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Source im aging m ethodology is used to provide a three-dim ensionaltwo-pion source function

for m id-rapidity pion pairs with pT < 70 M eV/c in central (0 � 7% ) Pb+ Pb collisions at
p
s
N N

= 17.3G eV.Prom inentnon-G aussian tailsareobserved in thepion pairtransversem om entum

(outward)and in the beam (longitudinal)directions. M odelcalculations reproduce them with the

assum ption ofBjorken longitudinalboostinvarianceand transverseow blast-wavedynam ics;they

also yield a propertim e forbreakup and em ission duration forthe pion source.

PACS num bers:PACS 25.75.Ld

O ver the last severaldecades,the expansion dynam -

icsand breakup lifetim e forthe exotic m atterproduced

in relativistic heavy ion (RHI) collisions,have been of

param ount interest [1,2]. Such enorm ous energy den-

sitiesare created in the RHIcollision zone,thatdecon-

�nem ent ofnuclear m atter is expected [3]. To gain an

understanding ofthis state ofm atter,it is essentialto

study itsdynam icalevolution.The space-tim eextentof
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hotparticle em ission sourcesin heavy ion collisionshas

been studied foryearsvia�nal-statecorrelationsbetween

two particles[4].

Yearsago,pioneering work atthe Alternating G radi-

entSynchrotron (AG S)[5]and by the NA49 Collabora-

tion atthe CERN SuperProton Synchrotron (SPS)[6],

exploited the Hanbury-Brown Twiss(HBT)correlations

ofhadron pairsin conjunction with �tsto particle spec-

tra,to estim atethedynam icalpropertiesofthereaction

source in a blast wave m odel. The NA49 data for cen-

tralPb+ Pb collisionsat
p
s
N N

= 17:3 G eV indicated a

strong longitudinalow with an approxim ately boostin-

variantlongitudinalvelocity pro�le.Thesedataalsosug-

gested atransverseexpansion ofthepion em ission source

with a duration of8-9 fm /c. A m ore recentanalysis[7]

con�rm sthese earlier�ndingswhile extending thebeam

energy dependence ofthe m easurem entsto �ve separate

SPS energies.

Severalyears ago,an alternative technique based on

source im aging was introduced for m odel-independent

extraction ofem ission sourcesin the pair-center-of-m ass

system (PCM S) [8,9,10]. This new m ethodology has

provided a m ore faithfuland detailed extraction ofthe

actual1D source function [11, 12]. Recent theoretical

developm ents [13, 14, 15, 16]enable the extraction of

three-dim ensional(3D)pro�lesofthe em ission source.

This m ethodology, in both its 1D and 3D form s,

has been em ployed for Au+ Au reactions at
p
s
N N

=

200 G eV to obtain detailed inform ation on both thespa-

tialandthelifetim eextentsofthecreatedem issionsource

[12, 17]. Here,we use the new m ethodology to again

study reaction dynam icsatthe SPS butwith identi�ed

pion correlationsand extensivelydevelopedim agingtech-

niquesthatexplicitly includeCoulom b e�ectsand donot

assum e G aussian sources. The resulting non-G aussian

sourcefunctionsareinterpreted in thecontextofapower-

fulnew sim ulation m odel,THERM INATO R [18,19,20].

Thisapproach explicitlyincludesallknown resonancede-

cays,longitudinalexpansion,transverseexpansion and a

freeze-outhypersurface.

In thisstudy,the source im aging technique isused to

analyze NA49 Collaboration data for central(0 � 7% )

Pb+ Pb collisionsat
p
s
N N

= 17.3 G eV,obtained atthe

SPS.M odelcom parisonsallow tests ofdi�erentaspects

ofthe dynam icsand,in particular,the extraction ofthe

proper tim e for breakup and em ission duration for the

pion em ission source.Thepicturethatem ergeshasm any

sim ilarities to that from the early work [6,7],but also

adds interesting features and conclusions that preclude

directcom parison.

