Presentation 8

The LEP Model at Injection

By A. Verdier

8.1 Description of the LEP model

All the optics computations are done with MAD. Therefore all the descriptions of the optics are
done in terms of a MAD input. Such an input is available under VM by invoking LEPDB. The
MAD input so obtained contains the LEP structure as described in the design report [1], to which
is added the systematic quadrupole and sextupole components in the dipoles. These components
have been provided by the magnet group according to measurements done after the shimming of the
dipoles, they are listed in Table 8.1. The shimming of the dipoles was done after the measurement
of the phase advance per cell in the crash program in July 1988. The value of the quadrupole
component has been multiplied by 1.11, this factor has been in the official database since 1989, in
order to make the tunes predicted by the model closer to the measured ones. It is compatible with
the error on the measurement of the quadrupole component.

MB | MBI | MBR | MBW
K/10~®m~% | -4.82 [-5.69 | -0.44 | -6.13
K’/107°m™ | -14.85 | -9.28 | -14.85 | 64.95

Table 8.1: Systematic quadrupole and sextupole components in the LEP dipoles

In order to understand the single particle optics, some more components have been added in
the LEP magnets.

e In the arc quadrupoles an octupole and a 12-pole component have been estimated by V. Re-
mondino in 1989. All the superconducting quadrupoles have been measured and the two main
field errors 12-pole and 20-pole have been taken into account. The errors defined in this way
have been introduced in the MAD optics computations by means of the file VCQMM VERO1
on my A disk. This file is listed in Appendix 1. In this file an aperture limitation, which
models the vacuum chamber, is put at the end of the arc quadrupoles.

e The octupole and decapole components in the dipoles have been measured at the same time
the quadrupole and sextupole components were measured but they have not been put in the
official database because they must be specified as thin lenses. The redefinition of the dipoles
for level 3 of the database can be done with the file MULTDIP VERO1 on my A disk in order
to include these components. This redefinition is shown in Appendix 2. It has to be noted that
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the quadrupole and sextupole components in the dipoles have been also redefined in terms of
thin lenses in order to avoid symplecticity problems. In order to recover the value of the tune
derivatives the thin sextupole component is equal to the sextupole component multiplied by
the dipole length and multiplied by 1.04.

e The skew quadrupole components in the dipoles have been measured in machine experiments
[2]. They have been introduced according to the specifications in this reference as shown in
Appendix 3. They are introduced as thin lenses, their definition is done together with that of
the multipoles in the dipoles by means of the file MULTDIP VERO1 in my A disk.

e A skew sextupole component has been put together with the skew quadrupole so that both
field errors are the same at 20mm from the axis. This comes from the results in ref. [2].

In what follows, only the injection optics will be considered : there are already many unsolved
problems in this field.
All the multipole components described above are used for all subsequent calculations.

8.2 Tunes

The tunes associated with new optics are listed in Table 8.2.

Qh pred. | Qh meas. | Qv pred. | Qv meas.
Qh=76 [3] 0.20 0.24 0.26 0.20
90° (unpublished) 0.385 0.400 0.285 0.356

Table 8.2: Tunes for two new optics

For the 60° lattice, the discrepancy is smaller than it was before introducing the factor 1.11
which corrects the quadrupole component measured in the dipoles. For the 90° the large discrepancy
in the vertical plane might arise from a large closed orbit distortion and uncompensated coupling.
The error associated with one bit in the power supplies of QF and QD is about 0.006 at injection.
As there are about 770 quadrupoles in LEP, random excitation errors, AKI, may lead to a tune
error of : AQ = ZI;AKI < B> 770 = 290AKI.

With a minimum Kl value of about 0.026 ( QF and QD ) and a setting error of about 1073, the
order of magnitude of the error on the tune is 0.007 at least.

Conclusion : The difference between predicted and measured tunes might arise from random
setting errors and power supply resolution. No dramatic implication is expected.

