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Abstract: Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld

(DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string

configurations. The model is defined by a potential term, assumed to be of the mexican

hat form, and a DBI action for the kinetic terms. We show that it is a continuous deforma-

tion of the Abelian-Higgs model, with a single deformation DBI parameter depending on a

dimensionless combination of the scalar coupling constant, the vacuum expectation value

of the scalar field at infinity, and the brane tension. By means of numerical calculations,

we investigate the profiles of the corresponding DBI-cosmic strings and prove that they

have a core which is narrower than that of Abelian-Higgs strings. We also show that the

corresponding action is smaller than in the standard case suggesting that their formation

could be favoured in brane models. Moreover we show that the DBI-cosmic string solutions

are non-pathological everywhere in parameter space. Finally, in the limit in which the DBI

model reduces to the Bogomolnyi-Prasad-Sommerfield (BPS) Abelian-Higgs model, we find

that DBI cosmic strings are no longer BPS: rather they have positive binding energy. We

thus argue that, when they meet, two DBI strings will not bind with the corresponding

formation of a junction, and hence that a network of DBI strings is likely to behave as

a network of standard cosmic strings. On the other hand, we also find that, if the BPS

condition is no longer satisfied and the coupling constant is less than twice the charge

squared of the scalar field, DBI strings can change their behaviour from type I to type II

depending on the DBI parameter.
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1 Introduction

The (Wilkinson Microwave Anisotropy Probe) WMAP5 results [1–6] give strong indication

in favour of cosmic inflation over other mechanisms for the production of primordial fluc-

tuations [7]. Since inflation generally takes place at high energy, recently there has been

a flurry of activity in constructing models inspired by or derived from string theory (for

recent reviews see e.g. refs. [8–11]). In a large category of these models, particularly brane-

antibrane inflation [12–20] and D3/D7 inflation [21, 22], the end result of the inflationary

phase is the creation of D-strings (as well as potentially F-strings [23]), interpreted from

the four-dimensional point of view as cosmic strings. Since cosmic strings are strongly

ruled out as the main originator of primordial fluctuations, the D-(and indeed F-) string

tension is severely constrained and (under certain assumptions) such that G
N
µ . 10−6 in

order to preserve the features of the WMAP5 results [24]. Nevertheless, the existence and

possible detection of the effects of D-strings in the aftermath of an era of brane inflation

could be a testable prediction of string theory.

D-strings themselves have been conjectured to be in correspondence with the D-term

strings of supergravity [25]. One of their remarkable properties is that they satisfy a

Bogomolnyi-Prasad-Sommerfield (BPS) condition, i.e. they have no binding energy and

preserve 1/2 of the original supersymmetries. They also carry fermionic zero modes and

are therefore vorton candidates, leading to possible interesting phenomenological conse-

quences [26].
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The identification between D-term strings and D-strings has been made in the low

energy limit, when field gradients are small. Inspired by the case of open string modes

which can be effectively described by a non-linear action of the Dirac-Born-Infeld (DBI)

type, in this paper we construct models of cosmic strings which depart from the low en-

ergy approximation and generalise the Abelian-Higgs model to a non-linear one. We will

call the resulting topological objects ‘DBI-cosmic strings’, and they are exact solutions

of the generalised non-linear DBI action. The action we consider is very different from

others which have been discussed in the literature, refs. [27–32], and in particular does not

lead to pathological configurations. In the limit of small field gradients our DBI strings

reduce to Abelian-Higgs strings. We construct the DBI string solutions numerically in a

broad range of parameter space, using two numerical methods: a relaxation method and a

shooting algorithm. In this way, we show, in particular, that DBI strings with a potential

term corresponding to the BPS limit of the Abelian-Higgs model are no-longer BPS. More

specifically, µ2n ≥ 2µn, where µn is the action per unit time and length for a string with

a winding number n: the equality only holds in the low-energy limit. Borrowing language

from the standard cosmic string literature [33–35], the strings are therefore in the type II

regime (though the deviations from BPS are small, in a sense we will quantify). The net-

work of strings produced will therefore not contain junctions, and all the strings will have

the same tension µn=1. In the cosmological context we therefore expect the DBI-string

network to evolve in the standard way e.g. [36], containing infinite strings and loops,

radiating energy through gravitational waves, and eventually reaching a scaling solution.

The paper is organised as follows. In section 2 we recall the properties of Abelian-Higgs

cosmic strings. In section 3, we first briefly review the different non-linear actions which

have been put forward so far in the literature, and then present our proposed non-linear ac-

tion for cosmic strings. In section 4, we study the DBI-cosmic strings solutions analytically

and numerically. In subsection 4.1, we present simple analytical estimates which allow us

to roughly guess the form of the DBI string profiles and, in subsection 4.2, we compute

them numerically by means of two different methods (shooting and over relaxation). In

section 5 we briefly summarise our main findings and discuss our conclusions. Finally,

in A, we outline how Abelian-Higgs cosmic strings can be realized in string theory in the

D3/D7 system and in B, we give the full non-linear structure of the DBI cosmic string

action and discuss the motivation for this action, which we expect to be applicable when

field gradients are large.

2 Abelian-Higgs cosmic strings

We begin by recalling briefly the properties of standard Abelian-Higgs cosmic strings, and

at the same time introduce our notation following ref. [34] though we use the signature

(− + ++).

The Abelian-Higgs model is governed by the action

S = −
∫

d4x
√−g

[

(DµΣ)(DµΣ)† +
1

4
FµνFµν + V (|Σ|)

]

, (2.1)
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where the potential is given by

V (|Σ|) =
λ

4

(

|Σ|2 − η2
)2

. (2.2)

In eq. (2.1), Dµ denotes the covariant derivative defined by Dµ ≡ ∂µ − iqAµ with Aµ

the vector potential, Fµν ≡ ∂µAν − ∂νAµ, and q is the gauge coupling. The potential is

characterised by two free parameters: the coupling λ > 0 and an energy scale η. It is useful

to introduce the dimensionless coupling

β ≡ λ

2q2
=

m2
s

m2
g

, (2.3)

where the Higgs mass is ms =
√

λη/
√

2 and the vector mass mg = qη.

Due to the non-trivial topology of the vacuum manifold, after gauge symmetry breaking

the model possesses vortex (or cosmic string) solutions for which the scalar field can be

expressed as

Σ (r, θ) = ηX (ρ) einθ , (2.4)

where we have used the cylindrical coordinates, and the cosmic string is aligned along the

z-axis. Here n is the winding number proportional to the quantised magnetic flux on the

string, and we have defined a rescaled radial coordinate

ρ ≡ λ1/2ηr , (2.5)

with X (ρ) → 1 at infinity, while X(0) = 0. In the radial gauge, the only non-vanishing

component of the vector potential Aµ is Aθ(ρ) with Aθ(0) = 0. We define

Q ≡ n − qAθ , (2.6)

so that the tension, defined to be the action per unit time and length µ = −S/dtdz, can

be expressed as

µn(β) = 2πη2

∫ +∞

0
dρρ

[

(

dX

dρ

)2

+
Q2X2

ρ2
+

β

ρ2

(

dQ

dρ

)2

+
1

4

(

X2 − 1
)2

]

≡ 2πη2gn

(

β−1
)

. (2.7)

The function gn

(

β−1
)

is plotted in figure 1 (left panel).

In the BPS case, β = 1, the tension given in eq. (2.7) can be re-expressed as

µn = 2πη2

∫ +∞

0
dρρ

{

(

dX

dρ
− QX

ρ

)2

+

[

1

ρ

dQ

dρ
− 1

2
(X2 − 1)

]2

+
1

ρ

d

dρ

[

Q(X2 − 1)
]

}

, (2.8)

and is minimised for cosmic strings that are solutions of the BPS equations

dX

dρ
=

XQ

ρ
,

dQ

dρ
=

ρ

2
(X2 − 1) . (2.9)
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Figure 1. Left panel: the tension of n = 1 and n = 2 Abelian-Higgs strings as a function of

β−1 = 2q2/λ. Right panel: the binding energy µ2n − 2µn for n = 1 Abelian-Higgs strings as a

function of β−1. When the BPS condition β = 1 is satisfied, µn = 2πnη2 so that µ2n − 2µn = 0 as

can be verified in the figure.