Thedata presented hereweretaken by theNA49 Col-

laboration during the years 1996-2000. Lead beam s of

158A G eV from the CERN SPS acceleratorwere m ade

incident on a lead foilof thickness 224 m g/cm 2. De-

tails ofthe experim entalsetup are discussed in Refs.[7]

and [21]. Briey,the NA49 Large Acceptance Hadron

Detector achieves precision tracking and particle iden-

ti�cation using four large Tim e Projection Cham bers

(TPCs).The �rsttwo ofthem arem ounted in precisely

m apped m agnetic �eldswith totalbending powerofup

to9Tm .Chargedparticlesaredetected bythetracksleft

in theTPCsand areidenti�ed by theenergydeposited in

the TPC gas.M id-rapidity particle identi�cation isfur-

therenhanced by a tim e-of-ightwall(resolution 60 ps).

Charged particle m om enta are determ ined from the de-

ection in the m agnetic �eld. W ith the NA49 setup,

a resolution of�p=p2 � (0:3 � 7)� 10� 4 (G eV/c)� 1 is

achieved. Event centrality is determ ined by a forward

veto calorim eterwhich m easurestheenergy ofspectator

m atter. Approxim ately 3.9 m illion centralevents were

analyzed.

The 3D correlation function,C (q),and its 1D angle-

averaged counterpart C(q), were obtained as the ratio

of pair to uncorrelated reference distributions in rela-

tive m om entum q, for �+ �+ and �� �� pairs. Here,

q =
(p1� p2)

2
ishalfofthem om entum di�erencebetween

the two particles in the PCM S,and q is the m odulus

ofthe vector q. The pair distribution was obtained by

pairing particles from the sam e event;the uncorrelated

distribution was obtained by pairing particles from dif-

ferentevents.The Lorentztransform ation ofq from the

laboratory fram e to the PCM S is m ade by a transfor-

m ation to the longitudinally co-m oving system (LCM S)

fram ealongthebeam direction followed by atransform a-

tion to the PCM S along the pairtransverse m om entum

[22].C(q)isobserved to be atfor50< q< 100 M eV/c

and isnorm alized to unity overthisrange.

M id-rapidity(jyL � y0j< 0.35,whereyL and y0 arepar-

ticleand nucleus-nucleuscentre-of-m assrapiditiesin the

laboratory fram e),low kT (kT < 70 M eV/c,wherekT is

halfthe transverse com ponentofthe pairtotalm om en-

tum ) �+ �+ and �� �� pion pairswere selected for this

study.Track m erging and splitting e�ectswererem oved

by appropriate cuts on both the pair and uncorrelated

distributions. The m erging cut required the two parti-

clesin a pairto be separated by atleast2.2 cm over50

pad rowsin thevertex TPCs[7].A 20% increasein this

m inim um separation hasresulted only in changeswithin

the statisticalerrors. Sim ilar evaluations for the other

cuts indicate an overallsystem atic uncertainty which is

com parabletoorsm allerthan thestatisticaluncertainty.

The e�ects of track m om entum resolution were as-

sessed by jittering them om enta ofthetracksin thedata

bythem axim um m om entum resolution,�p=p2 � 7� 10� 4

(G eV/c)� 1. The resulting re-com puted 1D and 3D cor-

relation functions,which incorporate twice the e�ect of

the m om entum resolution,were found to be consistent

with those obtained withoutm om entum sm earing. The

correlation functions without additionalsm earing serve

in the following as a basis for the extraction ofsource

functionsvia im aging and �tting.

