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In the framework of three light Majorana neutrinos, we show how to reconstruct, through the use of

3� 3 unitarity, the full PMNS matrix from six independent Majorana-type phases. In particular, we

express the strength of Dirac-type CP violation in terms of these Majorana-type phases by writing the area

of the unitarity triangles in terms of these phases. We also study how these six Majorana phases appear in

CP-odd weak-basis invariants as well as in leptonic asymmetries relevant for flavored leptogenesis.
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I. INTRODUCTION

The discovery of neutrino oscillations [1] providing
evidence for nonvanishing neutrino masses and leptonic
mixing, is one of the most exciting recent developments in
particle physics. At present, it is not known whether neu-
trinos are Dirac or Majorana fermions. The latter possibil-
ity has the special appeal of providing, through the seesaw
mechanism [2–6] an elegant explanation of why neutrinos
are much lighter than the other known fermions. It is well
known that the presence of Majorana neutrinos introduces
some novel features in leptonic CP violation, like the
possibility of having CP violation in the case of two
Majorana neutrinos as well as having CP breaking even
in the limit of three exactly degenerate neutrinos [7]. These
features reflect the fact that in the presence of Majorana
neutrinos, the simplest nontrivial rephasing invariant func-
tions of the leptonic mixing matrix elements, are bilinears
and not quartets, as is the case for Dirac particles. We
designate ‘‘Majorana-type phases’’ the arguments of these
rephasing invariant bilinears. Physically, these phases cor-
respond to the orientation in the complex plane of the sides
of the Majorana unitarity triangles. Recall that in the case
of the quark sector and in general for Dirac particles, the
orientations of the unitarity triangles have no physical
meaning, reflecting the fact that Dirac unitarity triangles
rotate under rephasing of the quark fields. The leptonic
mixing matrix, often called Pontecorvo, Maki, Nakagawa,
and Sakata (PMNS) matrix, is usually parametrized by a
3� 3 unitary matrix containing three mixing angles, one
Dirac phase, and two Majorana phases, for a total of six

independent parameters. It should be emphasized that
these Majorana phases are related to but do not coincide
with the above defined Majorana-type phases. The crucial
point is that Majorana-type phases are rephasing invariants
which are measurable quantities and do not depend on any
particular parametrization of the PMNS matrix.
In this paper we adopt the arguments of these rephasing

invariant bilinears as fundamental parameters and we show
that, in the framework of three light Majorana neutrinos
and in presence of Dirac-type CP violation, the full PMNS
matrix can be reconstructed from six independent
Majorana-type phases. We also study how these
Majorana-type phases appear in neutrinoless double beta
decay, as well as in CP-odd weak-basis invariants and in
leptonic asymmetries relevant for flavored leptogenesis.
We conclude that, in this framework, all low energy lep-
tonic physics is encoded into six leptonic masses and six
Majorana-type phases. In the case of one massless neutrino
one of these Majorana-type phases may be fixed (e.g.,
chosen to be equal to zero), without changing the lengths
of the sides and internal angles of the unitary triangles.
This paper is organized as follows. In Sec. II we set the

notation and present our framework. In Sec. III, we choose
six independent Majorana-type phases and show how the
full unitary PMNS matrix can be constructed from these
six input phases. We also show how to express the strength
of Dirac-type CP violation in terms of the six Majorana-
type phases and analyze the unitarity triangles, taking into
account the present experimental data. In Secs. IV, V, and
VI we show how Majorana-type phases appear in the
elements of the effective mass matrix, in CP-odd weak-
basis invariants, and in leptogenesis, respectively. Finally
our conclusions are contained in Sec. VII.

II. FRAMEWORK AND NOTATION

We consider an extension of the stardard model (SM)
consisting of the addition of an arbitrary number of right-
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handed neutrinos leading to three light Majorana neutrinos,
through the seesaw mechanism. The leptonic mixing ma-
trix V is a 3� ð3þ nRÞ matrix connecting the charged
leptons to the three light neutrinos and the nR heavy
neutrinos. This mixing matrix V is, of course, a submatrix
of a ð3þ nRÞ � ð3þ nRÞ unitary matrix. In this work, we
are especially interested in the low energy limit of the
theory, where the leptonic mixing matrix reduces to the
3� 3 PMNS matrix connecting charged leptons to the
light neutrinos. Let us choose, for the low energy limit,
the physical basis where both the charged lepton mass
matrix, ml and the neutrino mass matrix m� are diagonal
and real:

ml ¼ diagðme;m�;m�Þ; m� ¼ diagðm1; m2; m3Þ:
(1)

In this basis, there is still the freedom to rephase the
charged lepton fields:

lj ! l0j ¼ expði�jÞlj; (2)

with arbitrary �js, which leaves the charged lepton mass

terms mj
�ljlj invariant. Because of the Majorana nature of

the neutrinos the rephasing

�k ! �0
k ¼ expð�ic kÞ�k (3)

with arbitrary c ks is not allowed, since it would not keep
the Majorana mass terms �T

LkC
�1mk�Lk invariant. Note

however that one can still make the rephasing of Eq. (2)
for c k ¼ ðnk�Þ with nk an integer.