On inserting back into eq. (2.8) one finds

µn = 2πη2n (2.10)

so that gn (1) = n.

The functions gn=1

(

β−1
)

and gn=2

(

β−1
)

are plotted in the left hand panel of figure 1

whereas the binding energy µ2 − 2µ1 is shown in the right hand panel. In the BPS limit,

gn (1) = n, and the force between vortices vanishes [37]. For β < 1, the strings are type

I with a negative binding energy, while for β > 1 they are type II with positive binding

energy. Type I string therefore attract and can form bound states or ‘zippers’ [38] linked

by junctions. Zippers may form (in a certain regime of parameter space) when two strings

in a network collide, refs. [39, 40]. A network of type II strings, on the other hand, contains

no junctions and the strings all have the same tension µn=1. In A, we outline how BPS

Abelian-Higgs cosmic strings form in certain string theory models of inflation.

We now discuss possible non-linear extensions of the Abelian-Higgs system and focus

on a specific, well defined form. We then analyse the departure from the BPS case induced

by the higher order terms. Indeed, we will see that DBI strings with β = 1 have a positive

binding energy and hence repel each other.

3 DBI cosmic strings

3.1 Non-standard actions for cosmic strings

We are interested in situations in which gauged cosmic strings form when higher order

corrections to the kinetic terms in the action cannot be neglected. In the absence of an

explicit derivation from, say, string theory, we take a phenomenological approach (which,

however, is strongly inspired by string theory, see B). We will construct an action [given in

eqs. (3.10) and (B.7)] which satisfies the following two criteria: Firstly, the Abelian-Higgs
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limit should be recovered when gradients are small. In particular, the action should be a

continuous deformation of the Abelian-Higgs model. Secondly, the resulting cosmic string

solutions should have no pathological and/or singular behaviour as the model becomes

more and more non-linear (in field gradients).

In the remainder of this subsection, before turning to the action advocated in the

present article, we discuss the other non-linear actions which have been considered in the

literature and which do not satisfy the above criteria.

In refs. [27, 28, 30] an attempt to construct a non-linear model for (electrically) charged

vortices in (2+1) dimensions uses an hybrid approach with a (truncated) Born-Infeld action

for the gauge field, a standard linear action for the Higgs field, and a Chern-Simons term:1

S =

∫

d4x
√−g

[

σ2

(

√

1 +
1

2σ2
FµνFµν − 1

)

+
κ

4π
ǫµνρAµFνρ +

1

2
|Dφ|2 + V (φ)

]

, (3.1)

where σ is a parameter of dimension two and |Dφ|2 = (Dµφ)(Dµφ)†. At a threshold

σ = σc corresponding to the very non-linear regime, the gauge field becomes singular at

the origin of the vortex whilst, below the threshold, no solution exists. Incorporating the

Higgs kinetic terms into the square root, while dropping the Chern-Simons term, leads to

the following expression

S =

∫

d4x
√−g

{

σ2

[(

1 +
1

2σ2
FµνFµν +

1

σ2
|Dφ|2 +

1

σ4
F̃µF̃νDµφ†Dνφ

− 1

2σ4
|Dφ|2 FµνFµν

)1/2

− 1

]

− V (φ)

}

, (3.2)

where F̃µ ≡ ǫµνρF
νρ/2. With such a very particular form (which differs from the one we

will propose shortly), one does not find finite energy solutions.

A model for (global) cosmic strings was proposed in ref. [29] with an action given by

S = −
∫

d4x
√−g

[

√

1 + |∂φ|2 − 1 + V (φ)
]

(3.3)

[this is identical to eq. (3.2) in the global limit]. For this model the solutions become multi-

valued and undefined at the origin as soon as the magnitude of V (φ) becomes sufficiently

large [29].

In view of these negative approaches where singularities and pathologies abound, one

could be tempted to think that non-linear cosmic string actions all lead to these problems.

Fortunately, a well-behaved action has been suggested by Sen [41] and studied in ref. [42]

in the case of D-strings obtained at the end of D-D̄ inflation. In such a system, hybrid

inflation occurs and the rôle of the waterfall field is played by the open string tachyon T

with a charge ±1 under the U(1) gauge groups of the D3- (respectively D̄3-) brane. When

the two branes coincide the effective action reads

S = −T3

∫

d4xV
(

T, T †
) [

√

det (−g+) +
√

det (−g−)
]

, (3.4)

1No charged vortex solutions exist when the Chern-Simons term is absent.
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where g±µν = gµν ± ℓ2
sFµν +

(

DµTDνT
† + DµT †DνT

)

/2 and V is the tachyon potential.

Since det(−g+) = det(−g−) (see the appendix), the action reduces to

S = −2T3

∫

d4xV
(

T, T †
)

√

det (−g+) , (3.5)

and it admits BPS vortex solutions.

Topological defects in models with general non-linear kinetic terms were studied in

refs. [31, 32]. The action proposed in [31] for global topological defects differs from the

tachyon action above (in the global limit) as the potential is added to the generalised

kinetic terms:

S =

∫

d4x

[

M4K

(

X

M4

)

− V (φ)

]

. (3.6)

Here

X ≡ 1

2
(∂µφa∂

µφa) (3.7)

is the standard kinetic term, K(X) is some non-linear function, φa is a set of scalar fields,

M has dimensions of mass, and the potential term provides the symmetry breaking term.

One of the main restrictions imposed in [31] on the form of the non-linear function K(X)

is that K(X) should have a canonical asymptotic form, K(X) ∼ X as X → 0. However,

for large gradients K(X) could deviate considerably from the canonical kinetic terms. The

former requirement implies a non-pathological behaviour of solutions far from the defect

core, while the different possibilities for K(X) at infinity leads to deviations of the defect

from the standard case inside the core. The action (3.6) leads to non-pathological solutions

for so-called k-defects — domain walls, cosmic strings and monopoles — whose properties

can differ considerably from those of standard defects.

A gauge version of action (3.6) was considered in ref. [32]: for a complex scalar field

S =

∫

d4x

[

M4K

(

X

M4

)

− V (φ) − 1

4
FµνFµν

]

(3.8)

with

X ≡ 1

2
(Dµφ)(Dµφ)†. (3.9)

It was shown that non-pathological cosmic string solutions exist at least for some choices

of the non-linear function K(X) [32].

In the following we study a non-linear extension of Abelian-Higgs model which retains

some of the properties of the tachyon and k-defect models. The potential will be additive

as in the k-defect case while the kinetic terms have a DBI form as in the tachyon case.

However, the kinetic terms are not a function solely of X anymore: they differentiate

between the radial and angular gradients of the defects.

3.2 A DBI action for cosmic strings

We now turn to the action that we propose in this article, namely

S = −T

∫

d4x

{

√

− det
[

gµν +(D(µΦ)(Dν)Φ)† + ℓ2
sFµν

]

−√−g+
√−g

V (
√

T |Φ|)
T

}

. (3.10)
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Here T has dimension 4 and ℓs has dimension of −1. In the extra dimensional context

motivated in B, T corresponds to a brane tension and ℓs to the string scale. Notice that,

in the above equation, the potential [i.e. V (x) as a function of x] is still given by the

expression (2.2) and, therefore, contains the parameter λ. When the complex scalar field

Φ vanishes, eq. (3.10) describes Born-Infeld electrodynamics [43].

We now discuss action (3.10) in detail. In particular we compare its properties to those

of the Abelian-Higgs action (2.1) discussed in section 2, and then we construct the static

cosmic string solutions of the action.

