1 [9]. The H ibert series gy (t;X ), counting the com bined
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|Charges | R | F1 | F, | SUQBN | SUQ@) |

Q. 3 2 : 1 0 1
Q> % % % 1 1 1
Q3 % % % 0 1 1
Q4 % % % 1 0 1
Qs 3 2 z 11 1
Qs % % % 0 1 1

Table 6: A possble choice for the anom aly free baryonic and m esonic charges in term s of
the 6 charges Q ; of Table[d for the dP; theory. T he baryonic sym m etries can be enhanced
to a non abelian symm etry SU (3)y SU (2)y 21); the role of this hidden symm etry,
which does not comm ute w ith the avor symm etries, is still to be elucidated.

baryonic and m esonic gauge invariant operators param eterizing the coherent com ponent
at nite N , is obtained from the H ibert series for N = 1, which we com puted in the
previous sections. In the notation of the previous Sections g; (;X ) H (§™F [ ). As
shown in [9], the plethystic program requires a decom position of the N = 1 generating
function into sectors of de nite baryonic charge, to which the plethystic exponential is
applied.

Since the quiver gauge theories corresponding to di erent toric phases are Seiberg
dual, the valdity of the P letystic program requires that it com m utes w ith toric duality.
A s is shown below this is indeed the case.

The general construction in 9] is based on a decom position of the H ibert series
g1 (;X ) re ned w ith the non anom alous charges

X
g (GiX )= m (170087 & )91; 4 pm  (B7X) (532)

on the lattice (the GKZ fan) of an auxiliary toric variety, which is the space of K ahler
param eters of the original toric threefold X . Thisvariety isofdimension K = I 3+ d,
where T is the number of intemal points and d is the num ber of vertices of the toric
diagram of X . The Jattice can be param etrized w ith a set of integer K ahler param eters

17:::; x - The generating functions gy, ,;..;; , are geom etrical In nature and they can
be com puted using the equivariant index theorem , as given in Equation (4.18) of 9.
T1; .55 « 15 given by a monom ial in the baryonic fugacities m ultiplied by a non trivial

function in the m esonic fugacities. m ( 1;:::; x ) are Integer m ultiplicities. W e will not
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enter in the details of this construction and we refer the reader to [9]. The in portant
point for our ensuing discussions is that the plethystic program can be applied to the
N = 1 partition functions at each point of the GKZ fan in order to obtain the nite N
generating function

® X
gt;X ) = Yoy (X )= m(q;::5 gk PE [ G, (GX )1 (533)

N=0 150 K

Tt is a general con cture that allN = 1 generating functions for toric quivers can be
decom posed as In (5.32). W e tested this confcture for a serdes of selected m odels. W e
w il refer in the follow Ing to all the m odels w here the previous construction is applicable.

N ote that the construction is m anifestly independent of the toric phase. In fact, as
described above, g (t;X ), re ned w ith the non anom alous charges, is the sam e in all toric
phases and gy; ,;:; , Can be com puted from the geom etry of X only. This ensures that
the GK Z prescription, when applicable, com m utes w ith toric duality.

TheN = 1master spaces ofdi erent phases are in generaldi erent algebraic varieties,
but the specttum of BP S operators param eterizing the coherent com ponent, w ritten in

temm s of the non anom alous charges, is the sam e, both forN = 1 and forarbitrary N > 1.

5.1 Fy and m ultiplicities

W e now consider the speci ¢ exam ple of Fy where we can w rite quite explicit form ulae
and discuss the issue of m ultiplicity.

I

a a
d/\ /b dV € b
B c T

Figure 7: The KahkrGK Z decom position forFy, and the GK Z quivers forphases Fj and Fj'.

The K ahler m oduli space for Fy is of din ension two. T he localization partition func-

tions g, , ;..; , have been com puted In 9] and read

tigix ¢

y 2 tg'xy ?
1, (BiRixiyiFy) = *
91 3t %Y iFo 1 ¥ S5y vy 1 =)0 €820 ¥)

2

X7y

tlltZZX 1y2 tlltZZX 1y2

T 0 gy 1=?) | (1 1= £exiyd)d
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wherewe set § = th;tp = t=b. Note that the dependence on b of the functions gy, . ..... , Is
purely m ultiplicative and isgiven by bt 2.