Theim aging procedureem ployed usesthe1D im aging
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codeofBrown and Danielewicz[8,9,10],which hasbeen

successfully used to im age 1D correlation functions ob-

tained at
p
s
N N

= 200 G eV [12]. Briey,the technique

num erically invertsthe 1D K oonin-Prattequation,

C (q)� 1 = R(q)= 4�

Z

drr
2
K 0(q;r)S(r) (1)

which relatesthetwo-particleangle-averaged 1D correla-

tion function,C(q),to the 1D source function orim age,

S(r).Thelattergivestheprobabilityofem ittingapairof

particleswith a separation distancer in thePCM S.The

1D kernelK 0(q;r) incorporates the e�ects ofCoulom b

interaction and ofBose-Einstein sym m etrization.

Contam ination by uncorrelated pairs (weak decay

products accepted by the track selection cuts,m isiden-

ti�ed particles,etc.) dilute the correlation and reduce

R(q).Ithasbeen con�rm ed by sim ulation thatthe con-

tam ination is approxim ately constant in q,so that the

reduction factor can be assum ed to be q-independent.

Thesourcefunction S(r)then getsreduced by the sam e

r-independentfactordue to the linearity ofEq.(1).

Figure 1(a) shows data points for the 1D correlation

function in relation to the im aged source function in

Figs.1(b) and (c),for m id-rapidity,low pT pion pairs.

The sourcefunction indicatesa tailforr>
s

15 fm which

is qualitatively sim ilar to that reported for RHIC data

in Ref.[12]. Asa check,the extracted source function is

used asinputto Eq.(1)to obtain a restored correlation

function also shown in Fig.1(a);excellentconsistency is

observed.

In parallel to the im aging procedure, two di�erent

functionalform s were used to �t the m easured correla-

tion function directly,as discussed below. The conclu-

sion from the�ts(seeFig.1)isthata triaxialG aussian,

frequently term ed ellipsoid,as used in traditionalHBT

m ethodology,poorlydescribesthecorrelation function at

low q>
s

13 M eV/c(Fig.1(a)),and thisleadsto a devia-

tion from thetailoftheim aged sourcefunction forlarge

r >
s

15 fm (Fig.1(b)). Fig.1(c)highlightsthe factthat

thetailforr>
s

15 fm containsa very signi�cantfraction

ofthe source. O n the other hand,the Hum p function

(cf.Eq.(7)and discussion below)givesa good �tovera

m oreextensiverange.

Forsystem atic accessto the 3D source function S(r),

the 3D correlation function C (q) and source function

S(r) were both expanded in a series with correlation

m om ents R l
� 1:::� l

(q) and source m om ents Sl� 1:::� l
(r) in

a Cartesian harm onicbasisrepresentation:

C (q)� 1= R(q)=
X

l

X

� 1:::� l

R
l
� 1:::� l

(q)A l
� 1:::� l

(
q);

(2)

S(r)=
X

l

X

� 1:::� l

S
l
� 1:::� l

(r)A l
� 1:::� l

(
r); (3)
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FIG .1: (color on line) Angle-averaged correlation function

(top panel),source function (m iddle) and radialprobability

density (bottom ) for m id-rapidity pion pairs. Filled circles

show correlation from direct averaging of the data. Error

bars indicate statisticalerrors only;system atic uncertainties

are sm aller than statisticalones. O pen circles representcor-

relation from �tting the data using angular decom position.

Squaresshow the im aged source and correlation correspond-

ing to the im aged source. The dotted and solid lines rep-

resent,respectively,the �tted G aussian and Hum p Eq.(7)

sourcesand theircorresponding correlation functions.

where l = 0;1;2;:::, �i = x;y orz, A l
� 1:::� l

(
q) are

Cartesian harm onic basis elem ents (
q is the solid an-

gle in q space)and R l
� 1:::� l

(q)are Cartesian correlation

m om entsgiven by

R
l
� 1:::� l

(q)=
(2l+ 1)!!

l!

Z
d
q

4�
A
l
� 1:::� l

(
q)R(q) (4)

Here,thecoordinateaxesareoriented so thatz (long)is

parallelto the beam direction,x (out)pointsin the di-

rection ofthe totalm om entum ofthe pairin the LCM S

fram e and y (side)ischosen to form a right-handed co-

ordinatesystem with x and z.

