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Sw itzerland

A bstract. M otivated by brane physics, we consider the non-linear D iracB om-Infeld
(DBI) extension of the Abelian-H iggs m odel and study the corresponding cosm ic
string con gurations. The m odel is de ned by a potential term , assum ed to be of
the m exican hat form , and a DBI action for the kinetic term s. W e show that it
is a continuous deform ation of the Abelian-H iggs m odel, w ith a single deform ation
param eter depending on a din ensionless com bination of the scalar coupling constant,
the vacuum expectation value of the scalar eld at in nity, and the brane tension.
By m eans of num erical calculations, we Investigate the pro les of the corresponding
D B I-cosn ic strings and prove that they have a core which is narrower than that of
Abelian-H iggs strings. W e also show that the corresponding action is sm aller than


http://arxiv.org/abs/0809.2013v1

D irac Bom Infeld (DBI) Cosm ic Strings 2

In the standard case suggesting that their form ation could be favoured in brane
m odels. M oreover we show that the DB I-cosn ic string solitions are non-pathological
everyw here In param eter space. Finally, in the lim it in which the DB Im odel reduces
to the Bogom olnyiPrasad-Somm er eld (BPS) Abelian-H iggsm odel,we nd thatDBI
cosm ic strings are no longer BP S: rather they have positive binding energy. W e thus
argue that, when they meet, two DB strings w ill not bind w ith the corresponding
form ation of a junction, and hence that a netw ork of D B I strings is lkely to behave as
a netw ork of standard cosm ic strings.

PACS num bers: 98.80LCq, 98.70V c

1. Introduction

The (W ikinson M icrowave A nisotropy Probe) W M APS results [1, 2, 3, 4, 5, 6] give
strong Indication in favour of coam ic In ation over otherm echanism s for the production
of prim ordial uctuations [7]. Since in ation generally takes place at high energy,
recently there hasbeen a urry of activity in constructing m odels inspired by or derived
from string theory (for recent reviews see eg.Refs. [8, 9,10, 11]). In a large category
of these m odels, particularly braneantibrane in ation [12,13,14,15,16,17,18,19, 20]
and D3/D 7 in ation [21, 22], the end result of the In ationary phase is the creation of
D —strings (as well as potentially F—strings [23]), interpreted from the fourdin ensional
point of view as coan ic strings. Since cosm ic strings are strongly ruled out as the
m ain originator of prim ordial uctuations, the D -(and indeed F-) string tension is
severely constrained and (under certain assum ptions) such that G, . 10 ® i order
to presarve the features of the W M APS results [24]. Nevertheless, the existence and
possible detection of the e ects of D strings In the afterm ath ofan era of brane in ation
could be a testable prediction of string theory.

D —strings them selves have been con ectured to be in correspondence w ith the D —
term strings of supergravity [25]. O ne of their rem arkable properties is that they satisfy
a Bogom onyiPrasad-Somm er eld (BPS) condition, ie. they have no binding energy
and preserve 1/2 of the origihal supersym m etries. T hey also carry ferm ionic zero m odes
and are therefore vorton candidates, leading to possible interesting phenom enological
consequences [26].

The denti cation between D +termm strings and D —strings has been m ade in the
Iow energy Im it, when eld gradients are snall. TInspired by the case of open
string m odes which can be e ectively described by a non-linear action of the D irac—
Bom-Tnfed (DBI) type, In this paper we construct m odels of coan ic strings which
depart from the low energy approxin ation and generalise the A belian-H iggs m odel
to a non-linear one. W e will call the resulting topological ob fcts DB I<oam ic
strings’, and they are exact solutions of the generalised non-linear DBT action. The
action we consider is very di erent from others which have been discussed in the
literature, R efs. 27, 28, 29, 30, 31, 32], and in particular does not lead to pathological
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con gurations. Tn the lim it of am all eld gradients our D B I strings reduce to A belian—
H iggs strings. W e construct the D B I string solutions num erically In a broad range of
param eter space, using two num erical m ethods: a relaxation m ethod and a shooting
algorithm . In this way, we show , In particular, that D BI strings w ith a potential termm
corresponding to the BPS lim it of the A belian-H iggs m odel are no-longer BPS. M ore
soeci cally, 2 2 n,where . istheaction perunittin eand length fora string w ith a
w inding num ber n: the equality onl holds in the low -energy lim it. B orrow ing Janguage
from the standard coam ic string literature [33, 34, 35], the strings are therefore In the
type II regin e (though the deviations from BPS are sm all, In a sense we w illquantify).
T he netw ork of strings produced w ill therefore not contain jinctions, and all the strings
w ill have the sam e tension ,.;. In the coan ological context we therefore expect the
D B Istring network to evolve in the standard way eg. [36], containing in nite strings
and loops, radiating energy through gravitational waves, and eventually reaching a
scaling solution.

The paper is organised as follows. In section 2.1 we recall the properties of
A belian-H iggs coan ic strings, w hile their realisation In the D 3/D 7 system isdiscussed in
subsection 2.2. In section 3,we rstbrie y review thedi erent non-linear actions w hich
have been put forward so far in the literature. Then in subsection 3.2, we m otivate
and present our proposed non-linear action for coamn ic strings, which we expect to be
applicable when eld gradients are large. Tn section 4, we study the D B T-coan ic strings
solutions analytically and num erically. In subsection 4.1, we present sin ple analytical
estin ates which allow us to roughly guess the form of the DBI string pro ls and,
In subsection 4.2, we com pute them num erically by m eans of two di erent m ethods
(shooting and over relaxation). In section 5 webrie y summ arise ourm ain ndings and
discuss our conclusions. F inally, the appendix gives the full non-linear structure of the
DB I cosn ic string action.

2. A belian-H iggs C osm ic Strings

2.1. The Akelian-H iggs m ocdel

W e begin by recalling brie y the properties of standard A belian-H iggs cosn ic strings,
and at the sam e tim e Introduce our notation follow ing Ref. [34] though we use the
signature ( + ++ ).

