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1 Introduction

In m any respects,the Taub{NUT solution [1]appearsto be dualto the Schwarzschild

solution in a fashion sim ilarto the way a m agnetic m onopole isthe dualofan electric

chargein M axwelltheory.The Taub{NUT space-tim eadm itsclosed tim e-likegeodesics

[2]and,m oreover,itsanalyticextension beyond thehorizon turnsouttobenon Hausdor�

[3]. The horizon coversan orbifold singularity which ishom eom orphic to a two-sphere,

although the Riem ann tensorisbounded in itsvicinity. These pathologieslead to the

view thattheTaub{NUT solution isnotphysical.

Nonetheless,despite the factthatno m agnetic m onopole hasyetbeen found in our

universe,such m agneticdualsolutionsplay an im portantr̂olein quantum electrodynam -

icsand especially in itsnon-abelian generalisation,nam ely Yang{M illstheory.M oreover,

thestationary solutionsoftheM axwell{Einstein equationsadm ita non-linearly realised

SU(2;1) sym m etry group [4]which generalises the Ehlers group and which m ixes to-

gether the electrom agnetic and the gravity degrees offreedom . This generalises to a

largeclassoftheories,and in particularto onesthatcan beem bedded into supergravity

theories.Despitethefactthatthishasnotbeen proven sofar,thesesym m etry groupsare

believed to acton thenon-stationary solutionsaswell.Them ajordi�culty in form ulat-

ing such sym m etriescom esfrom thefactthatEinstein’stheory ishighly non-linearand

consequently itsdualitiesarepoorly understood beyond thelinearised level.Theaim of

thisletteristo understand m ore closely the duality relationswithin Einstein theory by

exhibiting theirsim ilarities with the exam ple ofM axwelltheory,and m ore speci�cally

thesim ilaritiesbetween NUT sourcesand m agneticm onopoles.

W hileam agneticchargecan beexpressed in term sofacurrentassociated toavector

�eld dualto thestandard M axwellpotential,itsexpression asa function ofthestandard

vector potentialcorresponds to a topologicalinvariant of the associated �bre-bundle

geom etry. In this letter,we de�ne the NUT charge,in a sim ilar way,asa topological

invariantassociated to tim e-likethree-cycles.W ealso generalisetheKom arm assto the

casewherethereisno space-like slicewith com pactboundary in theasym ptoticregion.

These de�nitions involve a �bre-bundle construction which is very rem iniscent ofthe

oneappearing in M axwelltheory.In thiscasetheU(1)�bresareorbitsofthetim e-like

isom etry.

W e exhibit the sim ilarities between the Kom ar NUT charge and m agnetic charge

through a consideration ofexplicitsolutionsinvolving severalNUT sources. Indeed,we

willgiveanin�nitesetofnew regularsolutionsoftheEinstein equationswith anarbitrary
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odd num berofNUT sources.W eobtain theseby acting with theU(1)duality group for

stationarysolutionson m ulti-black holesolutionswith both negativeand positivem asses.

W ede�nea coordinatepatch thatperm itsusto avoid Dirac{M isnerstring singularities.

Then we show how one can avoid the conicalsingularities usually appearing in m ulti-

black holesolutionsby choosingadjacentNUT chargestobeoppositein sign.Sinceboth

negative and positive NUT charge singularitiesare covered by horizons,these solutions

de�nespace-tim eswhich haveno m ore(albeitalso no less)pathology than theordinary

Taub{NUT space-tim e.

The resolution ofthe Dirac{M isner string singularities requires the quantisation of

NUT charge. The Chern class ofan associated �bre-bundle geom etry is understood

to count the relative num ber offundam entalNUT charges ofa given spacetim e. The

tim elike three-cycles surrounding severalNUT chargesturn outto be di�eom orphic to

LensspacesL(jN j;1)�= S3=ZjN j,where N isthe relative num beroffundam entalNUT

chargesthatlieinsidetheinteriorofthecorresponding three-cycle.