Thecorrelation m om ents,foreach orderl,can becal-

culated from them easured 3D correlation function using
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FIG .2:(coloronline)Correlation m om entsform ultipolarity

l= 2 (left panels),and l= 4 (right panels) for m id-rapidity

�
+
�
+
and �

�
�
�

pairs. Error bars indicate statistical er-

rorsonly;system aticuncertaintiesaresm allerthan statistical

ones.

Eq.(4). Alternatively,Eq.(2) can be truncated so as

to include allnon-vanishing m om ents and expressed in

term s ofindependent m om ents only. As expected from

sym m etry considerations,m om ents odd in any coordi-

natewerefound to beconsistentwith zero within statis-

ticaluncertainty. Up to order l= 4,there are 6 inde-

pendent m om ents: R 0,R 2
x2,R

2
y2,R

4
x4,R

4
y4 and R 4

x2y2,

where R 2
x2 is shorthand for R 2

xx etc. The independent

m om entscan then beextracted asa function ofq by �t-

ting thetruncated seriesto theexperim ental3D correla-

tion function with them om entsastheparam etersofthe

�t.Thepresentanalysisem phasizesthesecond m ethod,

with the m om ents com puted up to order l= 4 (higher

orderm om entsarefound tobenegligible).Them om ents

are shown in Fig.2,forthe m ultipolarity ordersofl= 2

and 4,and in Fig.1a forl= 0 (1+ R 0(q)� C0(q))[23].

The m agnitude ofthe m om ent R 4
x2y2 is com parable to

thatofR 4
x4 and R

4
y4.

Substitution of C (q) and S(r), from Eq. (2) and

Eq.(3),into the 3D form ofthe K oonin-Prattequation

C (q)� 1=

Z

drK (q;r)S(r) (5)

results[13]in arelationshipbetween correspondingcorre-

lation R l
� 1:::� l

(q)and source m om entsSl� 1:::� l
(r),which

issim ilarto the 1D K oonin-Prattequation:

R
l
� 1:::� l

(q)= 4�

Z

drr
2
K l(q;r)S

l
� 1:::� l

(r); (6)

butnow pertainsto m om entsdescribing di�erentranks

ofangularanisotropyl.Sincethem athem aticalstructure

ofEq.(6)isthesam easthatofEq.(1),thesam eim aging

technique can be used to invertthe kernelK l ofthe re-

lation to extractthe sourcem om entSl� 1:::� l
(r)from the

corresponding correlation m om ent R l
� 1:::� l

(q). Finally,

the total3D source function iscalculated by com bining

the sourcem om entsforeach lasin Eq.(3).

Alternatively,thesourcefunction can be extracted by

directly �tting the 3D correlation function with an as-

sum ed 3D shape for the source function. Since the 3D

correlation function can berepresented by theCartesian

m om entsin the harm onicdecom position,the3D �tcor-

responds to �tting the six independent non-trivialm o-

m entssim ultaneously with a trialsourcefunction.

Figures 1-2 show the resultofdirect �ts to the inde-

pendentcorrelation m om entswith two 3D functions:(a)

asingletriaxialG aussian,orellipsoid,(dotted curve)and

(b) a Hum p shape (solid curve). As m entioned,the el-

lipsoidal�t,with four free param eters,fails to capture

the low q behavior in C(q) and the large r behavior in

S(r). O n the other hand,the Hum p function,with six

freeparam eters,givesa good �t.Theform oftheHum p

function is

S(x;y;z)= �exp

"

� fs
r2

4r2s
� fl

 

x2

4r2
xl

+
y2

4r2
yl

+
z2

4r2
zl

! #

(7)

where r2 = x2 + y2 + z2 and the coe�cients f s and

fl of the short and long-ranged com ponents are given

by fs = 1=[1 + (r=r0)
2)]and fl = 1 � fs respectively.