T he A belian-H :'gé_:js m odel is governed by the action

S = " Tg o D )+ %F F +Vv@Ed (1)
w here the potential is given by

vgy= 538 2T (2)
In Eg. (1), D denotes the covariant derivative de ned by D @ oA with A

the vector potential, F @A @A ,and g is the gauge coupling. The potential is
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Figure 1. Left panel: the tension of n = 1 and n = 2 AbelianH iggs strings as
a function of ! = 2¢?= . Right panel: the binding energy 5, 2 , Hrn = 1

Abelian-H \ggs strings as a fnction of '.W hen theBPS condition = 1 issatis ed,
n=2n ?sothat 5, 2 ,= 0ascan beveried in the gure.

characterised by two free param eters: the coupling > 0 and an energy scale . It is
usefill to Introduce the din ensionless coupling

— ms . (3)
2 m; ’
. , P— p-
where the Higgsmass ism ¢ = = 2 and thevectormassm 4 = g

Due to the non—xrivial topology of the vacuum m anifold, after gauge symm etry
breaking the m odel possesses vortex (or cosm ic string) solutions for which the scalar

eld can be expressed as
(c; )= X () ; (4)

w here we have used the cylindrical coordinates, and the coan ic string is aligned along
the z-axis. Here n is the w inding num ber proportional to the quantised m agnetic ux
on the string, and we have de ned a rescaled radial coordinate

1=2 r; (5)

with X ( )! 1latin nity,whileX (0)= 0. In the radialgauge, the only non-vanishing
com ponent of the vector potentialA isA ( )wih A (0)= 0.W ede ne

Q n qaAj; 6)
50 that the tension, de ned to be the action per unit tine and length = S=dtdz,
can be expressed as \ "
) 2 2«7 2 2
dx X d 1
Z()=2 2 d * LR, L e g2
0 d 2 2 d 4
2 fg. o (7)

The function g, (') isplotted in Fig. 1 (left panel).
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In the BPS case, = 1, the tension given in Eq. (7) can be reexpressed as
Z +1 2 2
dx X 1d 1
=2 ° d ax Lx o, 1 Ly g
0 d d 2
P2l ox? o (8)
d 4
and ism inim ised for coam ic strings that are solutions of the BP S equations
dX XQ dQ
—— = =& 1): (9)
d d 2

O n inserting back into Eq. (8) one nds
n=2 ‘n (10)

so thatg, (1) = n.

The functionsg,_1 ( !')and g,_, ( ') are plotted in the left hand panelofFi. 1
whereas the binding energy  , 2 1 isshown in the right hand panel. Tn the BP S Iim it,
gy (1) = n,and the force between vortices vanishes [37]. For < 1, the strings are type
Iw ith a negative binding energy, whilke for > 1 they are type IIw ith positive binding
energy. Type I string therefore attract and can form bound states or “zippers’ [38]
Iinked by junctions. Zippersm ay form (in a certain regin e of param eter space) when
two strings in a network collide, Refs. [39, 40]. A network of type II strings, on the
other hand, contains no jinctions and the strings all have the sam e tension ,-;.

W enow outlinehow BP S A belian-H iggs coan ic strings form in certain string theory
modelsof in ation. Thisw illm otivate our discussion of D B I strings in section 3. T here
wewillsee that DBIstringswith = 1 have a positive binding energy and hence repel
each other.

2.2.BPS Abelian-H iggs strings in the D 3-D 7 system

In string theory m odels, coan ic strings can form aftertheend ofin ation [8,9,10,11]. In
the D 3/D 7 system [21, 22] in particular, the two branes attract during the in ationary
period and then eventually coalesce formm ing D strings. The whole picture (in ation
and string form ation) can be descrlbbed in tem s of the eld theoretical D term hybrid
In ation [25]. In this lJanguage the D —strings have been con ctured to be analogous to
D tem strings, and furthemm ore | aswe now outline | the strings are BPS A belian—
H iggs strings.

In the D3/D 7 system there are three com plex elds [21, 22]: the n aton  and
the waterfall eds . In string theory, is the Interbrane distance and are
In correspondence w ith the open strings between the branes. In the supersymm etric
language, the K ahler potential is

K= S YT+ f+5 45 (11)
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Jeading to canonically nom alised elds. Notice that the iIn ation direction is nvariant
under the real shift symmetry ! + ¢, thus guaranteeing the atness of the in aton
direction at the classical level [41]. T he superpotential is

W = v : (12)

During In ation, the U (1) symm etry under which the waterfall elds have charges 1
is not broken, ie = (0. The scalar potential is at and picks up a slope at the
one loop lkvel. This is enough to drive in ation. As  decreases, it goes through
a threshod after which the waterfall ed ¥ condenses and the In aton vanishes.
T his corregoonds to the coalescence of the D 3—and D 7-branes. T he e ective potential
describing the condensation is given by the D term potential (the F—+term s all vanish
when = 0; = 0)

Vp = — 317 : (13)

Theterm  iscalled a FayetTliopoulos (FI) term [42]. As © condensesand h "i= b- ,

cogn ic strings form interpolating between a vanishing eld in the core and P- at
In nity. These cosn ic strings are BPS obfcts pressrving one half of the original
supersymm etries. Thelr tension is known to be , = 2 n [25]. As a consequence,
there isno binding energy as ,, = 2 4.