A first important property of eq. (3.10) is that, to leading order in derivatives, it

reduces to the standard action (2.1) on identifying

Σ =
√

TΦ , (3.11)

and redefining the charge according to the following expression

q =
q̂√
Tℓ2

s

(3.12)

together with the gauge field

Aµ =
Aµ√
Tℓ2

s

. (3.13)

Hence, if the spatial derivatives characterising DBI-strings are small (we shall discuss

whether or not this is the case below), their properties should to be very similar to Abelian

Higgs strings. More generally, however, and as discussed in detail in the appendix where we

calculate the determinant explicitly, eq. (3.10) contains terms of higher order in covariant

derivatives as well as numerous different mixing terms between F and D (suitably con-

tracted). These extra terms could significantly change the string solution and the resulting

strings’ properties relative to the Abelian Higgs case. It follows from this that our action

is very different from that considered by Sarangi in ref. [29], even in the global case. As a

consequence we will find non-pathological cosmic strings solutions with a continuous limit

to Abelian-Higgs strings.

We now focus on the cosmic string solutions of eq. (3.10). For this purpose, first it is

useful to pass to dimensionless variables, denoted with a hat. Explicitly we set

Φ̂ ≡ Φ

ℓs
, F̂µν ≡ ℓ2

sFµν , D̂µ ≡ ℓsDµ , η̂ ≡ η√
Tℓs

, r̂ ≡ r

ℓs
, (3.14)

as well as

V̂ (|Φ̂|) ≡ λ̂

4

(

Φ̂2 − η̂2
)2

, (3.15)

where λ̂ ≡ λTℓ4
s , so that the action becomes

S = −Tℓ4
s

∫

d4x

{

√

− det
[

gµν + (D̂(µΦ̂)(D̂ν)Φ̂)† + F̂µν

]

−√−g +
√−gV̂

(

|Φ̂|
)

}

. (3.16)
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We now follow the procedure outlined in section 2 for Abelian-Higgs cosmic strings, however

for action (3.16). In dimensionless cylindrical coordinates, ds2 = −dt̂2 + dr̂2 + r̂2dθ2 + dẑ2

and in the radial gauge (Âr̂ = 0), the cosmic string profile is

Φ̂ = η̂X(ρ)einθ , Q(ρ) = n − q̂Âθ (r̂) , (3.17)

where we have defined a new radial coordinate ρ by the following expression

ρ ≡ λ̂1/2η̂r̂ (3.18)

which should be compared to eq. (2.5). The boundary conditions on the fields are

lim
ρ→0

X = 0 , lim
ρ→0

Q = n , lim
ρ→∞

X = 1 , lim
ρ→∞

Q = 0 . (3.19)

Substituting eqs. (3.17) and (3.18) into (3.16) as well as using (3.14), we find that2

(− det gµν) γ−2 = − det
[

gµν + (D̂(µΦ̂)(D̂ν)Φ̂)† + F̂µν

]

, (3.20)

where we have defined the γ factor by

γ−2 ≡
[

1 + α

(

dX

dρ

)2
]

(

1 +
αQ2X2

ρ2

)

+
αβ

ρ2

(

dQ

dρ

)2

. (3.21)

Hence the string tension defined as −S/ℓ2
sdẑdt̂ is given by

µn =
4πη2

α

∫ +∞

0
dρρ







√

√

√

√

[

1+α

(

dX

dρ

)2
]

(

1+α
Q2X2

ρ2

)

+
αβ

ρ2

(

dQ

dρ

)2

−1+
α

8
(X2−1)2







,

(3.22)

where

α ≡ 2λ̂η̂4 , (3.23)

and, as in the Abelian-Higgs case,

β =
λ̂

2q̂2
=

λ

2q2
. (3.24)

Eq. (3.22) is the main result of this section and represents the non-linear DBI generalisa-

tion of the linear Abelian-Higgs model: it should be compared to eq. (2.7). Notice that

it involves the single additional parameter α which measures the deformation from the

Abelian-Higgs model, since eq. (3.22) reduces to the tension of Abelian Higgs strings in the

linear limit α → 0. As discussed in section 2, Abelian-Higgs strings are BPS when β = 1,

and hence for β = 1, DBI-cosmic strings with tension given by eq. (3.22) are a continuous

deformation of the BPS Abelian-Higgs strings. This property is, of course, very important

and constitutes an additional motivation for the action given in eq. (3.16).

Finally, we note that the argument of the cosmic string profile ρ is also identical to

its counterpart in the Abelian-Higgs case, whatever the value of α. Hence we will be

able to find continuous deformations of the cosmic string profiles parameterised by α and

depending on the universal variable ρ.

2Note that γ
−2 = D where D is discussed in the appendix.
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4 DBI string solutions

4.1 Analytical estimates

Having established the model and its action, we now turn to the solutions of the equations

of motion. The DBI cosmic string equations follow from eq. (3.22) and read

d

dρ

[

ργ

(

1 +
αQ2X2

ρ2

)

dX

dρ

]

=
ρ

2
(X2 − 1)X + γ

Q2X

ρ

[

1 + α

(

dX

dρ

)2
]

, (4.1)

fracddρ

(

γ

ρ

dQ

dρ

)

=
γQ

βρ

[

1 + α

(

dX

dρ

)2
]

X2 , (4.2)

for the scalar field and gauge fields, respectively, where γ is defined in eq. (3.21). In the

Abelian Higgs limit, α = 0, eqs. (4.1) and (4.2) reduce to the standard cosmic string field

equations for which γ = 1. Deviations from Abelian Higgs strings will occur if γ < 1.

Notice that here the fields are purely space-dependent. For time-dependent fields, and

particularly in DBI inflationary cosmology with inflaton φ(t) whose dynamics is described

by action (3.16) in the global limit, then γ is a generalisation of the cosmological Lorentz

factor. Indeed, as can be seen from eq. (3.21) in the case when gµν describes an homoge-

neous and isotropic manifold, γ−2 = 1 − φ̇2/T (φ) where T (φ) is related to the metric of

the extra-dimensions. The difference in sign between spatial and temporal derivatives is

responsible for the fact that deviations from standard cosmology (γ = 1) occur here when

γ → +∞ rather than γ ≪ 1.

Unfortunately, as is clear from eqs. (4.1) and (4.2), the DBI cosmic string equations

cannot be solved exactly. We have therefore carried out a full numerical integration of

the equations of motion. For convenience, we will focus mainly on the deformed BPS case

where β = 1 and α 6= 0 (though β 6= 1 and α 6= 0 can also been done with the numerical

methods used here, see figure 7).

Before discussing the numerical results, we analyse the asymptotic behaviour of the

fields in order to obtain a rough understanding of the solution. We will consider the two

limits ρ → 0 and ρ → ∞ and will address two issues. The first one is the non-existence of

singularities in the core of the cosmic string. The second one will be the determination of

the shape of the cosmic string profile both at the origin and at infinity. In particular we

will find that the functional form of the string profile is similar to the Abelian-Higgs case

inside the core, the only difference springing from α-dependent factors.

Consider first the ρ → 0 limit and let us examine the possibility of singular DBI strings

deep in the string core. As already discussed, the DBI features of the solutions depend on

γ. In particular, extreme deviations from the Abelian-Higgs case would appear if γ → 0

at the origin. This can only happen if the derivative of X and/or Q become extremely

large, i.e. the string becomes singular. Let us first assume that the gradient of Q becomes

large and dominates the γ factor, i.e. γ ∼ ρdρ/ (
√

αdQ). The gauge equation becomes non-

sensical as the left-hand of (4.2) vanishes and the right-hand side does not. Hence there

is no regime where the gradient Q is arbitrarily large leading to γ → 0 at the origin. We

now examine the possibility that X becomes singular at the origin with a large gradient.
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In this limit, we find

γ ∼ ρ

αX (dX/dρ)

[

1 − 1

2

1

α (dX/dρ)2
− 1

2n2

ρ2

αX2

]

, (4.3)

where Q ∼ n close to the origin and we have expanded γ in 1/
[

α (dX/dρ)2
]

≪ 1 and

ρ2/
(

αX2
)

≪ 1, this last condition being the only one compatible with the condition on the

derivative of X. Working to first order in these two parameters, the profile is determined by

d

dρ

{

X

[

1

n2

ρ2

αX2
− 1

α (dX/dρ)2

]}

=
dX

dρ

[

1

α (dX/dρ)2
− 1

n2

ρ2

αX2

]

. (4.4)

Notice that to zeroth order in the two small parameters, the equation is tautological. In

the limit ρ → 0 with an ansatz X ∼ ρδ the equation of motion is satisfied for δ2 = n2.

