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Abstract Generalising expressions given by Komar, we give precise definitions
of gravitational mass and solitonic NUT charge and we apply these to the descrip-
tion of a class of Minkowski-signature multi-Taub–NUT solutions without rod
singularities. A Wick rotation then yields the corresponding class of Euclidean-
signature gravitational multi-instantons.
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1 Introduction

In many respects, the Taub–NUT solution [1] appears to be dual to the Schwarzschild
solution in a fashion similar to the way a magnetic monopole is the dual of an elec-
tric charge in Maxwell theory. The Taub–NUT space–time admits closed time-like
geodesics [2] and, moreover, its analytic extension beyond the horizon turns out to
be non Hausdorff [3]. The horizon covers an orbifold singularity which is home-
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omorphic to a two-sphere, although the Riemann tensor is bounded in its vicinity.
These pathologies lead to the view that the Taub–NUT solution is not physical.

Nonetheless, despite the fact that no magnetic monopole has yet been found
in our universe, such magnetic dual solutions play an important rôle in quantum
electrodynamics and especially in its non-abelian generalisation, namely Yang–
Mills theory. Moreover, the stationary solutions of the Maxwell–Einstein equa-
tions admit a
non-linearly realised SU(2,1) symmetry group [4] which generalises the Ehlers
group and which mixes together the electromagnetic and the gravity degrees of
freedom. This generalises to a large class of theories, and in particular to ones
that can be embedded into supergravity theories. Despite the fact that this has
not been proven so far, these symmetry groups are believed to act on the non-
stationary solutions as well. The major difficulty in formulating such symmetries
comes from the fact that Einstein’s theory is highly non-linear and consequently
its dualities are poorly understood beyond the linearised level. The aim of this let-
ter is to understand more closely the duality relations within Einstein theory by
exhibiting their similarities with the example of Maxwell theory, and more specif-
ically the similarities between NUT sources and magnetic monopoles.

While a magnetic charge can be expressed in terms of a current associated to
a vector field dual to the standard Maxwell potential, its expression as a function
of the standard vector potential corresponds to a topological invariant of the asso-
ciated fibre-bundle geometry. In this letter, we define the NUT charge, in a similar
way, as a topological invariant associated to time-like three-cycles. We also gen-
eralise the Komar mass to the case where there is no space-like slice with compact
boundary in the asymptotic region. These definitions involve a fibre-bundle con-
struction which is very reminiscent of the one appearing in Maxwell theory. In
this case the U(1) fibres are orbits of the time-like isometry.

We exhibit the similarities between the Komar NUT charge and magnetic
charge through a consideration of explicit solutions involving several NUT sources.
Indeed, we will give an infinite set of new regular solutions of the Einstein equa-
tions with an arbitrary odd number of NUT sources. We obtain these by acting
with the U(1) duality group for stationary solutions on multi-black hole solutions
with both negative and positive masses. We define a coordinate patch that per-
mits us to avoid Dirac–Misner string singularities. Then we show how one can
avoid the conical singularities usually appearing in multi-black hole solutions by
choosing adjacent NUT charges to be opposite in sign. Since both negative and
positive NUT charge singularities are covered by horizons, these solutions define
space–times which have no more (albeit also no less) pathology than the ordinary
Taub–NUT space–time.

The resolution of the Dirac–Misner string singularities requires the quantisa-
tion of NUT charge. The Chern class of an associated fibre-bundle geometry is
understood to count the relative number of fundamental NUT charges of a given
spacetime. The timelike three-cycle surrounding several NUT charges turn out to
be diffeomorphic to Lens spaces L(|N|,1)∼= S3/Z|N|, where N is the relative num-
ber of fundamental NUT charges that lie inside the interior of the corresponding
three-cycle.