In fact [25], the D tem string m odel of D —string form ation is nothing but an
Abelian-H iggs m odel w ith particular couplings

1
L=D "D "Y'+ _—_F F +V; (14)
4g°
whereD * = (@ A ) " .Upon rescaling A ! A =g and com paring w ith (1), this
Jeads to the denti cation
a=g; =29; = 7?; (15)
corresponding to = 1 and, hence, a BPS system . This explains why one recovers

2n — 2 n-e
M oreover, the energy scale P- can be given a stringy interpretation. Indeed, one
can show that the FayetTliopoulos termm is related to intemal uxes on D 7-branes [43].
For this purpose, let us consider a ten-din ensionalm etric in the form

ds’=g dX dX + guudXPdX ¥+ gjdx 'dX 7; (16)

wih = 0; ;3,0 = 4; ;7 and 1= 8;9. The quastihe dour-dim ensional
m etric and g4 and g;5 the com pacti cation six-dim ensionalm etric. T his corresponds to
themetricon K  T? com pacti cations for instance. T he intemal din ensions of the
D 7-brane are the coordinates a ( ;p)while the D 3-brane liesalong the coordinates.
W e denote by T, the brane tension and gy the string coupling. T he fourdim ensional
gauge coupling is given by

1 TV, 4

—= 1= an
g Js
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P R P—
where the string length is ‘s = 1= 2 %and V, = d'x detgy is the volume of
the four com pact intemal dim ensions of the D 7-brane. Consider now a dim ensionless

m agnetic ux F 4 along tlzle intemmaldim ensions (p;q) = 4; ;7,0fa D 7-drane. Then
T p——
2 7 4
= —— d'x F . FP: 18
2.9 Pal pg (18)
N otice that the absolute value of the FI term is not xed, it can be decom posad as
= =% where the prefactor depends on F .

In the follow ing, we w ill consider cosm ic string m odels for which the canonical
kinetic term s have been replaced by a non-linear term of the DBI type. In e ective
actions describing string theory phenom ena, and particularly brane dynam ics, such a
replacam ent ism andatory as soon as the gradient temm s in the e ective action becom e
large. Indeed, the DBI action usually describes the dynam ics of the open strings in
correspondence w ith the brane m otion (such as the 33 and 7-7 open strings in the
D3/D7 system ). As we have recalled, the form ation of coan ic strings In the D 3/D 7
system is govemed by the 3-7 strings of no obvious geom etric signi cance. In such a
situation, and assum ing that there could be higher order tem s correcting the lowest
order Lagrangian, the e ect of the higher order corrections to the kinetic term s (term s
inP "F°; p> 1) would be to induce m odi cations of the coan ic string pro le and of
the tension.

In the follow ing, we do not restrict our attention to a particular setting such as the
D 3/D 7 system . W e discuss possible non-linear extensions of the A belian-H iggs system
and then m otivate a speci ¢, well de ned form . W e then analyse the departure from
the BPS case induced by the higher order tem s.

3.DBICosn ic Strings

3.1. Non-standard actions for cosm ic strings

A s discussed in the previous section, we are Interested in situations in which gauged
cosam ic strings form when higher order corrections to the kinetic term s in the action
cannot be neglected. In the absence of an explicit derivation from , say, string theory,
we take a phenom enological approach (which, however, is strongly ingpired by string
theory). This is presented In subsection 32. W e will construct an action [given in
Eg. (35) and reproduced below ] which satis es the follow ing two criteria: F irstly, the
A belian-H iggs lim it should be recovered when gradients are an all. In particular, the
action should be a continuous deform ation of the A belian-H iggs m odel. Secondly, the
resulting coam ic string solutions should have no pathological and/or singular behaviour
as the m odel becom es m ore and m ore non-linear (in eld gradients). In the rem ainder
of this subsection, x%e com pare our action, Eqg. (41):
q
s/ d'x detg + (D )D , W+ F p_g

PR a9)
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to other non-linear actions which have been considered in the literature and which do
not satisfy the above criteria.

In Refs. [27, 28, 30] an attem pt to construct a non-linear m odel for (electrically)
charged vortices in (2+ 1) din ensions uses an hybrid approach w ith a (truncated) Bom-
Infeld action for the gauge eld, a standard linear action for the Higgs e, and a
Chem-Sin ons tem z:

7 r

_ 1
5= a'x g ? 1+ —F F 1 +— AF
2 2 4

1
+5j3 F+vV() ; (20)

where is a param eter of dim ension two and D f = (D )(D Y. At a threshod

= . corresponding to the very non-linear regim €, the gauge eld becom es singular at
the origin of the vortex whilst, below the threshold, no solution exists. Incorporating
the H iggs kinetic term s Into the square root, while dropping the Chem-Sin ons temm ,
Jeads to the follow jlgg expression

_ 1 1 1
5= a'x g ? 1+—F F +—9P f+ =FFD D
2 2 2 4
1 1=2
2
Fj) JE F 1 v(); (21)
w here F” F =2.W ith such a very particular form (which di ers from the onewe

w ill propose shortly ), one does not nd nite energy solutions.
A m odel for (global) coan ic strings was proposed in Ref. [29]w ith an action given

by
Z .
. p_hpi 1
S = d'x g 1+ R 7 1+ V() (22)

(this is dentical to Eq. (21) In the global Iim it). For this m odel the solutions becom e
m ultivalued and unde ned at the origin as soon as the m agnitude of V ( ) becom es
su clently large [29].

In view of these negative approaches where singularities and pathologies abound,
one could be tem pted to think that non-linear coam ic string actions all lead to these
problem s. Fortunately, a welldoehaved action hasbeen suggested by Sen [44 Jand studied
InRef. [45]in the case of D stringsobtained at theend ofD D in ation. In such a system ,
hybrid in ation occurs and the rdle of the waterfall eld is played by the open string
tachyon T with a charge 1 under the U (1) gauge groups of the D 3— (respectively D 3-)
brane. W hen the two b%_’anes coincide the e ective action reads .
s= T d'xv T;TY pdet( q)+pdet( g) ; (23)

z No charged vortex solutions exist when the Chem-Sin ons tem is absent.
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whereg =g ¢ + D TD TY+ D TYD T =2andV isthe tachyon potential.
Sincedet( ¢ )= det( g ) (see the Appendix), the action reduces to
7

| O
S= 2% d'xv T;TY det( d); (24)

and it adm its BP S vortex solutions.