In the mass eigenstate basis, the low energy weak
charged current can be written as

LW ¼ � gffiffiffi
2

p �ljL��Ujk�kL þ H:c:; (4)

where

U ¼
Ue1 Ue2 Ue3

U�1 U�2 U�3

U�1 U�2 U�3

2
64

3
75: (5)

So far, we have not introduced the constraints of unitarity.
As a result, U is characterized by nine moduli and six
phases, since three of the nine phases of U can be elimi-
nated through the rephasing of Eq. (2). If we assume 3� 3
unitarity, it is well known that U is characterized by six
parameters which, as mentioned above, are usually taken
as three mixing angles and three CP violating phases.

III. RECONSTRUCTION OF THE FULL UNITARY
PMNS MATRIX FROM SIX MAJORANA-TYPE

PHASES

The study of rephasing invariant quantities is of special
importance for the analysis of mixing and CP violation
both in the quark and lepton sectors. In the quark sector, the
simplest rephasing invariant quantities are the nine moduli

of the elements of the Cabibbo-Kobayashi-Maskawa ma-
trix, VCKM, and the arguments of rephasing invariant quar-
tets, like, for example, argðVusVcbV

�
ubV

�
csÞ. The assumption

of 3� 3 unitarity of VCKM leads to a series of exact
relations among various rephasing invariant quantities [8]
which provide an important test of the SM. Unitarity also
allows for various parametrizations of VCKM which can be
taken as three moduli and one invariant phase, as in the so-
called standard parametrization [9], four independent mod-
uli [10], or four independent invariant phases [11]. The
novel feature of the low energy limit of the leptonic sector
with Majorana neutrinos is the existence of rephasing
invariant bilinears of the type Ul�U

�
l� where � � � and

no summation on repeated indices is implied. We designate
argðUl�U

�
l�Þ ‘‘Majorana-type phases.’’ These are the mini-

mal CP-violating quantities in the case of Majorana neu-
trinos [12–17]. Note that in order for these phases to be
precisely defined we work with real, nonzero neutrino
masses corresponding to Majorana fields which satisfy
Majorana conditions that do not contain phase factors. It
can be readily seen, from their definition, that there are
only six independent Majorana-type phases even in the
general case where unitarity is not imposed on U. All the
other Majorana-type phases in U can be obtained from
these six phases. This reflects the freedom one has to
rephase the three charged lepton fields. This would still
be true for the matrix U in a general framework including
an arbitrary number of right-handed neutrinos (nR � 3)
together with, for instance, an arbitrary number of vector-
like charged leptons.
We choose the six independent Majorana-type phases to

be

�1 � argðUe1U
�
e2Þ; �2 � argðU�1U

�
�2Þ;

�3 � argðU�1U
�
�2Þ; �1 � argðUe1U

�
e3Þ;

�2 � argðU�1U
�
�3Þ; �3 � argðU�1U

�
�3Þ:

(6)

Let us now consider Dirac-type phases, which corre-
spond to the arguments of rephasing invariant quartets. It
can be readily seen that the 3� 3 U matrix contains four
independent Dirac-type phases. Again, this result is com-
pletely general; in particular, it does not depend on the
number of right-handed neutrinos (nR � 3) or the eventual
presence of vectorlike charged leptons. We choose the
following four independent Dirac-type invariant phases:

	12
e� � argðUe1U�2U

�
e2U

�
�1Þ; (7)

	12
e� � argðUe1U�2U

�
e2U

�
�1Þ; (8)

	13
e� � argðUe1U�3U

�
e3U

�
�1Þ; (9)

	13
e� � argðUe1U�3U

�
e3U

�
�1Þ: (10)

It is clear that these four Dirac-type phases can be obtained
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from the six Majorana-type phases:

	12
e� ¼ �1 � �2; (11)

	12
e� ¼ �1 � �3; (12)

	13
e� ¼ �1 � �2; (13)

	13
e� ¼ �1 � �3: (14)

It follows from these expressions that, in the framework
of Majorana neutrinos, Dirac-type CP violation in the
leptonic sector, necessarily implies Majorana-type CP
violation.
Now, we assume unitarity of the 3� 3 PMNS matrix

and show that in this limit, it is possible to fully reconstruct
the unitarity mixing matrix from the six Majorana-type
phases, �j, �j provided there is Dirac-type CP violation.

This can be shown making use of the standard parametri-
zation [9]

U ¼
c12c13 s12c13 s13e

�i


�s12c23 � c12s23s13e
i
 c12c23 � s12s23s13e

i
 s23c13
s12s23 � c12c23s13e

i
 �c12s23 � s12c23s13e
i
 c23c13

0
B@

1
CA � P; (15)

where cij � cos�ij, sij � sin�ij, with all �ij in the first
quadrant, 
 is a Dirac-type phase, and P ¼ diagð1; ei�; ei�Þ
with � and � denoting the phases associated with the
Majorana character of neutrinos.