We discuss in a final section the Euclidean analogues of these multi-NUT solu-
tions which are slight generalisations of the instantons described in [5]
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2 Komar NUT charge

A. Komar defined the mass for asymptotically Minkowski solutions of the Einstein
equations through an integral over the boundary of an asymptotically space-like
hypersurface V in spacetime [6]. Given an asymptotically Killing time-like vector
κ = κµ ∂µ , the metric permits one to define the 1-form g(κ)≡ gµν κµ dxν , and the
Komar mass is then given as a function of the 2-form K ≡ dg(κ) by1

m≡ 1
8π

∫
∂V

?K (1)

where ? is the Hodge star operator. Comparing then this formula to the ones defin-
ing the electric and the magnetic charges

q≡ 1
2π

∫
∂V

?F p≡ 1
2π

∫
∂V

F (2)

it seems natural to define the dual mass as the integral

n≡ 1
8π

∫
∂V

K. (3)

However this integral is trivially zero because of Stokes theorem, as also would
naı̈vely be the one defining magnetic charge. Nevertheless, not all asymptotically
flat space–times admit a well-defined asymptotically space-like hypersurface. This
is the case for instance for the Taub–NUT space–time, for which the r = const
slices of any space-like hypersurfaces are not closed manifolds [2].

Let M be an asymptotically flat space–time. Strictly speaking, we assume that
M admits a function r which goes to infinity at spatial infinity and which defines a
proper distance in this limit, gµν ∂µ r∂ν r → 1, and we assume that all the compo-
nents of the Riemann tensor in any vierbein frame go to zero as O(r−3) as r→+∞.
We consider stationary solutions; κ is then a Killing vector and the second-order
components of the Einstein equations can be written as

d ?K = 2?dxµ Rµν κ
ν = 16πG?dxµ

(
Tµν −

1
2

gµν T
)

κ
ν (4)

which is very similar to the Maxwell equation. We choose the function r to be
invariant under the action of the time-like isometry, and choose the squared norm
of the time-like Killing vector gµν κµ κν ≡−H to tend to−1+O(r−1) as r→+∞.
We assume that the action of the time-like isometry is free and proper on the
domain of M where the function H is positively defined. This implies that M
admits an Abelian principal bundle structure over a Riemannian 3-fold V on this
domain.

1 Komar proved in [7] that if κ is chosen to be orthogonal to a family of minimal hypersur-
faces, then the Komar mass will be positive if V is chosen to be one of these hypersurfaces.
However, Misner then showed in [8] that this prescription is either inconsistent or impossible
to achieve in some relevant examples. Here we will not insist on this orthogonality prescription
and the Komar mass consequently will not be necessarily positive.
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If this principal bundle is trivial, it admits a global section s which defines
an embedding of V into a space-like hypersurface of M (outside the zeros of H).
Otherwise it only admits a patch of local sections defined on each open set of an
atlas of V , which we denote collectively by s as well. A natural generalisation of
the Komar mass formula thus consists in defining it as the integral of the pull back
s∗ ? K of the 2-form ?K over ∂V . In order for this integral not to depend on the
local trivialisation, ?K must be horizontal and invariant in the asymptotic region.
It is trivially invariant since it is built from the metric and the Killing vector, and
the horizontality condition is given by asymptotic hypersurface orthogonality, i.e.
iκ ? K → 0 as r → +∞. Because of equation (4), d iκ ? K = 0 in the vacuum and
if space–time is simply connected, there exists a function B such that iκ ?K = dB.
The horizontality condition for ?K in the asymptotic region is then equivalent to
the fact that B tends to zero as O(r−1) as r → +∞. The 2-form K is also trivially
invariant and its horizontality condition iκ K = dH → 0 is satisfied because the
function H tends to unity as r →+∞.

We accordingly define the mass m and its dual, the NUT charge n, by the
following integrals

m≡ 1
8π

∫
∂V

s∗ ?K n≡ 1
8π

∫
∂V

s∗K. (5)

By construction, the 1-form g(κ) is invariant under the action of the time-like
isometry, and since iκ g(κ) =−H →−1 as r→+∞, it defines a connection on the
principal bundle in the asymptotic region. The NUT charge is proportional to the
Chern class of the principal bundle over ∂V , and is thus non-zero only in the case
where the latter is non-trivial. Real line bundles over a compact surface always
have a vanishing Chern class, and a non-zero NUT charge implies therefore that
time-like orbits are compact.

One defines electric and magnetic charges in the same way by requiring both
the Maxwell potential and its dual to be invariant under the covariant action of
the time-like isometry in the asymptotic region, i.e. iκ F ∼ iκ ? F ∼ O(r−2). The
whole construction can be generalised to non-stationary space–times, as long as
Lκ gµν tends sufficiently fast to zero as r →+∞.

