arXiv:0807.4039v2 [hep-th] 14 Nov 2008

CERN-PH-TH /2008-144
D ISTA-UPO /08
LBNL-69756

D uality R otations in N onlinear E lectrodynam ics and in
Extended Supergravity

Paolo A schieri'®?, Sergio Ferrara*”® and Bruno Zum ino’?

!Centro Studi e R icerche \Enrico Ferm i" C om pendio V im inale, 00184 Rom a, Ial
’D Jpartim ento di Scienze e Tecnologie Avanzate, Universita del P iem onte O rientale,
SINFN , Sezione di Torino, gruppo collgato di A lessandria
Via Bellini 25/G , 15100 A kessandria, Taly
aschieri@to.infn.it

“Physics D epartm ent,T heory Unit, CERN ,CH 1211, G eneva 23, Switzerland
"INFN - LakoratoriNazionali di Frascati, Via Enrico Ferm i 40,1-00044 Frascati, Ialy
®D epartm ent of Physics and A stronom y, U niversity of C alibmia,

Los Angeks, CA USA
sergio.ferrara@cern.ch

'D epartm ent of Physics, University of C alifboria
8T heoretical Physics G roup, B Hg. 50A 5104, Law rence Berkelky N ational Laboratory
Berkekey, CA 94720 USA
bzumino@lbl.gov

Invited contribution to R ivista delNuovo C In ento in occasion of the
2005 Enrico Ferm 1 P rize of the Ttalian Physical Society

DEDICATED TO THE MEMORY OF JULITUSW ESS

A bstract

W e review the general theory of duality rotations which, in four dim ensions,
exchange electric w ith m agnetic elds. N ecessary and su cient conditions in order
for a theory to have duality symm etry are established. A nontrivial exam ple is
Bom-Tnfeld theory with n abelian gauge elds and with Sp(2n;R) selfduality.
W e then review duality symm etry In supergravity theories. In the case of N = 2
supergravity duality rotations are in generalnot a sym m etry of the theory but a
key Ingredient In order to form ulate the theory itself. T his is due to the beautiful
relation between the geom etry of special K ahler m anifolds and duality rotations.
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1 Introduction

It has long been known that the free M axwell’s equations are invariant under the ro-
tation of the electric eldd into the m agnetic elds; this is also the case if electric and
m agnetic charges are present. In 1935, Schrodinger [2] showed that the nonlinear elec—
trodynam ics of Bom and Infeld [1], (then proposed as a new fiindam ental theory of
the electrom agnetic eldd and presently relevant in descrbbing the low energy e ective
action of D Joranes in open string theory), has also, quite ram arkably, this property. E x—
tended supergravity theories too, as rst pointed out in [3,5] exhibit electric-m agnetic
duality symm etry. D uality sym m etry thus encom passes photons self=-interactions, grav—
ity Interactions and couplings to spinors (of the m agnetic m om ent type, not m Inim al
couplings).

Shortly after [3{5] the general theory of duality invariance w ith abelian gauge elds
coupled to ferm donic and bosonicm atter was developped in [6,7]. Since then the duality
symm etry of extended supergravity theories has been extensively investigated [8{11],
and exam ples of Bom-Infeld type lagrangians w ith electric-m agnetic duality have been
presented, in the case of one abelian gauge eld [12{16]and in the case ofm any abelian
gauge elds [17{20]. T heir supersym m etric generalizations have been considered In [21,
22]and w ith di erent scalar couplings and noncom pact duality group n [17,18,23{25].

W e also m ention that duality sym m etry can be generalized to arbitrary even dim en—
sions by using antisym m etric tensor elds such that the rank of their eld strengths
equals half the din ension of spacetin e, see [26,27],and [11,16,18,24,25,28,30,311].

W e provide a rigorous form ulation of the general theory of fourdim ensional electric-
m agnetc duality in Jagrangian eld theorieswherem any abelian vector eldsare coupled
to scalars, ferm ions and to gravity. W hen the scalar elds lagrangian is described by a
non-linear sigm a m odel w ith a symm etric space G=H where G is noncom pact and H
is its m axin al com pact subgroup, the coupling of the scalars w ith the vector elds is
unigquely determ ined by a sym plectic representation of G (ie. where the representation



space is equipped w ith an invariant antisym m etric product). M oreover ferm ions coupled
to the sigm a m odel, which lie In representations of H , m ust also be coupled to vectors
through particular Pauli tem s as in plied by electric-m agnetic duality.

This form alisn is realized In an elegant way in extended supergravity theories in
four dim ensions and can be generalized to dyons [32]in D -din ensions, w hich exist when
D iseven and thedyon isa pbranewith p= D=2 2. In the context of superstring
theory or M theory electricm agnetic dualities can arise from m any sources, nam ely
S-duality, T duality or a com bination thereof called U duality [29]. From the point of
view ofa fourdin ensional observer such dualitiesm anifest as som e globalsym m etrdies of
the lowest order Eulerd.agrange equations of the underlying four din ensional e ective
theory.

T he study of the relations between the symm etries of higher din ensional theories
and their realization in four din ension is rich and fruitfiil, and duality rotations are an
essential Ingredient. Seem ingly di erent lagrangians w ith di erent elem entary dynam i-
cal eldscan be shown to describe equivalent equation ofm otions by using duality. An
Interesting exam ple is provided by the N = 8,D = 4 supemravity lagrangian whose
duality group is G = E 4,4, this is the formulation of Cremm er and Julia [5]. An ak
temative form ulation obtained from dim ensional reduction of the D = 5 supergravity,
exhibits an action that is invariant under a di erent group of symm etries. These two
theories can be related only after a proper duality rotation of electric and m agentic

elds which involves a suitable Legendre transform ation (a duality rotation that is not
a symm etry transform ation).

Let us also recall that duality rotation symm etries can be further enhanced to lo—
cal symm etries (gauging of duality groups). T he corresponding gauged supergravities
appear as string com pacti cations in the presence of uxes and as generalized com pact-
i cations of (ungauged) higher din ensional supergravities.

Asamain exam plk consder again the N = 8,D = 4 supergravity lagrangian of
Cramm er and Julia, it is nvariant under SO (8) (com pact subgroup of E;,+,). The
gauging of SO (8) corresponds to the gauged N = 8 supergravity ofD eW ittand Nicolai
[33]. Asshown In [34]the gauging of a di erent subgroup, that is the natural choice in
the equivalent form ulation of the theory obtained from dim ensional reduction ofD = 5
supergravity, corresponds to the gauging of a at group in the sense of Scherk and
Schwarz dim ensional reduction [35], and gives the m assive deform ation of the N = 8
supergravity as obtained by C ramm er, Scherk and Schwarz [36].

E lectricM agnetic duality is also the underlying symm etry which encom passes the
physics of extrem al black holes and of the \attractor m echanisn " [37{39], for recent
review s on the attractorm echanian see [40{42]. H ere the B ekenstein-H aw king entropy—
area formul



isdirectly derived by the evaluation ofa certain black hole potential % at its attractive
critical points [43]
S = %H c

where the critical points C satisfy @%y 3 = 0. The potential %y is a quadratic
nvariant of the duality group; it depends on both the m atter and the gauge elds
con guration. In all extended supersymm etries with N > 2, the entropy S can also
be com puted via a certain duality invariant com bination of the m agnetic and electric
charges p;g of the elds con guration [44,45]

S = (p;q):

In the ram aining part of this introduction we present the structure of the paper by
sum m arizing its di erent sections.

In Section 2 we give a pedagogical introduction to U (1) duality rotations iIn nonlinear
theories of electrom agnetiam . T he basic aspects ofduality sym m etry are already present
in this sim ple case w ith just one abelian gauge eld: the ham iltonian is invariant (du-
ality rotations are canonical transform ations that com m ute w ith the ham iltonian); the
lagrangian is not invariant but m ust transform in a wellde ned way. T he Bom-Tnfeld
theory is them ain exam ple of duality Invariant nonlinear theory.

In Section 3 the general theory is form ulated w ith m any abelian gauge elds Inter—
acting w ith bosonic and fem ionic m atter. Necessary and for the rst tine su cient
conditions in order for a theory to have duality sym m etry are established. Them axin al
symm etry group in a theory w ith n abelian gauge elds includes Sp(2n;R ). If there are
no scalar elds them axim al symm etry group isU (n). T he geom etry of the symm etry
transform ations on the scalar elds is that of the coset space Sp(2n;R )=U (n) that we
study in detail. T he kinetic term for the scalar elds is constructed by using this coset
Space geom etry. In Subsection 3.6 we present the Bom-Tnfeld lagrangian w ith n abelian
gauge eldsand Sp(2n;R ) duality symm etry [18]. T he selfduality of this lagrangian is
proven by studying another exam ple: the Bom-Infeld lJagrangian w ith n com plex gauge

eds and U (n;n) duality symm etry. Here U (n;n) is the group of holom orphic duality
rotations. W e brie y develop the theory of holom orphic duality rotations.

T he Bom-Infeld lagrangian with U (n;n) selfduality is per se interesting, the scalar
elds span the coset space %,jﬁ the case n = 3 this is the coset gpace of the
scalars of N = 3 supergravity with 3 vector multiplets. T his Bom-Tnfeld lagrangian is
then a natural candidate for the nonlinear generalization of N = 3 supergravity.

W e close this sections by presenting, In a form ulation w ith auxiliary elds, the su—
persym m etric version of this Bom-Infeld Lagrangian [17,18]. W e also present the form
w ithout auxiliary elds of the supersymm etric Bom-Infeld Lagrangian with a sihgle



gauge eld and a scalar eld; this theory is invariant under SL (2;R ) duality, which
reduces to U (1) duality if the value of the scalar eld is suitably xed. Versions of this
theory without the scalar eld were presented In [46{48].

In Section 4 we apply the general theory of duality rotation to supergravity theories
with N > 2 supersymm etries. In these supersym m etric theories the duality group is
always a subgroup G of Sp(2n;R ), where G is the isom etry group of the sigm a m odel
G=H ofthescalar elds. M uch of the geom etry underlying these theories is in the (local)
em bedding of G In Sp(2n;R ). T he supersymm etry transform ation rules, the structure
of the central and m atter charges and the duality invariants associated to the entropy
and the potential of extram al black holes con gurations are all expressed In term s of
the embedding of G In Sp(2n;R) [11]. W e thus present a unifying form alin s. W e also
explicitly construct the sym plectic bundles (vector bundles w ith a sym plectic product
on the bers) associated to these theories, and prove that they are topologically trivial;
this is no m ore the case for generic N = 2 supergravities.

In Section 5 we Introduce specialK ahler geom etry as studied in di erential geom etry,
we follow in particular thework of Freed [49], seealso [50] (and [51]) and then develop the
m athem aticalde nition up to the construction of those explicit at sym plectic sections
used n N = 2 supergravity. W e thus see for exam ple that the at sym plectic bundle
of a rigid special K ahler m anifold M is just the tangent bundle TM with sym plectic
product given by the Kahler form . A sim ilar construction applies In the case of local
special geom etry (there the at tangent bundle is not of the K ahler m anifod M but
is essentially the tangent bundle of a com plex line bundle L ! M ). This clard es the
global aspects of special geom etry and the key role played by duality rotations in the
form ulation of N = 2 supergravity w ith scalar elds taking value In the target space M .
D uality rotations are needed for the theory to be globally well de ned.

In Section 6 duality rotations In nonlinear electrom agnetism are considered on a
noncom m utative spacetine, [k ;x 1= 1 . The noncom m utativity tensor must
be light-like. A nontrivialexam ple of nonlinear electrodynam ics on com m utative space-
tin e is presented and using SedbergW itten m ap between com m utative and noncom m u-
tative gauge theories noncom m utative U (1) Yang M ills theory is shown to have duality
symm etry. This theory form ally is nonabelian, ® = @ & Q@ i ;R ), its
selfduality is in this respect ram arkable. O ne can also enhance the duality group to
Sp(2;R) and couple this noncomm utative theory to axion, dilaton and H iggs elds,
these latter via m inin al couplings. Duality in noncom m utative spacetin e allow s to
relate gpacenoncom m utative m agnetic m onopoles to spacenoncom m utative electric
m onopoles [52,531].

