ISR-TH/AH/KH/amb

CERN LIBRARIES, GENEVA

CM-P00071503

ISR PERFORMANCE REPORT

RUN 291, 6th April 1973 R2, 22 GeV/c, 20 bunches

Study of longitudinal instabilities of bunched beams

Summary

Phase oscillations of bunched beams were studied using the "mountain range display". Quadrupole mode oscillations with growth times of $\tau \sim 0.2$ sec were observed with high rf voltage, and sextupole mode oscillations with $\tau \sim 0.5$ sec were dominant for a small rf voltage.

1. Rise of the instability

The matched beam is kept bunched on the injection orbit with a constant rf voltage V_i and $\Gamma = 0$. The onset and growth of phase oscillations for bunch 12 and 13 were observed on a "mountain range display". For V_i = 16 kV - bunch length \sim 16 ns - a quadrupole mode oscillation shows up after \sim 0.35 sec and grows with $\tau \sim$ 0.2 sec, Fig. 1. Later, a dipole mode becomes dominant. For V_i = 5.8 kV - bunch length \sim 22 ns a sextupole mode oscillation appears after \sim 0.3 sec and grows with $\tau \sim$ 0.5 sec. Later, a dipole mode becomes dominant, and some higher _modes seem to be present.

2. Phase relation between different bunches

Fig. 3 shows the oscillations of the first 17 bunches 0.5 sec after injection. There is a pattern which repeats itself after \sim six or seven bunches. This indicates a mode number n = 4 or n = 5.

3. Oscillations of the first bunch

Fig. 3 shows that the first bunch oscillates with a smaller amplitude than most of the latter bunches. This indicates that the fields which drive this phase instability, decay to some extent (but not completely) during the "gap" of $\sim 1 \ \mu$ s.

4. Oscillations during acceleration

Fig. 4 shows the bunches during acceleration with $V_i = 16 \text{ kV} = \text{const.}$ and $\Gamma = 0.4$. The behaviour is very similar to the one with $\Gamma = 0$.

5. Conclusions

2.

For $V_i = 16 \text{ kV}$ - bunch length $\sim 16 \text{ ns}$ - mostly m = 2 mode oscillations are excited; for $V_i = 5.8 \text{ kV}$ - bunch length $\sim 22 \text{ ns}$ - m = 3 mode oscillations are dominant. Based on Sacherer's ¹) theory one estimates a resonator frequency of ~ 75 MHz to be responsible for the instability (if one deals with only one resonator). Using the mode number n = 4 or 5 (which describes the phase relation between bunches) a set of possible frequencies around 75 MHz could be given. However, because of the large errors this is presently not of much help.

The rate of rise $\Delta \omega$ of the instability can be obtained approximately by correcting the observed rise with the Landau damping. One gets

> $\Delta \omega_2 \sim 6 \text{ sec}^{-1}$ for V = 16 kV, m = 2 $\Delta \omega_3 \sim 4 \text{ sec}^{-1}$ for V = 5.8 kV, m = 3

Using Sacherer's theory, the shunt impedance of the resonator can now be estimated to be $Z \sim 5 k\Omega$, $Z/k \sim 23 \Omega$, (k = resonator frequency/ circumferential frequency).

K. Hübner A. Hofmann

1) F. Sacherer; A Longitudinal Stability Criterion for Bunched Beams, CERN/MPS/Int. BR/73-3.