W e discuss in a �nalsection the Euclidean analoguesofthese m ulti-NUT solutions

which areslightgeneralisationsoftheinstantonsdescribed in [5]

2 K om ar N U T charge

A.Kom arde�ned them assforasym ptotically M inkowskisolutionsoftheEinstein equa-

tionsthrough an integralovertheboundary ofan asym ptotically space-likehypersurface

V in spacetim e[6].Given an asym ptotically Killingtim e-likevector� = ��@�,them etric

perm itsoneto de�nethe1-form g(�)� g���
�dx�,and theKom arm assisthen given as

a function ofthe2-form K � dg(�)by1

m �
1

8�

Z

@V

?K (1)

where ? isthe Hodge staroperator. Com paring then thisform ula to the onesde�ning

theelectricand them agneticcharges

q�
1

2�

Z

@V

?F p�
1

2�

Z

@V

F (2)

1K om ar proved in [7]that if� is chosen to be orthogonalto a fam ily ofm inim alhypersurfaces,

then the K om arm asswillbe positive ifV ischosen to be one ofthese hypersurfaces.However,M isner

then showed in [8]thatthisprescription iseitherinconsistentorim possible to achievein som erelevant

exam ples.Here we willnotinsiston thisorthogonality prescription and the K om arm assconsequently

willnotbe necessarily positive.
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itseem snaturalto de�nethedualm assastheintegral

n �
1

8�

Z

@V

K : (3)

Howeverthisintegralistrivially zero because ofStokestheorem ,asalso would na��vely

be the one de�ning m agnetic charge. Nevertheless, not allasym ptotically at space-

tim es adm ita well-de�ned asym ptotically space-like hypersurface. This isthe case for

instance forthe Taub{NUT space-tim e,forwhich the r = constslicesofany space-like

hypersurfacesarenotclosed m anifolds[2].

Let M be an asym ptotically at space-tim e. Strictly speaking,we assum e thatM

adm itsa function r which goesto in�nity atspatialin�nity and which de�nesa proper

distance in this lim it,g��@�r@�r ! 1,and we assum e that allthe com ponents ofthe

Riem ann tensorin any vierbein fram e go to zero asO (r� 3)asr ! +1 . W e consider

stationary solutions;� isthen a Killing vectorand the second-ordercom ponentsofthe

Einstein equationscan bewritten as

d?K = 2?dx�R ���
� = 16�G ?dx

�
�
T�� �

1

2
g��T

�
�
� (4)

which isvery sim ilarto theM axwellequation.W echoosethefunction r to beinvariant

undertheaction ofthetim e-likeisom etry,and choosethesquared norm ofthetim e-like

Killing vector g���
��� � �H to tend to �1+ O (r� 1) as r ! +1 . W e assum e that

the action ofthe tim e-like isom etry is free and properon the dom ain ofM where the

function H ispositively de�ned.Thisim pliesthatM adm itsan Abelian principalbundle

structureovera Riem annian three-fold V on thisdom ain.

Ifthisprincipalbundle is trivial,itadm itsa globalsection s which de�nes an em -

bedding ofV into a space-like hypersurfaceofM (outsidethezerosofH ).Otherwiseit

only adm its a patch oflocalsections de�ned on each open set ofan atlasofV ,which

wedenotecollectively by saswell.A naturalgeneralisation oftheKom arm assform ula

thus consists in de�ning it as the integralofthe pullback s� ? K ofthe 2-form ?K

over @V . In order forthis integralnotto depend on the localtrivialisation,?K m ust

be horizontaland invariantin the asym ptotic region. Itistrivially invariantsince itis

builtfrom them etricand theKilling vector,and thehorizontality condition isgiven by

asym ptotichypersurfaceorthogonality,i.e.i� ?K ! 0 asr! +1 .Becauseofequation

(4),di� ?K = 0 in the vacuum and ifspace-tim e is sim ply-connected,there exists a

function B such thati� ?K = dB .Thehorizontality condition for?K in theasym ptotic

region isthen equivalentto the factthatB tendsto zero asO (r� 1)asr ! +1 . The
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2-form K is also trivially invariant and its horizontality condition i�K = dH ! 0 is

satis�ed becausethefunction H tendsto unity asr! +1 .