8.3 Tunes derivatives

It has always been noticed that the chromaticities were very wrong when setting a new optics.
Three examples of discrepancies between prediction and measurement of the first derivatives of the
tunes are shown in Table 8.3.

It is possible to bring the predicted and measured chromaticities in agreement within some
units by multiplying the sextupole component measured in the dipoles, given in Table 8.1, by 6.5.
This correction factor has obviously not been put in the database because it was felt to be much
too large. In fact it appeared in the discussions during the workshop that the uncertainty on the
measured sextupole component could justify a correction factor of the order of about 4, without
excluding the above value.

Another way of explaining the above discrepancy for the 60° case is to change the polarity of a
SF1 family in a single octant. However this does not work for the 90° lattice.
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Qb’ pred. | Qh’ meas. | Qv’ pred. | Qv’ meas.
Qh=76[3] 2. -20. 3, 20.
90° /cell (unpublished) 1. -7. 1. 9.
standard machine 22.4 3. -74 7.

Table 8.3: Tune derivatives for three optics

Conclusion : open problem, it is examined again below in connection with the vertical dispersion
and the dynamic aperture.

8.4 Vertical dispersion

In order to try to stick to reality, a closed orbit distortion has been introduced. The quadrupoles
QF and QD have been displaced randomly with an uniform error distribution. The command in
MAD is :

EALIGN,TYPE=MQ,DY=0.00024*RANF(),DX=0.002*RANF()

Then the correction is done with MICADO, using 100 correctors. In this way, the closed
orbit distortion in the arcs must be far from a betatron oscillation. Its r.m.s. values are 1.17mm
horizontally and 1.35mm vertically. Under these conditions the vertical dispersion D, has an r.m.s.
value of only 3cm for the machine which contains all multipoles described in section 8.1, but no
correction for the chromaticity problem.

If the sextupole component in the dipoles is multiplied by 6.5, the r.m.s. D, becomes 4.9cm.
With the SF1 family inverted, the r.m.s. D, becomes 5.8cm. Another attempt has been done in
order to explain both a big value of D, and the chromaticity error. The sextupole component of
the dipoles of 3 half cells has been multiplied by 900, which restores the chromaticity when the
sextupole components used in the machine are put in the model. Then the r.m.s. D, becomes of
the order of 10cm depending on the place, i.e. the amplitude of the closed orbit distortion where
the substitution is done.

If the vertical chromaticity is made equal to 50, the r.m.s. Dy becomes 28cm, i.e. comparable
to what is measured.

Conclusion : it is rather hard to obtain a vertical dispersion comparable to what is measured
under standard conditions.

8.5 Horizontal dynamic aperture

It has been measured by kicking a circulating beam by means of the injection kicker [3]. The tunes
were Q,=.372, Q,=.297 and Q,=0.085. The chromaticity was not measured, a standard current
file had been loaded, the wigglers were off. If the kick angle is 0.109mrad, a decrease of the current
is observed. From this decrease, we infer a cut of the transverse distribution at a number 2.4 of
r.m.s. beam size. Summing the amplitude corresponding to the kick and this number, we obtain
the maximum stable amplitude. It amounts to 17.2mm at the beta value of 136m. From this we
deduce an acceptance of 2175nm.

In order to simulate this, particle trajectories are launched in I1 with a zero slope a vertical
amplitude corresponding to 2.40, and horizontal amplitudes in increasing order. Then we determine
the maximum one for which the trajectory does not touch the vacuum chamber during 200turns.
This is done for some initial amplitudes of the synchrotron oscillation. The results are listed in
Table 8.4. All the machines have a closed orbit distortion as defined above, and an uncompensated

coupling.
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Synchrotron amplitude/10~3 0|-24]-50
Theoretical machine 58 | 40 | 32
Sextupoles in dipoles (K! .., x6.5) |44 | 32 | 20
SF1 family inverted 50| 32 | 16
Sextupoles in 18 dipoles (K!,,,, X 6.5) {16 | 12 | 0
[ Q, = +50 40| 18 | 14

Table 8.4: Dynamic apertures expressed in og

One could question that 200 turns is enough because the horizontal damping time at injection is
about 10000 turns. In order to estimate this, tracking over 6000 turns has been done for the worse
situation, i.e. sextupole defect concentrated on 18 dipoles ( note this corresponds to an integrated
component 20 times that of the SD sextupoles in the same region ). The results are shown in
Table 8.5.

