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We discuss scaling laws for the dynamic aperture with respect to number of random multipoles
in the machine, strength of the multipoles, and multipolarity-flavor n. Moreover we find rules
of thumb for the combined effect of multipoles with different n on the dynamic aperture. These
rules are tested for typically 10 seeds and are valid for large numbers of perturbing elements.
These rules are then used to analyze tolerances for the random multipole errors in the LHC
dipoles.

Keywords: Dynamic aperture; scaling law.

1 INTRODUCTION

Typically, dynamic aperture (DA) calculations are performed in order to
assess the stability of a given optics, Le. given the geometry and gradients
of all linear and non-linear magnets single particles are mapped through
the beam line for many turns and their survival is checked for given initial
conditions. The larger the number of turns, the bigger the chance ofhitting an
unstable (usually small) portion of phase space, which causes the particle to
escape to infinity. This procedure thus analyzes a given optics very carefully.
On the other hand, the exact gradients of all magnets of an accelerator are
not known very precisely due to finite construction tolerances, alignment
errors and other effects. We therefore pursue a different path in this report.
We investigate the short term DA over 1000 turns and perform ensemble
averages over different seeds and deduce scaling laws for the DA with respect
to strength, multipolarity, and discuss, how different multipoles jointly affect
theDA.
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We utilize the frequently used parameterization of the multipole errors of
dipole magnets by the quantities an and bn as given in the following equation

(
. )n-l. . X+lY

By + IBx = Bo ~(bn + Ian) -R- . (1)

Bx / y is the horizontal and vertical magnetic field, respectively. Bo is the
bending field of the dipole and R is a reference radius which is usually
10mm.

2 NUMBER OF NON-LINEARITIES

In this report we limit ourselves to the short-term DA, because we are
interested in coarse grained features of phase space and also found that the
DA of a simple model varies by less than 3 % if the number of turns is varied
between 103 and 106. We now tum to the effect of the number of random
non-linear elements in the machine on 1000-turn DA. We do so by preparing
a Henon map with tunes Qx == 68.28 and Qy == 68.31 and subdivide the
beam line in 1024 pieces with equal phase advance and place a sextupole
with random excitation between the linear pieces. The rms of the sextupole
excitation is unity. Using the thus prepared lattice we calculate the diagonal
DA, i.e. with starting conditions x == Y and x' == y' == O. We then switch
off every other sextupole and re-calculate the DA for that configuration and
repeat this process of switching off every other remaining sextupole and DA
calculation until only 4 sextupoles are left and plot the DA as a function of
non-zero sextupoles in Figure 1. This is done for 10 different seeds which
are labeled 0 through 9 in Figure 1.

Looking at each seed individually no clear trend is obvious, but fitting
a straight line to the double-logarithmic representation of all data points
reveals a slope of -0.4938 which is close to -1/2 and implies that averaged
over many seeds the DA scales as 1/.J"N where N is the number of random
sextupoles in the beam line. Since all sextupoles have the equal rms strength
we may also say that the DA scales inversely to the integrated rms strength
of the random sextupoles.a

aThe author is grateful to J.-P. Koutchouk for pointing this out.



CRUDE SCALING LAWS [389]/143

W
0:::
:=J
I­
0:::
W
0....
<C

U

~
<C
Z
>­
o

0.500

0.100

0.050

0.010

y = -0.4938 x - 0.8761
0.005 l--...L---'----~.l-J.l---LO';-l---'----'--------'--------'----'-J..-'-1O.l-l;:2---------'-----'---L----L---L--'---1L..J...0~3-

NUMBER OF SEXTUPOLES WITH RMS=l

FIGURE 1 The effect of the number of sextupoles in the henon map on the dynamic aperture
calculated for ten different seeds.

Re-doing the same exercise for decapoles we find that the DA scales as
IIN 1/ 6 which is surprising at first sight. Since the rms of the decapoles is
unity in these simulations we may write this as 1/(,J"Nbs, rms )1/(n-2) with
n = 5 and find again that it is the integrated rms strength that determines the
DA. The value in the exponent 1/(n - 2) will become obvious in the next
section.

3 MULTIPOLARITY

In this section we deduce the (trivial and probably well known) scaling
of the DA with respect to the strength of the non-linearities. For the sake
of completeness we present the derivation of the scaling of the DA with
multipole strength and begin by writing down the kick as experienced by the
beam in an upright multipole

n-1
I X "'" n-1

~x = ~¢bn --1 = bnxRn- (2)
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where we assume that the multipole is situated in a bending magnet with
bending angle ~4J which is 4.868 mrad for a full length dipole of LHC,
version 2 and the multipolar errors an and bn are parameterized as shown in
Equation 1. R is the reference radius referred to there.

Since the linear transport map between the non-linearities is scale invariant
we only have to re-scale the variable x such that we obtain a unit kick and
thus make the dynamics scale invariant with respect to the strength of the
multipole. The new variable we call y and it is related to x by y = b!:x .