W eaccordingly de�ne them assm and itsdual,theNUT charge n,by thefollowing

integrals

m �
1

8�

Z

@V

s
�
?K n �

1

8�

Z

@V

s
�
K : (5)

By construction,the 1-form g(�)isinvariantunderthe action ofthetim e-like isom -

etry,and sincei�g(�)= �H ! �1 asr! +1 ,itde�nesa connection on theprincipal

bundle in the asym ptotic region. The NUT charge is proportionalto the Chern class

ofthe principalbundle over@V ,and isthusnon-zero only in the case where the latter

isnon-trivial. Realline bundlesovera com pactsurface alwayshave a vanishing Chern

class,and a non-zero NUT chargeim pliesthereforethattim e-like orbitsarecom pact.

One de�nes electric and m agnetic charges in the sam e way by requiring both the

M axwellpotentialand itsdualtobeinvariantunderthecovariantaction ofthetim e-like

isom etry in the asym ptotic region,i.e.i�F � i� ?F � O (r� 2).The whole construction

can begeneralised to non-stationary space-tim es,aslong asL�g�� tendssu�ciently fast

to zero asr! +1 .

Letusnow expressthem assanditsdualinam oreexplicitway.W echoosecoordinates

forwhich � = @t,in such a way thatthem etricisgiven asfollows

ds
2 = �H

�
dt+ B̂ idx

i
�
2

+ H
� 1
ijdx

i
dx

j
: (6)

Thevacuum Einstein equationsthen givedi� ?K = 0 and

i� ?K = �H
2
p
"i

jk
@jB̂ k dx

i= dx
i
@iB (7)

where Latin indices are raised and lowered with the three-dim ensionalm etric ij. The

asym ptotichorizontality conditionsforK and ?K aresatis�ed if

H = 1�
2m

r
+ O (r� 2) B = �

2n

r
+ O (r� 2): (8)

Then ?K and K havethefollowing behaviourin theasym ptoticregion

?K �

p


2
"ij

k
H

� 1
@kH dx

i
^ dx

j
K � �@iB̂ jdx

i
^ dx

j
: (9)

Ifwe assum e furtherm ore thatij isasym ptotically Euclidean,one m ay verify thatthe

param eters m and n appearing in (8)are truly the m assand NUT charges de�ned by

(5).
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Oneobtainss�K = 2nsin�d� ^ d’ in polarcoordinateson @V �= S2. B̂ i isthusonly

globallyde�ned up toaconstant,and thetim ecoordinatealsoisnotgloballyde�ned over

thetwo-sphere.Onede�nest+ and t� on thenorth and thesouth poleofthetwo-sphere

respectively.These coordinatesarerelated by

t+ = t� � 4n’ : (10)

Since ’ isa periodic coordinate ofperiod 2�,the tim e coordinatest� m ustbe periodic

ofperiod 8�n0,such thatN = n

n0
isan integer. The integerN param etrizesthe Chern

classoftheprincipalbundleoverS2,and ther= constslicesforr su�ciently largeare

di�eom orphicto theLensspaceS 3=ZjN j.

TheLensspacesareusually studied asRiem annian three-folds,butthey alsoadm ita

pseudo-Riem annian m etric,asdoesany U(1)principalbundleovera Riem annian m ani-

fold. Ifwe de�ne a connection ! on to the principalbundle,aswellasthe pull-back of

them etric on thebaseby thebundleprojection �,then !
 !+ �� givesanaturalRie-

m annian m etricon theprincipalbundle,and �!
 !+ �� anaturalpseudo-Riem annian

m etric.

S.Ram aswam y and A.Sen obtained a sim ilar result in [9],where they de�ned the

NUT charge asa dualofthe Bondim assinstead ofthe Kom arm ass. The Bondim ass

and its dualare de�ned using integrals involving respectively the W eyltensor and its

Hodgedual.