The only solution satisfying X(0) = 0 is obtained for δ = n which has finite derivative at

the origin. This contradicts our premises and, as a result, we conclude that singular DBI

strings do not exist.

Having shown that the strings are not singular, we will now show that the functional

form of the solutions is similar to the ones in the Abelian-Higgs case. Let us assume that,

in the limit ρ → 0, the DBI solutions are of the form

X(ρ) = A
DBI

ρp , Q(ρ) = n − B
DBI

ρq , (4.5)

where p and q are two constants which we will determine below, while A
DBI

and B
DBI

are

two constants to be obtained by numerical integration; and we have taken into account

the boundary conditions at ρ = 0: X(0) = 0 and Q(0) = n. By direct substitution of the

asymptotic form (4.5) into the equations of motion eqs. (4.1), (4.2) and taking the limit

ρ → 0, one can check that the correct asymptotic form for X and Q reads,

X(ρ) = A
DBI

ρn , Q(ρ) = n − B
DBI

ρ2 . (4.6)

Thus p = n and q = 2 and, as guessed above, the only difference between DBI cosmic

strings and Abelian-Higgs cosmic strings close to the origin is in the numerical values

of the prefactors A
DBI

and B
DBI

which are α-dependent. In particular, these coefficients

become large for large α implying that away from the origin but for reasonable and finite

values the gamma factor becomes noticeably different from one, i.e. the cosmic strings are

in a mild DBI regime.

From eqs. (3.21) and (4.6) it immediately follows that γ is always finite at ρ = 0. This

a salient point as it confirms that the cosmic strings constructed with a DBI action are

non-singular at the origin. This is of course yet another argument supporting the fact that

eq. (3.22) represents the natural DBI generalisation for cosmic strings.

More precisely we find that as ρ → 0 there are two possible regimes: the standard

regime where |1 − γ| ≪ 0 and a mild DBI regime where γ < 1 but finite. Let us first

analyse the global string, for which Q = 0. It is clear from eqs. (3.21) and (4.6) that for

n ≥ 2 the mild DBI regime cannot be realised around ρ → 0. Note, however, that for
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α ≫ 1 we find numerically that A
DBI

≫ 1, which implies that away from the origin the

gradient dX/dρ becomes large, so that the solution is in the mild DBI regime. For n = 1

the mild DBI regime is valid starting from ρ = 0, if α ≫ 1. For α ≪ 1 the regime is always

of non-DBI type, independently of n.

In the case of gauge strings, the situation is similar in the limit ρ → 0. Again for

α ≪ 1 the non-DBI regime is realised. For α ≫ 1 we find numerically that A
DBI

and B
DBI

in eq. (4.6) are large. Thus the gradient dQ/dρ is large too, while the terms proportional

to dX/dρ and to Q2X2 are large only for n = 1, and they are small in a small region

around ρ = 0 for n ≥ 2. However, these terms become large away from the origin, since

a large constant A
DBI

implies that dX/dρ becomes large at some point. In conclusion, we

find that for α large enough, the cosmic strings are in a mild DBI regime for finite values

of ρ. This is confirmed numerically.

Finally let us notice that at infinity, independently of α, both the gradients dX/dρ and

dQ/dρ are small, and the cosmic string matches the standard behaviour. This is in agree-

ment with the general findings for topological defects with a non-canonical kinetic term.

In summary, the difference between the Abelian-Higgs and DBI strings will be small

very far from the core of the string, while the DBI string can differ from the Abelian-Higgs

one inside the core of the string: the larger α the larger the difference inside the core.

4.2 Numerical solutions

As mentioned above, the equations of motion (4.1) and (4.2) cannot be solved analytically.

For this reason, we now turn to a full numerical integration.

As is well-known, the numerical integration is non-trivial because the boundary con-

ditions are not fixed at the same point. The solutions discussed is this article have been

obtained by means of two independent methods: a relaxation method [44–46] and a shoot-

ing method. More precisely, the former is in fact the over relaxation method. The over

relaxation method differs from the relaxation method (also known as the Newton iteration

method) by the fact that the Newtonian iteration step is multiplied by a factor of ω. In the

standard case, convergence for the over relaxation method is guaranteed provided the over

relaxation parameter ω < 2 and, therefore, a good choice is for instance ω ∼ 1.99. Here,

the highly non-linear nature of the equation of motions may render the over relaxation

method unstable. To deal with this problem, we have considered a “step-dependent” over

relaxation parameter ω interpolating from ω ∼ 1, close to the origin, and to ω → 1.3 at

“infinity”. As already mentioned the choice ω = 1.3 ≪ 1.99 is due to the highly non linear

behaviour of the equations. We have observed very severe instabilities for higher values of

ω. On the other hand, the shooting method can be directly implemented in its standard

formulation in the case of global strings, since there is only one integration constant to be

obtained, A
DBI

. While in the gauge case the presence of two “shooting” constants, A
DBI

and B
DBI

, makes the direct implementation of the standard scheme impossible, we have

thus modified the shooting method appropriately. All in all, the two different numerical

procedures, a relaxation and a shooting method, give the same numerical solutions, up to

small numerical errors.

Our numerical results depend on the DBI parameter α which, as already mentioned,

is given by α = 2λη4/T where η is the vev of the charged scalar field at infinity and T is
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Figure 2. Left panel: the profiles of global DBI strings for n = 1 and for various values of the

parameter α defined in eq. (3.23). Right panel: same as left panel but with n = 2

analogous to a brane tension. In our particular setting, these two parameters are free and

unrelated. Therefore α is not constrained and can take values which are not theoretically

determined. On the other hand, DBI strings deviate from Abelian-Higgs strings when α

increases from zero. Hence it is natural to compare DBI strings and Abelian-Higgs strings

in the small α limit and then extend to larger values of α. When α is significantly different

from zero, we have observed noticeable deviations from Abelian-Higgs strings which will

be spelt out in the rest of this section. Numerically we have gone up to α ∼ 1.5 which is a

non-perturbative regime where the square root in the DBI cannot be approximated by the

first few terms in a gradient expansion. Hence we have probed the full DBI regime. Larger

values of α are more difficult to handle numerically: it is either very time consuming or

(and) instabilities can appear due to the highly non linear nature of the equations. So

reaching values of order α & O(5− 10) is already highly non trivial, numerically speaking.

A thorough study of the large α limit in conjunction with varying β will be the subject of

a future publication.

Numerical integration of the equations of motion (4.1) and (4.2) are presented and

discussed below.

Firstly, in figures 2, we consider global DBI strings (that is to say without the gauge

field) for, respectively, winding numbers n = 1 (left panel) and n = 2 (right panel) and

different α’s. This figure confirms the qualitative statements made in the previous subsec-

tion. We notice that, even for “non-perturbative” values of α, i.e. α > 1, the difference

between the standard and the DBI profiles remains quite small. Moreover, as announced,

the maximum difference lies at a (dimensionless) radius ρ of order one, namely half way

from the origin and the region where X → 1. Another remark is that the DBI profiles are

always above the standard profiles. This is of course expected since the DBI regime means

larger derivatives which, in the present context, implies the above mentioned property.