Inserting this into Equation 2 we obtain

(3)

which can be rewritten as ~y! = b!:+l-np+p yn-l. The requirement for a unit

kick is thus transferred to the requirement that p + 1 - np + p = awhich
yields

1
p=-­

n-2

and the DA in x-variables dn,x is related to that in y-variables dn,y by

(

R ) 1/(n-2)
_ --1/(n-2) _

dnx-bn dny-R -- d ny .
, '~4Jbn '

(4)

(5)

Note that dn,y has the units of m-1/(n-2). Equation 5 justifies the observed
scaling at the end of the previous section.

Moreover we can check how the DA depends on the multipolarity n of the
kick. We do so by tracking the simple 4-dimensional Henon map for LHC
tunes over 1000 turns. In these runs the kick is always taken to be of the form
~y! = yn-l, i.e. of unit strength. The DA thus found are shown in Table I
in which the positive numbers correspond to upright multipoles and negative
numbers to skew multipoles. Obviously the DA in rescaled variables dn,y

depends only weakly on the multipolarity n. In the following we introduce
parameters ~ and D that relate the dn,y by

d - D- 1/(n-2) rn,y - ., . (6)
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TABLE I The 1000-tumdiagonal dynamic aperture ofthe four-dimensional
Henonmapwith Qx = 0.28 and Qy = 0.31. Note that the values do not differ
considerably from 0.5. A positive number indicates an upright multipole and
a negative number a skew multipole

n dn,y n dn,y n dn,y

3 0.3715 6 0.7815 9 0.7986

-3 0.,4106 -6 0.7135 -9 0.7447

4 0.6870 7 0.6575 10 0.8494

-4 0.5468 -7 0.6341 -10 0.8172

5 0.6470 8 0.8750 11 0.7999

-5 0.6747 -8 0.7612 -11 0.7813

where ~ determines the overall magnitude and D serves a dual purpose. First,
it introduces the weak variation with n and second, it has the units ofmeters in
order to get the dimensions right. For example, ~ will be affected by the beta
function at the point where the DA is calculated and the number of random
non-linear elements as well as the tunes. For the Henon map data a simple fit
to the data shown in Table I yields D = 0.4 m and ~ = 0.9. These parameters
will, however, be different for maps with other multipoles.

Using the relation given in Equation 6 we can deduce relations between DA
and multipolar strength as a function of multipolarity n. Inserting Equation 6
into Equation 5 we obtain

~R
dn,x = --------

((D / R)~¢bn)1/(n-2)
~R

(7)

where we introduce the quantity K = (D / R)~¢. After solving for bn and
taking logarithms this leads to

(
d;,x ) (~R)In bn = In -2-2- + n In -. .

~ R K dn,x
(8)

The preceding equation describes an exponential relation (with respect to n)

between the multipolar excitation bn and the DA dn,x. Figure 2 shows the an
andbn that reduce the DAdn,x ofLHC, version2atlP 1 with,Bx =,By = 8m
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FIGURE 2 The an and bn that reduces the dynamic aperture to 2, (top) 5, (middle) and 6.9 rom
(bottom), respectively as function of the multipolarity n.

to 2, 5, and 6.9 mm. We clearly observe the linear dependence of an and bn

versus n in the logarithmic plot Figure 2 as predicted by Equation 8. Linear fits
to the three curves yield the following estimates to the parameters D or K and
~. Note that we need two parameters in a fit to a straight line which justifies
the parametrization choosen in Equation 6. We observe that the parameter
~ as deduced from the graphs is about 0.22, but the parameters D or K vary
quite drastically as determined from the three graphs. Bearing in mind that
we are dealing with crude estimates we will use the values D = 4000 m or
K = 2000 and ~ = 0.22 to characterize LHC in what follows and estimate
the DA of LHC as resulting from random multipole errors of multipolarity n

only by

0.22R
d - in m for LHC, version 2. (9)

n,x - (2000bn )1/(n-2)

Note that the magnitude of K only has a small effect on the DA from higher
multipoles, because it enters under afoot of order n - 2.
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TABLE II The parameters ~ , D, and K, deduced from linear fits to Figure 2

Dynamic Aperture S D K

[mm] [m]

2.0 0.248 4800 2340

5.0 0.213 2660 1300

6.9 0.227 5290 2580

5000 10000
OCTUPOLE STRENGTH IN kG/m··2

5000 10000
OCTUPOLE STRENGTH IN kG/m··2

FIGURE 3 The 200-tum dynamic apertures of LHC, version 2 with a fixed sextupole seed and
10 different octupole seeds which are scaled up and the average over the ten seeds with fits to
the data using exponents v = 3, 4, 5.