The extraction of the angles �ij and 
 is done through

the unitarity triangles. There are two types of unitarity
triangles, those obtained by multiplication of two different
rows and those obtained by multiplication of two different
columns. It has been pointed out [14] that these triangles
are fundamentally different. Those of the first type were
designated as ‘‘Dirac triangles’’ and have similar proper-
ties to those built in the quark sector. Their orientation has
no physical meaning since, under rephasing transforma-
tions of the charged lepton fields these triangles rotate in
the complex plane. Those of the second type were desig-
nated as ‘‘Majorana triangles.’’ Under the allowed rephas-
ing, these triangles do not rotate in the complex plane since
the orientations of all their sides correspond to the argu-
ments of rephasing invariants. As a result, the orientation
of Majorana triangles is physically meaningful [14]. Of
course, all the six triangles share a common area A ¼
1=2jImUijU

�
kjUklU

�
ilj (no sum in repeated indices, k � i,

l � j). The Majorana triangles provide the necessary and
sufficient conditions for CP conservation, to wit, vanishing
of their common area A and orientation of all collapsed
Majorana triangles along the direction of the real or imagi-
nary axes. The vanishing of A implies that the Dirac phase


 of the parametrization of Eq. (15) equals zero or �. The
three different Majorana triangles are

Ue1U
�
e2 þU�1U

�
�2 þU�1U

�
�2 ¼ 0; (16)

Ue1U
�
e3 þU�1U

�
�3 þU�1U

�
�3 ¼ 0; (17)

Ue2U
�
e3 þU�2U

�
�3 þU�2U

�
�3 ¼ 0: (18)

Some of the general features of the three Majorana tri-
angles are worth pointing out. The three internal angles of
the first Majorana triangle corresponding to Eq. (16) are
given by �� ð�i � �jÞ with i � j both indices ranging

from 1 to 3. Similarly, for the internal angles of the second
triangle corresponding to Eq. (17) with �’s replaced by
�’s. From the internal angles of twoMajorana triangles one
can readily obtain the internal angles of the third triangle.
Obviously, there are only four independent combinations
of ð�i � �jÞ and ð�i � �jÞ which can be taken as those

given by Eqs. (7) to (10). The internal angles of the three
different Dirac triangles are also given in terms of these
four independent combinations. It is sufficient to know the
internal angles of two of the triangles in order to know all
internal angles of all unitarity triangles.
Next we show how to obtain the full PMNS matrix from

the knowledge of �i, �i. Through the law of sines we
obtain

tan 2�12 ¼ jUe2j2
jUe1j2

¼ j sinð�1 � �2Þjj sinð��2 þ �2 þ �3 � �3Þjj sinð�1 � �3Þj
j sinð��1 þ �1 þ �2 � �2Þjj sinð�2 � �3Þjj sinð��1 þ �1 þ �3 � �3Þj ; (19)

tan 2�23 ¼
jU�3j2
jU�3j2

¼ j sinð�1 � �3Þjj sinð��1 þ �1 þ �3 � �3Þjj sinð�1 � �2Þj
j sinð��1 þ �1 þ �2 � �2Þjj sinð�1 � �2Þjj sinð�1 � �3Þj ; (20)

tan 2�13
1

sin2�12
¼ jUe3j2

jUe2j2
¼ j sinð�2 � �3Þjj sinð�1 � �3Þjj sinð�1 � �2Þj

j sinð�1 � �3Þjj sinð�1 � �2Þjj sinð�2 � �3Þj : (21)
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From Eqs. (19)–(21) we can easily extract the angles �ij
from the knowledge of the Majorana phases. Finally the
phase 
 can be obtained by computing the common area of
the triangles. For instance, from the second triangle we
obtain

A ¼ 1
2jUe1U

�
e3jjU�1U

�
�3jj sinð�1 � �2Þj: (22)

From the law of sines we replace jU�1U
�
�3j by

jU�1U
�
�3j ¼ jUe1U

�
e3j

j sinð�1 � �3Þj
j sinð�2 � �3Þj ; (23)

which leads to

A ¼ 1

2
jc12c13s13j2j sinð�1 � �2Þj j sinð�1 � �3Þj

j sinð�2 � �3Þj : (24)

Since the �ij are obtained from�i, �i,using Eqs. (19)–(21),

it follows that Eq. (24) gives us the common area of the
triangles, in terms of Majorana phases. The phase 
, enter-
ing in the standard parametrization, is readily obtained by
recalling that A ¼ 1=2 ImQ where Q denotes any rephas-
ing invariant quartet. One obtains

A ¼ 1
16j sinð2�12Þ sinð2�13Þ sinð2�23Þ cosð�13Þ sin
j: (25)

From Eqs. (24) and (25) one obtains 
 in terms of

Majorana phases. The quadrant of 
 and the angles �
and � of Eq. (15) are obtained by inspection.

A. The strength of Dirac-type CP violation

As we have seen, in the limit of 3� 3 unitarity, the six
Majorana-type phases completely fix the PMNS mixing
matrix and therefore the strength of Dirac-type CP viola-
tion, which is given by jImQj whereQ denotes any rephas-
ing invariant quartet of the PMNS matrix, like for example
Q ¼ ðUe2U�3U

�
e3U

�
�2Þ. Note that in the framework of 3�

3 unitarity, one can infer the size of jImQj even without the
direct measurement of any CP violating observable.
Indeed, as it was shown for the quark sector [10], jImQj
can be expressed in terms of four independent moduli of
the PMNS matrix. From the present experimental data, one
cannot infer the size of Dirac-type leptonic CP violation,
which can range from zero, for instance in the case of
vanishing Ue3, to a significant value, of order 10�2, there-
fore much larger than the corresponding value in the quark
sector where jImQjðquarkÞ � 10�5.
The explicit expression for jImQj in terms of the six

