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CP violation is a major challenge of contemporary particle physics. It has been discovered in kaon

decays and appears also in B decays, where the B0 ! J=cKS;L channels are considered to be clean probes

of this phenomenon. Recent B-factory data challenge the description of CP violation in the standard

model of particle physics, showing some ‘‘tension’’ with theoretical predictions. We take a detailed look at

certain standard-model contributions, which are usually neglected, and point out that they can be included

unambiguously through measurements of the B0 ! J=c�0 observables. Using the most recent data, we

show that the tension with the standard model is softened, and we constrain a possible new-physics phase

in B0 � �B0 mixing. Our strategy is crucial to fully exploit the accuracy of the search for this kind of new

physics at the LHC and future super-flavor factories.
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CP-violating effects in B0 decays into CP eigenstates f
are studied through time-dependent rate asymmetries:

ACPðt; fÞ � �ðB0ðtÞ ! fÞ � �ð �B0ðtÞ ! fÞ
�ðB0ðtÞ ! fÞ þ �ð �B0ðtÞ ! fÞ

¼ CðfÞ cosð�MdtÞ � SðfÞ sinð�MdtÞ; (1)

where CðfÞ and SðfÞ describe direct and mixing-induced
CP violation, respectively. The key application is given by
B0 ! J=cKS;L decays, which arise from �b ! �cc�s pro-

cesses. If we assume the standard model (SM) and neglect
doubly Cabibbo-suppressed contributions to the B0 !
J=cK0 amplitude, we obtain [1–4]

CðJ=cKS;LÞ � 0; SðJ=cKS;LÞ � ��S;L sin2�; (2)

where �S ¼ �1 and �L ¼ þ1 are the CP eigenvalues of
the final states, and � is an angle of the unitarity triangle
(UT) of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
The usual experimental analyses assume that (2) is valid
exactly; the most recent data then result in

ðsin2�ÞJ=cK0 ¼ 0:657� 0:024; (3)

which is obtained from the average of the measured
SðJ=cKS;LÞ values [5,6]. It is the purpose of the present

paper to critically review this assumption.
Using also data forCP violation in B0 ! J=cK� decays

[7], � can be fixed unambiguously, where the value in (3)
corresponds to � ¼ ð20:5� 0:9Þ�. In Fig. 1, created with
the CKMFITTER software [8], we show the resulting con-
straint for the apex of the UT in the ��� �� plane of the
generalized Wolfenstein parameters [9,10]. Moreover, we
include the circle coming from the UT side Rb � ð1�
�2=2ÞjVub=ð�VcbÞj, where � � jVusj ¼ 0:225 21�
0:000 83 [11]; taking into account the most recent develop-
ments in the determination of jVubj and jVcbj from semi-
leptonic B decays [12], where inclusive and exclusive
determinations of jVubj are now consistent with each other,

we find Rb ¼ 0:423þ0:015
�0:022 � 0:029. Here and in the follow-

ing the first error comes from experiment and the second
from theory. We show also the range corresponding to � ¼
ð65� 10Þ�, which is well in accordance with the analyses
of the UT in Refs. [11,13] and the information from Bd;s !
��, �K, KK decays [14]. This angle will be determined
with only a few degrees uncertainty thanks to CP violation
measurements in pure tree decays at the LHCb (CERN). In
analogy to Rb, the value of � extracted in this way is
expected to be very robust with respect to new-physics
(NP) effects. In Fig. 1, we can see the tension that is also
present in more refined fits of the UT for a couple of years
[11,13].
Since B0 � �B0 mixing is a sensitive probe for NP (see,

e.g., [15–17]), this effect could be a footprint of such
contributions. Provided they are CP violating, we have

�d ¼ 2�þ�NP
d ; (4)

where�d denotes the B
0 � �B0 mixing phase and�NP

d is its

NP component. If we assume that NP has a minor impact
on the B0 ! J=cK0 amplitude, the relations in (2) remain
valid, with the replacement 2� ! �d.