The U(1)principalbundlesoverS2 are classi�ed by their�rstChern class,which is

unity in the case ofthe Hopf�bration ofS3. By analogy with the case ofthe M axwell

theory forwhich the Chern classdeterm inesthe relative num beroffundam entalDirac

m onopoles,we willwish to interpretthisintegerastherelative num beroffundam ental

NUT sourcesin GeneralRelativity.Thisinterpretation turnsoutto beright,asweshall

seein thefollowing.

3 M ulti-Taub{N U T solutions

W e now want to consider axisym m etric stationary solutions ofthe Einstein equations

with severalNUT sourceson theaxialsym m etry axis.W euseW eylcoordinatesin which

ds
2 = H

� 1
e
2�
�
dz

2 + d�
2
�
+ �

2
H

� 1
d’

2
� H (dt+ B̂ d’)2 : (11)
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Forexam ple,in the case ofthe Taub{NUT solution ofm assm and NUT charge n,the

W eylcoordinatesarerelated to theSchwarzschild onesby2

� =
p
~r2 � 2m ~r� n2sin� z= (~r� m )cos� ; (12)

in term sofwhich them etricis

ds
2 = �H

�
dt� + 2n(�1� cos�)d’

�
2

+ H
� 1
d~r2 +

�
~r2 + n

2
��
d�

2 + sin2�d’2
�

(13)

with

H =
~r2 � 2m ~r� n2

~r2 + n2
: (14)

In W eylcoordinates,equation (7)reducesto

�
� 1
H

2
@�B̂ = �@zB �

� 1
H

2
@zB̂ = @�B (15)

and B isthe im aginary partofthe so-called Ernstpotential,E � H + iB . Thislatter

satis�estheErnstequation

�
E + E

�
�
�

@z
2 + @�

2 +
1

�
@�

�

E = 2@zE@zE + 2@�E@�E : (16)

For static solutions,the Ernst potentialis realand the Ernst equation reduces to the

lineardi�erentialequation

�

@z
2
+ @�

2
+
1

�
@�

�

lnE = 0 : (17)

TheproductofseveralrealErnstpotentialsthusgivesa new solution.Thisperm itsone

to obtain theErnstpotentialofm ulti-black holessolutionsas

E =

hY

i= 1

ri� ci

ri+ ci
(18)

where2ri= ri+ + ri� with

ri� �
p
(z� zi� ci)

2 + �2 (19)

and where zi and ci de�ne respectively theposition and the(possibly negative)m assof

each oftheh black holes.W hen allm assesarepositive,thesesolutionsarealwaysknown

2Note thatthe radiusr thatiscom m only introduced in W eylcoordinatesisnotthe Schwarzschild

radius~r,butisrelated to itby r= ~r� m .
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to su�erfrom conicalsingularities unless one considers an in�nite chain ofblack holes

[10].

A nice way to interpret the NUT charge as a dualm ass com es from the fact that

thestationary solutionsofEinstein’sequationsadm ita nonlinearly realised U(1)Ehlers

sym m etry [11]which rotatesthem assintotheNUT chargein thecaseoftheTaub{NUT

solutions. This U(1) acts trivially on the conform alfactor � and m odi�es the Ernst

potentialasfollows

E(�)=
cos�E � isin�

cos� � isin�E
: (20)

Acting thisway on theErnstpotential(18),onegets

E =
cos�

Q
(ri� ci)� isin�

Q
(ri+ ci)

cos�
Q
(ri+ ci)� isin�

Q
(ri� ci)

(21)

wheree2i�ci= m i+ ini.W ethen derivethepotentialsforthem etric3

H =

Q
(ri

2 � ci
2)

cos2�
Q
(ri+ ci)

2 + sin2�
Q
(ri� ci)

2
B̂ = b� 2

hX

i= 1

ni
z� zi

ri
(22)

where bisan undeterm ined integration constantcom ing from the duality relation (15).

NotethatthepotentialB̂ isa sum ofpotentialsforordinary Taub{NUT solutionsindi-

vidually centred atzi.Thereisonehorizon on each segm ent� = 0,zi� jcij� z � zi+ jcij.