Let us now express the mass and its dual in a more explicit way. We choose
coordinates for which κ = ∂t , in such a way that the metric is given as follows

ds2 =−H
(
dt + B̂idxi)2 +H−1

γi j dxidx j. (6)

The vacuum Einstein equations then give d iκ ?K = 0 and

iκ ?K =−H2√
γεi

jk
∂ jB̂k dxi = dxi

∂iB (7)

where Latin indices are raised and lowered with the three-dimensional metric γi j.
The asymptotic horizontality conditions for K and ?K are satisfied if

H = 1− 2m
r

+O(r−2) B =−2n
r

+O(r−2). (8)

Then ?K and K have the following behaviour in the asymptotic region

?K ∼
√

γ

2
εi j

kH−1
∂kHdxi∧dx j K ∼−∂iB̂ j dxi∧dx j. (9)
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If we assume furthermore that γi j is asymptotically Euclidean, one may verify
that the parameters m and n appearing in (8) are truly the mass and NUT charges
defined by (5).

One obtains s∗K = 2nsinθ dθ ∧dϕ in polar coordinates on ∂V ∼= S2. B̂i is thus
only globally defined up to a constant, and the time coordinate also is not globally
defined over the two-sphere. One defines t+ and t− on the north and the south pole
of the two-sphere respectively. These coordinates are related by

t+ = t−−4nϕ. (10)

Since ϕ is a periodic coordinate of period 2π , the time coordinates t± must be
periodic of period 8πn0, such that N = n

n0
is an integer. The integer N parametrizes

the Chern class of the principal bundle over S2, and the r = const slices for r
sufficiently large are diffeomorphic to the Lens space S3/Z|N|.

The Lens spaces are usually studied as Riemannian 3-folds, but they also
admit a pseudo-Riemannian metric, as does any U(1) principal bundle over a
Riemannian manifold. If we define a connection ω on to the principal bundle,
as well as the pull-back of the metric γ on the base by the bundle projection π ,
then ω⊗ω +π∗γ gives a natural Riemannian metric on the principal bundle, and
−ω⊗ω +π∗γ a natural pseudo-Riemannian metric.

Ramaswamy and Sen obtained a similar result in [9], where they defined the
NUT charge as a dual of the Bondi mass instead of the Komar mass. The Bondi
mass and its dual are defined using integrals involving, respectively, the Weyl
tensor and its Hodge dual.

The U(1) principal bundles over S2 are classified by their first Chern class,
which is unity in the case of the Hopf fibration of S3. By analogy with the case of
the Maxwell theory for which the Chern class determines the relative number of
fundamental Dirac monopoles, we will wish to interpret this integer as the relative
number of fundamental NUT sources in General Relativity. This interpretation
turns out to be right, as we shall see in the following.

3 Multi-Taub–NUT solutions

We now want to consider axisymmetric stationary solutions of the Einstein equa-
tions with several NUT sources on the axial symmetry axis. We use Weyl coordi-
nates in which

ds2 = H−1e2σ
(
dz2 +dρ

2)+ρ
2H−1dϕ

2−H(dt + B̂dϕ)2. (11)

For example, in the case of the Taub–NUT solution of mass m and NUT charge n,
the Weyl coordinates are related to the Schwarzschild ones by2

ρ =
√

r̃2−2mr̃−n2 sinθ z = (r̃−m)cosθ , (12)

in terms of which the metric is

ds2 =−H (dt±+2n(±1−cosθ)dϕ)2 +H−1dr̃2 +
(
r̃2 +n2)(

dθ
2 + sin2

θdϕ
2)
(13)

2 Note that the radius r that is commonly introduced in Weyl coordinates is not the
Schwarzschild radius r̃, but is related to it by r = r̃−m.
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with

H =
r̃2−2mr̃−n2

r̃2 +n2 . (14)

In Weyl coordinates, Eq. (7) reduces to

ρ
−1H2

∂ρ B̂ =−∂zB ρ
−1H2

∂zB̂ = ∂ρ B (15)

and B is the imaginary part of the so-called Ernst potential, E ≡H + iB. This latter
satisfies the Ernst equation

(E +E ∗)
(

∂z
2 +∂ρ

2 +
1
ρ

∂ρ

)
E = 2∂zE ∂zE +2∂ρE ∂ρE . (16)