FIG. 1 (color online). Constraints in the ��� �� plane (1� and
2� ranges).
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Using Fig. 1, the ‘‘true’’ value of � can be determined
through Rb and tree-level extractions of �. We find �true ¼
ð24:9þ1:0

�1:5 � 1:9Þ�, which is essentially independent of the

error on � for a central value around 65� [and yields
ðsin2�Þtrue ¼ 0:76þ0:02þ0:04

�0:04�0:05]. Consequently,

ð�dÞJ=cK0 � 2�true ¼ �ð8:7þ2:6
�3:6 � 3:8Þ�: (5)

Let us now have a critical look at the hadronic SM
uncertainties affecting the extraction of �d from B0 !
J=cKS;L. In the SM, we may write [18]

AðB0 ! J=cK0Þ ¼ ð1� �2=2ÞA½1þ 	aei
ei��; (6)

where

A � �2A½AðcÞ
T þ AðcÞ

P � AðtÞ
P � (7)

and

aei
 � Rb

�
AðuÞ
P � AðtÞ

P

AðcÞ
T þ AðcÞ

P � AðtÞ
P

�
(8)

are CP-conserving parameters, with AðcÞ
T and AðjÞ

P denoting
strong amplitudes that are related to tree-diagram-like and
penguin topologies (with internal j 2 fu; c; tg quarks), re-
spectively, while A � jVcbj=�2 ¼ 0:809� 0:026 and 	 �
�2=ð1� �2Þ ¼ 0:053 are CKM factors.

Looking at (6), we observe that aei
 enters with the tiny
parameter 	. Therefore, this term is usually neglected,
which yields (2). However, aei
 suffers from large had-
ronic uncertainties, and may be enhanced through long-
distance effects. As discussed in detail in Ref. [19], the
generalization of these expressions, taking also the
penguin-topology effects into account, reads as follows:

��S;LSðJ=cKS;LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CðJ=cKS;LÞ2

q ¼ sinð�d þ ��dÞ; (9)

where

sin��d ¼ 2	a cos
 sin�þ 	2a2 sin2�

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CðJ=cKS;LÞ2

q ; (10)

cos��d ¼ 1þ 2	a cos
 cos�þ 	2a2 cos2�

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CðJ=cKS;LÞ2

q ; (11)

with N � 1þ 2	a cos
 cos�þ 	2a2, so that

tan��d ¼ 2	a cos
 sin�þ 	2a2 sin2�

1þ 2	a cos
 cos�þ 	2a2 cos2�
: (12)

Concerning direct CP violation, we have

CðJ=cK0Þ ¼ �0:003� 0:019; (13)

which is again an average over the J=cKS and J=cKL

final states [5,6]. Consequently, the deviation of the terms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CðJ=cKS;LÞ2

q
from 1 is at most at the level of 0.0002,

and is hence completely negligible.
In order to probe the importance of the penguin effects

described by aei
, we may use a �b ! �dc �c transition, as
here this parameter is not doubly Cabibbo suppressed
[18,20]. In the following, we will use the decay B0 !
J=c�0. In Ref. [21], a similar ansatz was used to constrain
the penguin effects in the golden mode. However, the
quality of the data has improved such that we go beyond
this paper by allowing for �NP

d � 0�. Moreover, as we will

see below, the current B-factory data point already towards
a negative value of ��d, where mixing-induced CP vio-
lation in B0 ! J=c�0 is the driving force, thereby reduc-
ing the tension (5) in the fit of the UT.
In the SM, we haveffiffiffi

2
p

AðB0 ! J=c�0Þ ¼ �A0½1� a0ei
0ei��; (14)

where the
ffiffiffi
2

p
factor is associated with the �0 wave

function, while A0 and a0ei
0 are the counterparts of (7)
and (8), respectively. We see now explicitly that—in con-
trast to (6)—the latter quantity does not enter (14) with the
	. The CP asymmetry ACPðt; J=c�0Þ [see (1)] was re-
cently measured by the BABAR (SLAC) [22] and Belle
(KEK) [23] collaborations, yielding the following averages
[7]:

CðJ=c�0Þ ¼ �0:10� 0:13; (15)

SðJ=c�0Þ ¼ �0:93� 0:15: (16)

Note that the error of SðJ=c�0Þ is that of the Heavy
Flavour Averaging Group [7], which is not inflated due
to the inconsistency of the data.
The values of these CP asymmetries allow us to calcu-

late a0 as functions of 
0. We obtain two relations from
CðJ=c�0Þ and SðJ=c�0Þ (O ¼ C and S, respectively),

a0 ¼ UO �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

O � VO

q
; (17)

where

UC � cos
0 cos�þ sin
0 sin�
CðJ=c�0Þ ; VC � 1; (18)

and

US �
�
sinð�d þ �Þ þ SðJ=c�0Þ cos�
sinð�d þ 2�Þ þ SðJ=c�0Þ

�
cos
0; (19)

VS � sin�d þ SðJ=c�0Þ
sinð�d þ 2�Þ þ SðJ=c�0Þ : (20)

The intersection of the CðJ=c�0Þ and SðJ=c�0Þ contours
then fixes the hadronic parameters a0 and 
0 in the SM;
when allowing for an additional NP phase, one has to take
into account SðJ=cK0Þ together with SðJ=c�0Þ in order to
have a constraint in the a0 � 
0 plane. From CðJ=cK0Þ
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comes another constraint, which is of the form (17) with
the replacements a0 ! 	a and 
0 ! 180� þ 
. It should be
stressed that (17)–(20) are valid exactly, as these expres-
sions follow from the SM structure of B0 ! J=c�0.