Finally, one can check that the asymptotic behaviours discussed in the previous subsection

are clearly observed in figures 2. Indeed, for n = 1, we notice that X(ρ) ∼ A
DBI

ρ where

A
DBI

is clearly a function of α (see in particular the zoom in the left panel). The same

remark applies for n = 2, where X(ρ) ∼ ρ2.
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Figure 3. Left panel: the solid lines represent the profiles of the scalar and gauge fields of a DBI

strings with n = 1 and α = 1 while the dashed lines are the profiles of the scalar and gauge fields

of a standard Abelian-Higgs string (i.e. α = 0). Right panel: same as left panel but with n = 2.

Notice that, on the y-axis, we have used the notation a ≡ q̂Âθ/n.

n = 1 n = 2 n = 3

α A
DBI

B
DBI

A
DBI

B
DBI

A
DBI

B
DBI

0.1 0.611 0.523 0.481 0.252 0.449 0.168

1 0.694 0.752 0.570 0.275 0.557 0.183

3 1.020 2.836 0.949 0.349 1.055 0.234

5 1.984 19.66 2.253 0.491 3.052 0.333

Table 1. Shooting parameters A
DBI

and B
DBI

for different n and α, and β = 1.

Secondly, in figures 3, we display the profiles for DBI local strings, i.e. for the scalar

field and the gauge field, in the case where α = 1, n = 1 (left panel) and n = 2 (right

panel). The same remarks as before apply. In particular, the scalar field profile always

lies above its Abelian-Higgs counter part and, on the contrary, the DBI gauge field profile

always lies inside the standard profile. As already discussed, this is because, in the DBI

regime, the gradients are, by definition, larger than in the standard case. This means that

a DBI string has a core smaller than an Abelian-Higgs string. As before, one can also check

that the asymptotic behaviours are those discussed in the previous subsection. This is true

in particular for the gauge field for which we always see that Q ∼ n − ρ2 at the origin.

Thirdly, additional information on the profiles can be gained from figures 4. In the left

panel, we have compared the local and global profiles. One can notice that the global profile

is less concentrated than the local one. Another remark is that the difference between the

Abelian-Higgs and DBI profiles is more important in the local case than in the global one.

In the right panel, we have compared the slopes at the origin. In the standard case, one

has X(ρ) ∼ A
standard

ρn and it has been argued before that in the DBI case, one also has

X(ρ) ∼ A
DBI

ρn. We have represented the ratio A
DBI

/A
standard

for various values of α and

n. In table 1 we give different values for the shooting parameters A
DBI

and B
DBI

. One
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Figure 4. Left panel: comparison of the cosmic string profiles for global and local DBI strings

with n = 1 and α = 1. The solid line represents the scalar field profile for a local Abelian-Higgs

string while the dotted line is the corresponding DBI profile. On the other hand, the dashed line

represents the scalar field profile for an Abelian-Higgs global string whereas the dotted-dashed line

is the corresponding DBI profile still in the global case. Right panel: ratio A
DBI

/A
standard

(see the

text) as a function of the parameter α for different values of the winding number n.

notices that the larger α, the steeper the DBI slope, which seems natural since the value

of the parameter α controls how important the DBI effects are. We also remark that the

same trend is observed when one increases n rather than α. In conclusion, from these two

figures, one confirms that the deeper one penetrates into the DBI regime, the narrower the

core of a cosmic string is. The effect is larger in the local case than in the global one and

for large winding numbers than for small ones.

Fourthly, given the numerical solutions presented above it is straightforward to calcu-

late their tension which, from the action given by eq. (3.22), takes the form

µn (X,Q) = 2πη2fn(α) , (4.7)

where fn(0) = n in the Abelian-Higgs case. In figure 5 (left panel), we plot the universal

functions fn(α) for the DBI local strings. We notice that the DBI action is, for any n

and/or α, smaller than the corresponding standard action. Moreover, at a fixed value of

α, the (absolute) difference between the DBI and Abelian-Higgs actions increases with the

winding number. The fact that the DBI action is smaller than the standard one is likely

to have important physical consequences, in particular with regards to the formation of

DBI cosmic strings. Indeed, if their energy is smaller than in the standard case, one can

legitimately expect their formation to be favoured as compared to the Abelian-Higgs case.

In the right panel in figure 5, we have represented the DBI string binding energy

µ2n − 2µn as a function of the parameter α for different values of the winding number n.

We observe that this quantity is always positive but small in comparison to one. Moreover,

as expected since one has (µ2n − 2µn) (α = 0) = 0, it increases with α. We conclude that

when α 6= 0, the DBI cosmic string is no longer a BPS object. The fact that µ2n > 2µn

means that, when they meet, two DBI strings will not constitute a new single string with
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Figure 5. Left panel: the solid lines represent the DBI string tension as a function of α for different

values of the winding number n (from n = 1 to n = 4 going from the bottom to the top of the

plot). The dashed lines corresponds to the Abelian-Higgs tension, namely µn = 2πη2n, and are

thus horizontal lines located at the y-coordinate n. Right panel: the DBI string binding energy

µ2n − 2µn for various n as a function of the parameter α.

winding number 2n since this appears to be disfavoured from the energy point of view.

This has important consequences for cosmology since the above discussion implies that

the behaviour of a network of DBI cosmic strings will be similar to the behaviour of a

network of Abelian-Higgs strings. This means that the cosmological constraints derived,

for instance in refs. [24], also apply to the present case.

In figure 6, we represent the energy density as a function of the dimensionless radial

coordinate ρ for n = 1 (left panel) and n = 2 (right panel) for different values of the

parameter α. We notice that the DBI energy densities are usually more peaked than

the Abelian-Higgs ones. Moreover, the larger α, the more peaked the distributions. The

case n = 2 is particularly interesting. One observes that, as α increases, the peaks of the

distribution are displaced towards the left, i.e. towards smaller values of ρ. This is probably

due to the fact that, as discussed at the beginning of this subsection, the difference between

the DBI and Abelian-Higgs profiles is maximum for intermediate values of ρ.

So far, we have discussed the case β = 1. It is also interesting to investigate what

happens if β 6= 1. In figure 7, we have represented the quantity (µ2 − 2µ1) /
(

2πη2
)

versus

the parameter α for different values of β. For β < 1, we can see that the binding energy

vanishes for a non zero value of α. It is explicitly seen for the case β = 0.98 (the critical

value of α being αcri ∼ 0.85 in this case) but it seems clear that this is true for any value of

β < 1. In figure 7, it cannot be seen for smaller values of β < 1 because the corresponding

values of αcri is larger which makes these cases difficult to handle numerically. Hence, for

β < 1 there are both type I and type II strings depending on the value of α. For β > 1,

on the contrary, there are only type II strings. This can be noticed in figure 7 where the

corresponding curves never vanish, see for instance the case β = 1.1. We conclude that the

DBI cosmic strings possess an additional remarkable feature, namely their type can change

according to the value of the parameter α, provided β < 1. This behaviour differs from
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Figure 6. Left panel: the energy density for DBI strings as a function of ρ for n = 1 for different

values of the parameter α. Right panel: same as right panel but for n = 2.

Figure 7. DBI string binding energy density for various β as a function of the parameter α

the standard case where no corresponding phenomenon is observed.

5 Conclusions

We have considered a natural DBI generalisation of the Abelian-Higgs model whereby the

kinetic terms of the Higgs fields do not lead to a linear differential operator in the equations
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of motion. The particular form of the action is motivated by a specific extra-dimensional

model where the Higgs field becomes a complex direction normal to a D3-brane. Although

this model leads to nice cosmic string properties, it is not directly related to a string theory

model. As such, the closest model of string theory which could have led to such a DBI

action is the D3/D7 system where BPS cosmic strings are formed at the end of an hybrid-

like inflation phase. Unfortunately, the charged fields associated to the open string joining

the D3- and D7-branes have no obvious geometric meaning and therefore do not lead to

our DBI action. It would certainly be very interesting to see if our construction can be

embedded within string theory.