For static solutions, the Ernst potential is real and the Ernst equation reduces to
the linear differential equation(

∂z
2 +∂ρ

2 +
1
ρ

∂ρ

)
lnE = 0 . (17)

The product of several real Ernst potentials thus gives a new solution. This permits
one to obtain the Ernst potential of multi-black holes solutions as

E =
h

∏
i=1

ri− ci

ri + ci
(18)

where 2ri = ri+ + ri− with

ri± ≡
√

(z− zi± ci)2 +ρ2 (19)

and where zi and ci define respectively the position and the (possibly negative)
mass of each of the h black holes. When all masses are positive, these solutions are
always known to suffer from conical singularities unless one considers an infinite
chain of black holes [10; 11; 12].

A nice way to interpret the NUT charge as a dual mass comes from the fact
that the stationary solutions of Einstein’s equations admit a nonlinearly realised
U(1) Ehlers symmetry [13] which rotates the mass into the NUT charge in the
case of the Taub–NUT solutions. This U(1) acts trivially on the conformal factor
σ and modifies the Ernst potential as follows

E (α) =
cosα E − isinα

cosα− isinα E
. (20)

Acting this way on the Ernst potential (18), one gets

E =
cosα ∏(ri− ci)− isinα ∏(ri + ci)
cosα ∏(ri + ci)− isinα ∏(ri− ci)

(21)
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where e2iα ci = mi + ini. We then derive the potentials for the metric3

H = ∏(ri
2− ci

2)
cos2 α ∏(ri + ci)2 + sin2

α ∏(ri− ci)2
B̂ = b−2

h

∑
i=1

ni
z− zi

ri
(22)

where b is an undetermined integration constant coming from the duality rela-
tion (15). Note that the potential B̂ is a sum of potentials for ordinary Taub–NUT
solutions individually centred at zi. There is one horizon on each segment ρ = 0,
zi−|ci| ≤ z≤ zi + |ci|. Let us consider that they are all separated, i.e. that

zi−1 + |ci−1|< zi−|ci|. (23)

Between each adjacent pair of horizons, there is a Dirac–Misner string singularity
related to the fact that the 1-form dϕ diverges on the symmetry axis ρ = 0. The
Dirac–Misner string singularities are located on h+1 segments Di, on which ρ = 0
and zi−1 + |ci−1| ≤ z≤ zi−|ci|, where we understand −∞ < z≤ z1−|c1| and zh +
|ch| ≤ z < +∞ for D1 and Dh+1 respectively. In order to avoid such a singularity,
the potential B̂ must vanish identically on each of these segments. On the segment
Di, r j = z− z j for j < i and r j =−z+ z j for j ≥ i, so one has

B̂|Di = bi−2
i−1

∑
j=1

n j +2
h

∑
j=i

n j = 0. (24)

Exactly in the same way as for the ordinary Taub–NUT solution [2], in order to
avoid Dirac–Misner string singularities, one must define h + 1 open sets Ui, such
that ∪h+1

i=1 Ui covers space–time outside the horizons. We define each Ui as the
complement of the domain ∪ j 6=iD j in M. At the intersection between Ui and Ui+1,
the corresponding time coordinates are related by

ti+1 = ti−4niϕ (25)

and B̂ is given by

B̂|Ui = 2
i−1

∑
j=1

n j−2
h

∑
j=i

n j−2
h

∑
j=1

n j
z− z j

r j
(26)

on Ui, in such a way that dti + B̂|Uidϕ is globally defined on M.
Since ϕ is a periodic coordinate, ϕ ≈ ϕ + 2π , consistency requires the time

coordinate also to be periodic, that is t j ≈ t j + 8πni for all ni. In order for the
manifold to be well defined, all the NUT charges ni must thus be integral multiples
of a given fundamental charge n0, so ti ≈ ti +8πn0.

3 To derive the formula for B̂ we observe that H−2dB =−2∑
nidri

ri2−ci2
, and we make use of the

identities ρ2

ri2−ci2
+ (z−zi)2

ri2
= 1 and ri± = ri± ci

z−zi
ri

to show that

ρ ∂zri

ri2− ci2
=−∂ρ

z− zi

ri

ρ ∂ρ ri

ri2− ci2
= ∂z

z− zi

ri
.
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We thus conclude that, even on a purely classical level, the existence of more
than one NUT charge on a manifold implies the quantisation of these charges.
In fact, this quantisation already occurs in Maxwell theory if one considers that
its solutions are the connections of U(1) principal bundles over space–time for
which the curvature verifies the equation d ? F = 0. Indeed, the global definition
of the Maxwell connection on the principal bundle similarly requires all magnetic
charges to be integral multiples of a given fundamental charge.