Letusconsiderthatthey areallseparated,i.e.that

zi� 1 + jci� 1j< zi� jcij: (23)

Between each adjacentpairofhorizons,thereisaDirac{M isnerstringsingularity related

to thefactthatthe1-form d’ divergeson thesym m etry axis� = 0.The Dirac{M isner

string singularitiesarelocated on h+ 1 segm entsD i,on which � = 0 and zi� 1 + jci� 1j�

z � zi� jcij,where we understand �1 < z � z1 � jc1jand zh + jchj� z < +1 forD 1

and D h+ 1 respectively.In orderto avoid such a singularity,thepotentialB̂ m ustvanish

identically on each ofthese segm ents. On the segm ent D i,rj = z � zj for j < iand

rj = �z+ zj forj� i,so onehas

B̂ jD i
= bi� 2

i� 1X

j= 1

nj + 2

hX

j= i

nj = 0 : (24)

3 To derive the form ula for B̂ we observe that H � 2
dB = � 2

P
nidri

ri
2� ci

2 ,and we m ake use ofthe

identities
�
2

ri
2� ci

2 +
(z� zi)

2

ri
2 = 1 and ri� = ri� ci

z� zi

ri
to show that

�@zri

ri
2 � ci

2
= � @�

z� zi

ri

�@�ri

ri
2 � ci

2
= @z

z� zi

ri
:
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Exactly in the sam e way asforthe ordinary Taub{NUT solution [2],in orderto avoid

Dirac{M isnerstring singularities,one m ustde�ne h + 1 open setsUi,such that[h+ 1
i= 1Ui

covers space-tim e outside the horizons. W e de�ne each Ui as the com plem ent ofthe

dom ain [j6= iD j in M .Attheintersection between Ui and Ui+ 1,the corresponding tim e

coordinatesarerelated by

ti+ 1 = ti� 4ni’ (25)

and B̂ isgiven by

B̂ jUi
= 2

i� 1X

j= 1

nj � 2

hX

j= i

nj � 2

hX

j= 1

nj
z� zj

rj
(26)

on Ui,in such a way thatdti+ B̂ jUi
d’ isglobally de�ned on M .

Since’ isaperiodiccoordinate,’ � ’+ 2�,consistency requiresthetim ecoordinate

also to beperiodic,thatistj � tj + 8�ni forallni.In orderforthem anifold to bewell

de�ned,allthe NUT chargesni m ustthusbe integralm ultiplesofa given fundam ental

chargen0,so ti� ti+ 8�n0.

W e thus conclude that,even on a purely classicallevel,the existence ofm ore than

one NUT charge on a m anifold im plies the quantisation ofthese charges. In fact,this

quantisation already occursin M axwelltheory ifoneconsidersthatitssolutionsarethe

connections ofU(1) principalbundles over space-tim e for which the curvature veri�es

the equation d?F = 0. Indeed,the globalde�nition ofthe M axwellconnection on the

principalbundlesim ilarly requiresallm agneticchargestobeintegralm ultiplesofagiven

fundam entalcharge.

Theone-form ! � 1

4n0
(dti+ B̂ jUi

d’)de�nesaconnection on theU(1)principalbundle

overV .Foranytwo-cycleofV surroundingasubsetIoftheNUT charges,onecom putes

thatassociated Chern classto be

N I =
1

n0

X

i2I

ni : (27)

Thetim e-likethree-foldsthatsurround theNUT chargeswithin I arethusdi�eom orphic

to the quotient ofS3 by ZjN Ij
acting as a discrete subgroup ofU(1),yielding a Lens

space. W e thus interpret the Chern class N I ofa two-cycle as the relative num ber of

fundam entalNUT chargesinsideitsinterior.

Asform ulti-black holesolutions,them ulti-NUT solutionsgenerically possessconical

singularities.In ordertoavoid such singularities,thefollowing function m ustgotounity

on thesym m etry axis
@�X @�X

4X
! 1 (28)
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where X isthe squared norm ofthe axisym m etric Killing vector. In W eylcoordinates

thisfunction behaves like e� 2� as� ! 0. The condition (28)isthus equivalent to the

requirem entthatthefunction � tend to zero in thislim it.Since� isinvariantunderthe

duality transform ation (11),onecan sim ply com puteitforthem ulti-black holesolutions.