Synchrotron amplitude/10~2 | 0 | -2.4
200 turns 16 | 16
6000 turns 15| 10 |

Table 8.5: Dynamic apertures as function of the number of turns for the machine with sextupoles
concentrated on 3 half cells

It has to be noted that the effect of the damping over say 1000 turns is enough to reduce the
amplitude of the particle at 160 with no synchrotron oscillation to a stable one. With synchrotron
oscillation, the particles with amplitude up to 130 are stable over at least 1600 turns so that the a
similar argument could be applied. This is why a small number of turns has been chosen, with the
big advantage of a reduced computer time.

The value of 0g is 0.330mm and the r.m.s. energy spread at injection is 0.3510~2 without
wigglers and 0.710~2 with wigglers and the § is 20m at the starting point. The measured dynamic
acceptance corresponds to 20 gg. We see that for a maximum synchrotron amplitude of —2.4103
the two last cases in Table 8.4 arrive below the measured value. Otherwise the dynamic acceptance
stays above 5570nm, i.e. about twice the measured value. In fact in the experiment the truncation
was estimated to be done at 2.40 which would represent only 0.7410~3 maximum synchrotron
amplitude if the truncation is due to synchrotron motion. Therefore the above estimate of 5570nm
could even be pessimistic.

Conclusion : the dynamic aperture estimated with tracking is substantially above the measured
one.

8.6 Horizontal anharmonicity

The variation of the horizontal tune with amplitude has been estimated by A. Hofmann (this
workshop) to be +1.14 - 10* m™! rad™!. The computation of this variation has been done, for the
models described above, by means of the variation of the normalised phase advance with amplitude.
This quantity is available in the output of MAD tracking. The technique consists of tracking some
trajectories with increasing amplitudes up to 2mm over 100 turns. A small amplitude of 0.01lmm
provides the linear tune. Another small amplitude of 0.1mm confirms it. Then the normalised phase
corresponding to the 0.0lmm amplitude is subtracted from the normalised phase of trajectories
with 1 and 2mm amplitude in order to get the change of tune with amplitude. It is checked that
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this variation is quadratic. The results are given in Table 8.6, together with the computation
of anharmonicity with HARMON. For the latter calculation, only the sextupoles are taken into
account and there is no coupling or closed orbit effect.

B - 252 /m™T tracking | HARMON
Theoretical machine, no coupling compensation -418.
Theoretical machine with coupling compensation 1270. -803
Sextupoles in dipoles*6.5 3200. -887
SF1 family inverted 715 -1220
s Sextupoles in 3 dipoles*900 -9400 -11790

Table 8.6: Horizontal anharmonicity for amplitudes up to 2mm

Conclusion : it is not possible to find any agreement between measured and computed values.
Probably some more refined analysis is needed.
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8.7 Appendix 1

MAD input for definition of vacuum chambers and multipoles in QSC, QF and QD
File: VCQMM VERO01

'DEFINITION OF VACUUM CHAMBERS AND MULTIPOLE ERRORS IN QUADRUPOLES

{STRUCTURE STARTING AT Ii{ : IMPORTANT FOR THE LISTS

]

XMES:=0.059 ! DISTANCE AT WHICH THE GRADIENT ERROR IS MEASURED

XMES4 : =XMES#*XMES*XMES*XMES

¢ CHAMBRE A VIDE QSO

VCQSC :ECOLL,XSIZE=0.06-0.0000,YSIZE=0.060-0.0000 ! 0.0064=C.0.