Here,the argum entofthe exponentialshiftsthe behav-

iorfrom thatofa sim plespherically sym m etricG aussian

forr� r0 to thatofa triaxialG aussian forr� r0.The

param eter� regulatesthefraction ofpion pairsofwhich

correlationsaredescribed in term softheHum p function

(for�tparam etervaluesseeRef.[24]).

Source im aging involves no assum ptions on the ana-

lyticalshape ofthe 3D source function. O n the other

hand,the m om ent�tting explicitly invokesa particular

form for the 3D source function. The ellipsoid �t pro-

ducesa�2=ndf valueof6.8whiletheHum p produces1.2,

which indicates a better �t to the observed correlation

m om ents,asisvisuallyevidentin Figs.1(a)and 2.Close

agreem entbetween the experim entaldata,the Hum p �t

and the restored correlation m om entsfrom im aging (see

Figs.1-2)strongly suggeststhatthisassum ed functional

form properly representsthe em ission source. However,

theuniquenessofthesourcefunction is,forexam ple,not

guaranteed beyond theregion towhich data aresensitive
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such as r > 40 fm orwhere the source function is very

sm all.

Figures 3(d)-(f) show com parisons between two-pion

source functions obtained via the �tting (lines)and the

im aging (squares)techniques. The ellipsoid �tfunction

(dotted line)underestim atesthe source im age (squares)

and Hum p �tfunction (solid line)forr> 15 fm in thex

and z directionswhile the Hum p �tfunction isin good

agreem entwith thesourceim agein thex,y and z direc-

tions.Thisconsistency check em phasizesthehigh degree

ofintegrity with which the 3D source function is being

extracted.Thesourcefunction in thez direction ischar-

acterized by a long tailwhich extends beyond 30 fm .

The source function in x also has a non-G aussian tail,

which,forthislow pT cutislessprom inentthan thatin

z. These aspectsare decidedly di�erentfrom those ofa

RHIC study [25].

The di�erence between the source functions from the

ellipsoid �tand im aging proceduresisalso evidentfrom

a com parison ofthe corresponding correlation functions

in the x,y and z directionsasshown in Fig.3(a)-(c)re-

spectively.Again there isconsistency between the data,

Hum p �tand restored correlation functions in allthree

directionswhilethedi�erencesbetween theellipsoid and

Hum p �t sources for r >
s

15 fm are m anifest by dif-

ferencesbetween the respective correlation functionsfor

q>
s

15 M eV/c.

Theeventsim ulation codeTHERM INATO R allowsfor

testsoftheem ission dynam icsand ofthebreakup tim eof

thereaction system s[18,19,20,26].Thecodesim ulates

therm alem issionsfrom a cylinderwith inputtransverse

radius�m ax.Bjorken longitudinalboostinvarianceisas-

sum ed,and an expansion with transverseradialvelocity

vr(�)= (�=�m ax)=(�=�m ax + vt),where vt = 1:41,in the

Blast-W ave m ode ofthe code. A uid elem entring,de-

�ned by � and z,breaks up at proper tim e � and lab

fram etim etwheret2 = �2+ z2.Thefreezeouthypersur-

face isspeci�ed by � = �0 + a� where a,the space-tim e

correlation param eter,issetto -0.5 aswasfound in Ref.

[20].Thenegativevalueofaim plies\outside-in"burning

ofthe source i.e outerparticlesare em itted earlierthan

inner ones,while a positive value ofa would im ply the

reversei.e source em ission from inside out.An em ission

duration param eter�� isalso needed to achievea good

�t.Allknown hadronicresonancedecaysareincluded.