Majorana-type phases is given by

jImQj ¼ I1I2I3I4I5I6I7I8I9=D
2; (26)

with

D ¼ j sinð�1 � �2Þjj sinð�1 � �3Þjj sinð�2 � �3Þjj sinð��2 þ �2 þ �3 � �3Þj þ j sinð�1 � �2Þjj sinð�1 � �3Þj
� j sinð�2 � �3Þjj sinð��2 þ �2 þ �3 � �3Þj þ j sinð��1 þ �1 þ �2 � �2Þj
� j sinð��1 þ �1 þ �3 � �3Þjj sinð�2 � �3Þjj sinð�2 � �3Þj (27)

and I1I2I3I4I5I6I7I8I9 denoting the product of the sines of the nine internal angles of the three Majorana triangles, or else of
the three Dirac triangles:

I1I2I3I4I5I6I7I8I9 ¼ j sinð�1 � �2Þjj sinð�1 � �3Þjj sinð�2 � �3Þj � j sinð�1 � �2Þjj sinð�1 � �3Þjj sinð�2 � �3Þj
� j sinð��1 þ �1 þ �2 � �2Þjj sinð��1 þ �1 þ �3 � �3Þjj sinð��2 þ �2 þ �3 � �3Þj: (28)

The case of no Dirac-type CP violation is a singular
case, where all unitarity triangles collapse to a line and the
matrix U can be written as a real unitary matrix with two
factored out phases which are usually called Majorana
phases in the standard parametrization. In this case the
phases of Majorana bilinears decouple from the size of
mixing angles and Eqs. (19)–(21) become indetermination
relations of the form 0=0 due to the equality modulo �
among all �j Majorana-type phases as well as equality

modulo � of all �j among themselves.

We address now the question of finding the values of the
six fundamental Majorana phases which lead to a maximal
value of jImQj. It can be readily seen that the following
choice of�j, �j leads to a maximal value of Dirac-type CP

violation:

�k ¼ 2�

3
k; �k ¼ 4�

3
k; k ¼ 1; 2; 3: (29)

This choice of the six different Majorana-type phases,
together with the adoption of a specially convenient phase
convention leads to the following PMNS matrix:

UM ¼
1ffiffi
3

p w 1ffiffi
3

p 1ffiffi
3

p w�
1ffiffi
3

p w� 1ffiffi
3

p 1ffiffi
3

p w
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0
BB@

1
CCA; (30)

where w ¼ expi 2�3 . All unitarity triangles corresponding

to UM are equilateral and the maximal value of CP viola-
tion corresponds to

jImQj ¼ 1

9

ffiffiffi
3

p
2

: (31)
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B. Unitarity triangles and present experimental data

The current experimental bounds on neutrino masses
and leptonic mixing are [9]

�m2
21 ¼ ð8:0� 0:3Þ � 10�5 eV2; (32)

sin 2ð2�12Þ ¼ 0:86þ0:03
�0:04; (33)

j�m2
32j ¼ ð1:9 to 3:0Þ � 10�3 eV2; (34)

sin 2ð2�23Þ> 0:92; (35)

sin 2ð2�13Þ< 0:19; (36)

with �m2
ij � m2

j �m2
i , where mj’s denote the neutrino

masses. The angle �23 may be maximal, meaning 45	,
while �12 is already known to deviate from this value. At
the moment there is an experimental upper bound on the
angle �13. Recently, there are hints of �13 > 0 from global
neutrino data analysis, which provides the global estimate
[18]

sin 2�13 ¼ 0:016� 0:010 ð1	Þ: (37)

Present experimental data suggest that in leading order
the leptonic mixing matrix may be approximated by the
Harrison, Perkins, and Scott (HPS) mixing matrix [19]

2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

2
664

3
775; (38)

which is often designated as tribimaximal mixing and

corresponds to tan�12 ¼ 1=
ffiffiffi
2

p
, �23 ¼ �=4, and �13 ¼ 0

From the point of view of leptonic low energy phenome-
nology, a value of �13 not far from its present experimental
bound would have interesting experimental implications
and would allow for the possibility of Dirac-type CP
violation to be detected experimentally in the near future
provided the value of the phase 
 is not suppressed.

We address now the question of what unitarity triangles
correspond to a perturbation of the HPS matrix which
consists of keeping the values for �12 and �23 fixed and
choosing 
 and �13 that maximize the area of the unitarity
triangle, with �13 within the experimentally allowed values
(i.e., sin�13 ¼ 0:22 and 
 ¼ �=2). It follows from Eq. (15)
that this perturbation spoils the exact trimaximal mixing of
the second column of the HPS matrix. In this case we have
for the first Majorana triangle

Ue1U
�
e2 ¼ 0:448; U�1U

�
�2 ¼ �0:224� 0:11i;

U�1U
�
�2 ¼ �0:224þ 0:11i; (39)

where two sides are equal in length and the internal angles
of the triangle are 26.1	 (for two of the angles) and 127.8	.
For the second Majorana triangle we have

Ue1U
�
e3 ¼ 0:175i; U�1U

�
�3 ¼ �0:2815� 0:0875i;