A special kind of noncom m utative spacetin e is a lattice space (it can be studied
w ith noncom m utative geom etry technigques). D uality rotations on a lattice have been



studied In [541].

In A ppendix 7 we prove som e fundam entalproperties of the sym plectic group Sp(2n;R )
and of the coset space Sp(2n;R )=U (n). W e also collect for reference som em ain form ulae
and de nitions.

In Appendix 8 a sym m etry property of the trace of a solution ofa polynom ialm atrix
equation is proven. This allow s the explicit form ulation of the Bom-Tnfeld lagrangian
with Sp(2n;R ) duality symm etry presented in Section 3.7.

2 U (1) gauge theory and duality sym m etry

M axw ell theory is the prototype of electric-m agnetic duality Invariant theories. In vac-
uum the equations of m otion are

@F =0,

@F =0; (2.1)
where F” 2 F . They are Invariant under rotations £ 7 £° 20 ' or
using vector notation underrotations £ 7 %5 st E Thisrotationalsymm etry,
called duality symm etry, and also duality invariance or selfduality, is re ected in the
Invariance of the ham iltonian H = %(E 2+ B? ), notice however that the lagrangian

L= %(E B ?) isnot invariant. This symm etry is not an intemal sym m etry because
it rotates a tensor into a pseudotensor.

W e study this symm etry for m ore general electrom agnetic theories. In this section
and the next one conditions on the lagrangians of (nonlinear) elecrom agnetic theordes
will be found that guarantee the duality symm etry (selfduality) of the equations of
m otion.

T he key m atham atical point that allow s to establish criteria for selfduality, thus
avoiding the explicit check of the symm etry at the level of the equation of m otions,
is that the equations of m otion (a system of PD Es) can be conveniently split in a set
of equations that is of degree 0 (no derivatives on the eld strengths F ), the so<called
constitutive relations (see eg. (2.9), or (2.8)), and another set of degree 1 (see eg.
22), 23) or (29), (2.1I0)). Duality rotations act as an obvious symm etry of the set
of equations of degree 1, so all what is left is to check that they act as a symm etry
on the set of equations of degree 0. It is therefore plausible that this check can be
equivalently formulated as a speci ¢ transform ation property of the lagrangian under
duality rotations (and independent from the spacetin e dependence ' (x) ofthe eds),
Indeed both the lagrangian and the equations of m otions of degree 0 are functions of
the el strength F and not of its derivatives.



2.1 Duality sym m etry in nonlinear electrom agnetism

M axw ell equations read

@B = r E ; r B=0 (22)
@b =r H ; r D=0 (23)

they are com plam ented by the relations between the electric eld E , them agnetic eld
H , the electric digplacem ent D and the m agnetic induction B . In vacuum we have

D=E;H =B : (24)

In a nonlinear theory we still have the equations (2.2), (2.3), but the relations D =
E ;H =B are replhod by the nonlinear constitutive relations

D=DE;B); H=H (E;B) (2.5)

(if we consider a m aterial m edium w ith electric and m agnetic properties then these
equations are the constitutive relations of the m aterial, and (2.2) and (2.3) are the
m acroscopic M axw ell equations).

Equations (2.2), (23), (2.4) are invariant under the group of general linear transfor-

m ations

A B B E
= ; = : 2.0
D0 CD D ’ 0 ( )

W e study under which conditions also the nonlinear constitutive relations (2.3) are
nvariant. W e nd constraints on the relations (2.9) as well as on the transform ations
2.49).

W e are interested in nonlinear theories that adm it a Jagrangian form ulation so that
relativistic covariance of the equations (2.2), (2.3), (2.3) and their inner consistency is
autom atically ensured. This requiram ent is ful Iled if the constitutive relations (2.9)

are of the form

D=@L(E;B) S H o= QL (E ;B ) ; 2.7)

@E @B

where L (E ;B ) is a Poincare invariant function of E and B . Indeed if we consider E
and B depending on a gauge potential A and vary the lagrangian L (E ;B ) w ith respect
to A ,we recover (2.2), (Z3) and (27). This property ism ost easily shown by using
four com ponent notation. W e group the constitutive relations (2.7) in the constitutive
relatio

QL (F)
G = ; (2.8)
@F
'a practical convention is to de ne g; = rather than —— = . Thisexplains the

QF
factor 2 in (2.8).



wealodeneG = < G ,sthatG =3 G (P = = 1). I
we consider the eld strength F as a function of a (locally de ned) gauge potential
A , then equations (2.2) and (23) are respectively the Bianchi dentities for ¥ =

@A @ A and the equations ofm otion for L (F (A )),

@F 0; (2.9)
@G (2.10)

In our treatm ent ofduality rotationswe study the sym m etries of the equations (2.9),
(2.10) and (2.8). The lagrangian L (F ) is always a function of the eld strength F ; it is
not seen as a function of the gauge potential A ; accordingly the Bianchi identities for
F are considered part of the equations 1Qfm otions for ¥ .

Finally we consider an action S = L d*x with Jagrangian density L = L (F ) that
depends on F but not on its partial derivatives; it also depends on a spacetin e m etric
g thatwegenerally om it w riting exp]jcjli,@ ,and on at least one din ensionfill constant
in order to allow for nonlinearity in the constitutive relations (2.8) (ie. (ZH)). W e set
this din ensionful constant to 1.

T he duality rotations (2.8) read

0
F ' A B F 0i11)
G C D G

Since by construction equations (2.9) and (2.10) are invariant under (2.11), these duality
rotations are a symm etry of the systam of equations (2.9), (Z.I10), (Z.8) (or 22), 2.3),
(2.3)), 1 on shell the constitutive relations are invariant in form , ie., i the functional
dependence of G from F? is the sam e as that of G from F ,ie. i

0 QL (F )
" = 2—; (212)
(Cha

where F° and G° are given in (2.10]). This is the condition that constrains the la—

grangian L (F ) and the rotation param eters in (2.11]). This condition has to hold on

shell of (2.8)—(2.10); however (2.17) is not a di erential equation and therefore has to

hold jast using (2.8), ie., o shell of (2.9) and (2.10) (indeed if it holds for constant
eld strengths F then it hods forany F ).

°N otice that @), (Z.10) are also the equation of motions in the presence of a nontrivial m et~

ric. Tdeed S = Ld'x = LPGd%. The equation of motions are @ CgF ) = @ F =

;@ (p§G )= @G = 0 ;where the Hodge dual of a two fom is de ned by

0
10—
5 9



Tn order to study theduality symm etry condition ZI2) et 25 = 79 + 22 4.1
and consider In nitesmalGL (2;R ) rotationsG ! G + G;F ! F + F,
F ab F
= ; 21
G cd G (2.13)
so that the duality condition reads
LE + F
c o+ L EY F) (2.14)
QEF + F)
T he right hand side sin pli eSmE
L(EF + F) ELEF+ F) QF
QE+ F) QF QEFE + F)
_RLF+ F) QL (F)Q( F)
@F (Ch QF
then, using (Z13) and (2.8), condition (2.14) reads
QL{EF + F L (F QL (F G
cF+dG=2(( ) E)) 2a E) G — (2.15)
QF @F QF

In order to further sim plify this expression we write 2F = @%FE” and we factorize out
the partial derivative @% . W e thus arrive at the equivalent condition

c b
LE+ F) L(E) ZFE’“ ZGG = (@+d)LE) Lpog): (2.16)
The constant term (a + d)Lr_q, nonvanishing for exam ple In D brane lagrangians, is
obtained by obsarving thatwhen F = 0 also G = 0.

Nextuse L(F + F) L{F)= 22 F = 1aFG + 166G i oder to rewrite
expression (2.14) as

b o} a
ZGG ZFE"=(a+ A)L(EF) Lgog) EFG: (2.17)

If we require the nonlinear lagrangian L (F ) to reduce to the ugualM axwell lagrangian
in the weak ed linit, F* << F?,ie, L(F)= Ly 1=4 FFd'x+ O (F*?), then

G= F +0(?),and we obtain the constraint (recallthat& = G)

b= ¢ ; a=d4d;

Shere and in the fllow ing we suppress the spacetin e ndices so that or example FG = F G ;
notice that FG' = FG,F= F,andFG = FG whereFG=F G



the duality group can be at m ost SO (2) rotations tin es dilatations. Condition (2.17)

becom es
1 QL

_F -
2 @F
The vanishing of the right hand side holds only if either L (F) Ly-( is quadratic
In F (usual electrom agnetism ) or a = 0. W e are Interested In nonlinear theories; by
de nition In a nonlinear theory L (F ) isnot quadratic in F . T his show s that dilatations
alone cannot be a duality symm etry. If we require the duality group to contain at least
SO (2) rotations then

- (2.18)

b
5 GG+ FF = 2a L(F) Leg

GG+ FF=0; (219)

and SO (2) is them axinm alduality group. R elation (2.19) is nontrivially satis ed i

and (2.19) hoXd.

In conclusion equation (2.19) is a necessary and su cient condition for a nonlinear
electrom agnetic theory to be symm etric under SO (2) duality rotations, and SO (2)
GL(2;R) is the m axin al connected Lie group of duality rotations of pure nonlinear
electrom agnetismH .

This conclusion still holds if we consider a nonlinear lagrangian L (F ) that in the

weak ed limitF* << F? (up to an overall nom alization factor) reduces to the m ost
general linear lagrangian

1 1 .
L(F)= Lpg JFF+ FF'+ O (F?) :

In thiscaseG = FF+ F + O (F®). W e substitute .n (Z.17) and obtain the two conditions
(the coe cients of the scalar F' ? and of the speudoscalar F F have to vanish separately)

c= bl+ %) ; d a=2 b: (220)

a b a+ b 0 0b
_ il
bl+ 2) a+ 2 b 0 a+ b | b0 (221)

“T his sym m etry cannot even extend to O (2) because already in the case of usual electrom agnetism
the nite rotation 9 does not satisfy the duality condition {ZI12). It is instructive to see the
obstruction at the ham iltonian level. T he ham itonian itself is invariant underD ! D ,B ! B ,but

this transfomm ation is not a canonical transfom ation : the Poisson bracket (2.33) is not invariant.

10



0
where = 1 W e have dilatations and SO (2) rotations, they act on the vector

G via the conjigate representation given by thematrix . Let’s now rem ove the

weak el lim it assumtion F * << F?. W e procesd as before. >From (2.12) (or from
(2.17)) we inm ediately obtain that dilatations alone are not a duality symm etry of the
nonlinear equations of m otion. Then if SO (2) rotations are a duality sym m etry we have
that they are the m axin alduality sym m etry group. T his happens if

GG+ (1+ fFFF =2 FG : (222)

Finally we note that the necessary and su cient conditions for SO (2) duality rota—
tions (2.22) (or (2.19)) can be equivalently expressed as invariance of

1
L(F) ZFG : (223)

Proof: the variation of expression (Z23)underF | F + F isgivenby L (F + F)
LE) $F G 4F G :Ussof@ZIf) wiha+ d= 0 (nodilatation) shows that this
variation vanishes.

2.2 Legendre Transform ations

In the literature on gauge theories of abelian p-form potentials, the term duality transfor-
m ation denotes a di erent transform ation from the one we have ntroduced, a Legendre
transform ation, that is not a symm etry transform ation. In this section we relate these
two di erent notions, see [15] for further applications and exam ples.

Consider a theory of nonlinear electrodynam ics (p= 1) with lagrangian L (F ). The
equations of m otion and the Bianchi dentity for F can be derived from the Lagrangian
L (F;Fp ) de ned by

1

where F isnow an unconstrained antisym m etric tensor eld, A a Lagrange m ultiplier
ed and F, its electrom agnetic eld. [Hint: varying with respect to Ap gives the

Bianchi dentity for ¥, varying with respect to F givesG = Fp that is equivalent
to the nitlhlequationsof motion @ G = 0 becauseFy, = @ Ap @ A, (Polncare
lemma)l.

G iven the lagrangian (2.24) one can also rst consider the equation ofm otion for F ,

GE)= Fp ; (225)
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that is solved by expressing F asa function of thedual eld strength,F = F (Fp ). Then
inserting this solution into L (F ;Fp ), one gets the dualm odel

1
Ly (Fp) L{E Ep)) EF Fp) Fp : (2.26)

Solutions of the (2.2d) equations of m otion are, tothether w ith (2.29), solutions of the
(2.24)) equations of m otion. T herefore solutions to the (2.2d) equations of m otion are
via (2.25) in 1-1 correspondence w ith solutions of the L (F ) equations of m otion.