Topological defects in m odels w ith general non-linear kinetic term s were studied in
Refs. [31, 32]. The action proposad in [31] for global topologicaldefects di ers from the
tachyon action above (in the global Iim it) as the potential is added to the generalised
kinetic term s:

s= d'x M V() : (25)

X
M 4
Here

X _(@ a@ a) (26)

isthe standard kinetic term ,K (X ) is som enon-linear fiinction, , isa sstofscalar elds,
M hasdin ensionsofm ass, and the potential term provides the sym m etry breaking term .
O neofthem ain restrictions m posed in [31]Jon the form ofthe non-linear function K (X )
isthatK (X ) should have a canonicalasym ptotic form ,K (X ) X asX ! 0.However,
for large gradients K (X ) could deviate considerably from the canonical kinetic tem s.
T he form er requirem ent im plies a non-pathological behaviour of solutions far from the
defect core, w hile the di erent possibilities forK (X ) atin nity leads to deviations of the
defect from the standard case inside the core. T he action (25) leads to non-pathological
solutions for socalled k-defects | dom ain walls, coam ic strings and m onopoles | whose
properties can di er considerably from those of standard defects.

A gauge version of action (25) was considered in Ref. [32]: for a com plex scalar

eld

z
s= d'x MK £ V() }F F 27)
B M 4 4
w ith
1
X 5(D YO ) (28)

Tt was show n that non-pathological coam ic string solutions exist at least for som e choices
of the non-linear function K (X ) [32].

In the follow ing we w illm otivate and study a non-linear extension of A belian-H iggs
m odel which retains som e of the properties of the tachyon and k-defect m odels. T he
potential w ill be additive as in the k-defect case while the kinetic term s have a DB
form as in the tachyon case. However, the kinetic term s are not a function solely of
X anym ore: they di erentiate between the radial and angular gradients of the defects.
T his springs from the origin of the kinetic term s as induced from the nom alm otion of
a D 3 brane em bedded in a Jarger space-tim e.
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3.2.A DBIActon for Coam ic Strings

W e now tum to the action that we propose in this article. Consider a brane m odel in
which coam ic strings appear as deform ations of a brane. (In a sense the brane becom es
curved w ith a puncture at the location of the string, aswe discuss.) To do so, consider a
ten-din ensional setting as is natural for brane m odels derived from or inspired by string
theory. W e choose a non-warped com pacti cation and w rite the ten-din ensionalm etric
in cylindrical form

ds?, dldx*dx® =dsj+ 29 dz dz ; (29)
w here

ds? g dx dx = (@x”)+ drR?+ R% “+dz?: (30)
The metric along the intemal din ensions g ( = 5;6;7) is kept arbitrary,

ie. Hem itian and positive de nite, and we have assum ed that the six-din ensional
m anifold is complex (it could be a CalabiYau m anifold) therefore having com plex
coordinates. T he com plex coordinates are crucial to analyse cosn ic strings.

ConsidertheDB1I %ct]'on fora threeborane em bedc%ed along the rst four coordinates
o
s= T d¥% det(g + “2F ) Q=" gV TZ (31)

where T is the brane tension,F  isthe eld strength on the brane (and hasdin ension
tw o), distances have din ension m nusone and A hasdin ension one. W e have included
a potential for the deform ations 72 of the nomm al directions to the threebranes. A s
suitable when the nom aldirections are charged under the w orld-volum e gauge group [in
this case the IocalU (1) on the brane], we include a covariant derivative In the de nition
of the induced m etric

§ =g +g DZDZ +D 2D % (32)
w ith

D =@ il 7AW (33)
C learly, when the gauge eldsvanish,g is s ply the lnduced m etric on the brane. A
sim ilar extension of the induced m etric to charged elds has already been Introduced in
the context of N <coinciding D Joranes [46 ] w ith the corresponding non-Abelian SU (N )
gauge theory. T here the brane coordinates are in the ad pint representation and have

kinetic termm s involving the SU (N ) covardiant derivative [46]. W e extend this procedure
to the DB I coan ic string situation with a U (1) gauge groupx

W hen the six-din ensionalm etric isnearly atg = Jocally, the action becom es
Z
g
s= T d%x detg + DZ D Z +D 2D Z + “2F
p Y PP
g d'x ~gv Tz ; (34)

x In the D -brane context, the brane eldsdo not carry any U (1) charge as they belong to the ad pint
representation.
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where, as usual, we have subtracted the action of the \ at" brane so that the A belian—
H iggs m odel is recovered when gradients are an all. In the follow Ing we suppose that
only one nom aldirection is excited and de ne 7. The resulting action is given
by

Z S P
S = T d*x detg + (D( )D , )Y+ “2F g

P —
pP—V( T3)
+ g—

T (35)

N otice that, in the above equation, the potential [ie.V (x) as a function of x] is still
given by the expression (2) and, therefore, contains the param eter . W hen the com plex
scalar eld wvanishes, Eq. (35) describes Bom-Infeld electrodynam ics [47].

W e now discuss action (35) in detail. In particular we com pare its properties to
those of the A belian-H iggs action (1) discussed in section 2, and then we construct the
static coam ic string solutions of the action.

A rst In portant property of Eq. (35) is that, to leading order in deriwatives, it

reduces to the standard action (1) on dentifying

p_
= T (36)

and rede ning the charge according to the follow ing expression

a= p% (37)

s
together w ith the gauge eld
A = pA_— : (38)
T 2
Hence, if the spatial derivatives characterising D B I-strings are am all (we shall discuss
w hether or not this is the case below ), their properties should to be very sim ilar to
Abelian Higgs strings. M ore generally, however, and as discussed in detail in the
Appendix where we calculate the determ inant explicitly, Eq. (35) contains term s of
higher order In covariant derivatives aswellas num erous di erentm xing term sbetween
F and D (suitably contracted). T hese extra term s could signi cantly change the string
solution and the resulting strings’ properties relative to the Abelian Higgs case. It
follow s from this that our action is very di erent from that considered by Sarangi in
Ref. [29], even In the globalcase. A sa consequence we w ill nd non-pathological coan ic
strings solutions w ith a continuous lin it to A belian-H iggs strings.
W e now focus on the cosn ic string solutions of Eq. (35). For this purpose, rst it
is usefiil to pass to din ensionless variables, denoted w ith a hat. Explicitly we sst
2 ~ , r
— i F o7 D L i =i £ T (39)
s T’ s

aswellas

V(59 A (40)
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where " T 4, so that the action becom es
Z r Hr I
S = T, d'x detg + O )D ) )Y+ F g
P—ar AL
+ g 73 : (41)