U�1U
�
�3 ¼ 0:2815� 0:0875i; (40)

and once again two of the sides are equal in length. In this
case two of the internal angles are equal to 72.7	 and the
other one to 34.6	. Finally for the third Majorana triangle
we have

Ue2U
�
e3 ¼ 0:1238i; U�2U

�
�3 ¼ 0:3980� 0:0619i;

U�2U
�
�3 ¼ �0:3980þ 0:0619i:

(41)

Two sides have equal length, leading to two internal angles
of 81.2	 and another angle of 17.6	. Of the three triangles
thus obtained, this is the one with a smallest internal angle.
Note that all three triangles are isosceles, which results
from the fact that there is equality of moduli between rows
two and three of the mixing matrix. This is due to the
particular values of �23 and 
. Perturbations around the
HPS values for �12 and �23 in the range still allowed by
experiment would not alter significantly the shape of these
triangles. Figure 1 depicts the first two Majorana triangles.
An alternative generalization of the tribimaximal form

was considered in Ref. [20] where the exact trimaximal
mixing of the second column is maintained and unitarity is
imposed by construction, withUe3 now different from zero
and possibly complex. In this construction small deviations
from the HPS values of �12 and �23 occur and �-� reflec-
tion symmetry [21,22] is broken for ReðUe3Þ different from
zero. The Majorana-type triangles thus obtained, involving
orthogonality relations with the second column become
specially simple. The third Majorana triangle has the in-
teresting feature of one of the sides being simply propor-
tional toUe3. In this approach �13 and �12 are related by the
constraint of trimaximal mixing in the second column. For
the maximal �13 still allowed experimentally ( sin�13 ¼
0:22) together with jUe2j fixed as 1=

ffiffiffi
3

p
which is a conse-

quence of imposing trimaximal mixing in the second col-
umn, and with unitarity we are lead to

sin 2ð2�12Þ ¼ 0:91; (42)

a value for �12 which is already disfavored, as can be seen
from Eq. (33).
So far, in this section we assumed unitarity of the PMNS

matrix, together with the presence of Dirac-type CP vio-
lation, which in turn allowed for its reconstruction from six

FIG. 1. First and second Majorana unitarity triangles, corre-
sponding to Eqs. (39) and (40).
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Majorana phases. Yet, it should be noted that deviations
from unitarity naturally arise in a variety of extensions of
the SM, involving the lepton and or quark sectors.
Actually, in the context of standard seesaw the 3� 3
PMNS matrix is not exactly unitary. However, in this
framework deviations from unitarity cannot be detected
experimentally due to the extreme degree of their suppres-
sion. On the other hand, there are extensions of the SM
where experimentally detectable deviations from unitarity
may arise. Examples include models with vectorlike
quarks [23–32] as well as models with heavy Majorana
neutrinos with masses of order 1 TeV or lower [33,34].
Majorana neutrino singlets with no new gauge interactions
might be produced within the reach of the LHC, up to
masses of order 200 Gev [34]. The possibility of having
extensions of the SM with natural violations of 3� 3
unitarity raises the question of how to test experimentally
the validity of the unitarity hypothesis. A set of exact
relations connecting measurable quantities were derived
for the quark sector [8] providing tests of unitarity of the
VCKM matrix. Similar relations can be derived in the lep-
tonic sector. Examples of such relations, derived from the
Majorana-type triangles, are

jUe1U
�
e2j

sinð�2 � �3Þ
¼ jU�1U

�
�2j

sinð�1 � �3Þ ¼
jU�1U

�
�2j

sinð�1 � �2Þ ; (43)

jUe1U
�
e3j

sinð�2 � �3Þ
¼ jU�1U

�
�3j

sinð�1 � �3Þ ¼
jU�1U

�
�3j

sinð�1 � �2Þ ; (44)

jUe2U
�
e3j

sinð��2 þ �3 þ �2 � �3Þ
¼ jU�2U

�
�3j

sinð��1 þ �3 þ �1 � �3Þ

¼ jU�2U
�
�3j

sinð��1 þ �2 þ �1 � �2Þ ;
(45)

with analogous relations for the Dirac-type triangles.
Although relations (43)–(45) are exact predictions of the
PMNS framework, relating physically measurable quanti-
ties, their experimental test is a great challenge which
would require the experimental discovery of leptonic CP
violation of Dirac type [35,36].

Whenever the length of the largest side of the triangle is
smaller than the sum of the lengths of the other two, several
possibilities arise. Either there is Dirac-type CP violation
or violation of unitarity of the PMNS matrix or both. In
Ref. [37] a set of measurements is suggested which will, in
principle, allow one to measure all sides of the e-� Dirac
unitarity triangle.

We have previously emphasized that the orientation of
Majorana triangles has physical meaning since they are
related to the size of certain Majorana-type phases. This
raises the question of which observables would in principle
be sensitive to these orientations. It is well known that
neutrino oscillations are only sensitive to Dirac-type CP

violation and thus its experimental discovery only provides
information about differences of Majorana phases, like
�1 � �2 or �1 � �2, but not on the individual values of
�i, �i. As a result, no knowledge about the orientation of
Majorana triangles can be obtained from the detection of
Dirac-type CP violation.
In the next sections we discuss the question of how

neutrinoless double beta decay as well as leptogenesis
[38] when flavor effects matter [39–44] are sensitive to
the Majorana-type phases.