O necan always perform a Legendre transform ation and describe the physical systam
w ith the new dynam icalvariablesAp and the new lagrangian L, rather than A and L.

T he relation w ith the duality rotation sym m etry (selfduality) of the previous section
is that if the system adm its duality rotations then the solution Fp of the L, equations
of m otdon is also a solution of the I, equations of m otion, we have a sym m etry because
the dual eld Fj isa solution of the original system . This is the case because for any
solution L of the selfduality equation, its Legendre transform L, satis es:

L, (F) = L(FE): (2.27)

This follow s from considering a nite SO (2) duality rotation with angle =2. Then
F ! F'=G(F)= Fp,and Ivariance of 223),ie. LF?% FG°=LEF) 1FG ;
mp]ESLD (FD) = L(FD )rj—-e-r m).

In summ ary, a Legendre transform ation is a duality rotation only if the symm etry
condition (2.8) is met. If the selfduality condition (2.8) does not hod, a Legendre
transform ation leads to a dual form ulation of the theory In temm s of a dual Lagrangian
Lp ,not to a symm etry of the theory.

2.3 H am iltonian theory

T he sym m etric energy m onentum tensor of a nonlnear theory of electrom agnetisn (ob-
tained via Belinfante procedure or by varying w ith respect to the m etric) is given byﬁ

T =G F +@0L: (228)

T he equations of m otion (2.10) and (2.9) in ply its conservation, @ T = 0. Invariance
of the energy m om entum tensor under duality rotations is easily proven by observing
that for a generic antisym m etric tensor F

1
F F = Z@FF ; (229)

Ssymmetry of T follow s In m ediately by cbserving that the tensor structure of G inpliesG =
£, (FF + £, (F)F  with scalars f5(F ) and £, (F ) depending on F , themetrdc = diag( 1;1;1;1)
and the com pletely antisym m etric tensor density . (Actually, if the lagrangian is parity even, fg
is a scalar function while £, is a pseudoscalar function).

12



and then by recalling the duality symm etry condition (2.19).
In particular the ham iltonian
H=T=D E L (2.30)
of a theory that has duality rotation sym m etry is invariant.

In the ham iltonian form alism duality rotations are canonical transform ations, since
they leave the ham iltonian invariant they are usual symm etry transform ations. W e
brie y describe the ham iltonian form alisn of (nonlinear) electrom agnetism by avoiding
to Introduce the vector potential A ; this is appropriate since duality rotations are
form ulated independently from the notion of vector potential. M axw ell equations (2.2),
(2.3) and the expression of the ham iltonian suggest to consider B and D as the analogue
of canonical coordinates and m om enta g and p, whilke E , that enters the lagrangian
togheter w ith B , is the analogue of g.

R ecalling the constitutive relations in the Jagrangian form (2.7) we obtain that the
ham iltonian H = H (D ;B ) is just given by the Legendre transform ation (Z.30). M ore-

_ @H _ eH . .
over H = o5~ and E = @T.The equations of m otion are
H
@B = r —; (231)
D
H
@b =r — : (232)
B
The ran aning equations r B =0,r D = 0 are constraints that In posed at

given tin e are satis ed at any other tim e. T he Poisson bracket between two arbitrary
functionals U,V of the canonical variables is
QU Qv Qv @Uu

fu;vg= o ° @ o ° @ &r; (2.33)
in particular the only nonvanishing parenthesis between the canonical variables B and
D are fB *(r);D '(%g = *@@*( r°. The equations of m otion (2.31) ang (2.32)
assum e then the canonicalform @B = fB ;Hg; @D = fD ;HgwhereH = H d’r
is the ham iltonian (H being the ham iltonian density). W e see that H as usual is the
generator of tim e evolution. T he consitency and the hidden Poincare invariance of the
present form alism is proven in [55].

In the canonical form alisn the generator ofduality rotations is the follow Ing nonlocal
Integral [57], [56]

D, (r D)+ B (r B)
T ]

d3r1d3r2 (2 34)
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w here the subscripts indicate that the elds are taken at the pointsr; and r, . W e have
fD ; g=B and fB; g= D

Finally we ram ark that it is staighforward to establish duality symm etry in the
ham iltonian form alisn . Indeed there are three independent scalar com binations of the
canonical edsB andD ,they canbetakentobe:D *+B ?,D? B?and (D B )°.The
last two scalars are duality iInvariant and therefore any ham iltonian that depends jast on
them leads to a theory w ith duality sym m etry. T he nontrivial problem in this approach
In now to constrain the ham iltonian so that the theory is Lorentz invariant [58], [57].
The condition isagain (2.J9) ie.,D H =E B.

24 Born-Infeld lagrangian

A notable exam ple ofa lagrangian w hose equations ofm otion are invariant under duality
rotations is given by the Bom-Infeld one [1]

|
r
1 1
=1 1+ SF2 —(FF) (2.36)
2 16
q
=1 1 E?+B? (E BI: (237)

In the second line we have sin ply expanded the 4x4 determ nant and espressed the
lagrangian in temm s of the only two independent Lorentz invariants associated to the
electrom agnetic ed:F2 F F ;;FF F F

T he explicit expression ofG is

¢ _ F +%FE’”F _ (238)
- M 4

1o 1 5

and the duality condition (2.19) is readily seen to hod. T he ham iltonian is

q
Hg;= 1+D?+B?+ (D B)P 1: (2.39)

N otice that while the E and B variables are constrained by the reality of the square
root in the lagrangian, the ham iltonian variablesD ;B are unconstrained. By using the
equations of m otion and (2.19) it can be explicitly veri ed that the generator of duality
rotations is tin e independent, £ ;H g= 0.
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2.5 Extended duality rotations

T he duality sym m etry of the equations of m otion of nonlinear electrom agnetian can be

extended to SL (2;R ). W e ocbsarve that the de nition of duality symm etry we used can

be relaxed by allow ing the F dependence of G to change by a linearterm : G = 22—; and
_ ~BL . - ;o iy . . .

G =2+ #F togheter w ith the Bianchi dentities for F give equivalent equations of

m otions for F . T herefore the transform ation

0
SR
is a symm etry of any nonlinear electrom agnetian . Tt corresponds to the lagrangian
change L. ! L + %#FE‘“. This symm etry alone does not act on F , but it is useful if
the nonlinear theory has SO (2) duality symm etry. In this case (2.40) extends duality
symm etry from SO (2) to SL (2;R) (ie. Sp(2;R)). Notice however that the SL (2;R)
transform ed solution, contrary to the SO (2) one, has a di erent energy and energy
mom entum tensor (recall (228)). On the other hand, as we show in Section [3.4, if the
constant # isprom oted to a dynam ical eld we have invariance of the energy m om entum
tensor under SL (2;R ) duality.

3 G eneral theory of duality rotations

W e study in fullgenerality the conditions in order to have theories w ith duality rotation
symm etry. By properly introducing scalar elds (sigm a m odel on cosset space) we en—
hance theories w ith a com pact duality group to theories w ith an extended noncom pact
duality group. A Bom-Tnfeld lagrangian w ith n abelian eld strengthsand U (n) duality
group (or Sp(2n;R ) in the presence of scalars) is constructed.

3.1 Generalnonlinear theory

W e consider a theory of n abelian gauge elds possibly coupled to other bosonic and
ferm ionic elds that we denote ¥ , ( = 1;:up). We assume that the U (1) gauge
potentialsentertheaction S = S [F;’ Jonly trough the eld strengthsF ( = 1;:::;n),
and that the action does not depend on partialderivatives of the eld strengths. De ne
G = 2

QL :
ar 1

c = 2&% (3.1)
F
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then the B ianchi dentities and the equations of m otions for S [F ;' ]are

RF = 0; (32)
@G =0; (3.3)
SEIT_ g, (34)

14

The el theory isdescribed by the system ofequations (3.1)—{3.4). C onsider the duality
transform ations

FO A B F
= 35
G° CD G (3-)
= () (36)
where § [ isa generic constant L (2n;R ) matrix and the /  elds transfom ation in
flilldetailreads ' © = (" ; £ % ),with no partialderivative of ’ appearing in

T hese duality rotations are a symm etry of the system of equations (3.1)-3.4) i,
given F ,G ,and ’ solution of (3.1)~3.4) then F °,G ®and ’ %, that by construction satisfy
@RF? =0and@ G° = 0,satisfy also

S [‘FO.I O]
o _ r 1
¢ =2 o ; (3.7)
S EO;/ O]
70

= 0: (3.8)

W e study these on shell conditions in the case of In nitesin alG L (2n ;R ) rotations

F! F°=F+ F ; ¢! G’°=c+ G ;

F ab F
G  cd & ' (3.9)
ro= (1) (3.10)

T he right hand side of (3.7) can be rew ritten as
0.r0; 2 0.70
SE-;"] SES''] F (y)

0 = , F (y) 0 : (3.11)
po o
W e now invert the m atrix Fo ,’0 , recall that F1F, = F1F, and observe that
=
S[E;’ ]b Gy 1 12 £, G
Fg) - F aF CPeTg G0 Bl
Y Yy Y
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W e thus ocbtain

S O’.IO g O’.IO g O’.IO 1 1 G
Ei)_ E ] a LAl O GbhG = G0 b)— : (312)
J F F 4 F v 4 y F

R .
Since the left hand side of (3.7) isG  + %T  FCF + %(c & F o+ 2d STE’],we
rew rite (3.7) as

1
— SF%'% SF;’] = (FcF+CGCbG) (3.13)
F 4,
Z
= @+ d) —S[F"]+}(c & +} G Do bt)—G-
F ! 4 4 F

y

Since this expression does not contain derivatives of F , the functional variation becom es
just a partial derivative, and (3.13) is equivalent to

£ LE%Y LE;) }F"CF }GbG (3.14)
QF ’ ’ 4 4 |
. @ 1 . 1 e
= a+d) —L@E;")+ =(c <c) F +-Gb b)—:
QF 4 4 QF
Here L (F;’ ) is a shorthand notation for a Jagrangian that dependson F,” ,@’ and
eventually higher partial derivatives of the elds’ , say up to order ‘. Equation (3.14)
has to hold on shell of (3.){3.4). Since this equation has no partialderivative of F and
at m ost derivatives of / up to order /, if it holds on shell of (3.1)~(3.4) then it holds
jast on shell of (3.), and of the ferm ions elds equations, the scalar and vector partial
di erential equations being of higher order in derivatives of F or’ eds. In particular
if no ferm jon is present (3.14) holds jast on shell of (3.1]).
Since the left hand side of (3.14) is a derivative w ith respect to F so must be the
right hand side. This holds if we consider In nitesin al dilatations, param etrized by
> 2 R ,and In nitesim al Sp(2n;R ) transform ations

a*+d= 1 ; B=b; c=c: (3.15)
W e can then rem ove the oleljyatjye@FL and obtain the equivalent condition
0,0 1 1
LES") LE;") L(FE;") ZFCF ZG“bG=f(’) (3.16)

where f (’ ) can contain partialderivativesof / up to the sam e order as In the lagrangian.
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W enow show that f(’) in (3.1d) is Independent from ’ . Consider the ’ -equations
ofm otion (3.8),

Z Z
SFE%'1_ 0 SE% " ) SEiTIF ()
70 v ’ (y) 70 v F(y) ZIO

S O.IO o7

_ E%°1  S[F;’ e 1 o

14 14 @I 4 14 y Z

SEF;’ SF;’ 1

= [F ] [F ]s, +— SFE%'°1 s[F;’] 2 G bG

y

where only rst order in nitesin als have been retained, and where technigues sin ilar
to those used in the study of (3.11]) have been applied. O n shell the kft hand side has
to vanish; since the rst two addends on the right hand side are proportional to the
" .equations of m otion, this happens i on shell

Z

1
— SF%'1 SF;’1 S[F;’] 7 @bBG+FcF) = 0: (317)
Yy
C om parison w ith (3.14) show s that on shell
£(")=0: (3.18)

In this expression no el strength F is present and therefore the equations of m otion of
our Interacting system are ofno use; equation (3.18) hodsalso o shelland we conclude
that £(’ ) is ’ independent, it is just a constant depending on the param eters a;b;c;d
(it usually vanishes). W e thus have the condition

1 1
LE% % LE;’) LFE;") JFCF GG = constpns (3.19)
Ifwe expand F %in tem s of F and G , we obtain the equivalent condition

1 1 1
CL(E;T )= ZFCF ZleG + L(E;") EGaF + CONst pep (3.20)

where L (F;’)=L(®FE;'% L(FE;").