As a four-dimensional model of non-canonical type, the DBI model of cosmic strings

does not suffer from any pathology such as divergences or non-single-valuedness of the field

profiles (typical of other non-linear actions which have been proposed in the literature).

Indeed we find that DBI strings can be continuously deformed to their Abelian-Higgs ana-

logue. In fact, the main difference from the Abelian-Higgs case appears in the BPS case

where the DBI strings show a small departure from the BPS property. In particular, we

find that the string tension is reduced, a property which may have some phenomenolog-

ical significance in order to relax the bound on the string tension coming from Cosmic

Microwave Background (CMB) data. Moreover we find that the BPS DBI strings have a

positive binding energy implying that the string coalescence is energetically disfavoured,

leading to the likely formation of networks with singly-wound strings and statistical prop-

erties akin to the usual Abelian-Higgs ones. In the non BPS case, and in the subcritical

case β < 1, we obtain that the sign of the binding energy can change depending on the

DBI parameter α, implying that the DBI strings can change from type I to type II.

In the present article, we have not tackled some important aspects of DBI string dy-

namics such as string scattering (for which we expect that the higher order terms discussed

in the appendix may play an important rôle), gravitational back reaction, and the coupling

to fermions and their zero modes. This is currently under investigation.

In summary, we have introduced DBI cosmic strings as non-singular solutions derived

from a non-linear Lagrangian. We have studied the solutions numerically and found that

they differ significantly from their Abelian-Higgs analogues. The network properties of

these strings depend on the DBI parameter α and the ratio of the Higgs mass over the

gauge boson mass. When the latter is smaller than one, the string type can either be type

I or II depending on the DBI parameter α, certainly resulting in different network features.

It would be very interesting to analyse networks of DBI strings. This is left for future work.
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A BPS Abelian-Higgs strings in the D3-D7 system

In string theory models, cosmic strings can form after the end of inflation [8–11]. In the

D3/D7 system [21, 22] in particular, the two branes attract during the inflationary period

and then eventually coalesce forming D-strings. The whole picture (inflation and string

formation) can be described in terms of the field theoretical D-term hybrid inflation [25].

In this language the D-strings have been conjectured to be analogous to D-term strings,

and furthermore — as we now outline — the strings are BPS Abelian-Higgs strings.

In the D3/D7 system there are three complex fields [21, 22]: the inflaton φ and the wa-

terfall fields φ±. In string theory, φ is the interbrane distance and φ± are in correspondence

with the open strings between the branes. In the supersymmetric language, the Kähler

potential is

K = −1

2

(

φ − φ†
)2

+ |φ+|2 + |φ−|2 , (A.1)

leading to canonically normalised fields. Notice that the inflation direction is invariant

under the real shift symmetry φ → φ + c, thus guaranteeing the flatness of the inflaton

direction at the classical level [47]. The superpotential is

W = λφφ+φ− . (A.2)

During inflation, the U(1) symmetry under which the waterfall fields have charges ±1 is

not broken, i.e φ± = 0. The scalar potential is flat and picks up a slope at the one loop

level. This is enough to drive inflation. As φ decreases, it goes through a threshold after

which the waterfall field φ+ condenses and the inflaton vanishes. This corresponds to the

coalescence of the D3- and D7-branes. The effective potential describing the condensation

is given by the D-term potential (the F-terms all vanish when φ = 0, φ− = 0)

VD =
g2

2

(

|φ+|2 − ξ
)2

. (A.3)

The term ξ is called a Fayet-Iliopoulos (FI) term [48]. As φ+ condenses and 〈φ+〉 =
√

ξ,

cosmic strings form interpolating between a vanishing field in the core and
√

ξ at infinity.

These cosmic strings are BPS objects preserving one half of the original supersymmetries.

Their tension is known to be µn = 2πnξ [25]. As a consequence, there is no binding energy

as µ2n = 2µn.

In fact [25], the D-term string model of D-string formation is nothing but an Abelian-

Higgs model with particular couplings

L = Dµφ+
(

Dµφ+
)†

+
1

4g2
FµνFµν + VD , (A.4)

where Dµφ+ = (∂µ − iAµ)φ+. Upon rescaling Aµ → Aµ/g and comparing with (2.1), this

leads to the identification

q = g , λ = 2g2 , ξ = η2 , (A.5)

corresponding to β = 1 and, hence, a BPS system. This explains why one recovers

µ2n = 2µn.
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Moreover, the energy scale
√

ξ can be given a stringy interpretation. Indeed, one can

show that the Fayet-Iliopoulos term is related to internal fluxes on D7-branes [49]. For this

purpose, let us consider a ten-dimensional metric in the form

ds2 = gµνdXµdXν + gpqdXpdXq + gijdXidXj , (A.6)

with µ = 0, . . . , 3, p = 4, . . . , 7 and i = 8, 9. The quantity gµν is the four-dimensional

metric and gpq and gij the compactification six-dimensional metric. This corresponds to

the metric on K3 × T 2 compactifications for instance. The internal dimensions of the D7-

brane are the coordinates a ≡ (µ, p) while the D3-brane lies along the µ coordinates. We

denote by T7 the brane tension and gs the string coupling. The four-dimensional gauge

coupling is given by
1

g2
=

T7V4ℓ
4
s

gs
, (A.7)

where the string length is ℓs = 1/
√

2πα′ and V4 =
∫

d4x
√

det gpq is the volume of the four

compact internal dimensions of the D7-brane. Consider now a dimensionless magnetic flux

Fpq along the internal dimensions (p, q) = 4, . . . , 7, of a D7-brane. Then

ξ2 =
T7

2gsg2

∫

d4x
√

−gpqFpqF
pq . (A.8)

Notice that the absolute value of the FI term is not fixed, it can be decomposed as ξ2 = ζ/ℓ2
s

where the prefactor depends on Fpq.

In this paper, we have considered cosmic string models for which the canonical kinetic

terms have been replaced by a non-linear term of the DBI type. In effective actions de-

scribing string theory phenomena, and particularly brane dynamics, such a replacement is

mandatory as soon as the gradient terms in the effective action become large. Indeed, the

DBI action usually describes the dynamics of the open strings in correspondence with the

brane motion (such as the 3-3 and 7-7 open strings in the D3/D7 system). As we have

recalled, the formation of cosmic strings in the D3/D7 system is governed by the 3-7 strings

of no obvious geometric significance. In such a situation, and assuming that there could be

higher order terms correcting the lowest order Lagrangian, the effect of the higher order

corrections to the kinetic terms (terms in |Dφ+|2p, p > 1) would be to induce modifications

of the cosmic string profile and of the tension.

B A Non-linear action for cosmic strings

Consider now a brane model in which cosmic strings appear as deformations of a brane.

(In a sense the brane becomes curved with a puncture at the location of the string, as

we discuss.) To do so, consider a ten-dimensional setting as is natural for brane models

derived from or inspired by string theory. We choose a non-warped compactification and

write the ten-dimensional metric in cylindrical form

ds2
10 ≡ g10

ABdXAdXB = ds2
4 + 2gαβ̄dZαdZ̄ β̄ , (B.1)
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where

ds2
4 ≡ gµνdXµdXν = −(dX0)2 + dR2 + R2dΘ2 + dZ2 . (B.2)

The metric along the internal dimensions gαβ̄ (α = 5, 6, 7) is kept arbitrary, i.e. Hermitian

and positive definite, and we have assumed that the six-dimensional manifold is complex

(it could be a Calabi-Yau manifold) therefore having complex coordinates. The complex

coordinates are crucial to analyse cosmic strings.