IV. MAJORANA PHASES AND THE ELEMENTS OF
THE NEUTRINO EFFECTIVE MASS MATRIX

In the leptonic low energy limit and in the weak basis
where the mass matrix of the charged leptons is real and
diagonal, the effective neutrino mass matrix meff is com-
plex and symmetric, with nine independent parameters.
Although it may in principle be fully reconstructed from
experiment, it has been pointed out that it is not possible, in
practice, to fully reconstructmeff without ambiguities from
a set of feasible experiments. This has motivated several
authors to introduce some input from theory in order to
allow for this reconstruction [45,46].
In the seasaw framework the effective Majorana mass

matrix is given by

meff ¼ �mD

1

MR

mT
D; (46)

where mD is the Dirac-type mass matrix and MR is the
Majorana mass matrix for the right-handed neutrino sin-
glets. With this notation the connection among light neu-
trino masses and the elements of the PMNSmatrix, starting
from the weak basis specified above, is established through
the relation

UymeffU
� ¼ d ¼ diagðm1; m2; m3Þ: (47)

Note that at this stage we are considering the limit whereU
is a unitary matrix. From this equation it is clear that each
entry of meff , to be denoted in what follows by mij, can be

fully expressed in terms of observable quantities—neutrino
masses, mixing angles, and phases. The absolute value of
the element (11) of meff is especially interesting experi-
mentally since, in the absence of additional lepton number
violating interactions other than those generated by the
charged currents involving Majorana neutrinos, it can be
measured in neutrinoless double beta decay experiments
[47–49].
From Eq. (47) we obtain

jm11j2 ¼ m2
1jUe1j4 þm2

2jUe2j4 þm2
3jU2

e3j4
þ 2m1m2jUe1j2jUe2j2 cosð2�1Þ
þ 2m1m3jUe1j2jUe3j2 cosð2�1Þ
þ 2m2m3jUe2j2jUe3j2 cos½2ð�1 � �1Þ
: (48)
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The angle ð�1 � �1Þ is the argument of U�
e1Ue2Ue1U

�
e3,

which is not a rephasing invariant Dirac-type quartet. The
corresponding product in the quark sector, in terms of
elements of VCKM, would not be a rephasing invariant. It
is the Majorana character of the neutrinos that gives physi-
cal meaning to the phase of this fourfold product. If we
were to rewrite Eq. (48) using the parametrization of the
PMNS matrix given by Eq. (15), the Dirac phase 
 would
appear explicitly. On the other hand, it is always possible to
eliminate the explicit dependence on 
 from jm11j by
redefining the factorizable phase � in such a way that the
phase 
 only appears on the second and third rows of the
PMNS matrix. This may seem paradoxical, but it has a
simple explanation. There is Dirac-type CP violation only
when the PMNS matrix contains nonfactorizable
Majorana-type phases. The measurement of jm11j is only
sensitive to one row of the PMNS matrix. When one single
row of the PMNS matrix is considered it is always possible
to factor out all physical phases on the right-hand side of
the matrix. It is necessary to combine information from
other rows in order to extract information on the possible
presence of nonfactorizable phases. Provided we know the
masses of each of the light neutrinos, once we measure the
modulus of m11 we can infer whether or not there are
relative phases among each term and therefore whether
or not there is Majorana-type CP violation. On the other
hand it is also clear from Eq. (48) that neutrinoless double
beta decay, although sensitive to the possible existence of
Majorana-type CP violation, can also occur in the limit of
no CP violation.

Unfortunately, there are no known feasible experiments
that would allow us to measure directly the modulus of
other entries of meff . For the off-diagonal entries we have

jmijj2 ¼ m2
1jUi1j2jUj1j2 þm2

2jUi2j2jUj2j2
þm2

3jUi3j2jUj3j2
þ 2m1m2jUi1jjUi2jjUj1jjUj2j cosð�i þ �jÞ
þ 2m1m3jUi1jjUi3jjUj1jjUj3j cosð�i þ �jÞ
þ 2m2m3jUi2jjUi3jjUj2jjUj3j cosð�i þ �j

� �i � �jÞ: (49)

This expression combines information involving two rows
of the PMNSmatrix where again the Majorana-type phases
appear in combinations that are not Dirac-type and that
would not be rephasing invariant for Dirac neutrinos. The
measurement of one of the jmijj, together with the knowl-

edge of the three neutrino masses, would only give infor-
mation on the sum of two�j and the sum of two �j without

allowing one to determine whether or not the Majorana
phases are factorizable.