QSCD : QUAD,L = LMQSO*0.5,K1 = KQSO,TYPE = MQC

QSO0 : LINE=(QSCD,VCQSC,ERRQSC,QSCD)

!*% ALL QSC ERRORS HAVE BEEN MEASURED. THE MOST IMPORTANT ONES ARE

¥k 12 AND 20-POLE : THEY ARE SPECIFIED AS FIELD ERRORS

ERRQSC:LIST=(EMQCS,EMQC6,EMQC8,EMQC3,EMQC7 ,EMQC2,EMQC1 ,EMQC4)

EMQC1:MULT ,KS5L=-0.00210%4%3%2xKQS0*LMQSO/XMES4,&

: K9L=~0.00397*8%T*6%5%4%3%2xKQS0*LMQS0/ (XMES4*XMES4)

EMQC2:MULT ,K5L=-0.00650%4%3%2%xKQS0*LMQSO/XMES4,¢&
K9L==0.00414%8%7%6%5%4#3%2«KQS0*LMQSO0/ (XMES4+XMES4)

EMQC3:MULT ,KSL=-0.00599%4%3%2+xKQS0*LMQSO/XMES4,&
K9L=-0.00361%8*%7#645%4%3%2xKQS0*LMQS0/ (XMES4*XMES4)

EMQC4:MULT ,K5L=-0.00626%4%3%2+KQS0*LMQSO/XMES4,&
K9L=-0.00386%8%76%5%4%3%2xKQS0*LMQS0/ (XMES4*XMES4)

EMQCS5 :MULT ,KSL=-0.00323%4%3%2«KQS0*LMQS0/XMES4,&
KSL=-0.00272%8%7#6%5%4%3%2xKQS0*LMQS0/ (XMES4*XMES4)

EMQC6 :MULT ,KSL=-0.00639#4%3%2xKQS0*LMQS0/XMES4,&
K9L=-0.00345%8%7T*6%5%4*3%2%xKQS0*LMQS0/ (XMES4*XMES4)

EMQC7 :MULT ,KSL=-0.00533%4#3%2%xKQS0*LMQSO/XMES4,&
K9L=-0.00337*8*7*6*5*4*3*2*KQSO*LHQSO/(XMES4*XMES4)

EMQC8:MULT ,KS5L=-0.00471%4%3%2xKQS0*LMQSO/XMES4,&
K9L=-0.00335#8*%7T#6%5%4%3%2xKQS0*LMQS0/ (XMES4*XMES4)

VALUE,EMQC1 [KSL] /LMQSO

VALUE,EMQC1 [K9L] /LMQSO

VALUE,EMQC8[KSL] /LMQSO

VALUE,EMQC8 [K9L] /LMQSO

! CHAMBRE A VIDE QS1 , REPRESENTATION DE CHAMBRE CRUCIFORMEA
VCQSi :ECOLL,XSIZE=0.08 ,YSIZE=0.0404 ! 0.0043=C.0.
QsiD : QUAD,L = LMQA*0.5 ,K1 = KQS1i,TYPE = MQA

Qsi : LINE=(QS1D,VCQS1,QsiD)

! CHAMBRE A VIDE QL1 , REPRESENTATION DE CHAMBRE CRUCIFORME
VCQL1 :ECOLL,XSIZE=0.080 ,YSIZE=0.04

QL1D : QUAD,L = LMQA%*0.5 ,K1 = KQL1i,TYPE = MQA

QL1 : LINE=(QL1D,VCQL1,QL1D)

! CHAMBRE A VIDE QL2 , REPRESENTATION DE LA CHAMBRE CRUCIFORME
VCQL2 :ECOLL,XSIZE=0.08 ,YSIZE=0.0404
QL2D : QUAD,L = LMQ*0.5 ,K1 = KQL2,TYPE = MQ
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QL2 : LINE=(QL2D,VCQL2,QL2D)

t#x%% ERREURS DK/K ESTIMATED BY VITTORIO REMONDINO 17.11.89 dddkokok
QOCT:= 38.0E-4!ERREUR OCTUPOLE A XMES , NOMINAL= 5.0E-4

QDOD:= -67.0E-4!ERREUR DODECAPOLE A XMES , NOMINAL = 10.0E-4

! CHAMBRE A VIDE QD : CHAMBRE ELLIPTIQUE ARC.