Equation (320),whereG = 2QL=Q@F ,isa necessary and su cient condition in
order to have duality symm etry. T his condition is on shell of the ferm ions equations of
m otion, In particular if no ferm ion is present this condition is o shell. Tn the presence
of ferm dons, equation (3.20) o shellisa su cient condition for duality symm etry.

T he duality sym m etry group is

R>% SL(©2n;R) ; (321)
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the group of dilatations tim es sym plectic transform ation; it is the connected L ie group
generated by the Lie algebra (3.13). It is also the m axim al group of duality rotations
as the exam ple (or better, the Iim iting case) studied In the next section show s.

W e have considered dynam ical ferm onic and bosonic elds ’ . Ifa subsst * of
these elds is not dynam ical the corresponding equations of m otion are of the sam e
order as those de ning G , and thus (3.14) and (3.20) hold on shell of all these equations.
M oreover since no @ * appears in the lagrangian, the duality transform ations for these

elds can inclide the eld strength F ,ie., *! %= I (F; ). In thiscase thereisan
extra addend in (3.11]). The necessary and su cient duality condition ([3.20) does not
change.

W e also notice that condition (3.19) in the absence of dilatations ( = 0), and for
consty p-n = 0 is equivalent to the invariance of
1
L ZFG : (322)

3.2 Them ain exam ple and the scalar elds fractional transfor—
m ations

C onsider the Lagrangian

1 1

ZNZ F F +ZlNl FF +2() (3.23)
where the real symm etric m atrices N, ( ) and N, ( ) and the lagrangian .Z ( ) are jast
flinctions of the bosonic eds *,i= 1;::1m , (and their partial derivatives).

Any nonlinear lagrangian in the lm it of vanishing ferm ionic elds and ofweak eld
strengths F ¢ << F? reduces to the one in (3.23). A straighforward calculation shows
that this lJagrangian hasR”>° SL (2n;R ) duality symm etry if them atricesN; and N ,
of the scalar elds transform as

N 1= C+ le Nla Nlel‘l‘ N2bN2 ’ (3.24)
N 2 = dN2 N2a Nlez N2bN1 7 (3.25)

and
ZL()= Z(): (3.26)

Ifwede ne
N =N1+ jN2,'

ie.,,N; = ReN ; N,= Im N ,the transom ations (3.24), (3.29) read

N = c+ dN Na N bN ; (327)
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the nite version is the fractional transform ation

N°= (C+DN)@A+BN) *: (3.28)
Under (3.28) the im aghary part of N transfom s as

NJ)= (A +BN)YN,A+BN)" (329)

where vy isa shorthand notation for the hem itian conjugate of the Inverse m atrix.

T he kinetic term %Nz F F is positive de nite if the symm etrdic matrix N , is
negative de nite. Tn Appendix 72 we show that thematricesN = N; + iN, with N,
and N , realand symm etric, and N , positive de nite, are the coset space SpU(Z(E’;R)

A scalar Jagrangian that satis es the variation (3.2d) can always be constructed using

the geom etry of the coset space S%Q(Z)R), see Section [3.47.

T hisexam ple also clari esthe condition (3.15) thatwehave in posed on theG L (2n;R )
generators. It is a straighfoward calculation to check that the equations (3.2), (3.3) and

G =N,F + N,F (330)

have duality sym m etry underG L (2n;R ) transform ationsw ith N given in ([3.27). How -
ever it iseasy to see that equation (3.14) in plies, for the Jagrangian (3.23), that condition
(3.19) must hod. The point is that we want the constitutive relations G = G [F;’ ] to
ollow from a lagrangian. Those follow ing from the lagrangian (3.23) are (3.30) with
N; and N, necessarily symm etric m atrices. Only if the transform ed m atrices N ” and

QL (F O;r O)

N ) are again symm etric we can have G° = as In (3.1), (or m ore generally

0
0 eL® % 9 . 0 o SF o )
G'= —4po ). Theconstraints N, = N,;7, N, = N,", reduce the duality group to

R>% SL(@2n;R).

In conclusion equation (3.20) is a necessary and su cient condition for a theory ofn
abelian gauge elds coupled to bosonic m atter to be symm etric underR>%  SL (2n;R)
duality rotations, and R”° SL (2n;R ) is the m axin al connected Lie group of duality
rotations.

3.3 A basic exam ple with ferm i elds

Consider the Lagrangian w ith Pauli coupling

L 'k F 1=y 1 1p - (331)
= —_ —_ — _I__
° 4 2 2 2
w here =%[ ; Jland ; aretwoM ajprana spinors. W e have
QL —
G =2 = F + (332)
QF
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and the duality condition (3.20) for an in nitesin alU (1) duality rotation ° § reads

Lo+ Ly= 2@~ 4227 N : (3.33)

0 0= 7 4 :
It is natural to assum e that the kinetic temm s of the ferm lon  elds are nvariant under
this duality rotation (this is also the case for the scalar lagrangian .Z ( ) in (3.28)), then
using s = i~ we see that the coupling of the ferm ions w ith the eld strength is

reproduced if the ferm ions rotate according to

1
- “bs (334)

1

5b5 ; (3.35)

we also see that we have to add to the lagrangian Ly a new interaction term quartic in
the ferm ion  elds. Tts coupling isalso xed by duality symm etry to be 2=8,

T he theory with U (1) duality sym m etry is therefore given by the lagrangian [3]

- Ir o e e il .= - : (3.36)
4 2 2 2 8
N otice that ferm ions transform under the double cover of U (1) Indeed under a rotation
of angle b = 2 we have ! , ! , this is a typical feature of ferm ions
transform ations under duality rotations, they transform under the double cover of the
m axin alcom pact subgroup of the duality group. T his is so because the interaction w ith

the gauge eld is via ferm jons bilinear tem s.
34 Com pact and noncom pact duality rotations

341 Compact duality rotations

T he fractional transform ation (3.28) is also characteristic of nonlinear theories. The
subgroup of Sp(2n;R ) that leaves invariant a xed value of the scalar edsN isU (n).
This is easily seen by setting N = ill. Then In nitesin ally we have relations (3.19)

with = 0Oandb= <c¢,a= a% ie.we have the antisym m etric m atrix
|

a b-
b a
a= a‘ b= U. For nite transform ations the Sp(2n;R ) relations (Z.2) are com ple-

m ented by
A=D ; B= C: (3.37)
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ThusA iB isaunitary m atrix (seealso (Z.8)). U (n) is them axin alcom pact subgroup
of Sp(2n;R ), it is the group of orthogonaland sym plectic 2n  2n m atrices.

M ore In general from Section 3.1 we easily conclude that a necessary and su cient
condition for a theory with just n abelian gauge elds to have U (n) duality symm etry
is (cf. (3.20))

FF +G G =0 (3.38)
G F G F

0 (3.39)

forall ; .M oreover since any nonlinear lagrangian in the Iim it ofweak el strengths
F%<< F?reduces to theone n (323) wih a xed value ofN ),we conclude thatU (n)
is the m axim al duality group for a theory w ith only gauge elds.

Condition (3.39) is equivalent to

¢ F i)L =0; (3.40)

EF —
@F @F

ie. to the invariance of the Lagrangian under SO (n) rotations of the n el strengths
F . Condition (338) concems on the other hand the nvariance of the equations ofm o—
tion under transform ation of the electric eld strengths into them agnetic eld strengths.

In a theory with jist n abelian gauge elds the eld strengths appear in the La-
grangian only through the Lorentz invariant com binations

1 1
FF "R F (3.41)
4 4

and equation (3.40), tellus that L isa scalar under SO (n) rotations;eg. L isa sum of
traces, or of products of traces, of monom ialsin and (we in plicitly use the m etric
in the and products).
Ifwede ne

L L
¢ @— ; (342)

@t’ t

then using the chain rule and the de nitions (3.4]1]) we obtain that (3.38) is equivalent
to
L L L L +L L +L L + =0: (343)

Ifwede ne
( i); (3.44)

then (3.43) sin pli es and reads
p LpypLy,=9g9 LggqlLg: (345)
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Condition (3.43) in the case of a single gauge eld was considered In [15] togheter
w ith other equivalent conditions, in particular L, L, = 1,whereu= 2( + ( *+ 2)3),

v=1(  (2+ 2)7),seealo 20]

2

3.4.2 Coupling to scalar elds and noncom pact duality rotations

By freezing the values of the scalar elds N we have obtained a theory w ith only gauge

edsand with U (n) duality symm etry. V ice versa (follow ing [16]that extends to U (n)
the U (1) interacting theory discussed in [14,15]) we show that given a theory invariant
under U (n) duality rotations it ispossible to extend tvian(n + 1) scalar edsN toa
theory Invariant under Sp(2n;R ). Let L (F ) be the lagrangian of the theory with U (n)
duality. From (3.19) we see that under a U (n) duality rotation

1 1
LEY LE)= ZFbF+ZGbG: (3.46)

In particular L (F ) is Invariant under the orthogonal subgroup SO (n) U (n) given by
them atrix § OAt . This is the so<called electric subgroup of the duality rotation group
U (n) because it does notm ix the electric eldsF wih thedual eldsG.

D e ne the new lagrangian
1
LE;R;N;)=LRF )+ zlE“NlF (347)

whereR = R ) ,_1..n Is an arbirary nondegenerate realm atrix and N; is a real
symm etric m atrix. Because of the O (n) sym m etry the new lagrangian depends only on
the com bination

N,= RR ; (3.48)

ratherthan on R . ThusL(F;R;N1)= L({E;N )whareN = N; + iN,.
W e show that L satis es the duality condition (3.20),

1 1
(p+ r+ Nl)L(F;R;N1)=ZFcF+ZGbG (3.49)

where as always G = ZS—E,and where N ; transform s as in (3.24) and
R= R@+ W) ; (3.50)

so that N, = R™R transbm sas in (3.29). Notice that we could also have chosen the
transformation R = R R@+ N ;)with an in nitesimalSO (n) rotation.

We rstimmediately check (3.49) in the case of the rotation %) . Then in the case
a0 ,wherea= d". Fially we consider the duality rotation J5 . It is convenient to

Introduce the notation
QL (F )
F=RF ; G=2 : (3.51)
QF
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W e cbserve that L (F ) satis es the U (n) duality conditions (3.39), B33d) with F ! F,
G ! G.Equation (3.49) hodsbecause of (3.39) and proves Sp(2n ;R ) duality invariance
of the theory with lJagrangian L.

W e end this subsection with few comm ents. W e notice that (3.39) is equivalent to
the nvariance of the lagrangian under the In nitesm alSO (n) ransformationR ! R.
W e also observe that under an Sp(2n;R ) duality transform ation ig , the dressed

. . 0 t
edsF and G transform via the eld dependent rotation Obo]g = R?RtR]%R ’
F = RbR G ; (352)
G= RDR ‘F : (3.53)

T he geom etry underlying the construction of Sp(2n;R ) duality lnvariant theories
from U (n) ones is that of coset spaces. The scalar edsN param etrize the coset space

. + nn+ 1)
SpnR)=, ) (seeproofin ...). W ealo have P &)=, | = oo, )" @) R 2 where

GL" (n) is the connected com ponent of G L (n) and the equivalence classes R ]= fRY2
GL* n);RR '= e 2 S0 (n)g param etrize the coset space 5o yn° = ™.

T he proofof Sp(2n;R ) duality sym m etry for the theory described by the lagrangian

L hodsalso fweadd to L an Sp(2n;R ) Invariant lagrangian for the eldsN like the
lagrangian £ in (3.65). Of course we can also consider initial lagrangians in (3.44)
that depend on m atter elds invariant under the U (n) rotation, they willbe Sp(2n;R)
Invariant in the corresponding lagrangian L . M oreover, by considering an extra scalar
eld ,wecan always extend an Sp(2n;R ) duality theory toanR % Sp(2n;R ) one.