V. MAJORANA PHASES AND CP-ODD WEAK-
BASIS INVARIANTS

We have seen that leptonic CP violation at low energies
requires the presence of complex Majorana-type bilinears,
which are defined in terms of entries of the PMNS matrix.
The information on whether or not a Lagrangian violates
CP is also encoded in the fermionic mass matrices written
in a weak basis. Unlike the physical basis, weak bases are
not unique and, as a result, there is an infinite number of
sets of fermion mass matrices corresponding to the same
physics. It is often practical to analyze the CP properties of
the Lagrangian in terms of CP-odd weak-basis invariants.
Different weak bases (WB) invariants are sensitive to
different CP-violating phases in different physical scenar-
ios. The general strategy to build such WB invariants was
outlined for the first time in Ref. [50], and in Ref. [51]
several relevant examples are given together with addi-
tional references.
The strength of Dirac-type CP violation can be obtained

from the following low energy WB invariant:

Tr ½heff ; hl
3 ¼ �6i�21�32�31 ImfðheffÞ12ðheffÞ23ðheffÞ31g;
(50)

where heff ¼ meffm
y
eff , hl ¼ mlm

y
l , and �21 ¼ ðm2

� �m2
eÞ

with analogous expressions for �31, �32. The right-hand
side of this equation is the computation of this invariant in
the special WB where the charged lepton masses are real
and diagonal. An analogous invariant is relevant for the
quark sector [50]. ThisWB invariant can be fully expressed
in terms of physical observables since

Im fðheffÞ12ðheffÞ23ðheffÞ31g ¼ ��m2
21�m

2
31�m

2
32 ImQ;

(51)

where ImQ is the imaginary part of a rephasing invariant
quartet of the leptonic mixing matrix U and signals the
presence of Dirac-type CP violation.
It is also possible to construct WB invariants that are

sensitive to Majorana-type phases.
It has been shown [12] that the condition

Im trF ¼ 0; (52)

with F ¼ hlmeffm
�
effmeffh

�
l m

�
eff is a necessary condition for

CP invariance in the leptonic sector, for an arbitrary num-
ber of light Majorana neutrinos. This CP-odd invariant is
sensitive to Majorana-type phases and it may not vanish
even in the case where there is no Dirac-type CP violation.
In order to see that this is the case, it is useful to compute it
in terms of lepton masses, mixing angle, and CP-violating
phase in the simple case of two generations, where there is
no Dirac-type CP violation but Majorana-type CP viola-
tion occurs. One obtains

Im trF ¼ 1
4m1m2ðm2

2 �m2
1Þðm2

� �m2
eÞ2sin22�sin22�;

(53)
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where the 2� 2 leptonic mixing matrix is parametrized as

K ¼ cos� � sin�ei�

sin�e�i� cos�

� �
: (54)

It is the Majorana character of the neutrinos that prevents
the phase � in Eq. (54) to be rotated away. The phase ð��Þ
is in fact the argument of the Majorana bilinears ðK11K

�
12Þ

and ðK21K
�
22Þ, modulo �.

Another peculiar aspect of Majorana neutrinos is the fact
that for three Majorana neutrinos there is CP violation
even in the limit of exact degeneracy of neutrino masses.
In this limit, a necessary and sufficient condition [7] forCP
invariance is

G � Tr½m�
eff � hl �meff ; h

�
l 
3 ¼ 0: (55)

Therefore, this WB invariant condition must be sensitive to
Majorana-type CP violation even in the absence of Dirac-
type CP violation, both in the case of degenerate and
nondegenerate neutrino masses. By analogy to Eq. (50)
we may write

G ¼ �6i�21�32�31 � Imfðm�
eff � hl �meffÞ12

� ðm�
eff � hl �meffÞ23ðm�

eff � hl �meffÞ31g: (56)

It can be checked that G is indeed sensitive to Majorana
bilinears, by writing each factor of the form ðm�

eff � hl �
meffÞij, i � j, explicitly in terms of masses and mixing,

with the help of Eq. (47). It is the presence of the matrix hl
between m�

eff and meff that makes this CP-odd invariant

fundamentally different from the one in Eq. (50). The
terms in mimj with i � j which are generated once we

expand the above factors, always appear multiplied by
Majorana bilinears and also by the square of a charged
lepton mass. These three different factors prevent the
possibility of simplification among these terms which oth-
erwise would add to zero due to unitarity. If the charged
leptons were degenerate in mass only the terms inm2

j of the

expansion would survive. These terms do not depend on
Majorana bilinears.

VI. MAJORANA PHASES AND LEPTOGENESIS

CP violation in the leptonic sector may play a funda-
mental role in the generation, via leptogenesis, of the
observed baryon number asymmetry of the universe [52]:

nB
n�

¼ ð6:1þ0:3
�0:2Þ � 10�10: (57)

In this framework a CP asymmetry is generated through
out-of-equilibrium L-violating decays of heavy Majorana
neutrinos [38] leading to a lepton asymmetry which, in the
presence of ðBþ LÞ-violating but ðB� LÞ-conserving
sphaleron processes [53], produces a baryon asymmetry.

In the single flavor approach, with three singlet heavy
neutrinos Ni, thermal leptogenesis is insensitive to the
CP-violating phases appearing in the PMNS matrix. In

this case there is complete decoupling among the phases
responsible for CP violation at low energies and those
responsible for leptogenesis [54,55].
From Eq. (47) and the definition of meff one can write

mD in the Casas and Ibarra parametrization [56] as

mD ¼ iU
ffiffiffi
d

p
R

ffiffiffiffi
D

p
: (58)

The matrix R is a general complex orthogonal matrix, and
d and D are diagonal matrices for the light and the heavy
neutrino masses, respectively. Clearly low energy physics
cannot provide any information on R since this matrix
cancels out in meff . The lepton number asymmetry result-
ing from the decay of heavy Majorana neutrinos, "Nj

, was

computed, in the single flavor approach, by several authors

[57–59]. The result is proportional to
P

k�jImðmy
DmDÞjk�

ðmy
DmDÞjk with an additional factor depending on the ratio

of the masses of the two heavy neutrinos k and j, xk ¼ M2
k

M2
j

.