The one-form ω ≡ 1
4n0

(dti + B̂|Uidϕ) defines a connection on the U(1) prin-
cipal bundle over V . For any two-cycle of V surrounding a subset I of the NUT
charges, one computes that associated Chern class to be

NI =
1
n0

∑
i∈I

ni. (27)

The time-like 3-folds that surround the NUT charges within I are thus diffeomor-
phic to the quotient of S3 by Z|NI | acting as a discrete subgroup of U(1), yielding
a Lens space. We thus interpret the Chern class NI of a two-cycle as the relative
number of fundamental NUT charges inside its interior.

As for multi-black hole solutions, the multi-NUT solutions generically possess
conical singularities. In order to avoid such singularities, the following function
must go to unity on the symmetry axis

∂ µ X∂µ X
4X

→ 1 (28)

where X is the squared norm of the axisymmetric Killing vector. In Weyl coordi-
nates this function behaves like e−2σ as ρ → 0. The condition (28) is thus equiv-
alent to the requirement that the function σ tend to zero in this limit. Since σ is
invariant under the duality transformation (11), one can simply compute it for the
multi-black hole solutions. One gets, as a direct generalisation of the case of two
positive mass black holes given in [14], that

2σ =
h

∑
i=1

ln
ri

2− ci
2

ri+ri−
+ ∑

i< j
ln

E+−
i j E−+

i j

E−−i j E++
i j

(29)

where

E±±i j = ri±r j±+(z− zi± ci)(z− z j± c j)+ρ
2. (30)

On the segment Dk, the function σ is thus constant and is equal to

σ|Dk
=

k−1

∑
i=1

h

∑
j=k

ln
(zi− z j)2− (ci + c j)2

(zi− z j)2− (ci− c j)2

=
k−1

∑
i=1

h

∑
j=k

sign(cic j) ln
(

1−
4|ci|[c j|

(2|ci|+Li j)(2|c j|+Li j)

)
(31)

where Li j ≡ |zi− z j| − |ci| − |c j| is the distance between the two horizons of the
black holes centred at z = zi and z = z j, respectively. Since we require the horizons
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not to overlap, all the Li j are strictly positive and one sees that σ can only be zero
on each segment Dk if some of the masses ci are negative.

Our multi-NUT solution defines thus a perfectly smooth space–time outside
the horizons if and only if

k−1

∏
i=1

h

∏
j=k

(zi− z j)2− (ci + c j)2

(zi− z j)2− (ci− c j)2 = 1 (32)

for all k between 2 and h. These h− 1 equations determine the relative positions
of the NUT sources as functions of their charges.

4 Some examples

Let us consider a simple class of examples with three NUT sources, with charges
n1 = n3 = pn0 and n2 =−qn0 for two integers p and q. We also fix z3 =−z2 = z0
and z1 = 0. The absence of a conical singularity requires that(

z0
2− (p−q)2n0

2
)(

(2z0)2− (2pn0)2
)

(z02− (p+q)2n02)(2z0)2 = 1 . (33)

This equation can be solved for p > 4q, by

z0 =
p−q√
1− 4q

p

n0 (34)

and the horizons are disjoint for any value of p and q.
The asymptotic r = const slices are then diffeomorphic to a Lens space S3/ZN

with N ≡ 2p− q. The value of the Chern class in these examples is N = 2r + 7q
for strictly positive integers r and q.