Consider the DBI action for a three-brane embedded along the first four coordinates

S = −T

∫

d4x
√

− det (g̃µν + ℓ2
sFµν) −

∫

d4x
√−gV

(√
TZα

)

, (B.3)

where T is the brane tension, Fµν is the field strength on the brane (and has dimension

two), distances have dimension minus one and Aµ has dimension one. We have included a

potential for the deformations Zα of the normal directions to the three-branes. As suitable

when the normal directions are charged under the world-volume gauge group [in this case

the local U(1) on the brane], we include a covariant derivative in the definition of the

induced metric

g̃µν = gµν + gαβ̄

(

DµZαDνZ̄
β̄ + DµZ̄ β̄DνZα

)

(B.4)

with

Dµ = ∂µ − iq̂Aµ . (B.5)

Clearly, when the gauge fields vanish, g̃µν is simply the induced metric on the brane. A

similar extension of the induced metric to charged fields has already been introduced in the

context of N-coinciding D-branes [50] with the corresponding non-Abelian SU(N) gauge

theory. There the brane coordinates are in the adjoint representation and have kinetic

terms involving the SU(N) covariant derivative [50]. We extend this procedure to the DBI

cosmic string situation with a U(1) gauge group3

When the six-dimensional metric is nearly flat gαβ̄ = δαβ̄ locally, the action becomes

S = −T

∫

d4x

{

√

− det
[

gµν +
(

DµZαDνZ̄ᾱ + DµZ̄ ᾱDνZα

)

+ ℓ2
sFµν

]

−√−g

}

−
∫

d4x
√−g V

(√
TZα

)

, (B.6)

where, as usual, we have subtracted the action of the “flat” brane so that the Abelian-Higgs

model is recovered when gradients are small. In the following we suppose that only one

normal direction is excited and define Φ ≡ Z1. The resulting action is given by

S = −T

∫

d4x

{

√

− det
[

gµν + (D(µΦ)(Dν)Φ)† + ℓ2
sFµν

]

−√−g

+
√−g

V (
√

T |Φ|)
T

}

. (B.7)

3In the D-brane context, the brane fields do not carry any U(1) charge as they belong to the adjoint

representation.
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We now study in more detail the general form of the action (B.7) and/or (3.10) con-

sidered in this article. Eq. (B.7) can be rewritten as

S = −T

∫

d4x
√−g

[

(√
D − 1

)

+
V (

√
T |Φ|)
T

]

, (B.8)

where D is defined by

D ≡ det
[

δµ
ν + (DµΦ)(DνΦ)† + (DµΦ)†(DνΦ) + ℓ2

sFµ
ν

]

, (B.9)

T has dimensions of (energy)4 and ℓs is a length scale. As before, Dµ = ∂µ − iq̂Aµ.

Our goal is to compute and simplify eq. (B.9) for D. As it is clear from its definition,

this will allow us to derive a more compact formula for our action in the general case. In

eq. (3.22) we have evaluated the action (B.8) for a cylindrically symmetric static string

profile. In this case it takes a simple form. However, when there is time dependence and

less symmetry — as occurs for example in string scattering — it is important to know the

general form of the action.

First define the following quantities

Nν ≡ DµΦ , Sµ
ν ≡ NµN̄ν + N̄µNν , Rµ

ν ≡ Sµ
ν + Fµ

ν , (B.10)

where are bar denotes complex conjugation and we set ℓs = 1 in this appendix. Note that

by definition Sµν is a symmetric matrix and Fµν is antisymmetric, while Sµ
ν and Fµ

ν are

in general neither symmetric nor antisymmetric. Denote by S the matrix with components

Sµ
ν , while F is the matrix with components Fµ

ν . For integer n and p

tr
(

SpF2n+1
)

= 0 . (B.11)

On the other hand, we also have

D = det (δµ
ν + Rµ

ν) (B.12)

= − 1

4!
εα1α2α3α4

εβ1β2β3β4 (δα1
β1

+ Rα1
β1

) (δα2
β2

+ Rα2
β2

)

× (δα3
β3

+ Rα3
β3

) (δα4
β4

+ Rα4
β4

) (B.13)

which, on using the identity

εα1α2α3α4
εα1···αjβj+1···β4 = − (4 − j)!j!δ

[βj+1

αj+1

···
···δ

β4]
α4

, (B.14)

gives

D = 1 + Rα
α + R[α

αRβ]
β + R[α

αRβ
βRγ]

γ + R[α
αRβ

βRγ
γRδ]

δ . (B.15)

We now evaluate each term in the above equation. For the first (linear in R), it follows

from eqs. (B.10) and (B.11) that

Rα
α = Sα

α = 2N̄αNα = 2 (DµΦ) (DµΦ)† . (B.16)
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The quadratic term is given by

R[α
αRβ]

β = S[α
αSβ]

β + 2S[α
αFβ]

β + F [α
αFβ]

β , (B.17)

=
1

2

[

tr2 (S) − tr
(

S2
)]

− 1

2
tr
(

F2
)

, (B.18)

=
(

N̄αNα
)2 − (NαNα)

(

N̄βN̄β
)

− 1

2
tr
(

F2
)

, (B.19)

where to get from eq. (B.18) to eq. (B.19) we have used eq. (B.10). Notice that these terms

are compatible with the U(1) invariance of the action. The next step is to calculate the

cubic term. It is given by

R[α
αRβ

βRγ]
γ = S[α

αSβ
βSγ]

γ + 3S[α
αSβ

βFγ]
γ + 3S[α

αFβ
βFγ]

γ

+F [α
αFβ

βFγ]
γ . (B.20)

The term in S3 vanishes for the single complex scalar field studied here since, on using

eq. (B.10), it contains the contraction of an antisymmetric tensor with a symmetric one.

Similarly S[α
αSβ

βFγ]
γ = 0 = F [α

αFβ
βFγ]

γ on using eq. (B.11). Therefore, the cubic term

takes the form

R[α
αRβ

βRγ]
γ = 3S[α

αFβ
βFγ]

γ =
1

2

[

−tr (S) tr
(

F2
)

+ 2tr
(

SF2
)]

. (B.21)

Finally, the quartic term can be expressed as

R[α
αRβ

βRγ
γRδ]

δ = S[α
αSβ

βSγ
γSδ]

δ + 4S[α
αSβ

βSγ
γFδ]

δ + 4S[α
αFβ

βFγ
γFδ]

δ

+6S[α
αSβ

βFγ
γFδ]

δ + F [α
αFβ

βFγ
γFδ]

δ (B.22)

= 6S[α
αSβ

βFγ
γFδ]

δ + F [α
αFβ

βFγ
γFδ]

δ , (B.23)

since the terms on the first line in the above equations vanish, on using the same arguments

as above. Also

S[α
αSβ

βFγ
γFδ]

δ =
1

4!

{

4tr (S) tr
(

SF2
)

− 4tr
(

F2S2
)

− 2tr (FSFS)

+
[

tr
(

S2
)

− tr2 (S)
]

tr
(

F2
)

}

. (B.24)

F [α
αFβ

βFγ
γFδ]

δ =
1

4!

[

−6tr
(

F4
)

+ 3tr2
(

F2
)]

(B.25)

Therefore, in the end, one obtains the following expression for D

D = 1 + tr (S) − 1

2
tr
(

F2
)

+
1

8

[

tr2
(

F2
)

− 2tr
(

F4
)]

+
1

2

[

tr2 (S) − tr
(

S2
)]

+
1

2

[

2tr
(

SF2
)

− tr (S) tr
(

F2
)

]

+
1

4

[

tr
(

S2
)

− tr2 (S)
]

tr
(

F2
)

+ tr (S) tr
(

SF2
)

− tr
(

F2S2
)

(B.26)
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The three terms of the first line in eq. (B.26), when substituted in eq. (B.8) and on ex-

panding the square-root, give the standard Abelian-Higgs model. The last two terms

of eq. (B.26) are the standard terms of Born-Infeld electro-dynamics. Finally, as dis-

cussed in the main text, the factor D and, hence, our action defined by eq. (B.7), contains

terms higher order in covariant derivatives as well as mixing terms between F2 and the

covariant derivatives.
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[27] E. Moreno, C. Núñez and F.A. Schaposnik, Electrically charged vortex solution in

Born-Infeld theory, Phys. Rev. D 58 (1998) 025015 [hep-th/9802175] [SPIRES].