VCQD :ECOLL,XSIZE=0.0655 »YSIZE=0.035 Y%%C0 RMS 1MM
Qov : QUAD,L = LMQ ,Ki = KQD,TYPE = MQ
QERRD :MULT,K3L= QOCT*2*KQD*LMQ/(XMES*XMES) &

»KSL=QD0D*4%3%2+KQD*LMQ/XMES4

QD : LINE=(VCQD,QDV,QERRD)

! CHAMBRE A VIDE QF , CHAMBRE ELLIPTIQUE ARC.

!RETRANCHE DE LA DIMENSION CHAMBRE : 5.2MM H ORB. , 1MM HDP , 1.8MM V CO

VCQF :ECOLL,XSIZE=0.0655 »YSIZE=0.035 1%%C0 RMS 1MM

QFV : QUAD,L = LMQ ,K1 = KQF,TYPE = MQ

QERRF :MULT,K3L= QOCT*2*KQF*LMQ/(XMES*XMES) &
»KSL=QD0D*4#3%2xKQF*LMQ/XMES4

QF : LINE=(VCQF,QFV,QERRF)

RETURN

I1:MARKER

I2:MARKER

I3:MARKER

I4:MARKER

I5:MARKER

I6:MARKER

I7:MARKER

I8 :MARKER
LEP:LINE=(I1,HIBL1,RFL1,DISL1,ARC1,DISS1,CAV,RFS1,CAV,LOBS1,12,&
LOBS2,CAV,RFS2,CAV,DISS2,ARC2,DISL2,RFL2,HIBL2,13,& ! SEC2 AVEC RF
SEC3,14,SEC4,15,¢&
HIBL5,RFL5,DISL5,ARC3,DISS5,CAV,RFS5,CAV,LOBS3,16,& ! SECS AVEC RF
LOBS4,CAV,RFS6,CAV,DISS4,ARC4,DISL2,RFL6,HIBL4,& ! SEC6 AVEC RF
17,SEC7,18,SEC8)
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8.8 Appendix 2

MAD input for definition of systematic multipole components in the dipoles.
File: MULTDIP VERO1

!%%x% REDEFINITION OF DIPOLES FOR INTRODUCING THIN MULTIPOLES  sk&usssk&s
Y%+ THE SKEW QUADRUPOLES ARE DEFINED SEPARATELY BECAUSE THEY HAVE A ##x%
Y#%%x DIFFERENT DISTRIBUTION s#kskkkikkkbdkdhkkhkiddkhhdhihkkkpihkknkkkhk

Cgeghggdesss QLD COMPONENTS BEFORE SHIMMING  desbokolok ok ok ok ok ok ok ok o o o o oo s oo oo ook oo ot
10CTB:= 2.9 ! OCTUPOLE GIVEK BY JPG 1.11.88
'DECB:=-3.4 ! DECAPOLE GIVEN BY JPG 1.11.88

Ywkxkkx  LIST OF THE ERRORS GIVEN BY THE MAGNET GROUP / 7/02/89  ##¥¥x%*
RO:=3096.175 ! RADIUS OF CURVATURE

XMES:=0.059 ! DISTANCE WHERE THE ERROR IS MEASURED

XMES2:=XMES*XMES

MSB:=1.0

.0

SEXB:=-0.8E-4*MSB ! ERREUR SEXTUPOLE(B4,B6) EN ERREUR DE CHAMP A XMES

OCTB:= 0.5E-4*MSB ! ERREUR OCTUPOLE(B4,B6) EN ERREUR DE CHAMP A XMES
DECB:=-0.6E-4+MSB ! ERREUR DECAPOLE(B4,B6) EN ERREUR DE CHAMP A XMES