3.5 Nonlinear sigm a m odels on G=H

In this section we brie y consider the geom etry of coset spaces G=H . This is the
geom etry underlying the scalar elds and needed to form ulate their dynam ics [59,60].

W e study in particularthecase G = Sp(2nR),H = U (n) [6]and give a kinetic term
for the scalar eddsN .

T he geom etry of the coset space G=H is conveniently described n term s of coset
representatives, local sections L of the bundle G ! G=H . A point in G=H isan
equivalence classgH = fgjg ‘g2 Hg.W edenoteby * (1= 1;2:::m ) its coordinates
(the scalar elds of the theory). The left action of G on G=H is inherited from that of
GonG,itisgivenbygdH 7 gH ,thatwerewrite 7 ¢g° = . Conceming the coset
representatives we then have

gL()=1("; (3.54)

because both the Jeft and the right hand side are representatives of °. T he geom etry of
G =H and the corresponding physics can be constructed in temm s of coset representatives.
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O f course the construction m ust be insensitive to the particular representative choice,
we have a gauge sym m etry w ith gauge group H .
W hen H is com pact the Lie algebra of G splits in thedirect sum G = H + K ,where

H;H] H ; K;K] H+K ; H;K] K : (3.55)

T he last expression de nes the coset gpace representation of H . T he representations of
the com pact Lie algebra H are equivalent to unitary ones, and therefore there exists a
basis (H ;K.),where H ;K. ]= C°KywithC = (C° )ip1,um-damc-s anthem itian
m atrices. Since the coset representation is a real representation then thesem atrices C
belong to the Lie algebra of SO (m ).

G Wven a coset representative L (), the pull back on G=H of the G Lie algebra left

invariant 1orm = L 'dL is decom posed as
=L dL=P% K.+ ! ( H

and thereforeP = P2( )JK,and ! = ! ( )H are nvariant under di eom orphiam s
generated by the left G action. Under the local right H action of an element h( ) (or
under change of coset representative LY )= L ( )h( )) we have

P! h'Ph ; !! h''h+h 'dnh: (3.56)

The 1-oms P3( ) = P3( )d * are therefore viebain on G=H transform ing in the
findam entalof SO (m ),while ! = ! ( )d ' isan H «valued connection 1-om on G=H .
W e can then de ne the covariant derivativer P2 = [P;! F = P® ce,!

There isa naturalm etric on G=H ,
g= wP* P?; (3.57)

(this de nition is well given because we have shown that the coset representation is
via In niesimnal SO (m ) rotations). Tt is easy to see that the connection r ism etric
com patible, r g= 0.

If the coset is furthemm ore a sym m etric coset we have

K;K] H;

then the dentity d + ~ = 0, that is (the pullbback on G=H of) theM aurer< artan
equation, in term s of P and ! reads

R+P"*"P=20; (3.58)
dP+P " !+ 1 ~"P=0": (3.59)

T his last relation show s that ! is torsionfree. Since it ism etric com patible it is therefore
the R iem annian connection on G=H . Equation (3.58) then relates the R iem annian
curvature to the square of the vielbeins.
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By using the connection ! and the vierbein P we can construct couplings and actions
nvariant under the rigid G and the localH transform ations, ie. sigm a m odels on the
coset gpace G=H .

For exam ple a kinetic temm for the scalar elds, which are m aps from spacetin e
to G=H , is given by pulling back to spacetin e the invariant m etric (3.57) and then
contracting it w ith the spacetin e m etric

1 1 . .
L ()= §E>a£>a = zPai@ Pose I (3.60)

By construction the lagrangian %, ( ) is nvariant under G and localH transform a—
tions; it depends only on the coordinates of the coset space G=H .

351 ThecaseG = Sp(2n;R),H = U (n)

A kinetic tem for the 22°22) yalied scalar eHds is given by (3.60). This lagrangian

Umn)
is Invariant under Sp(2n;R ) and therefore satis es the duality condition (3.26) w ith
G =Sp@n;R)and = 0.W ecan also write
1. 1
L ()= 5P P, = 5Tr(P P ); (3.61)
where in the last passage we have considered generators K ; so that Tr(K :Ky) = 4

(this isdoable since U (n) is the m axin al com pact subgroup of Sp(2n;R)).

W e now recall the representation of the group Sp(2n R ) and of the associated cosst
SPERR) i the com plex basis discussed in the appendix (and frequently used in the later

U (n)
sections) and we give a m ore explicit expression for the lagrangian (3.61]).

R ather than using the sym plecticm atrix S = &} ofthe fundam entalrepresentation

of Sp(2n;R ), we consider the conjugate m atrix A 'SA where A = 191—5 L4 - Inthis

com plex basis the subgroup U (n) Sp(2n;R) is simply given by the block diagonal
matrices Y . W ealode nethen 2nmatrix

Ou

1 A 1B
= — o 2
n 19—2 c D (3.62)
and the m atrix
ff A B
vV = hh — CoD A (3.63)
Then (cf. (Z.9), (Z.10)),
i(f¥dh h¥df) i(f¥dh h¥df) P
vV o lav = ; 64
d i(f'dh ht%f) i(f*dh h'df) P ! ! (3.64)
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where In the last passage we have de ned then n sub-blocks ! and P corresponding
to the U (n) connection and the vielbein of Sp(2n;R )=U (n) in the com plex basis, (w ith
slight abuse of notation we use the sam e letter ! in this basis too).

W e nally obtain the explicit expression

1 _
L ( )= TP P )= zlT]:(N21@,N N,'@ N ) (3.65)
whereP = P dx = P;@ ‘dx ,N = N; N,andN = N, + N, = ReN + ilN .

The m atrix of scalars N param etrizes the coset space Sp(2n;R )=U (n) (see Appendix
7.2); In tem s of the £ and h m atrices it is given by (cf. (Z.19))

N =fh *; N,'= 2ffY: (3.66)
Under the sym plectic rotation 22 | 2E[ 22 thematrix N changes via the frac—
tional transformation N ! (C°+ DN )@°%+ BW ) ', (cf. (328)).

A nother proofof the nvariance of the kinetic term (3.69) under the Sp(2n ;R ) ollow s
by observing that (3.69) is obtained from the pulback to the spacetin e m anifold of the
m etric associated to the &) K ahler form Tr(N, 'dN N, 'dN ) (hered = @+ @ is
the exterior derivative). Thism etric is obtained from the K ahler potential

K= 4Trlbgi(N N ): (3.67)

Under the action of Sp(2n;R ),N andN N changeasin (328), (329) and theK ahler
potential changes by a K ahler transform ation, thus show ing the invariance of them etric.

342 ThecaseG=R”% Sp@n;R),H =UMn)

In this case the duality rotation m atrix gg belbngsto theLiealgebra ofR>°% Sp(2n;R),
asde ned in (3.15). In particular in nitesin aldilatationsare given by them atrix 5 73 .
T he coset space is

R”% Sp(2n;R Sp(2n;R
P@nR) _ .o SPE@IR) G.68)
U (n) U n)
there is no action of U (n) on R>". W e consider a real positive scalar ed = e

Inhvariant under Sp(2n;R ) transform ations. The elds and N param etrize the coset

space (3.68).
Let’s rstconsiderthem ain exam ple of Section 3.2. T heduality sym m etry conditions
for the lagrangian (3.23) are (3.24){3.28). >From equations (3.24),(329) (that hod for
23 In the Lie algebra of R>© Sp(2n;R)) we s=e that the elds N , and henceforth
the lagrangian % (), are nvariant under the R” % action. It follow s that the scalar

lagrangian

‘Ln( )+ Q€ (3.69)
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satis es the duality condition (3.2d). This shows that the Jagrangian (3.23) with the
scalar kinetic term given by (3.69) hasR”? Sp(2n;R ) duality symm etry. W e see that in
the Jagrangian (3.23) the scalar does not couple to the el strenght F . T he coupling
of toF ishowever present in lagrangians where higher powers of F' are present.

M ore in general expression (3.69) is a scalar kinetic temm for Jagrangians that satisfy
theR>% Sp(2n;R) duality condition (3.20).

3.6 Invariance of energy m om entum tensor

D uality rotation sym m etry isa sym m etry of the equations ofm otion that does not leave
invariant the lagrangian. The totalchange L L (F %’% L (F;’) of the lagrangian
isgiven In equation (3.19). Even if = 0 this variation is not a totalderivative because
F and G are the curlof vector potentials Ay and A only on shell

W e show however that the variation of the action w ith respect to a duality rotation
invariant param eter is invariant under Sp(2n;R ) rotations if the duality rotation (3.10)

ofthe’ eldsis independent.

R
Consider the —variationof S[F;’] SIF %’° S[F;’ 1= yS—; F+ .S,
QL 2 QL
—S=  —(=)F+ ——(F)+ —(8)
y QF y QF
Z Z
@ L S
= (=) F+ - G—(F)+ ()
Y@F Yy
Z
S
- (2)y+I— Gbe (3.70)
Yy
1R
where in the second line we used that — ’ = 0. Thus ( =)= —( S 1 beG)
and therefore from (3.19) we have,
S S
(—)= — (3.71)
thus show ing invariance of -2 under Sp(2n;R ) rotations ( = 0 rotations).

An mportant case iswhen isthemetricg , this is Invariant under duality rota—
tions. This show s that the energy m om entum tensor TS is Invariant under Sp(2n;R )
duality rotations.

Another instance is when is the dim ensional param eter typically present In a
nonlinear theory. Provided them atter edsareproperly rescaled /¥ | "= 3/, 90 that
they becom e adin ensional and therefore their transform ation *, usually nonlinear,
does not explicitly involve , then -2 is invariant, w here it is understood that % = 0.
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For th%actjon of the Bom-Infeld theory coupled to the axion and dilaton elds,

L=+1 1 3 N,;F?2 4 2N,(FF) weobtahtheivarantgs= (L 3FG);

we already found this nvariant in (3.22).

3.7 G eneralized Born Infeld theory

In this section we present the Bom-Infeld theory w ith n abelian gauge elds coupled to
n(n+ 1)=2 scalar edsN and show that ishasan Sp(2n;R) duality symm etry. Iffwe
freeze the scalar eddsN to thevalue N = il then the lagrangian has U (n) duality

symm etry and reads o
L=Tr@L S, 1+ 2 21; (3.72)

where as de ned in (3.41]), the componets of then n matrices and are =
IFF = s F :The syuare root is to be understood in tem s of its power
serdes expansion, and the operator S ; acts by symm etrizing each m onom ial in the
and matrices. A world (m onom ial) in the letters and  is symm etrized by averaging
over all permm utations of its letters. The nom alization of S ; is such that if and
commute then S ; actsas the dentity. T herefore in the case of just one abelian gauge
eld (3.72) reduces to the usual Bom-Infeld lagrangian.
The Sp(2n;R ) Bom-Tnfeld lagrangian is obtained by coupling the lagrangian (3.77)
to thescalar edsN asdescribed In Subsection [3.4 7 and explicitly considered in (3.109).
Follow ing [18] we prove the duality symm etry of the Bom-Infeld theory (3.72) by
rst show iIng that a Bom-Tnfeld theory w ith n com plex abelian gauge elds written in
an auxilary eld formulation has U (n;n) duality symm etry. W e then elim inate the
auxiliary elds by proving a ram arkable property of solutions of m atrix equations [19].
Then we can consider real elds.