4 COMBINED EFFECT OF DIFFERENT MULTIPOLES

Whereas in the previous·sections we looked at the effect of a single flavor of
multipole only, we now tum to the effects generated by combining different
multipoles in the same beam line. We first perform a numerical experiment
in which we use LHC, version 2 and choose a random seed of sextupole
components which are located at the dipoles, i.e. 1280 different sextupoles.
We then choose 10 seeds, labeled 0 through 9, for octupoles situated at the
same location and calculate the 200-tum diagonal DA for different excitations
of the octupoles in which, for a given seed, all octupole excitations are
increased by the same factor.

Figure 3 shows the resulting dynamic apertures as a function of the rms
octupole excitation. The DA for each seed varies dramatically, but we can
still see a trend. For small octupole excitations the DA is predominantly
determined by the sextupoles and for large octupole excitation the DA
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decreases. In the transition region, however, strange things happen. In some
cases (seed 4 and 6) the DA even improves as a result of the increased
octupole strength. At present the mechanisms for this are unclear and need
futher attention by calculating resonance driving terms and tune shifts with
amplitude of these seeds and search for correlations between DA and those
terms. This, however, is beyond the scope of this paper.

Here we pursue a different path by constructing a heuristic model that
explains the qualitative features ofFigure 3.b In order to make the qualitative
features of Figure 3 visible we plot the average over the ten seeds in Figure 3
as the dotted line which connects the asterisks. We then make the bold
assumption that the DA of different multipoles of order nand m combine to
yield a resulting DA d according to

(10)

where we omitted the index x for simplicity. In Figure 3 we show three curves
which correspond the v = 3, 4, 5 in ascending order. Clearly the central
curve with v= 4 fits best and we use v = 4 in all subsequent calculations.
The fact that v = 4 has a surprising consequence. If we assume that the DA
due to multipoles of order n dn is inversely proportional to some power ~ of
the volume of holes in phase space Vn (near the particle's starting position
when that is near the DA) Vn through which the particles can channel to
infinity we may write

(11)

Furthermore we may argue that in the limit of weak multipoles the different
orders of multipoles do not·interact, and the volumes Vn of different orders
simply add, yielding V = Ln Vn.Inserting Equation 11 we get the result of
Equation 10, provided that v = 1/~. Note that the proportionality constants
all have to be the same, because otherwise the limit of a single multipole
yields wrong results. With v = 4 we conclude that the DA dn is inversely
proportional to the linear dimension V I / 4 of the holes (resonances) in phase
space, through which particles can escape. Note, however, that this reasoning
is very handwaving and needs closer attention in the future.

bRegarding this section the author profitted greatly from discussions with T. Trenkler.
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TABLE III The estimated random errors for the LHC dipoles and the dynamic apertures
calculated from Equation 9

n

DA

3

10.5

4

10.0

5

7.6

6

7.6

7

6.5

8

6.3

9

5.6

10

5.4

11

5.2 mm

5 TOLERANCESFORLHC

We now exploit the heuristic relation given in Equation 7 or Equation 9
to deduce the effect of the multipolar components in the dipoles of LHC
on the DA and report the result in Table III where we use K = 2000 and
~ R = 2.2 mm for LHC. The values for random an and bn are taken from
Ref. 2. From this table we conclude that, averaged over many seeds, the higher
multipoles contribute more than the lower multipoles and the tolerances given
in Ref. 2 appear to be too loose.

In order to assess the combined effect ofall multipoles we insert Equation 7
in Equation 10 and obtain under the assumption that all upright and skew
multipoles add equally

(12)

This equation can be used to estimate the effect ofdifferent random multipole
components on the DA. Note, however, that it is not an exact equation that can
predict the DA, but should merely serve as a rough guideline to the relative
deteriorating effects of different random multipoles in the LHC dipoles.
Inserting an and bn from Table III we obtain

d = 3.7 mm (13)

which is considerably smaller than the DA resulting from e.g. sextupoles
alone. The surprising fact, however, is, that the higher multipoles are the
major culprits which reduce the DA as should be clear from Table III.

6 CONCLUSIONS

We developed scaling laws for the DA from random non-linear errors with
respect to various parameters that can be expected from an ensemble average
over many seeds. We found that for this crude analysis the 1000-tum DA
is a suitable measure. The scaling laws with respect to the number of



[396]/150 V.ZIEMANN

non-linearities of a given flavor were deduced and found to be determined
by the integrated rms strength. This scaling is consistent with scaling laws
with respect to the strength of the multipoles an, bn. Moreover, scaling laws
for the multipolarity flavor n were deduced. We then analyzed the combined
effect of different multipoles in the same beam line and postulated a very
bold heuristic model for that. We then applied the analysis to the random
errors in LHC as given in Ref. 2 and found that the higher multipoles are the
dominant restrictions of the short term DA.

The aforementioned parametrization by D or K and ~ was determined from
simple fits to a few tracking runs. It will certainly be interesting to determine
these quantities from "first principles". In the same fashion the rule that the
DA from different multipoles combine according to Equation 10 needs futher
clarification beyond the truly handwaving discussion given in Section 4.
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