Neglecting penguin annihilation and exchange topolo-
gies, which contribute to B0 ! J=c�0 but have no coun-
terpart in B0 ! J=cK0 and are expected to play a minor
role (which can be probed through B0

s ! J=c�0), we
obtain in the SUð3Þ limit

a0 ¼ a; 
0 ¼ 
: (21)

Thanks to these relations, we can determine the shift ��d

by means of (9)–(13) from the data. We expect them to
hold to a reasonable accuracy; however, one has to keep in
mind that sizable nonfactorizable effects may induce
SUð3Þ-breaking corrections. Their impact on the determi-
nation of ��d can be easily inferred from (12). Neglecting
terms of order 	2, we have a linear dependence on a cos
.
Consequently, corrections to the left-hand side of (21)
propagate linearly, while SUð3Þ-breaking effects in the
strong phases will generally lead to an asymmetric uncer-
tainty for ��d.

Before having a closer look at the picture emerging from
the current B-factory data, let us discuss another constraint
which follows from the CP-averaged branching ratios. To
this end, we introduce

H � 2

	

�
BRðBd ! J=c�0Þ
BRðBd ! J=cK0Þ

���������
A
A0

��������
2�J=cK0

�J=c�0

¼ 1� 2a0 cos
0 cos�þ a02

1þ 2	a cos
 cos�þ 	2a2
; (22)

where the �J=cP � �ðMJ=c =MB0 ;MP=MB0Þ are phase-

space factors [18]. In order to extract H from the data,
we have to analyze the SUð3Þ-breaking corrections to
jA=A0j. We assume them to be factorizable, and thus
given by the ratio of two form factors, evaluated at q2 ¼
M2

J=c . This ratio has been studied in detail using QCD

light-cone sum rules (LCSR) [24]. We shall use the latest
result for the form-factor ratio at q2 ¼ 0 [25,26],

fþB!Kð0Þ=fþB!�ð0Þ ¼ 1:38þ0:11
�0:10; (23)

and perform the extrapolation to q2 ¼ M2
J=c by using a

simple BK parametrization [27],

fþðq2Þ ¼ fþð0Þ
�

M2
BM

2�
ðM2� � q2ÞðM2

B � �q2Þ
�
: (24)

HereM� is the mass of the ground state vector meson in the
relevant channel, and the pole at M2=� models the con-
tribution of the hadronic continuum for q2 >M2�. The BK
parameter � has been fitted to the B ! � lattice data to be
�� ¼ 0:53� 0:06. Nothing is known about the value of �

for the B ! K form factor, and we shall use the simple
assumption that the main SUð3Þ-breaking effect is due
to the shift of the continuous part of the spectral function
from the B� to the BK threshold. This leads to �K ¼
0:49� 0:05, and—extrapolating in this way to
q2 ¼ M2

J=c—we get

fþB!KðM2
J=c Þ=fþB!�ðM2

J=c Þ ¼ 1:34� 0:12: (25)

Using BRðB0 ! J=cK0Þ ¼ ð8:63� 0:35Þ � 10�4 and
BRðB0 ! J=c�0Þ ¼ ð0:20� 0:02Þ � 10�4 [7], we obtain
H ¼ 1:53� 0:16BR � 0:27FF, where we give the errors
induced by the branching ratios and the form-factor ratio.
Using (21), we obtain the following relation [18]:

CðJ=cK0Þ ¼ �	HCðJ=c�0Þ; (26)

which would offer an interesting probe for SUð3Þ breaking.
However, the value of H given above yields CðJ=cK0Þ ¼
0:01� 0:01, which is consistent with (13), but obviously
too small for a powerful test.
If we apply once more (17) with

UH ¼
�
1þ 	H

1� 	2H

�
cos
0 cos�; (27)

VH ¼ ð1�HÞ=ð1� 	2HÞ; (28)

i.e. O ¼ H, we may again calculate a0 as a function of 
0.
In contrast to the CP asymmetries of B0 ! J=c�0, we
have to deal here with SUð3Þ-breaking effects, which enter
implicitly through the determination of H.
In Fig. 2, we show the fits in the 
0 � a0 plane for the

current data with 1� ranges. The major implication of
SðJ=c�0Þ is 
0 2 ½90�; 270��. Looking at (8), this is ac-
tually what we expect. SðJ=cK0Þ fixes the NP phase
essentially to ð�dÞJ=cK0 � 2�true, as the NP phase is an