The matrix U cancels out in the combinationmy
DmD and in

this case leptogenesis only depends on CP violation
present in R. This is a consequence of having summed
up into all charged lepton indices l�i (i ¼ e,�, �) resulting
from the decay of the heavy neutrino. Therefore, in the
case of unflavored leptogenesis the leptonic asymmetry is
not sensitive to low energy CP violating phases. As a
result, the Majorana-type phases do not play any role.
Flavor effects matter when washout processes are sensi-

tive to the different leptonic flavors produced in the decay
of heavy Majorana neutrinos [60]. In this particular case
the single flavor approach ceases to be valid and the
separate asymmetry produced in each decay has to be
considered.
The separate lepton i family asymmetry "iNj

generated

from the decay of the jth heavy Majorana neutrino is given
by [40]

"iNj
¼ g2

M2
W

1

16�

X
k�j

�
IðxkÞ

Imððmy
DmDÞjkðm�

DÞijðmDÞikÞ
jðmDÞijj2

þ 1

1� xk

Imððmy
DmDÞkjðm�

DÞijðmDÞikÞ
jðmDÞijj2

�
; (59)

with

IðxkÞ ¼ ffiffiffiffiffi
xk

p �
1þ 1

1� xk
þ ð1þ xkÞ ln xk

1þ xk

�
: (60)

Clearly, when one works with separate flavors the matrixU
does not cancel out and one is lead to the interesting
possibility of having viable leptogenesis even in the case
of R being a real matrix [61–64]. If we were to sum over all
charged leptons, the first term in Eq. (59) would lead to the
expression obtained for the total lepton number asymmetry
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in the case of unflavored leptogenesis, while the second
term would become real.

Assuming R to be real, from Eq. (58) we obtain

Imððmy
DmDÞjkðm�

DÞijðmDÞikÞ
¼ ðmy

DmDÞjk
ffiffiffiffiffi
dl

p
Rlj

ffiffiffiffiffiffi
Dj

q ffiffiffiffiffi
ds

p
Rsk

� ffiffiffiffiffiffi
Dk

p jUiljjUisj sinðargðU�
ilUisÞÞ: (61)

The only indices that are summed up are l and s and each
term in this sum is proportional to the sine of a�i, a �i, or a
ð�i � �iÞ, which are pure Majorana-type phases. The sec-

ond term, Imððmy
DmDÞkjðm�

DÞijðmDÞikÞ, only differs from

this one by the structure of indices of ðmy
DmDÞ.

Furthermore we conclude that in the limit R ¼ 1 flavored
leptogenesis may be viable even without Dirac-type CP
violation, i.e., even if CP violation is not observed in
neutrino oscillations where, in principle, low energy CP
violation could be detected. Flavoured leptogenesis is sen-
sitive to each one of the different Majorana-type phases
alone and, in the general case of complex R, it will depend
on the additional phases present in this matrix.

VII. CONCLUSIONS

We have emphasized that in the case of Majorana neu-
trinos, the arguments of rephasing invariant bilinears, des-
ignated Majorana-type phases, are the fundamental
quantities in the study of CP violation in the leptonic
sector. If one further assumes 3� 3 unitarity of the
PMNS matrix, we have shown that in general the full
PMNS matrix can be derived using as input six indepen-
dent Majorana-type phases. The presence of nonfactoriz-
able Majorana-type phases in the PMNS matrix signals the
presence of Dirac-type CP violation which might be ob-
servable in future neutrino oscillation experiments. As a
result, Dirac-type CP violation requires the existence of
Majorana-type CP violation. Obviously the converse is not
true. We have shown how to relate the strength of Dirac-
type CP violation to these Majorana-type phases by writ-
ing the area of the unitarity triangles in terms of these
phases. We have also studied how these Majorana-type

phases appear in the elements of the neutrino mass matrix,
as well as in flavored leptogenesis.
Observables that should be sensitive to the Majorana-

type phases, even in the absence of Dirac-type CP viola-
tion, include neutrinoless double beta decay and possibly
leptogenesis. Neutrino-antineutrino oscillation processes
can also in principle be used to measure CP-violating
Majorana phases [65]. Other manifestly CP-violating
physical processes are leptonic electric dipole moments
[66]. An extensive review of issues related to flavor phe-
nomena and CP violation in the leptonic sector and the
potential for their discovery in the LHC and possible future
experiments is provided in Ref. [67].
It is clear that the application of our results to perform

practical tests of the PMNS paradigm is severely restricted
by the scarcity of data on leptonic mixing and CP viola-
tion, leading to the dreadful situation that the neutrino mass
matrix cannot be fully reconstructed from a set of presently
conceived feasible experiments. One possible hope is hav-
ing a significant development in our understanding of
flavor, in particular, of leptonic flavor. If a theory of flavor
implies, for example, direct constraints on the Majorana-
type phases, then the relations we have derived, connecting
these phases to other leptonic observables, would be of
paramount importance.
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