W e now follow the procedure outlined in section 2.1 for Abelian-H iggs coan ic strings,
however for action (41). In din ensionless cylindrical coordinates, ds? = & + df? +
£2d ? + d2? and i the radialgauge (X, = 0), the cosn i string pro ke is

"= rx ()€ 0()=n & (@) ; (42)
where we have de ned a new radial coordinate by the follow ing expression
N1=2 ~p (43)

which should be com pared to Eqg. (5). T he boundary conditions on the elds are

]JI'mOX=O; l'i“nOQ=r1; ]Ijqu=l; J'i“r}Q=O: (44)
Substituting Egs. (42) and (43) Into (41) aswellasusing (39),we nd thatk
h i
( detg ) ?= detg + @ WD\ HY+F (45)

where we have de ned the factor b#/

2 2« 2 2
dX X d
2 Lt 14 2 . + = d—Q : (46)
Hence the string tension de ned as  S=%2dzdf is given by
8 V " 1
g 2%+ <u ax ° Q2X 2 do °
n = d to1s — 1+ + - —
0 : d 2 2 d
9
1+§(x2 15 (47)
4
w here
A (48)
and, as In the Abelian-H iggs case,
= (49)

28 27
Eg. (47) is the main result of this section and represents the non-linear DBIT
generalisation of the linear Abelian-H iggs m odel: it should be com pared to Eq. (7).
N otice that it Involves the single additionalparam eter which m easures the deform ation
from the AbelianH iggs m odel, since Eq. (47) reduces to the tension of Abelian H iggs

k Notethat 2= D whereD isdiscussed in the A ppendix.
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strings in the linear Iimi ! 0. Asdiscussed in section 2.1, Abelian-H iggs strings
are BPS when = 1,and hence for = 1, DB I-coan ic strings w ith tension given by
Eg. (47) are a continuous deform ation of the BP S A belian-H ggs strings. T his property
is, of course, very in portant and constitutes an additional m otivation for the action
given In Eq. (41).

Finally, we note that the argum ent of the coan ic string pro le  is also dentical
to its counterpart in the A belian-H iggs case, w hatever the value of . Hencewe willbe
able to nd continuous deform ations of the coam ic string pro les param eterised by
and depending on the universal variable

4.DBIString Solutions

4.1. Analytical E stim ates

Having established the model and its action, we now tum to the solutions of the
equations of m otion. The DB I coam ic string equations follow from Eq. (47) and read
" #

d ’% 2 dx 2 ax °
— 14 2 — = -xX?* 11X+ 0 1+ — ;
d 2 d 2 d
50

" # (50)
d d dx
4 2y, & X?; (51)
d d d

for the scalar eld and gauge elds, regpectively, where isde ned in Eq. (46). In the
Abelian Higgs IImit, = 0, Egs. (50) and (51) reduce to the standard cosm ic string
eld egquations for which = 1. Deviations from Abelian H iggs strings w ill occur if
< 1.Notice thathere the eldsarepurely spacedependent. For timn edependent elds,
and particularly in DBI in ationary cosnology with in aton (t) whose dynam ics is
described by action (41) in thegloballim it, then isa generalisation of the cosm ological
Lorentz factor. Indeed, as can be seen from Eqg. (46) In the case when g describes
an hom ogeneous and isotropic manibd, 2= 1 2=T( )where T( ) is related to
them etric of the extra-din ensions. The di erence in sign between spatialand tem poral
derivatives is responsible for the fact that deviations from standard cosmology ( = 1)
occur herewhen ! +1 rather than 1.

U nfortunately, as is clear from Egs. (50) and (51), the DB I cosn ic string equations
cannot be solved exactly. W e have therefore carried out a fuill num erical integration
of the equations of m otion. For convenience, we w ill focus on the deform ed BP S case
where = land 6 0 (though 6 land $ 0 can also been donew ith the num erical
m ethods used here).

B efore discussing the num erical results, w e analyse the asym ptotic behaviour of the

elds in order to obtain a rough understanding of the solution. W e w ill consider the two
Imits ! Oand ! 1 and willaddresstwo issues. The st one is the non-existence
of singularities in the core of the coan ic string. T he second onew illbe the determ ination
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of the shape of the coam ic string pro le both at the origin and at In nity. In particular
wewill nd that the functional form of the string pro le is sin ilar to the A belian-H iggs
case Inside the core, the only di erence springing from -dependent factors.

Consider rstthe ! 0O lm it and let us exam ine the possibility of singular DB I
strings deep in the string core. A s already discussed, the D B T features of the solutions
depend on . In particular, extram e deviations from the Abelian-H iggs case would
appear if ! 0 at the origin. This can only happen if the derivative of X and/or Q
becom e extram ely large, ie. the string becom es singular. Let us rst assum e that the
gradient of Q becom es Jarge and dom nates the  factor, ie. d =E% dQ ). The
gauge equation becom es non-sensical as the left-hand of (51) vanishes and the right-
hand side does not. Hence there is no regin e w here the gradient Q is arbitrarily large

leadingto ! 0Oattheorigin. W enow exam ine the possibility that X becom es singular
at the origin w ith a Jarge gradient. In this Iim it, we nd
1 1 1 2
- - ; (52)
X (dX=d ) 2 (dx=d ) on¢ X 2
where Q n close to the origin and we have expanded in 1= (dX=d )2 1 and

2=( X ?) 1, this last condition being the onl one com patible with the condition
on the derivative of X . W orking to rst order in these two param eters, the pro le is
determ ined by

LR N R SRS S N
d n? X2 @x=d ¥ d dx=d ¥ n?® X?
N otice that to zeroth order in the two sn all param eters, the equation is tautological. Tn
the init ! O with an ansatz X the equation of m otion is satis ed for 2 = n?.
The only solution satisfying X (0) = 0 is obtained for = n which has nite derivative
at the origin. T his contradicts our prem ises and, as a result, we conclude that singular
D BT strings do not exist.