FIG. 2 (color online). The 1� ranges in the 
0 � a0 plane with
current data.
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Oð1Þ effect in SðJ=cK0Þ, while the additional SM contri-
bution is suppressed by 	. The negative central value of
CðJ=c�0Þ prefers 
0 > 180�. The intersection of the
CðJ=c�0Þ and H bands, which falls well into the
SðJ=c�0; J=cK0Þ as well as the CðJ=cK0Þ region, then
gives a0 2 ½0:15; 0:67� and 
0 2 ½174; 213�� at the 1�
level. Note that all three constraints give finally an unam-
biguous solution for these parameters.

In Fig. 3, we convert the curves in Fig. 2 into the 
�
��d plane with the help of (10)–(12) and (21). We see that
a negative value of ��d emerges; the global fit to all
observables yields ��d 2 ½�3:9;�0:8��, mainly due to
the constraints from H and CðJ=c�0Þ, corresponding to
�d ¼ ð42:4þ3:4

�1:7Þ�. Furthermore, the fit gives �NP
d 2

½�13:8; 1:1��, which includes the SM value �NP
d ¼ 0�.

Consequently, the negative sign of the SM correction
��d softens the tension in the fit of the UT.

We have studied the impact of SUð3Þ-breaking correc-
tions by setting a ¼ �a0 in (21) and uncorrelating 
 and 
0.
Even when allowing for � 2 ½0:5; 1:5� and 
; 
0 2
½90; 270�� in the fit, and using a 50% increased error for
the form-factor ratio in view of nonfactorizable contribu-
tions to jA=A0j, the global fit yields ��d 2 ½�6:7; 0:0��
and �NP

d 2 ½�14:9; 4:0��, determined now mostly by

CðJ=cK0Þ and H. Consequently, these SUð3Þ-breaking
effects do not alter our conclusions. It should be empha-
sized that the novel feature of this determination of �NP

d in

comparison with other analyses in the literature is that the
doubly Cabibbo-suppressed SM contributions are in-
cluded, which is crucial in order to eventually detect or
exclude such a NP effect.

In view of the large experimental errors, we cannot yet
draw final conclusions. However, the increasing experi-
mental precision will further constrain the hadronic pa-
rameters. The final reach for a NP contribution to the
B0
d � �B0

d mixing phase will strongly depend on the mea-

sured values of the CP asymmetries of B0 ! J=c�0,

which are challenging for the LHCb because of the neutral
pions (here a similar analysis could be performed with
B0
s ! J=cKS [18]), but can be measured at future

super-B factories.
We illustrate this through two benchmark scenarios,

assuming a reduction of the experimental uncertainties of
the CP asymmetries of B0 ! J=cK0 by a factor of 2, and
errors of the branching ratios and � that are five times
smaller; the scenarios agree in CðJ=c�0Þ ¼ �0:10�
0:03, but differ in SðJ=c�0Þ. In the high-S scenario (a),
we assume S ¼ �0:98� 0:03. As can be seen in Fig. 4,
��d 2 ½�3:1;�1:8�� (with a0 	 0:42, 
0 	 191�) will
then come from the lower value of S and H, which we
assume as H ¼ 1:53� 0:03� 0:27. In the low-S scenario
(b), we assume S ¼ �0:85� 0:03. In this case, ��d 2
½�1:2;�0:8�� (with a0 	 0:18, 
0 	 201�) would be de-
termined by S and C alone, while H would only be used to
rule out the second solution. By the time the accuracies of
these benchmark scenarios can be achieved, we will also
have a much better picture of SUð3Þ-breaking effects
through data about Bs;d;u decays.

Since the experimental uncertainty of ð�dÞJ=cK0 could

be reduced to 	0:3� at an upgrade of the LHCb and an
eþe� super-B factory, these corrections will be essential. It
is interesting to note that the quality of the data will soon
reach a level in the era of precision flavor physics where
subleading effects, i.e. doubly Cabibbo-suppressed pen-
guin contributions, have to be taken into account. In par-
ticular, in the analyses of CP violation in the golden
B0 ! J=cKS;L modes, this is mandatory in order to fully

exploit the physics potential for NP searches.

S. F., M. J., and T.M. acknowledge discussions with
Th. Feldmann and support from the German Ministry of
Research (BMBF, Contract No. 05HT6PSA).

FIG. 3 (color online). ��d for the constraints shown in Fig. 2. FIG. 4 (color online). Future benchmark scenarios, as dis-
cussed in the text.
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