SEXBW:= 3.5E-4%MSW ! ERREUR SEXTUPOLE(BW) EN ERREUR DE CHAMP A XMES
OCTBW:= 3.9E-4*MSW ! ERREUR OCTUPOLE(BW) EN ERREUR DE CHAMP A XMES
DECBW:=-3.2E-4*MSW ! ERREUR DECAPOLE(BW) EN ERREUR DE CHAMP A XMES

SEXBI:=-0.5E-4*MSI ! ERREUR SEXTUPOLE(BI) EN ERREUR DE CHAMP A XMES
OCTBI:= 0.2E-4*MSI ! ERREUR OCTUPOLE(BI) EN ERREUR DE CHAMP A XMES
DECBI:=-2.5E-4*MSI ! ERREUR DECAPOLE(BI) EN ERREUR DE CHAMP A XMES

DKSF:=1.164723E-3 ! Q’=1 POUR N2iD20N3
DKSD:=6.705506E-4 ! Q’=1 POUR N21D20N3
{SET SEXTUPOLE COMPONENT IN DIPOLES TO ZERO
KSBI := -0.00

KSBW := 0.00
KSB := -0.00
KSBT := -0.00

§ shese e s e s e o REDEFINITION OF THIN SEXTUPOLES FOR TRACKING e o s e e o o ok o e ok o
TRIM:=1.04
! POUR AVOIR LA MEME CHROMATICITE QUE AVEC LA COMPOSANTE REPARTIE
txxxx FACTEUR 2 FOR MMB4 : 1 MMB4 FOR 2 B2 e&kkkkkkk
MMB4 : MULTE
,K2L= 2«SEXB#2«B2M[L]*TRIM/(RO*XMES2) &
,K3L= 2%0CTB#3%2*B2M[L]/(RO*XMES*XMES2) &
,K4L= 2#DECB*4#3%2+«B2M[L] / (RO*XMES2*XMES2)
Saapokskseseseieskskk FACTEUR 1.5 FOR MMB6 : 2 MMB6 FOR 3 B2 skkskokskodksesskokokokakdokk

MMB6 : MULT&
,K2L= 1.5+SEXB*2+B2M[L]*TRIM/ (XMES2%R0) , &
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,K3L= 1.5%0CTB*2*3*B2M[L]/(RO*XMES2*XMES) &

,K4L= 1. 5%DECB*4%3%2%B2M[L]/(RO*XMES2+XMES2)
txskkx FACTOR 2 FOR MMBW : 1 MMBW FOR 2 BW sssokkskkdkikkkkskikskokk
1180881 ATTENTION !!!! RO IS IN THE DENOMINATOR BECAUSE THE ERRORS ARE

.......

ERRRNE: EXPRESSED AS A FIELD DEFECT OF A NORMAL DIPOLE
MMBW : MULT&

,K2L= 2+SEXBW#2#BW2[L]*TRIM/(RO*XMES2) &

,K3L= 2*0CTBW*3%2+BW2[L]/(RO*XMES*XMES2) &

,K4L= 2+«DECBW#4#%3*2«BW2[L]/(RO*XMES2*XMES2)

baksx  FACTOR 2 FOR MMBI : 1 MMBI FOR 2 BI skksskimkmkikihiniik
IYIREY EXPRESSED AS A FIELD DEFECT OF A NORMAL DIPOLE

,K2L= 2%SEXBI*2*BI[L]*TRIM/(RO*XMES2) &
,K3L= 2*0CTBI*3*2%BI[L]/(RO*XMES*XMES2) &
»K4L= 2%DECBI*4*3%2%BI[L]/(RO*XMES2*XMES2)

BINJ:LINE=(BI,MMBI,DBI1,BI,MMBI,QSK)

!ICI 2 MULT CAR IL Y A 1 AUTRE BI PLUS LOIN

YHENCE THE REPRESENTATION IS NOT EXACT !