H aving show n that the strings are not singular, wew illnow show that the functional
form of the solutions is sim ilar to the ones in the A belian-H iggs case. Let us assum e
that, in thelm i ! 0, theDBIsolutions are of the form

: (53)

X()=A, "; 9()=n B, % (54)
where p and g are two constants w hich we w illdetermm ine below ,whike A and B are

tw o constants to be obtained by num erical integration; and we have taken into account
the boundary conditionsat = 0: X (0) = 0 and Q (0) = n. By direct substitution of
the asym ptotic form (54) into the equations of m otion Egs. (50), (51) and taking the

Imit ! 0,one can check that the correct asym ptotic form for X and Q reads,
X()=~2a,,"; Q()=n B, *: (55)
Thusp= n and g= 2 and, as guessad above, the only di erence between DB I cosn ic
strings and A belian-H iggs coan ic strings close to the origin is in the num erical values
of the prefactors A and B which are -dependent. In particular, these coe cients

DBI DBI

becom e large for arge  In plying that away from the origin but for reasonable and
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nite values the gamm a factor becom es noticeably di erent from one, ie. the cosn ic
strings are in am id DB I regin e.

From Egs. (46) and (55) it mm ediately follows that is always nite at = 0.
Thisa salient point as it con mm s that the coan ic strings constructed w ith a D B T action
are non-singular at the origin. This is of course yet another argum ent supporting the
fact that Eq. (47) represents the natural D B I generalisation for coan ic strings.

M ore precisely we nd thatas ! 0 there are two possible regin es: the standard
regin e where jl 7 Oand amid DBIrgimewhere < 1but nite. Letus zst
analyse the global string, for which Q = 0. It is clear from Egs. (46) and (55) that
forn 2 them id DBI regin € cannot be realised around ! 0. Note, however, that
for lwe nd numerically thatA . 1,which in plies that away from the origin
the gradient dX =d becom es large, so that the solution is In them id DB I regim e. For
n= 1themid DBIregine isvald starting from = 0, if 1.For 1 theregin e
is always of non-D B I type, Independently ofn.

In the case of gauge strings, the situation is sim ilar in the Iimit ! 0. Again
for 1 the non-DBI regin e is realised. For 1l we nd numerically thatA
and B, ., In Eq. (55) are Jarge. Thus the gradient dQ =d  is Jarge too, while the term s
proportional to dX =d and to Q%X ? are large only forn = 1, and they are snallin a
an allregion around = 0 forn 2. However, these term sbecom e large away from the
origin, since a Jarge constant A | in plies that dX =d becom es Jarge at som e point. In
conclusion,we nd that for Jarge enough, the coan ic stringsarein am id DBIregin e
for nite valuesof . Thisiscon m ed num erically.

Finally let us notice that at in nity, Independently of ,both the gradients dX =d
and dQ=d are an all, and the coan ic string m atches the standard behaviour. T his is in
agreem ent w ith the general ndings for topological defects w ith a non-canonical kinetic
term .

In summ ary, thedi erence between the A belian-H iggsand D B I stringsw illbe an all
very far from the core of the string, while the DB I string can di er from the Abelian—
H iggs one inside the core of the string: the larger the larger the di erence inside the
core.

4.2. Num erical Solutions

A sm entioned above, the equations ofm otion (50) and (51) cannotbe soked analytically.
For this reason, we now tum to a fulll num erical integration.

A s is wellknown, the num erical integration is non-trivial because the boundary
conditions are not xed at the sam e point. T he solutions discussed is this article have
been obtained by m eans of two independent m ethods: a relaxation m ethod [48, 49, 50]
and a shootingm ethod . M ore precisely, the form er is in fact the over relaxation m ethod.
The over relaxation m ethod di ers from the relaxation m ethod (also known as the
New ton iteration m ethod) by the fact that the New tonian iteration step is m ultiplied
by a factor of ! . In the standard case, convergence for the over relaxation m ethod is
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Figure 2. Left panel: the pro les of global DBI strings forn = 1 and for various
values of the param eter de ned In Eg. (48). Right panel: sam e as left panel but
withn= 2

guaranteed provided the over relaxation param eter | < 2 and, therefore, a good choice
is for instance ! 1:99. Here, the highly non-linear nature of the equation of m otions
m ay render the over relaxation m ethod unstable. To dealw ith this problem , we have
considered a \step-dependent” over relaxation param eter ! interpolating from ! 1,
close to the origin, and to ! ! 13 at \in nity". As already m entioned the choice
' =13 1:99 is due to the highly non linear behaviour of the equations. W e have
observed very severe instabilities forhigher valuesof ! . O n the other hand, the shooting
m ethod can be directly im plem ented in its standard form ulation in the case of global
strings, since there is only one Integration constant to be obtained, A ... W hile in the
gauge case the presence of two \shooting" constants, A_ .. and B__ ., m akes the direct
In plem entation of the standard schem e in possible, we have thusm odi ed the shooting
m ethod appropriately. A 1l in all, the two di erent num erical procedures, a relaxation
and a shooting m ethod , give the sam e num erical solutions, up to an allnum erical errors.

Num erical integration of the equations of m otion (50) and (51) are presented and
discussed below .