In general isa di cult task. W e proposed in [|9] that, In sin ple m odels, the m ultiplicity
of points In the GK Z lattice is counted by an auxiliary partition function, socalled
Z sux and de ned as follow s. Take the sin pler quiver than the originalby neglecting any
repeated arrow s and then form the gpace of open but not closed Joops in this simpli ed
quiver. Z .y is sin ply the (re ned) H ibert serdes of the ring of open pathsm odulo loops
and relations and it is a generating function for m ultiplicities. For exam ple, in the case of
Fy,we can grade the ring w ith § ; which play the role of G K Z param eters. M ultiplicities

can be read from the expansion
X

Zaux (GB) = m( 1;::0:; )87 (535)

T he procedure to determ ine the re ned generating function g; in (5.32) is now to replace
atem t't’ In Z.ux (G ;%) by the expression forgs, ., , -

W e now com pute the auxiliary partition function for Fy. Tn addition to § ;t we can
use the anom alous sym m etries to grade the ring of open paths in the quiver. T he auxiliary
flunction depends on dim er com binatorics and, apparently, it depends on the toric phase.
It is interesting to com pute the fully re ned auxiliary function Z ... (G ;%;a15a2) and
com pare the result obtained for the various toric phases.

In phase T we can form a single loop in the simpli ed quiver, and the GKZ deal is
abcd = 0. The auxiliary partition function is:

7 aux (G 1781 ;82 F ) = 1 &% : (536)
RO gan) t=a)(1 wap)(l t=ap)
In phase IT we have two closed loops ake;ced and two equivalent open paths, ab and

dc. TheGK7Z dealisale= 0,ced= 0,ab dc= 0 and its partition function is

7 aux (B i a1 ;a0 F ) = 1 tha)l €8) .
aux \4r 2741 s427% g (1 tgajax)(1 fGa=ax)(1 Bax)(1l tH=a,)(l t1t2=a1)'

(537)
W e see that the fully re ned auxiliary partition fiinctions are di erent in di erent phases.
However, they becom e equal for a; = a; = 1. In particular the m ultiplicities m

m 1;1;12 (@1 = 1l;a; = 1) do not depend on the phase.

The N = 1 Hibert series decom position can be generalized to the fully re ned
o (G ;x5 v5a15a2). The two auxiliary partition functions can be expanded as

172

Z e (G 75720 700 F ) = m' (arjan) '’ (538)

aijaz)an; ; o i ix;y): (5.39)
1=0; 2=0
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W e see that the GK Z decom position works in all toric phases of Fy, w ith details that
depend on thedetailed form of the quiver when anom alous charges are introduced . N ever—
theless, the H ibert serdes g1 (4 ;5 ;%;v;Fo ), the auxiliary partition function Z .. (G ;% ;Fq)
and the multiplicitiesm |, , do not depend on the toric phase. A s a result, the partition
function for the chiral ring for N > 1 graded w ith non anom alous charges is the sam e in
allphases. T his is consistent w ith Seiberg duality.
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A ppendix

A Toric geom etry and H ilbert Series

Consider an algebraic variety V de ned as the zero locus of a set of polynom ials p; 2
C[x1;:::;xc 11n k vardables. A ll regular algebraic functions on V are given by the restric—

structure of a ring, called the coordinate ring of V and denoted by C [V ]. It is given
explicitly by
C M
CV]l= —— (A 40)

The a ne vardety V is com pletely characterized by its coordinate ring, in the sense that
tw o varieties are isom orphic if and only if they have isom orphic coordinate rjngsﬁ .

In this paper we m ake extensive use of the H ilbert Series (HS) to characterize the
algebraic varieties we are interested in. Let us recall what a H ibert Series is. G ven an
algebraic variety V w ith an action of an abelian group U (1 )" ,we have an induced action

the action of U (1)* . The H ilbert Serdes is the generating function for the coordinate ring
C [V 1. Tt can be de ne&d as the rational function whose expansion in pow er series for sm all
f is X _

H (bt V)= Chi G 2% (B 42)

°The variety, as a set of points, can be com pletely reconstructed from C[V]. Tn the m ore form al
language of algebraic geom etry, V is denti ed w ith the spectrum of the ring C [V ], ie. the collection of

its prim e deals,
V = SpecCIV1: (B 41)
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7y

where ¢ ;...;;, s the number of (algebraic) holom orphic functions with U (1)" charges

T he H ibert series contains a lot of inform ation about the variety V, but it is not in
general a com plete characterization of it. D i erent varieties m ay have the sam e H ibert
series. The story, however, is di erent in the context of toric geom etry, which is the
relevant case for this paper. A fter all the M aster Space “F | for a three din ensional
toric CY singularity X is always a toric variety. A s we discuss in this appendix toric,
a ne, irreducible varieties are com pletely determ ined by their fully re ned H ilbert serdes
(m odulo a change of basis).