BINJi: LINE = ( BI, MMBI,QSK , DBIii, BI )!ICI 1 MULT TRIVIALEMENT

B4WL: LINE=(BW1,MMBW,QSK ,DBWL,BW2)
B4WSX: LINE=(BW4,MMBW,QSK ,DBWL,BW3)
B4WS: LINE=(BW3,MMBW,QSK ,DBWL,BW4)
B4WLX: LINE=(BW2,MMBW,QSK ,DBWL,BW1)

B4: LINE = ( B2L, MMB4,QSK , DBB, B2R)

B4POLX: LINE = ( B2LT, MMB4,QSK , DBBPOLX, B2RT)
B4POL: LINE = ( B2L, MMB4,QSK , DBBPOL, B2R)
B4T: LINE = ( B2LT, MMB4,QSK , DBBT, B2RT )
B4BE: LINE = ( B2L, MMB4,QSK , DBB3, B2R )

B4X: LINE = ( B2L, MMB4,QSK , DBBX, B2R )

B47X: LINE = ( B2L, MMB4,QSK , DBB4, B2R )

B6: LINE = ( B2L, MMB6,QSK, DBB, B2M, MMB6,QSK, DBB, B2R)

B67: LINE = ( B2L, MMB6,QSK, DBB1, B2M, MMB6,QSK, DBB4, B2R)
B68: LINE = ( B2L, MMB6,QSK, DBB, B2M, MMB6,QSK, DBB2, B2R)
B2S: LINE = ( B2SS, MMB4,QSK ) ! PRES DES QUADS 18 DANS SUPPRESSEURS

B2SS : RBEN,L =11.550,ANGLE = ANGB2S,TYPE = MB2S,&
Ki= KQB,K2 = KSB,&
E1 = -0.25%*ANGB2S, E2 = -0.25%ANGB2S

59



8.9 Appendix 3

MAD input for definition of skew quadrupole components in the dipoles as thin lenses.
File: MULTDIP VERO1

U skokaoisok ook koo o ook sk kel ok e ek o ok ok ok ok ok ok sk okl ok ok ok sk sk ok ook ok ook ok ok ok
Y#+% DEFINITION OF QUADRUPOLE SKEW COMPONENTS AS IN PERFORMANCE NOTE 31 #%x
CSK:=1.0

!#%k%% garanties a mieux que 20% par JPK en personne ( 23.5.90 )
!formulae here as in perf. note 29
KQSK1:=(20/ENERGY) *CSK*1 .06E-4%0.5%1.08

KQSK2:=(20/ENERGY) *CSK*1.08E-4%0.
KQSK3:=(20/ENERGY) *CSK*0 .80E~-4*0.
KQSK4 :=(20/ENERGY) #CSK#*0 . 60E-4*0.
KQSKS :=(20/ENERGY) #*CSK*0 . 86E-4%0.
KQSK6 :=(20/ENERGY) #*CSK*0 . 77TE=4%0.
KQSK7 :=(20/ENERGY) #CSK*0 .90E~4%0 .
KQSK8:=(20/ENERGY) *CSK*0 .96E-4%0.5%1.08

Gr v OO On

ENERGY:=20
XMSK:=0.020 ! DISTANCE AT WHICH THE RATIO KQSK/K2QSK IS EVALUATED
RPSK:=0.0 ! RATIO BETWEEN THE FIELD ERRORS

H AT THE POSITION XMSK : K2SKEW = RPSK#2*KSKEW/XMSK

QSKi : MULT, KiL = KQSKi , Tig&

,K2L=2 . #*RPSK*KQSK1/XMSK , T2 ! ARC
QSK1iD: MULT, KiL = KQSKi%1.3333333, Ti&
,K2L=2 . *RPSK*KQSK1/XMSK , T2 ! DISPERSION SUPPRESSOR