Onegets,asa directgeneralisation ofthecaseoftwo positivem assblack holesgiven in

[12],that

2� =

hX

i= 1

ln
ri
2 � ci

2

ri+ ri�
+
X

i< j

ln
E
+ �
i jE

� +
i j

E
� �
i jE

+ +

i j

(29)

where

E
� �
i j = ri� rj� + (z� zi� ci)(z� zj � cj)+ �

2
: (30)

On thesegm entD k,thefunction � isthusconstantand isequalto

�jD k
=

k� 1X

i= 1

hX

j= k

ln
(zi� zj)

2 � (ci+ cj)
2

(zi� zj)
2 � (ci� cj)

2

=

k� 1X

i= 1

hX

j= k

sign(cicj)ln

 

1�
4jcij[cjj

�
2jcij+ Lij

��
2jcjj+ Lij

�

!

(31)

where Lij � jzi� zjj� jcij� jcjjisthe distance between the two horizonsofthe black

holes centred at z = zi and z = zj respectively. Since we require the horizons not to

overlap,allthe Lij are strictly positive and one sees that � can only be zero on each

segm entD k ifsom eofthem assesci arenegative.

Ourm ulti-NUT solution de�nesthusa perfectly sm ooth space-tim eoutsidethehori-

zonsifand only if
k� 1Y

i= 1

hY

j= k

(zi� zj)
2 � (ci+ cj)

2

(zi� zj)
2 � (ci� cj)

2
= 1 (32)

forallk between 2 and h.Theseh � 1 equationsdeterm inetherelativepositionsofthe

NUT sourcesasfunctionsoftheircharges.

4 Som e exam ples

Letusconsidera sim ple classofexam pleswith three NUT sources,with chargesn1 =

n3 = pn0 and n2 = �qn0 fortwo integersp and q.W ealso �x z3 = �z2 = z0 and z1 = 0.

Theabsenceofa conicalsingularity requiresthat
�
z0

2 � (p� q)2n0
2
��
(2z0)

2 � (2pn0)
2
�

�
z0

2 � (p+ q)2n0
2
�
(2z0)

2
= 1 : (33)
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Thisequation can besolved forp> 4q,by

z0 =
p� q

q

1�
4q

p

n0 (34)

and thehorizonsaredisjointforany valueofp and q.

The asym ptotic r= constslicesarethen di�eom orphic to a LensspaceS 3=ZN with

N � 2p� q.The value oftheChern classin these exam plesisN = 2r+ 7q forstrictly

positiveintegersr and q.

Since 1

4n0
B̂ d’ de�nesthepullback ofaU(1)connection on each UiofV ,wecan com -

pute theChern classofthe two-cyclesin V from it.W ede�ne thepartitionsofvarious

two-cyclesovertheatlasofV asdepicted in thefollowing �gures

�

S�
1

z

S


1

S�
1

Partition on theopen setU1.

�

z

S�
2 S

�

2

Partition on the open setU2.

�

z

S
�

3

S


3

Partition on theopen setU3.

�

z

S�
4

Partition on the open setU4.

TheChern classofthecycleS� isgiven by

N � =
1

8�n0

Z

S�
2

dB̂ jU2
^d’+

1

8�n0

Z

S�
1

dB̂ jU1
^d’ =

1

8�n0

Z

@S�
2

�
B̂ jU2

� B̂ jU1

�
d’ = p (35)

and onecom putesin thesam eway thatN � = �q;N  = p� q and N � = 2p� q.
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5 G ravitationalinstantons

W erecallthatthequantum m echanicsofa particlein a Taub{NUT space-tim erequires

thequantisation oftheproductofitsm asswith theNUT chargeofspace-tim e [13],ex-

actly asin thecaseofam agneticm onopole.M oreover,theNUT chargeasde�ned in [14]

fornotnecessarily stationary space-tim esisshown tobepreserved by sm alldeform ations

ofthesolutionsthrough theintroduction ofgravitationalwaves.