Firstly, In Figs. 2, we consider globalD B I strings (that is to say w ithout the gauge

eld) for, regpectively, w inding numbers n = 1 (left panel) and n = 2 (right panel)

and di erent ’s. This gure con m s the qualitative statem ents m ade in the previous
subsection. W e notice that, even for \non-perturbative" values of > 1, the
di erence between the standard and the DBI pro ls rem ains quite sm all. M oreover,
as announced, the m axinum di erence lies at a (din ensionless) radius of order one,
nam ely halfway from the origin and the region where X ! 1. Another ram ark is that
the DBIpro lesare always above the standard pro les. T his is of course expected since
the D B Iregin em eans largerderivativesw hich, in the present context, in plies the above
m entioned property. Finally, one can check that the asym ptotic behaviours discussed
In the previous subsection are clearly observed in Figs. 2. Indeed, forn = 1, we notice
thatX () A, is clearly a function of (see In particular the zoom In

, le.

where A |

I



D irac Bom Infeld (DBI) Cosm ic Strings 17

2.0 .

n[1-a(r)]
L
n[1-a(r)]

Il

°
°
H
N
e
°
S
°

1.0 r N

¢/7, Q(r)
¢/7, Q(r)

L)
g
4

| - \ —
0.5 / . woaf N

X(r)

X(r)

0.0L . L — .
6 10 2 4 6 8 10
p=A"onr p=A"2nr

Figure 3. Left panel: the solid lines represent the pro les of the scalar and gauge

edsofa DBIstringswith n = 1 and = 1 while the dashed lines are the pro les
of the scalar and gauge elds of a standard A belian-H iggs string (ie. = 0). Right
panel: sam e as left panelbut w ith n = 2. Notice that, on the y-axis, we have used the
notation a QAA =n.

the left panel). The sam e rem ark applies forn = 2, where X ( ) 2,
Secondly, in F igs. 3, we digplay the pro les for D BT local strings, ie. for the scalar
ed and thegauge eld,in thecasewhere = 1,n= 1 (left panel) and n = 2 (right
panel). T he sam e ram arks as before apply. In particular, the scalar ed pro le always
lies above its A belian-H iggs counter part and, on the contrary, the DBI gauge eld
pro e always lies inside the standard pro le. A s already discussed, this is because, in
the D BI regin €, the gradients are, by de nition, lJarger than In the standard case. This
m eans that a DB string has a core an aller than an A belian-H iggs string. A s before,
one can also check that the asym ptotic behaviours are those discussed in the previous
subsection. This is true in particular for the gauge eld for which we always see that
Q n ?attheorgin.

T hirdly, additional inform ation on the pro les can be gained from Figs. 4. In the
left panel, w e have com pared the localand globalpro les. O ne can notice that the global
pro le is less concentrated than the local one. Another ram ark is that the di erence
between the AbelianH iggs and DB I pro les ism ore Im portant In the local case than
In the global one. Tn the right panel, we have com pared the slopes at the origin. In
the standard case, onehasX ( ) A " and it has been argued before that in the

standard

DBIcase,onealohasX () A, ".Wehaverepresented theratioA , =A_ __ for
various values of and n. One notices that the larger , the stesper the DB slope,
which seem s natural since the value of the param eter  controls how im portant the
DBIe ectsare. W e also ram ark that the sam e trend is cbserved when one Increases n
rather than . In conclusion, from these two gures, one con m s that the desper one
penetrates Into the DB I regin e, the narrow er the core of a coam ic string is. The e ect
is larger in the localcase than in the globalone and for lJarge w inding num bers than for

an all ones.
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Figure 4. Left panel: com parison of the cosn ic string pro les for global and local
DBIstringswithn= 1and = 1.The sold line represents the scalar eld pro le for
a localA belian-H iggs string w hile the dotted line is the corresponding D BIpro le.On
the other hand, the dashed line represents the scalar el pro le for an A belian-H iggs
global string w hereas the dotted-dashed line is the corresponding DB I pro le still n
the global case. R ight panel: ratio A__ =A (see the text) as a function of the

DBI standard

param eter for di erent values of the w inding num bern.

Fourthly, given the num erical solitions presented above it is straightforward to
calculate their tension which, from the action given by Eq. (47), takes the form

A (X;0)=2 Zf.(); (56)

where f, (0) = n In the AbelianH iggs case. Tn Fig. 5 (left panel), we plot the universal
functions f,, ( ) for the DB I Iocal strings. W e notice that the DB T action is, for any n
and/or , analler than the corresponding standard action. M oreover, at a xed value
of , the (absolute) di erence between the DBI and A belian-H iggs actions increases
w ith the w Inding num ber. The fact that the DB I action is sn aller than the standard
one is lkely to have im portant physical consequences, in particular with regards to
the form ation of DBI cosn ic strings. Indeed, if their energy is smaller than in the
standard case, one can legitim ely expect their form ation to be favoured as com pared to
the A belian-H iggs case.
In the right panel in Fig. 5, we have represented the DB string binding energy
on 2 , as a function of the param eter for di erent values of the w inding num ber
n. W e observe that this quantity is always positive but an all in com parison to one.
M oreover, as expected sinceonehas ( o, 2,)( = 0)= 0, i ncreaseswith .We
conclude thatwhen 6 0, the DBI coan ic string is no longer a BPS ob fct. The fact
that ,, > 2 , means that, when they meet, two DB I strings w ill not constitute a
new single string w ith winding num ber 2n since this appears to be disfavoured from
the energy point of view . This has In portant conssquences for coam ology since the
above discussion in plies that the behaviour of a network of DB I coan ic strings w ill be
sin ilar to the behaviour of a network of Abelian-H iggs strings. This m eans that the
coam ological constraints derived, for instance in Refs. [24], also apply to the present
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case.

Finally, in Fi.6,we represent the energy density as a fiinction of the din ensionless
radial coordinate forn = 1 (left panel) and n = 2 (right panel) for di erent values
of the param eter . W e notice that the D BT energy densities are usually m ore peaked
than the A belian-H iggs ones. M oreover, the larger ,them ore peaked the distrdbutions.
The case n = 2 is particularly interesting. O ne observes that,as increases, the peaks
of the distrdbution are digplaced towards the lft, ie. towards an aller values of . This
is probably due to the fact that, as discussed at the beginning of this subsection, the
di erence between the DBI and Abelian-H iggs pro les is maximum for interm ediate
values of .
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5. Conclusions

W e have considered a natural D BT generalisation of the A belian-H iggs m odel w hereby
the kinetic term s of the Higgs elds do not lead to a linear di erential operator in
the equations of m otion. The particular form of the action is m otivated by a speci ¢
extra-din ensionalm odelw here the H iggs eld becom es a com plex direction nom alto a
D 3-brane. A lthough thism odel leads to nice coan ic string properties, it is not directly
related to a string theory m odel. A s such, the closest m odel of string theory which
could have lead to such a DBI action is the D 3/D 7 system where BP S cosn ic strings
are form ed at the end of an hybrid-lke in ation phase. Unfortunately, the charged

elds associated to the open string Ppining the D 3- and D 7doranes have no obvious
geom etric m eaning and therefore do not lead to cur DBTI action. Tt would certainly be
very Interesting to see if our construction can be em bedded w ithin string theory.