QSK2 : MULT, KiL = KQSK2 , Ti&
,K2L=2 . *RPSK*KQSK2/XMSK , T2
QSK2D : MULT, KiL = KQSK2%1.3333333 , Ti&
,K2L=2.*RPSK*KQSK2/XMSK , T2

QSK3 : MULT, KiL = KQSK3 , Ti&
,K2L=2.*RPSK*KQSK3/XMSK , T2

QSK3D: MULT, KiL = KQSK3%1.3333333 , Ti&
,K2L=2 . *RPSK*KQSK3/XMSK , T2

QSK4 : MULT, KiL = KQSK4 , Ti&
,K2L=2 . *RPSK*KQSK4/XMSK , T2
QSK4D: MULT, KiL = KQSK4%1.3333333 , Ti&
,K2L=2.*RPSK*KQSK4/XMSK , T2

QSKS : MULT, KiL = KQSKS , Ti&
,K2L=2 . *RPSK*KQSK5/XMSK , T2
QSKSD: MULT, KiL = KQSK5%1.3333333 , Ti&
,K2L=2 . *RPSK*KQSKS/XMSK , T2
QSK6 : MULT, KiL = KQSK6 , Tig&
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,K2L=2.*RPSK*KQSK6/XMSK , T2
QSKeéD: MULT, KiL = KQSK6%1.3333333 , Ti&
,K2L=2.#RPSK*KQSK6/XMSK , T2

QSK7 : MULT, KiL = KQSK7 , Tig
,K2L=2.*RPSK*KQSK7/XMSK , T2

QSK7D: MULT, KiL = KQSK7%1.3333333 , Ti&
»K2L=2 . *RPSK*KQSK7/XMSK , T2

QSK8 : MULT, KiL = KQSK8 , Ti&
,K2L=2.*RPSK*KQSK8/XMSK , T2
QSK8D: MULT, KiL = KQSK8%1.3333333 , Ti&
,K2L=2 . *RPSK*KQSK8/XMSK , T2
Pkkpkkkkssik  debut structure em QF21 skokdokokkkokkkd kiR kkkok
!QSK:LIST=(131%QSK1,146%QSK2,146%QSK3,146*QSK4, 146%QSKS, 146%QSK6,&
H 146%(QSK7,148%*(QSK8,17*QSK1)
bkkokdkksddkx  DEBUT STRUCTURE EN It sk Rk ok kR kR koo ok R
QSK:LIST=(7+QSK1D,4*QSK1,2*QSK1D,115%QSK1,7#QSK1D,&
7+#QSK2D, 124%QSK2,7*QSK2D, &
7#QSK3D, 124*QSK3,7#QSK3D, &
T#QSK4D, 124%QSK4 ,7*(SK4D,
T#QSKSD, 124=(QSKS , 7=QSKSD,
7#QSK6D, 124*QSK6 , 7*QSK6D,
7+QSK7D, 124*QSK7,7*QSK7D, &
7*QSK8D,115*%QSK8,2*QSK8D,4*QSK8,7*QSK8D)

f? & fp

QT4:LIST=(4*QT4.2,4%QT4.4,4*QT4.6,4*QT4.8) ! OK POUR LES 2 STRUCTURES
CURRSK:= 0.0 ! COURANT DANS LES CIRCUITS SKEW EN AMPERE POUR COMPENSATION

QT4.2 : QUADRUPO, TYPE = MT, L = LMT,TILT,K1=3.0E-4*CURRSK
QT4.4 : QUADRUPO, TYPE = MT, L = LMT,TILT,Ki=-3.0E-4*CURRSK
QT4.6 : QUADRUPO, TYPE = MT, L = LMT,TILT,K1=3.0E-4*CURRSK
QT4.8 : QUADRUPO, TYPE = MT, L = LMT,TILT,K1=-3.0E-4*CURRSK

RETURN
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