3.7.1 D uality rotations w ith com plex eld strengths

>From the general study of duality rotationswe know that a theory with 2n real elds
F, andF, ( = 1;:::n)hasatmost Sp(4n;R) duality ifwe consider duality rotations
that leave invariant the energy-m om entum tensor (and in particular the ham iltonian).
W e now consider the com plex elds

F =F, +1¥F, ; F =F i, ; (3.73)

the corresponding dual elds

1 1
GZE(G1+ Gy) GZE(Gl Gy); (3.74)



and restrict the Sp(4n ;R ) duality group to the subgroup ofholom orphic transform ations,

F ab F

= Wi
G cd G (3-75)
F ab F
= : i
G cd G (3.76)
0 1
F

B
T his requirem ent singles out those m atrices, acting on the vectorg) gz z% , that belong
1

to the Lie algebra of Sp(4n;R ) and have the form G2

0 0 b0 1
a 1 1 1
oA ool A A L A :
](% (3.77)
cO 1 dao 1
2A OCA A OdA

where A = 191—5 1 L . Thematrix (377) belongs to Sp(4n;R) i then n complx

m atrices a;b;c;d satisfy
a¥= a; P=Db; d=c: (3.78)
ab

M atrices i , that satisfy (3.78),de ne the Lie algebra of the realform U (n;n). The

group U (n;n) is here the subgroup of G L (2n ;C ) caracterized by the re]ation@

0 1 0 1
y =
M 1 0 M 1 0 (3.79)

One can check that (3.79) in plies the follow ing relations for the block com ponents of
A B

M =
cD '

c¥a=2aYC; BYD=DYB; DA BYC=1: (3.80)

T he Lie algebra relations (3.78) can be obtained from the Lie group relations (3.80) by
writing 25 = 19 + 2 with i nitesinal. Equation [B.77) gives the en bedding

BD cd

of U (n;n) In Sp(4n;R ).

T he theory of holom orphic duality rotations can be seen as a gpecial case of that of

real duality rotations, but (as com plex geom etry versus real geom etry) it deserves also
ab

an independent form ulation based on the holom orphic variables g and m aps cd

®In Appendix 7.1 we de ne U (n;n) as the group of com plex m atrices that satisfy the condition
Uy 1% u= 1% . The s ikarity transfom ation between these two de nitions isM = AUA ' .
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Thedual edsin (3.74), or rather the Hodge dualof thedual ed strength, & =
" G ,isegquivalently de ned via

N =

, & s L (3.81)
@F @F
R epeating the passages of Section 3.1 we have that the B ianchi identities and equations
of motion @ F =0; @G = 0; LFH:O transform covariantly under the
holom orphic in nitesin al transform ations (3.79) if the Jagrangian satis es the condition
(cf. 319))

1 1
LE+ F;F+ F;’+ ') LE;FE;") EFCF EGbG = oonstpea (3.82)

O foourse we can also consider dilatations 6 0, then in the left hand side of (3.82) we
have to add the tem LEGE;).

The m axin al com pact subgroup of U (n;n) isU (n) U (n) and is obtained by re—

quiring (3.80) and
A=D; B= C:

T he corresponding In nitesin al relations are (3.78) and a= d; b= c:

The coset gpace _J0R) s the space of all negative de nite hemm itian m atrices

Um) U ()
M ofU (n;n), see for exam ple [18] (the proof is sin ilar to that for Sp(2n;R )=U (n) in
Appendix 7.2). Al these m atrices are for exam ple of the form M = ¢ lg b with
g2 U (n;n). These m atrices can be factorized as
1 N; N, O 1 O
M = 1 y
0 I 0N, N

N,+N;N,'N/ N;N,'

N, N/ N, !
_ 0 I , N MmN INY N ImN !
1 0 N NY I N !
Yy
=1 ]? o]l " N]lg No2le No o]l (5.83)
where N ; is hemm itian, N , is hem itian and negative de nite, and
N N+ iN, : (3.84)

Since any com plex matrix can always be decom posed into hem itian m atrices as in
(3.84), the only requirem ent on N is that N , is negative de nite.
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The left action ofU (n;n) on itselfg ! & [ g, nduces the action on the coset space
M ! 2SS M ¢ YbecauseM = ¢ ‘g l.Expression (3.83) then mm ediately
gives the action of U (n;n) on the param etrization N of the cosst space,

N ! N°= €+DN )@+ BN ) !; (3.85)

N,! NJ= @+ BN ) ‘N, + BN ) ': (3.86)

As In Section 34, given a theory depending on n complex eldsF and invariant
under the m axin al com pact duality group U (n) U (n) it is possible to extend it via
the com plex scalar eldsN , to a theory Invariant underU (n;n). The new lagrangian is

1
LERNL)= LRE)+ JFNF (3.87)

whereR = (R ) ;_1,.n Isnow an arbitrary nondegenerate com plex m atrix. Because
of the U (n) m axim al com pact electric subgroup this new lagrangian depends only on
the com bination

N,= R'R ; (3.88)

ratherthanon R . ThusL (F;R;N;)= L(E;N )whereN = N+ iN,.A transfom ation
forR com patbl with (3.89) is

R’=R@+ BN ) ?!; (3.89)

whose In nitesm altransformation is R = R(a+ bN ).

Conversely, ifwe are given a Lagrangian L w ith equations ofm otion invariant under
U (n;n) we can obtain a theory without the scalar ed N by sstting N = ill. Then
the duality group is broken to the stability group of N = il which isU () U (n),
the m axin al com pact subgroup.

Sin ilarly to Section 3.4.1 we de ne the Lorentz invariant com binations
1 1
ap 5Fan; ap 5L@an: (3.90)

If we consider lagrangians L (F;F ) that depend only on gauge elds and only through
sum of traces (or of products of traces) of monom ials in  and , then the necessary
and su cient condition for U (n) U (n) holom orphic duality symm etry is still ([3.43),
where now and areasin (3.90).
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3.7.2 Born-Infeld w ith auxiliary elds

A lagrangian that satis es condition (3.87) is

L =ReTr[i(N ) N, i +1)]; (391)

1
2
Theauxilary elds and and thescalar ed N aren dim ensional com plex m atrices.
W e can also add to the lagrangian a duality invariant kinetic term for the scalar eld
N , (cf (3.£3))

Tr(N, '@ NYN, '@ N ) : (3.92)

In order to prove the duality of (3.91) we rst note that the last term in the La-
grangian can be written as

ReTr[i ( + i )]: Tr(2 + 1 ):

If the ed transfom s by fractional transform ation and ;, , and the gauge elds
are real this is the U (1)" M axwell action (3.23), w ith the gauge elds interacting w ith
the scalar ed . This tem by itself has the correct transform ation properties under
the duality group. Sim ilarly forhem itian , , 1 and , this term by itself satis es
equation (3.87). It follow s that the rest of the Lagrangian m ust be duality invariant.
T he duality transform ations of the scalar and auxiliary elds a

-~ Cc+D )B+B ) (3.93)

%~ @+BN) @+ B Y)Y; (3.94)
and (3.89). variance of Tr[i(N ) 1is easily proven by using (3.80) and by rew rit—
ing (393) as

= @+BY)Y(C+D Y)V: (3.95)
Thvarince of the rem aining term which wewriteasReTr[ 5 YN, ]= Trlf , YN, ];

is straightforw ard by using (3.84) and the follow ing transform ation obtained from (3.93),

J=@+B Y)Y ,a+BY)': (3.96)

3.7.3 Elm ination of the A uxiliary Fields
T he equation of m otion obtained by varying gives an equation for ,

1

+EYN2+ +1i =0; (397)

"In [18]weusedi erent notations: N ! SY; ! Y; 1 Y,
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using this equation in the Lagrangian (3.91]) we cbtain

L

ReTr (iN ) (3.98)

ReTr( N, )+ Tr(N; ) ; (3.99)

where isnow a function of , and N, that solves (3.97). In the second line we
observed that the antihemm itian part of (3.97) i plies , =

In this subsection we give the explicit expression of L, in termsof , and N .

F irst notice that (3.97) can be sin pli ed w ith the ollow ng el rede nitions

b=R RY;
b=R RY; (3.100)
b=R RY’.

where,as n (3.898),RYR = N,. The equation ofm otion for is then equivalent to
1
b 5be+ b iP=0: (3.101)

The antihem itian part of (3.101) mpliesb, = P, thust = b 2i . Thiscan be

used to elin inate b¥ from (3.101) and obtain a quadratic equation or b. Iwe de ne

Q = 1D thisequation reads

-2

Q=g+ (P QQ+ 0% (3.102)
where
1 . 1 .
P 5( +1); 9 5( i)
T he lagrangian is then
L =2ReTrQ + Tr(N; ) : (3.103)

If the degree of them atrices is one, we can solve orQ in the quadratic equation (3.102).

Apart from the fact that the gauge elds are com plex, the result is the Bom-Infeld
Lagrangian coupled to the dilaton and axion eldsN ,

q

L=1 1 2N, +NF 2+ N; : (3.104)

For m atrices of higher degree, equation (3.102) can be solved perturbatively,
Qo=10; Qui1=qg+ (P Ak + Q5 ; (3.105)

and by analyzing the rst few temm s in an expansion sin ilar to (3.109) in [17,18] it was
con pctured that
1 h P i
TrQ = ETr I+g p Spy 1 2@+a)+ @ q9f ; (3.106)
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The right hand side formula is understood this way: st expand the sjquare root as
a power series In p and g assum ing that p and g comm ute. Then solve the ordering
am biguities arising from the noncom m utativity of p and g by sym m etrizing, w ith the
operator S, 5, each m onom ialin the p and gm atrices. A world (m onom ial) in the letters
p and g is symm etrized by considering the sum of all the pem utations of its letters,
then nom alize the sum by dividing by the num ber of perm utations. T his norm alization
of Sy 4 is such that if p and g commute then S, acts as the dentity. T herefore in the
case of just one abelian gauge eld (3.72) reduces to the usual Bom-Infed lagrangian.
An explicit form ula for the coe cients of the expansion of the trace of Q is [19,69]
n #

X
+ 2 +
TrQ = Tr g+ £ TS s (g (3107)

r 1 r
ris 1
In Appendix 8, follow Ing [19], see also [/0]and [71], we prove that the trace of Q is
com pletely symm etrized In them atrix coe cientsgand p . Since this isequivalent to
symm etrization in gand p (3.106) ©llow s. Since sym m etrization in p and g is equivalent
to sym m etrization in b and D the Bom-Infed lagrangian also reads
-
L=Trll S, 1+2b P 4+N, ]: (3.108)

In [69] the convergence of perturbative m atrix solutions of (3.97), are studied. A
su cient condition for the convergence of the sequence ([3.109) to a solution of (3.102)
isthat thenom sofp gand ghave to satisfy (I  Jp g7)? > 4757 Here Jj fjdenotes
any m atrix nom w ith the Banach algebra property M M %5 M M % (eg. the
usualnom ). This condition is surely m et if the eld strengthsF are weak.

If equation (3.I07) iswritten as (1+ g pP)Q = g+ Q?, then the sequence given by
Qo=0; Q1= (I+g p) ‘gt (I+g p) 'Q? converges and isa solution of equation
BI) if 7l + g p) 'J70L+ g p) 'gfj< 1=4. Notice that thematrix 1+ g p
is always nvertbl, use (L+ g p)+ s(L+ g pV = p]l, and the sam e argum ent
as in m& Notice also that ff p and g commute then 1 2@+ q)+ (p g) =
(I+g p) 1 4(1+qg p) *gand convergence of the pow er serdes expansion of this
latter square root hods if 1L+ g p) gij< 1=4.

3.74 Real eld Strengths

W e here construct a Bom-Infeld theory with n real eld strengths which is duality
nvariant under the duality group Sp(2n;R ).

W e rst study the case without scalar elds, ie. N; = Oand N, = R = 1.
Consider a Lagrangian b = L( ; ) with n complex gauge elds which describes a
theory symm etric under the m axin al com pact group U (N ) U (N ) of holom orphic
duality rotations. A ssum e that the Lagrangian is a sum of traces (or of products of
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traces) ofm onom lalsin  and . It follow s that this Lagrangian satis es the selfduality
equations (3.43) with and complex (recall end of Section 3.7.1). This equation
rem ains true in the special case that and assume realvalues. ThatisL = L ( ; )
satis es the selfduality equation (343)with = T = and = T = | Wenow
recall that equation (3.43) is also the selfduality condition for Lagrangians w ith real
gauge edsprovided that and arede ned asin (3.41]) as functions of eld strengths
F thatare real (cf. the di erent com plex case de nition (3.90)). T his in plies that the
theory described by the lagrangian L ( ; ) that isnow function ofn real eld strengths
is selfdualw ith duality group U (n), the m axin al com pact subgroup of Sp(2n;R ). The
duality group can be extended to the full noncom pact Sp(2n;R ), by introducing the
symm etric m atrix of scalar edsN via the prescription (3.47).