R ecall that a toric variety V of dim ension n is a com plex algebraic variety that adm its
an action ofthe (C )" torus 28]. A 1l the properties ofan a ne irreducible n dim ensional
toric variety V and of its coordinate ring C [V ]are encoded in a set of com binatorialdata,
the toric diagram ,which is a rational polyhedral cone in 2" de ned by a set of iInteger

is the dualcone de ned by,
= yZRHin(y)=Vijyj 0;i= 1:::d : (A 43)

The in portance of com es from the fact that there is a one to one correspondence
between integer points in and m onom ial functions f (x1;:::;%X ) In the coordinate ring.
There is exactly one m onom ial function for each point in the dual cone. This can be
expressed at the algebraic level as

V = SpecCV]= Spec[ \z"]: (A 44)

The last equality in (A_.44) m eans that the coordinate ring and the variety itself are
com pletely determ ined by the dual cone

W e can now de netheHS asin (A 42), and re ne it with asm any fligacities t; as the
com plex din ension of the variety. To write the HS we need to com pute charges for all the
elam ents in the coordinate ring. T his is particularly sim ple In the toric case, where the
charges of a m onom ial fiinction are given by the Integer coordinates of the corresponding
pontin \ Z2". In particular, there is a single holom orphic function w ith a speci ed set

value 0 or 1. Hence the H S becom es a generating function for the integer points in the
dual cone and it determ ines the variety itself.

T he entire construction depends on a choice ofbasis forz" . A llsuch choices are related
by SL (n;Z ) transform ations and give isom orphic varieties. D ue to the freedom in choosing
a basis for the Jattice of charges, the functions have the sam e degree of arbitrariness. W e
conclude that, in the toric case, the fully re ned HS w ith all the fugacities associated to
the n toric actions de nes the toric variety up to SL (n;Z ) transform ations.

For com pleteness, we describe the explicit algebraicgeom etric description of the toric
variety. W e nead to consider the cone  asa sam igroup and nd its generators over the
Integer num bers. T he prin itive vectors pointing along the edges generate the cone over
the real num bers but we generically need to add other vectors to ocbtain a basis over the
integers. W edenote by W 5, with j= 1;:::;k,a sest of generators of ~ over the integers.
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\Z=Z OW1+ +0Wk (A.45)

The k vectors W 5 generating the dualcone In 2" are clearly linearly dependent for
k > n,and they satisfy som e linear relations

Xk
Ps;iW 5= 0
=1

Dey 2 7 (A 46)

To each vector W j we associate a coordinate x4 in som e am bient space C*. T he linear
relations (A_4d) transhte into a set of m ultiplicative relations am ong the coordinates x4,

X %5 %=1 for 8s (A 47)
By clearing denom inators, we obtain a set of polynom ial equations for the a ne toric

variety V.

Al A sinple exam ple

W e give an exam ple of two toric varieties which have the sam e H ibert Serdes, when
restricted to a particular set of fugacities, but di erent fully re ned H ibert Serdes. W e use
two fam iliar three din ensionalC alabiY au singularities: the conifold C and theC?=Z, C
singularity. They can be embedded in C*, with coordinates x;y;w ;z, usinhg the two
quadrics, respectively :

2

Xy = WZ ; Xy =W

These two sihgularities are clearly not isom orphic. Indeed if we de ne the charges of the
coordinates as in Table[l, and we introduce the fugacities t; , &, 5 for the three U (1), the

c| van [ u@, | U@y | c’z, Cc | U@y | U@); | U@)]|
X 1 0 0 b4 1 0 0
y 0 1 0 y 0 1 0
W 0 0 1 w 1/2 1/2 0
z 1 1 1 z 0 0 1

Table 7: The m esonic charges of the ConifoX C and of the orbivd C2=2Z,

fully re ned H ibert Series for the two varieties are di erent

H (t;%;5;C)=

1 gt
1 )3 )@ B)d %)
1 gt
C)= —
1 &)1 w)a te)d B)

H (4 ;4 t5;C°=2,
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and not related by an SL (3;2 ) transform ation. It is easy to check that if we restrict to
the diagonalU (1) with fugacities s = © = g = t, the H ibert Series becom e equal

1 £

o) 2 _
H (C)= H (C%=z, C) o

Here we see a situation sin ilar to the ones studied in the m ain text: two di erent toric
varieties, but w ith the sam e unre ned H ibert Series.

In this speci ¢ case we can understand what is going on. The two toric varieties
are related by a com plex deform ation. Indeed they belong to the fam ily of quadrics
Xy = awz+ bw?,where a and b are two com plex param eters, which interpolate betw een
the conifold and the A ; singularity. M ore generally, every quadratic equation in (x;y;w ;z)
has H ibert Series

H (50%( )= — c . (A 48)
’ 1 o )
ifwe associate the fugacity t to all the four vardables = (x;y;w ;z). From the unre ned

H ibert Series we Jeam that the conifold and the A ; singularity belong to the sam e fam ily
of com plex varieties, obtained by considering all quadrics in x,y,w , z that preserve the
diagonalU (1), but that generically break the other U (1)s.
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