As a fourdim ensional m odel of non—canonical type, the DBI m odel of cosm ic
strings does not su er from any pathology such as divergences or non-single-valuedness
of the el pro les (typical of other non-linear actions which have been proposed in
the literature). Indeed we nd that DBI strings can be continuously deform ed to
their A belian-H iggs analogue. In fact, them ain di erence from the A belian-H iggs case
appears In the BPS case where the DB I strings show a an all departure from the BPS
property. In particular, we nd that the string tension is reduced, a property which
m ay have som e phenom enoclogical signi cance in order to relax the bound on the string
tension com ing from Coan icM icrow ave Background (CM B )data. M oreoverwe nd that
the D B I strings have a positive binding energy in plying that the string coalescence is
energetically disfavouraed, leading to the lkely form ation of netw orks w ith singly-wound
strings and statistical properties akin to the usual A belian-H iggs ones.

In the present article, we have not tackled som e Im portant agpects of D B I string
dynam ics such as string scattering (for which we expect that the higher order tem s
discussed in the A ppendix m ay play an in portant rdle), gravitationalback reaction, and
the coupling to ferm ions and their zero m odes. T his is currently under investigation.

In summ ary, we have Introduced DBI cosn ic strings as non-singular solutions
derived from a non-linear Lagrangian. W e have studied the solutions num erically and
found that they di er signi cantly from their Abelian-H iggs analogues. H owever, the
netw ork properties of these strings isaln ost certainly sin ilar to those of type ITA belian—
H iggs coam ic strings.
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6. A ppendix

In this appendix, we study in m ore detail the general form of the action (35) considered
In this article. Eq. (35) reads

z a
sS= T d'x detg + (D, )D , )Y+ “2F
p_ 9
p_+p_V TJ3 =
;
g e ;
z ' P V(p?' ')#
T d% g D 1+% ; (57)
where D isde ned by
D det +® D )Y+ @® H)D )+ ‘°F ; (58)

T hasdin ensions of (energy)* and ‘; is a length scale. Asbefore,D = @ A .

O urgoalis to com pute and sim plify Eqg. (58) forD . A s it isclear from itsde nition,
this will allow us to derive a m ore com pact formm ula for our action in the general case.
In Eg. (47) we have evaluated the action (57) for a cylindrically sym m etric static string
pro le. In this case it takes a sin ple form . However, when there is tin e dependence
and less symmetry | as occurs for exam ple in string scattering | it is im portant to
know the general form of the action.

F irst de ne the follow ing quantities

N D ; S NN +N N ; R S +F (59)

where are bar denotes com plex conjigation and we set ‘s = 1 in this appendix. Note
thatby de nition S  isa symmetric m atrix and F isantisymm etric, while S and
F  are In general neither sym m etric nor antisym m etric. D enote by S them atrix w ith
com ponents S ,while F isthem atrix with com ponents ¥ . For Integer n and p

tr SPF*L = 0 (60)

On the other hand, we also have

D= det( +R ) (61)
1

— ZI"1234"1234(11+R11)(22+R22)
(33+R33)(44+R44) (62)

which, on using the dentity
" L 4n 1 o+l 4 — (4 j)!j![j]:ll i]; (63)

gives

D=1+R +R!/ R! +R' R R ! +RrRIl'R R R !: (64)
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W e now evaluate each term in the above equation. For the rst (linear n R), it
follow s from Egs. (59) and (60) that

R =S =2N =20DO )OO )': (65)

T he quadratic term is given by

R'rR =gt st yost P14l P I (66)
1 1
- - %) ts? ZwF? ; (67)
2 2
2 1 2
= NN (NN ) N N 5tJ:F ; (68)

where to get from Eq. (67) to Eq. (68) we have used Eq. (59). Notice that these term s
are com patible w ith the U (1) invariance of the action. T he next step is to calculate the
cubic term . Tt is given by
R'R R!=gl g sl +3l s r!l+3lr rp!
+rl F F o (69)
The term in S° vanishes for the single com plex scalar eld studied here since, on using
Eqg. (59), it contains the contraction of an antisym m etric tensor w ith a sym m etric one.

Simiarly st s F ! =0=rF! F F ! onushgEqg. (60). Therefore, the cubic tem
takes the form
[ ] [ ] 1 2 2
R" R R =35" F F =§ rS)rF*° + 2tr SF : (70)
Finally, the quartic term can be expressed as
R' R R R'=sl's s s'+4stl' s s Fl+asl 7P 7 !
+63l s F Fl+Fl F F F ! (71)
=6sl s F FI+Fl F F F ! (72)

since the term s on the st line in the above equations vanish, on usihg the sam e
argum ents as above. A 1o

1
st s F ! oy Atr (S)tr SF? Atr F °S? 2tr(F SF S)
+ tr s? H#(ES) rF? (73)
1
FIL F F F]=ZI 6trF Y + 3° F° (74)

T herefore, in the end, one obtains the follow ing expression for D

D:

N
H

1 1
(S) “trF? + = & F? 2tr 4
2 8 .
lh i
tr §° +§21:: SF? tr(S)tr F 2

R
@

+
N I SR

t(S) tr F?2 + tr(S)tr SF? tr F%s? (75)

+

o

n
N



D irac Bom Infeld (DBI) Cosm ic Strings

23

The three tem s of the st line n Eq. (75), when substituted in Eq. (57) and on
expanding the squareroot, give the standard A belian-H iggsm odel. The lJast two tem s
of Eqg. (75) are the standard term s of Bom-Tnfeld electro-dynam ics. F inally, as discussed
In the main text, the factor D and, hence, our action de ned by Eqg. (35), contains
term s higher order in covariant derivatives aswellasm ixing term s between F 2 and the
covariant derivatives.
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