[28] Y.S. Yang, Classical solutions in the Born-Infeld theory, Proc. Roy. Soc. Lond. A 456

(2000) 615 [SPIRES].

[29] S. Sarangi, DBI global strings, JHEP 07 (2008) 018 [arXiv:0710.0421] [SPIRES].

[30] Y. Brihaye and B. Mercier, Classical solutions in the Einstein-Born-Infeld-Abelian-Higgs

model, Phys. Rev. D 64 (2001) 044001 [hep-th/0102002] [SPIRES].

[31] E. Babichev, Global topological k-defects, Phys. Rev. D 74 (2006) 085004 [hep-th/0608071]

[SPIRES].

[32] E. Babichev, Gauge k-vortices, Phys. Rev. D 77 (2008) 065021 [arXiv:0711.0376]

[SPIRES].

[33] M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477

[hep-ph/9411342] [SPIRES].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.71.063506
http://arxiv.org/abs/hep-th/0408084
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408084
http://jhep.sissa.it/stdsearch?paper=08%282005%29045
http://arxiv.org/abs/hep-th/0501184
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0804%2C001
http://arxiv.org/abs/0709.3758
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.3758
http://dx.doi.org/10.1103/PhysRevD.78.063543
http://arxiv.org/abs/0807.2414
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2414
http://dx.doi.org/10.1103/PhysRevD.78.083513
http://arxiv.org/abs/0807.3037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3037
http://dx.doi.org/10.1103/PhysRevD.78.063523
http://arxiv.org/abs/0806.0336
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0336
http://dx.doi.org/10.1103/PhysRevLett.101.061301
http://arxiv.org/abs/0804.3139
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3139
http://dx.doi.org/10.1103/PhysRevD.65.126002
http://arxiv.org/abs/hep-th/0203019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0203019
http://jhep.sissa.it/stdsearch?paper=08%282004%29030
http://arxiv.org/abs/hep-th/0405247
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405247
http://jhep.sissa.it/stdsearch?paper=06%282004%29013
http://arxiv.org/abs/hep-th/0312067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312067
http://dx.doi.org/10.1103/PhysRevD.68.023506
http://arxiv.org/abs/hep-th/0304188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0304188
http://jhep.sissa.it/stdsearch?paper=01%282004%29035
http://arxiv.org/abs/hep-th/0312005
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312005
http://dx.doi.org/10.1016/j.physletb.2006.07.034
http://arxiv.org/abs/hep-th/0606036
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606036
http://dx.doi.org/10.1103/PhysRevD.58.025015
http://arxiv.org/abs/hep-th/9802175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRSLA,A456,615
http://jhep.sissa.it/stdsearch?paper=07%282008%29018
http://arxiv.org/abs/0710.0421
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.0421
http://dx.doi.org/10.1103/PhysRevD.64.044001
http://arxiv.org/abs/hep-th/0102002
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0102002
http://dx.doi.org/10.1103/PhysRevD.74.085004
http://arxiv.org/abs/hep-th/0608071
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0608071
http://dx.doi.org/10.1103/PhysRevD.77.065021
http://arxiv.org/abs/0711.0376
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0376
http://arxiv.org/abs/hep-ph/9411342
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9411342


J
H
E
P
0
3
(
2
0
0
9
)
0
9
1

[34] A. Vilenkin and E.P.S. Shellard, Cosmic stringas and other topological defects, Cambridge

University Press, Cambridge U.K. (1994).

[35] V. Rubakov, Classical theory of gauge fields, Cambridge University Press, Cambridge U.K.

(2002).

[36] N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla, Fitting CMB data with cosmic strings

and inflation, Phys. Rev. Lett. 100 (2008) 021301 [astro-ph/0702223] [SPIRES].

[37] L. Jacobs and C. Rebbi, Interaction energy of superconducting vortices,

Phys. Rev. B 19 (1979) 4486 [SPIRES].

[38] L.M.A. Bettencourt and T.W.B. Kibble, Nonintercommuting configurations in the collisions

of type-I U(1) cosmic strings, Phys. Lett. B 332 (1994) 297 [hep-ph/9405221] [SPIRES].

[39] E.J. Copeland, T.W.B. Kibble and D.A. Steer, Collisions of strings with Y junctions,

Phys. Rev. Lett. 97 (2006) 021602 [hep-th/0601153] [SPIRES].

[40] P. Salmi et al., Kinematic constraints on formation of bound states of cosmic strings - field

theoretical approach, Phys. Rev. D 77 (2008) 041701 [arXiv:0712.1204] [SPIRES].

[41] A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex,

Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [SPIRES].

[42] Y. Kim, B. Kyae and J. Lee, Global and local D-vortices, JHEP 10 (2005) 002

[hep-th/0508027] [SPIRES].

[43] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144

(1934) 425 [SPIRES].

[44] S.L. Adler and T. Piran, Relaxation methods for gauge field equilibrium equations,

Rev. Mod. Phys. 56 (1984) 1 [SPIRES].

[45] P. Peter, Superconducting cosmic string: equation of state for space - like and time - like

current in the neutral limit, Phys. Rev. D 45 (1992) 1091 [SPIRES].

[46] C. Ringeval, Fermionic currents flowing along extended objects, Ph.D. Thesis, University

Paris 6, France (2002).

[47] J.P. Hsu, R. Kallosh and S. Prokushkin, On brane inflation with volume stabilization,

JCAP 12 (2003) 009 [hep-th/0311077] [SPIRES].

[48] P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity

and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [SPIRES].

[49] C.P. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric

D-terms, JHEP 10 (2003) 056 [hep-th/0309187] [SPIRES].

[50] M.R. Garousi and R.C. Myers, World-volume interactions on D-branes,

Nucl. Phys. B 542 (1999) 73 [hep-th/9809100] [SPIRES].

– 25 –

http://dx.doi.org/10.1103/PhysRevLett.100.021301
http://arxiv.org/abs/astro-ph/0702223
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/0702223
http://dx.doi.org/10.1103/PhysRevB.19.4486
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,B19,4486
http://dx.doi.org/10.1016/0370-2693(94)91257-2
http://arxiv.org/abs/hep-ph/9405221
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9405221
http://dx.doi.org/10.1103/PhysRevLett.97.021602
http://arxiv.org/abs/hep-th/0601153
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0601153
http://dx.doi.org/10.1103/PhysRevD.77.041701
http://arxiv.org/abs/0712.1204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1204
http://dx.doi.org/10.1103/PhysRevD.68.066008
http://arxiv.org/abs/hep-th/0303057
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303057
http://jhep.sissa.it/stdsearch?paper=10%282005%29002
http://arxiv.org/abs/hep-th/0508027
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRSLA,A144,425
http://dx.doi.org/10.1103/RevModPhys.56.1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA,56,1
http://dx.doi.org/10.1103/PhysRevD.45.1091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D45,1091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0312%2C009
http://arxiv.org/abs/hep-th/0311077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311077
http://dx.doi.org/10.1088/0264-9381/21/13/005
http://arxiv.org/abs/hep-th/0402046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402046
http://jhep.sissa.it/stdsearch?paper=10%282003%29056
http://arxiv.org/abs/hep-th/0309187
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309187
http://dx.doi.org/10.1016/S0550-3213(98)00792-5
http://arxiv.org/abs/hep-th/9809100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9809100

	Introduction
	Abelian-Higgs cosmic strings
	DBI cosmic strings
	Non-standard actions for cosmic strings
	A DBI action for cosmic strings

	DBI string solutions
	Analytical estimates
	Numerical solutions

	Conclusions
	BPS Abelian-Higgs strings in the D3-D7 system
	A Non-linear action for cosmic strings