The Euclidean self-dualTaub{NUT solutionsm ightplay a r̂ole in quantum gravity

very sim ilarto theoneplayed by instantonsin gaugetheories[15].Theanalogueofthe

instanton num berwould then begiven by theChern classoftheasym ptoticLensspace,

in the sense that the action evaluated forsuch a solution is proportionalto jN j. The

index oftheDiracoperatorishowevergiven by thePontryagin num ber.

The solitons we have described in this letter are the M inkowskianalogues ofthe

instantons described in [5]with the slight generalisation ofconsidering both positive

and negative m ass. However,the singularitiesassociated with negative m asses are not

rem oved by thee�ectsoftheNUT chargesin theEuclidean case.

One can W ick rotate the M inkowskian solitons to Euclidean-signature solutions by

choosing a com plex pure im aginary param eterforthe duality transform ation (20). In-

deed,fortheRiem annian m etricin W eylcoordinates,

ds
2 = H

� 1
e
2�
�
dz

2 + d�
2
�
+ �

2
H

� 1
d’

2 + H (d + B̂ d’)2 (36)

theEuclidean Ernstequation is

�
E+ + E�

�
�

@z
2
+ @�

2
+
1

�
@�

�

E� = 2@zE� @zE� + 2@�E� @�E� (37)

wheretherealErnstpotentialsareE� � H � B ,with B derived from B̂ using equation

(15). For a static Ernst potential,i.e.one satisfying E+ = E� ,the Euclidean Ernst

equation isidenticalto the M inkowskione,and the m ulti-black hole solutionsare thus

solutionsoftheEuclidean theory aswell.TheEuclidean Ernstequation istheequation

ofm otion ofan SL(2;R)=SO (1;1)non-linearsigm a m odel,and itisleftinvariantby the

SO (1;1)Ehlerstransform ation

E� (�)=
cosh�E� � sinh�

cosh�� sinh�E�

: (38)

Applying this transform ation,we obtain the following potentials for the Riem annian
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m etric(36)4

H =

Q
(ri

2 � ci
2)

cosh
2
�
Q
(ri+ ci)

2 � sinh
2
�
Q
(ri� ci)

2
B̂ = bi� 2

hX

i= 1

ni
z� zi

ri
(39)

where ri is de�ned as in the M inkowskicase and the m ass and the NUT charges are

given by m i � cosh2�ci and ni � sinh2�ci.The resolution ofthe Dirac{M isnerstring

singularities goesthe sam e way. Allthe NUT charges are thusrequired to be integral

m ultiplesofafundam entalNUT chargen0,and theim aginary tim ecoordinate isagain

periodic,with period 8�n0.

Howeveronecan notgetrid oftheconicalsingularitiesin theEuclidean casewithout

introducing singularities associated with negative m asses. The only regular instantons

left over are thus the single instanton with m = 5

4
jnjand the self-dualinstantons for

which ci= 0 [5].

The (anti)self-dualgravitationalinstantonswith m i = �ni [16]can be obtained by

taking thelim itci! 0,� ! �1 whileholding cosh2�ci �xed and equalto m i.In this

lim it,theErnstpotentialsbehaveas

E� =
1� e� 2�

P
ci
ri

1+ e� 2�
P

ci
ri

+ O (ci
2) (40)

and onecom putesthatthefunction ri becom es
p
�2 + (z� zi)

2 and

H
� 1 = 1+ 2

hX

i= 1

m i

ri
: (41)

TheErnstpotentialsthen verifyE� = 1forni= �m irespectively,andtheErnstequation

reducesto thelineardi�erentialequation
�

@z
2
+ @�

2
+
1

�
@�

�
�
E+ + E�

�� 1
= 0 : (42)

For (anti)self-dualinstantons E� = const,� = 0 and equation (32) turns out to be

satis�ed independently ofthe position ofthe sourceson theaxis.However,theabsence

ofEuclidean NUT singularitiesneverthelessrequiresallm assesto beequalto n0.
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