Since 1
4n0

B̂dϕ defines the pullback of a U(1) connection on each Ui of V , we
can compute the Chern class of the two cycles in V from it. We define the partitions
of various two cycles over the atlas of V as depicted in the following figures

The Chern class of the cycle Sα is given by

Nα =
1

8πn0

∫
Sα

2

dB̂|U2 ∧dϕ +
1

8πn0

∫
Sα

1

dB̂|U1 ∧dϕ

=
1

8πn0

∫
∂Sα

2

(
B̂|U2 − B̂|U1

)
dϕ = p (35)

and one computes in the same way that Nβ =−q, Nγ = p−q and Nδ = 2p−q.
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5 Gravitational instantons

We recall that the quantum mechanics of a particle in a Taub–NUT space–time
requires the quantisation of the product of its mass with the NUT charge of space–
time [15], exactly as in the case of a magnetic monopole. Moreover, the NUT
charge as defined in [16] for not necessarily stationary space–times is shown to
be preserved by small deformations of the solutions through the introduction of
gravitational waves.

The Euclidean self-dual Taub–NUT solutions might play a rôle in quantum
gravity very similar to the one played by instantons in gauge theories [17]. The
analogue of the instanton number would then be given by the Chern class of the
asymptotic Lens space, in the sense that the action evaluated for such a solution
is proportional to |N|. The index of the Dirac operator is however given by the
Pontryagin number.

The solitons we have described in this letter are the Minkowski analogues of
the instantons described in [5] with the slight generalisation of considering both
positive and negative mass. However, the singularities associated with negative
masses are not removed by the effects of the NUT charges in the Euclidean case.

One can Wick rotate the Minkowskian solitons to Euclidean-signature solu-
tions by choosing a complex pure imaginary parameter for the duality transforma-
tion (20). Indeed, for the Riemannian metric in Weyl coordinates,

ds2 = H−1e2σ
(
dz2 +dρ

2)+ρ
2H−1dϕ

2 +H(dψ + B̂dϕ)2 (36)

the Euclidean Ernst equation is

(E+ +E−)
(

∂z
2 +∂ρ

2 +
1
ρ

∂ρ

)
E± = 2∂zE±∂zE±+2∂ρE±∂ρE± (37)

where the real Ernst potentials are E± ≡ H ± B, with B derived from B̂ using
Eq. (15). For a static Ernst potential, i.e. one satisfying E+ = E−, the Euclidean
Ernst equation is identical to the Minkowski one, and the multi-black hole solu-
tions are thus solutions of the Euclidean theory as well. The Euclidean Ernst equa-
tion is the equation of motion of an SL(2,R)/SO(1,1) non-linear sigma model,
and it is left invariant by the SO(1,1) Ehlers transformation

E±(α) =
coshα E±∓ sinhα

coshα∓ sinhα E±
. (38)

Applying this transformation, we obtain the following potentials for the Rieman-
nian metric (36)4

H = ∏(ri
2− ci

2)
cosh2

α ∏(ri + ci)2− sinh2
α ∏(ri− ci)2

B̂ = bi−2
h

∑
i=1

ni
z− zi

ri

(39)

where ri is defined as in the Minkowski case and the mass and the NUT charges are
given by mi ≡ cosh2α ci and ni ≡ sinh2α ci. The resolution of the Dirac–Misner

4 See Footnote 3.
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string singularities goes the same way. All the NUT charges are thus required to
be integral multiples of a fundamental NUT charge n0, and the imaginary time
coordinate ψ is again periodic, with period 8πn0.

However one can not get rid of the conical singularities in the Euclidean case
without introducing singularities associated with negative masses. The only regu-
lar instantons left over are thus the single instanton with m = 5

4 |n| and the self-dual
instantons for which ci = 0 [5].

The (anti)self-dual gravitational instantons with mi = ±ni [18; 19] can be
obtained by taking the limit ci → 0, α →±∞ while holding cosh2α ci fixed and
equal to mi. In this limit, the Ernst potentials behave as

E± =
1− e±2α

∑
ci
ri

1+ e±2α ∑
ci
ri

+O(ci
2) (40)

and one computes that the function ri becomes
√

ρ2 +(z− zi)2 and

H−1 = 1+2
h

∑
i=1

mi

ri
. (41)

The Ernst potentials then verify E∓ = 1 for ni = ±mi respectively, and the Ernst
equation reduces to the linear differential equation(

∂z
2 +∂ρ

2 +
1
ρ

∂ρ

)
(E+ +E−)−1 = 0 . (42)

For (anti)self-dual instantons E∓ = const, σ = 0 and Eq. (32) turns out to be satis-
fied independently of the position of the sources on the axis. However, the absence
of Euclidean NUT singularities nevertheless requires all masses to be equal to n0.
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