A s a straighforward application we obtain the Bom-Tnfeld Lagrangian w ith n real
gauge eldsdescribing an Sp(2n;R ) duality invariant theory

q -
L=Tr[l S . 1+2b ©P24n, J; (3.109)

whereb= R R, P=R RY,N,= RWR,and =
(341).

F F , =iF F ash

=

3.7.5 Supersym m etric T heory

In this section we brie y discuss supersym m etric versions of som e of the Lagrangians
introduced . First we discuss the supersym m etric form of the Lagrangian (3.91]). Con-—
sider the super edsV = #5(V, + ¥, JandV = s=(V, i, )whereV, andV,
are real vector super elds, and de ne

12 12
W = DDV ;W = -DDV
4 4

BothW andW arechiral super elds and can be used to construct a m atrix of chiral
super eds
M W W

T he supersym m etric version of the Lagrangian (3.9]]) is then given by
Z .
2 - 1 2 .
L=Re d° Tr({i® ) ED(YNz )+ iM )

whereN , and denote chiral super elds w ith the sam e sym m etry properties as their
corresponding bosonic elds. W hile the bosonic edsN and appearing in (3.91]) are
the lowest com ponent of the super elds denoted by the sam e letter, the eld in the
action (3.9])) is the highest com ponent of the super ed . A supersymm etric kinetic
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term for the scalar ed N can be w ritten using the K ahler potential (3.67) as described
n [72].
Just as In the bosonic Bom-Infeld theory, one would lke to elin nate the auxiliary
elds. This is an open problem ifn 6 1. Forn = 1 just as In the bosonic case the
theory with auxiliary elds also adm its both a real and a com plex version, ie. one can
also consider a Lagrangian w ith a single real super eld. Then by integrating out the
auxiliary super elds the supersym m etric version of the Bom-Infeld lagrangian (3.104)
is obtained

Z 2t 207 2 Z .
. N JW ‘W P
L = d p——— + Re d &NW %) (3.110)
1+ A+ 1+ 2A+ B2 2
w here
1 2 2 2 2 1 2 2 2 2
A=1(D (NoW “)+ D (NW 7)) ; B=71(D (N,W %) D (N,W 7)) :
If we only want a U (1) duality nvariance we can sst N = i and then the la-

grangian (3.110) reduces to the supersym m etric Bom-Infeld Jagrangian described in [46
481.

In thecaseofweak eldsthe rsttem of (3.110) can be neglected and the Lagrangian
is quadratic in the eld strengths. Under these conditions the com bined requirem ents
of supersym m etry and self duality can be usad [73] to constrain the form of the weak
coupling Iim it of the e ective Lagrangian from string theory. Selfduality of Bom-nfeld
theorieswith N = 2 supersym m etries is discussed in [24].

4 Dualities in N > 2 extended Supergravities

In this section we consider N > 2 supergravity theories n D = 4; in these theories
the graviton is also coupled to gauge elds and scalars. W e study the corresponding
duality groups, that are subgroups of the sym plectic group. It is via the geom etry of
these subgroups of the sym plectic group that we can obtain the scalars kinetic term s, the
supersym m etry transform ation rules and the structure of the centraland m atter charges
of the theory w ith their di erential equations and their duality invariant com binations
%u and .Y (that for extram alblack holes are the e ective potential and the entropy).

Four din ensional N -extended supergravities contain in the bosonic sector, besides
the m etric, a num ber n of vectors and m of (real) scalar elds. The relevant bosonic
action is known to have the follow Ing general form :

Z
1" p , 1 1
s == gd'x R+ MmN F F + —p—ReN F F o+
4 2 2 g
1 o
+ Egij( @a @ 7 (4.1)
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where gi5( ) (1,37 =1, ;m ) is the scalar m etric on the -m odel described by the
scalar m anifold M goa1r Of real dim ension m and the vectors kinetic matrix N () is
a com plex, symm etric, n n matrix depending on the scalar elds. The num ber of
vectors and scalars, nam ely n and m , and the geom etric properties of the scalarm anifold
M geaiar depend on the number N of supersym m etries and are summ arized in Table[d.

The duality group of these theories is In general not the m axim al one Sp(2n;R)
because the requirem ent of supersym m etry constraints the num ber and the geom etry of
the scalar elds in the theory. In this section we study the case where the scalar elds
m anifold is a coset space G=H , and we see that the duality group in thiscase isG .

In Section 5 we then study the general N = 2 case where the target space is a
soecialK ahlerm anifold M and thus in generalwe do not have a coset gpace. T here the
Sp(2n;R ) transform ations are needed in order to globally de ne the supergravity theory.
W edo not have a duality sym m etry of the theory; Sp(2n ;R ) israther a gauge sym m etry
of the theory, n the sense that only Sp(2n;R ) invariant expressions are physical ones.

The case of duality rotations In N = 1 supergravity is considered in [9], [74], see
also [25]. In thiscase there isno vector potential in the graviton m ultiplet hence no scalar
central charge in the supersym m etry algebra. D uality sym m etry isdue to the num ber of
m atter vector m ultiplets in the theory, the coupling to eventual chiralm ultiplets m ust
be via a kinetic m atrix N holom orphic in the chiral elds. W e see that the structure of
duality rotations is sin ilar to that of N = 1 rigid supersymm etry. For duality rotations
nN = 1and N = 2 rigd supersymm etry using super elds see the review [24].

4.1 Extended supergravities w ith target space G =H

nN 2 supergravityy theories w here the scalars target space isa coset G=H , the scalar
sector has a Lagrangian invariant under the globalG rotations. Since the scalars appear
In supersym m etry m ultiplets the symm etry G should be a sym m etry of the whole theory.
T his is Indeaed the case and the sym m etry on the vector potentials is duality symm etry.

Let’s exam Ine the gauge sector of the theory. W e recall from Section 3.1 that we
have an Sp(2n;R ) duality group if the vector () transform s In the fundam ental of
Sp(2n;R ), and the gauge kinetic term N transfom s via fractional transform ations, if

-, 2Sp@nR),

N ! N°= C+DN)@A+BN) *: (42)

Thus In order to have G duality symm etry, G needs to act on the vector () via sym —

plectic transform ations, ie. via m atxdices Z; E In the fundam entalof Sp(2n;R ). This
requires a hom om orphism

S:G! Sp@n;R): 4.3)
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Dierent in nitesinal G transform ations should correspond to di erent in nitesim al
sym plectic rotations so that the nduced map Lie(G ) ! Lie(Sp(2n;R)) is infEctive, and
equivalently the hom om orphian S isa localem bedding (in general S it is not globally
Infctive, the kemel of S m ay contain som e discrete subgroups of G ).

Since U (n) is the m axin al com pact subgroup of Sp(2n;R ) and since H is com pact,
we have that the mage of H under this localembedding is in U (n). Tt follow s that we
have a G -equivariant m ap

N :G=H ! Sp(2n;R)=U (n) ; 44)
explicitly, forallg 2 G,
N (g )= (C+DN()@A+BN())"; (4.5)

wherew ith g wedenotetheaction ofG on G=H ,whil theaction ofG on Sp(2n;R )=U (n)

is given by fractional transform ations. Notice that we have denti ed Sp(2n;R )=U (n)

with the space of com plex symm etric m atrdces N that have In aginary part In N =
iN N ) negative de nite (see Appendix 7.2).

The D = 4 supermgravity theories with N > 2 have all target space G=H , they are
characterized by the num ber n of total vectors, the number N of supersym m etries, and
the coset space G=H , e Tabl 1@.

In general the isotropy group H is the product

H = Haut H n atter (4.6)

where H 5 ¢ is the authom orphism group of the supersymm etry algebra, while H  aeeer
depends on the m atter vector m ultiplets, that are not present in N > 4 supergravities.

In Section 3.5 we have described the geom etry of the coset space G=H in tem s of
coset representatives, local sections I of thebundle G ! G=H . Under a left action of
G they transform asgL( )= L( %h,where theg action on 2 G=H gives the point

92 G=H .

W e now recall that duality symm etry is in plam ented by the sym plectic em beddings
(43) and (44) and conclide that the an beddings of the coset representatives L in
Sp(2n;R ) willply a centralrole. R ecalling (3.67) these em beddings are determm ined by
de ning

L! £f(L) and L ! h(L): (4.7)

®In Table 1 the group S (U (p) U (q)) is the group of block diagonalm atrices § ) with P 2 U (p),
Q 2 U (q) and detP detQ = 1. There is a local isom orphism between S (U (p) U (g)) and the direct
productgroup U (1) SU (p) SU (q), In particular the corresponding L ie algebras coincide. G lobally
these groupsarenot the sam e, orexample S(U (5) U (1))= U (5)=U (1) PSU ()& U (1) SU (D).
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Table 1: ScalarM anifods of N > 2 Extended Supergravities

N D uality group G isotropy H M ccalar n m

3 SU (3;n%) S(U ) U@y R 3+n°| 6n°
4 [lsu@a;n) so@m)|u@ s©®6) om)) | HEE _S0lml ey n® en+ 2
5 SU (5;1) S(U((5) U@)) S AGEREH 10 10
6 SO7(12) U (6) T 16 30
7;8 E SU (8)=2Z, s 28 70

In the table, n stands for the number of vectors and m = din M ¢35, fOor the num ber
of real scalar elds. In all the cases the duality group G is (locally) embedded In
Sp(2n;R). The number n of vector potentials of the theory is given by n = ng + n°
where n° is the num ber of vectors potentials in the m atter m ultiplet while ng is the
num ber of graviphotons (ie. of vector potentials that belong to the graviton m ultiplet).

SE YN 6 6;andng = S5+ 1= 16 fN = 6 ;wealo

W e recall that ngy = 3

have n® = 0 if N > 4. The scalar manibld of the N = 4 case is usually written as
S0, (6;n%=S0 (6) SO (n° where SO, (6;n% is the com ponent of SO (6;n° connected
to the indentity. T he duality group of the N = 6 theory ism ore precissly the double
cover of SO (12). Spinors elds transform according to H or its double cover.

In the ollow Ing we see that them atrices £ (L ) and h (L ) determ ine the scalar kinetic
term N , the supersym m etry transform ation rules and the structure of the central and
m atter charges of the theory. W e also derive the di erential equations that these charges
satisfy and consider their positive de nite and duality invariant quadratic expression
% s . These relations are sin ilar to the Special G eom etry ones of N = 2 supergravity.

>From the equation of m otion
de =4 7 (4.8)
dc =4 3 (49)
we associate with a eld strength 2-fom F am agnetic chargep and an electric charge
q gven respectively by:

1
P:4— Fooy g =— G (4.10)

52 4 g2

where S? is a spatial two-sphere containing these electric and m agnetic charges. T hese
are not the only charges of the theory, In particular we are Interested iIn the central
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charges of the supersym m etry algebra and other charges related to the vectorm ultiplets.
T hese latter charges result to be the electric and m agnentic chargesp and g dressed
with the scalar elds of the theory. In particular these dressed charges are invariant
under the duality group G and transform under the isotropy subgroup H = Haut
Hmatter

W hile the ndex isused for the findam ental representation of Sp(2n ;R ) the index
M isused for that of U (n). A ccording to the local en bedding

H = Haue H o atter ! U (1) (4.11)

the indexM isfurtherdividedasM = (AB ;I)whereI referstoH j ager andAB = BA
(A = 1;:::;N ) labels the two-tin es antisym m etric representation of the R -symm etry
group H a ut- W e can understand the appearence of this representation of H » ,+ because
this is a typical representation acting on the central charges. The index I rather than
I is usad because the Inage of H  aper In U (n) will be the com plex conjugate of the
fundam ental of H ; auer , this agrees w ith the property that under K ahler transform ations
oftheU (1) bundle Sp(2n;R )=SU (n) ! Sp(2n;R )=U (n) the coset representatives of the
scalar elds In the gravitational and m atter m ultiplets transform w ith opposite K ahler
weights. This is also what happens in the generic N = 2 case (cf. (5.61)).