THERM INATO R param etersvt; T; �B ; �s; �i and

a are taken from Ref.[18,19,20,27]as obtained from

spectra and particle yields. Values of�m ax; �0 and ��

were obtained by m atching THERM INATO R’s gener-

ated sourcefunction to data shown in Figs.3(d -f).The

value ofthe transverse radius �m ax is chosen so as to

reproduce the source function pro�le in the y direction;

S(ry)isinsensitiveto �0 and ��.Theproperlifetim e �0
isdeterm ined by the short-range behaviorofthe source

function pro�les in the x and z directions. The proper
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FIG . 3: (color online) Correlation C (qi) (left panels) and

source S(ri) (right panels) function pro�les for �
+
�
+ and

�
�
�
�
pairsin theoutward x (top panels),sideward y(m iddle)

and longitudinalz (bottom )directions.Theuseofsym bolsis

analogousto thatin Fig.1.Errorbarsindicatestatisticaler-

rorsonly;system aticuncertaintiesaresm allerthan statistical

ones.Here,l= 4 m om entsm ake negligible contributions.

em ission duration isthen determ ined by the tailsofthe

sourcepro�lesin the x and z directions.

Thecalculation givesa good m atch to the experim en-

talsource function in the x,y and z directions with a

transversedim ension �m ax = 7:5� 0:1fm ,properlifetim e

�0 (� = �0 at � = 0) of7:3� 0:1 fm /c,a proper em is-

sion duration �� = 3:7� 0:1 fm /c and a = � 0:5 (solid

circles) [28]. The errors quoted are from the m atching

procedure alone. W ith these valuesof�m ax;�0 and ��

we have reexam ined the role ofa = � 0:5 i.e. outside-in

burning.Figure 4 showsa com parison ofthe THERM I-

NATO R sourcefunction,calculated using variousvalues

ofa and otherpreviously tuned param eters[27],with the

extracted source function. The open sym bolsshow that

thecalculationswith a � 0overstatetheextractedsource

function pro�le in the z direction. Attem pts to com -

pensate for this overshootvia di�erent com binations of

�m ax,�0 and �� were unsuccessful.Therefore,thisfail-

uresuggeststhata negativevalue fora,hence \outside-

in" particle em ission, is required to reproduce the ex-

tracted source function. The success ofthe THERM I-

NATO R m odelsim ulation in precisely reproducing the

experim entalsource function indicatesconsistency with

approxim ateboostinvarianceatm id-rapidity,blast-wave
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FIG .4:(coloronline)Sourcefunction pro�les,S(ri),com pari-

son in the(a)x,(b)y and (c)z directionsbetween theim aged

data (squares)and THERM INATO R Blast-W avem odelwith

variousvaluesofa (circlesand triangles).Errorbarsindicate

statistical errors only; system atic uncertainties are sm aller

than statisticalones.

dynam ics for transverse ow,and outside-in burning in

the evolution ofthe expanding system .

Results from this study and those from Ref.[7] de-

pend on thedi�erentanalysistechniquesand m odelsem -

ployed. The deduced tim e scalesare sim ilarbutthe ge-

om etric transverse radiusis quite di�erent. This di�er-

ence results from the inclusion ofresonancesin THER-

M INATO R,as wellas di�erent param etrizations of T

and vr(�).Conclusionsfrom theseTHERM INATO R pa-

ram etersare,ofcourse,m odeldependent and therefore

notnecessarilyunique.Di�erentm odelassum ptionsm ay

possibly lead to di�erentpicturesofthereaction dynam -

ics[29].

In sum m ary, we have presented a three-dim ensional

fem toscopic study of the two-pion source function in

Pb+ Pb collisions at
p
s
N N

= 17.3 G eV. A m odel-

independentim aging/�ttingtechniquerevealsprom inent

non-G aussian tails in the outward and longitudinaldi-

rections of the extracted source function. THERM I-

NATO R Blast-W ave m odel calculations, incorporating

Bjorken longitudinalow, give a near-exponentialtail

in the longitudinal direction consistent with observa-

tion. The space-tim e correlation param etrization sug-

gestsoutside-in burningand providesvaluesoftheproper

tim e forbreakup and the em ission duration.
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