T he dressed graviphotons eld strength 2-form s Taz m ay be denti ed from the su-
persym m etry transform ation law of the gravitino eld in the interacting theory, nam ely:

a=T" + Tag & MV,4 ::: (4.12)

Here r is the covariant derivative In tem s of the spacetin e spin connection and the
com posite connection of the autom orphian group Hayue, 1S a coe cient xed by su-

persymm etry, V@ is the spacetin e vielbein. Here and in the ollow ing the dots denote
trilinear ferm ion term sw hich are characteristic of any supersym m etric theory butdo not
play any role in the follow ing discussion. The 2-form  eld strength Ta g is constructed by
dressing the bare eld strengthsF with theimagef (L ( )),h(L( )) In Sp(2n;R ) ofthe
coset representative L () of G=H . Note thatthe sam e eld strengths T,z which appear
in the gravitino transform ation law are also present in the dilatino transform ation law

in the follow ing way:

nD

asc = Pagcp «@ + Tas "o (4.13)
A nalogously, when vector m ultiplets are present, the m atter vector eld strengths T;
appearing in the transform ation law s of the gaugino elds, are linear com binations of
the el strengths dressed w ith a di erent com bination of the scalars:

r nB

m = PPrag @ + T "4+ oir (4.14)
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HerePapcp = Pagcp rd andPj, = P, . d * aretheviebehn of the scalarm anifods
spanned by the scalar eds * = ( '; ©) of the gravitational and vector m ultiplets
respectively (m ore precise de nitions are given below ), and and are constants xed

by supersymm etry.

A ccording to the transfom ation of the coset representative gL ( )= L ( %h , under
the action ofg2 G on G=H we have

S(IA ! S(9% =5(g)S( )Sth ')A =S(g)s( )AU ' (4.15)

where A = 191—5 1 & isunitary and symplctic (cf. (73)),S(g)= 22 and S(h) are
the embeddings of g and h in the findam ental of Sp(2n;R ), while U = A !S(h)A is
the em bedding of h in the com plex basis of Sp(2n;R ). Explicitly U = 32),where u is

in the fundam entalofU (n) (cf. {(Z13) and (7.8)). T herefore the sym plectic m atrix

V = SA = £f (416)
B ~  hh )

transform s according to

V() v(9 (417)

[
n

Q
<

-

Thedressed eld strengths transform only under a unitary representation of H and, in
accordance w ith (4.17), are given by [11]

T . 1 F
T = 1V () G ; (4.18)
T ! uT : (4.19)
Explicitly, since
ht i
. 1
iv = _— (4.20)
we have
TAB == h AB F fABG
T,=h,F £G (4.21)
where we used thenotation T = (T" )= (Ty )= (Tas ;T;),
f=(0Ew)= Expgif)i
h= (thy )= (hagh); (4.22)
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that enphasizes that (forevery valueof ) the sections F haveK ahlerw eight opposite
h

to the Eiz ones. Thism ay be seen from the supersym m etry transform ation rules of

the supergravity elds, in virtue of the fact that gravitinos and fotinos w ith the sam e
chirality have opposite K ahler weight. N otice that this notation (as in [41]) di ers from
theonein [11],where (£, )= (£,5/£;); hy )= (hagh):

Consequently the central charges are
1
Zpg = 4_ Tag = £,59 h g p (4.23)

1
Zy= 4 Ti=fiqa hgp (4.24)

w here the Integral is considered at spatial in nity and, for spherically sym m etric con—
gurations, f and h in (4.23), (424) are£( ; )and h( ; )with ; the constant value
assum ed by the scalar elds at gpatial in nity.

T he integral of the graviphotons Tpr  gives the value of the central charges Zx
of the supersym m etry algebra, whil by integrating the m atter eld strengths T; one
obtains the so called m atter charges Z; . T he charges of thesedressed eld strength that
appear in the supersym m etry transform ations of the ferm ions have a profound m eaning
and play a key role In the physics of extrem alblack holes. In particular, recalling (4.17)
the quadratic com bination (black hole potential)

1
Yoy = 5zABzAB + 27, (425)

(the factor 1=2 is due to our sum m ation convention that treats the AB indices as inde-
pendent) is invariant under the sym m etry group G . In term s of the charge vector

Q= ; (426)
we have the form ula for the potential (also called charges sum rule)

1 1
You = 5ZABZAB + 217 = EQtM (N )Q (427)

w here
M N)= (@ 'Y '= (s I)s ! (428)

is a negative de nite m atrix, here depending on ; . In Appendix 72 we show that the
set of m atrdces of the kind SS*with S 2 Sp(2n;R ) are the coset space Sp(2n;R )=U (n),
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hence them atricesM (N ) param etrize Sp(2n;R )=U (n). A Iso them atricesN param etrize
Sp(2n;R )=U (n). The relation between M (N )and N is
1 ReN Im N 0 1 0

MAND= g g 0 mmN ! ReN 1 (429)

T his and further properties of theM (N ) m atrix are derived in A ppendix 7.2.

For each of the supergravities w ith target space G=H there is another G invariant
expression . quadratic In the charges [63]; the invariant .¥ is independent from the
scalar elds of the theory and thus depends only on the electric and m agnetic charges
p and g . In extram alblack hol con gurations .¥ is the entropy of the black hole.
In the N = 3 supergravity theory .¥ is the absolute value of a quadratic com bination
of the charges, whilke for N 4 it is the square root of the absolute value of a quartic
com bination of the charges. T he positive or negative value of this quadratic com bination
isrelated to thedi erent BP S properties of the black hole. It tums out that.¥ coincides
w ith the potential %4 com puted at its critical point (attractor point) [43,45,63]. In
the next section we give the explicit expressions of the nvariants.¥ . T hey are obtained
by considering am ong the H invariant com bination of the charges those that are also
G Invariant, ie. those that do not depend on the scalar elds. This is equivalent to
require nvariance of . under the coset space covariant derivative r de ned In Section
3.5, seec alo (434).

W e now derive som e di erential relations am ong the centraland m atter charges. W e
recall the sym m etric coset space geom etry G =H studied in Section 3.5, and in particular
relations (3.59), (3.59) that express theM aurerC artan equationd + ~ = 0intems
of the viebein P and of the R iam annian connection ! . Using the (local) em bedding
of G In Sp(2n;R ) we consider the pullback on G=H of the Sp(2n;R ) Li algebra lft
invariant one form V. 'dvV given in (3.64), we have

i(f¥dh h¥df) i(fYdh h¥af) 'P

v lgv = _ )
d i(f'dh h'f) i(ftdh hidf) = !

(4.30)

where w ith slight abuse of notation we use the same lettersV , P and ! for the pulled
back form s (we also recall that P denotes P in the com plex basis). Relation (4.30)
equivalently reads

av=v . (431)

that isequivalent to then n m atrix equations:

rf=£fp ; (4.32)
rh= hP ; (4 33)

44



w here
rf=df f! ; rh=dh h! : (4.34)

Recalling that P is symm etric (cf. (Z.30)) we equivalently haver £ = Pf; rh= Ph:
In these equations we can now see ! and P as our data (viebein and R iem annian
connection) on a m anifold M ,while £ and h are the unknowns. By construction these
equations are autom atically satis ed ifM = G=H and G isa Lie subgroup ofSp(2n;R).
M ore in generalequations (4.37),{4.33) hod (w ith f and h Invertible) i the integrability
condition, ie. the CartanM aurerequation,d |7 + 7 ~ )7 = Oholds.W ith abuse
of term inology we som etin es call (4.32), (£.33) the M aurer€ artan equations.

Thedi erential relationsam ong the charges Z , 5 and Z; follow after rew riting (432),
(433) with AB and I indices. The en bedded connection ! and viebein P are decom —

posed as follow s:

L= (1N )= !ACBD 0 (4.35)
: M 0 1 I ’
|.J
pAB pAB =) P
P=(Y )= Puy)= _ 77 7 = TEIETOAET (4.36)
Peop Py Prep Py

the subblocks being related to the viebein of G=H , written in temm s of the indices of
Hauwe Hupater- W eusad the follow Ing indices conventions:

f=f, ; £'= ' = (f etc: (4.37)

where in the last passage, shce we are In U (n), we have Iowered the index M w ith the
U (n) hem itian form = diag(l;1;::1). Sim ilar conventions hold

MN y N=1;:mn

for the AB and I indices, forexample f .= f = £ *.

U sing further the index decom position M = (AB ;I), relations (4.32), (4.33) read
(the factor 1=2 is due to our sum m ation convention that treats the AB indices as Inde—
pendent):

rf,, = éf P Pepas + £Phag ; (4.38)
rh,, = %hCD Pcpas + h{Phy 7 (4 39)
rf_= %f Pp.,.+ fIP,;; (4 40)
rh, = éhCD Pepr+ h 7P,y (4.41)

Aswew ill see, depending on the coset m anifold, som e of the sub-blocks of (4£.3d) can be
actually zero. ForN > 4 (nom atter indices) we have that P coincides w ith the vielbein

45



Pagcp of the relevant G=H . U sing the de nition of the charges (21) we then get the

di erentialrelationsam ong charges: r Zy = ZNPNM ,2wherer Z2y = EZT d i 2N !NM ,
with 1 thevalieofthe i-th coordinateof ; 2 G=H and ; = (r= 1 ).Explicitly,
using the AB and I indices,
I 1 CD
IZAB = ZIP AB + EZ PCDAB H (4.42)
1
rz.= 5ZABPABIJr z7P (443)

T he geom etry underlying the di erential equation (431) is that ofa at sym plectic
vector bundle of rank 2n, a structure that appears also in the special K ahler m anifolds
of scalars of N = 2 supergravities. Indeed ifwe are able to nd 2n linearly independent
row vectorsV = (V) _1,.0, then them atrix V. in (4.3])) is invertble and therefore the
connection .} is at. If these vectors are mutually sym plectic then we have a sym —
plectic fram e, the transition fiinctions are constant sym plectic m atrices, the connection
is sym plectic.

In the present case we naturally have a at sym plectic bundle,

G 4 R™! G=H ;

this bundle is the space of all equivalence classes [g;v]= f(gh;St) 'v); g2 G;v 2
R?";h 2 Hg. The sym plectic structure on R?" inm ediately extends to a well de ned
sym plectic structure on the bers of the bundle. U sing the local sections of G=H and
the usualbasis fe g = fey ;&' g ofR* (e is the colum n vector w ith with 1 as rst and
only nonvanishing entry, etc.) we obtain Inm ediately the local sectionss = [L( );e ]
of G 4y R?™ ! G=H .Since the action of H on R extends to the action of G on R*",
we can consider the new sectionse = sS *(L( ) = [L( );S Y@L ( )e ];that are
determ ined by the coimn vectors S (L ( )) = (S *(L( )) ) -1,:00. These sections
are globally de ned and linearly independent. T herefore this bundle isnot only at, it
istrivial. Ifweuse thecom plex IocalframeV = fs A g rather than the fs g one (we
recallthat A = 191—5 1 L ,cf. (I3)), then the global sections e are determm ined by the

colum n vectorsV l(L( )) = (V l(L( )) )=l;:::2nl
e=vvVv =t : (4 .44)

T he sectionsV  too form a sym plectic fram e (a sym plectonom albasis, indeed V vV o=
,where = % Oﬂ ), and the last n sections are the com plex conjigate of the rst
n ones, fV g = fVy ;Vy g. O fcourse the coumn vectors V. = (V) _1;.0n, are the

coe cients of the sections V' w ith respect to the at basis fe g.
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A 1o the row s of the V m atrix de ne global at sections. Let’s consider the dual
bundle of the vector bundle G 5 R? ! G=H , ie. the bundle wih ber the dual
vector space. If fs g isa fram e of local sections of G R? | G=H ,then fs g, with
hs ;s i= , is the dual fram e of local sections of the dual bundle. Conceming the

transition fiinctions, if s = s S then s = S ' s . Thisdualbundk is also a trivial
bundle and a trivialization is given by the global sym plectic sectionse = V V ,whose
coe clents are therow vectorsV. = (V) _1,.0, 1e., the row s of the sym plectic m atxix
V de ned in (£14),

(445)

4.2 Speci c cases

W e now descrlbe In m ore detail the supergravities of Tabl [ll. The ain is to write
dow n the group theoretical structure of each theory, their sym plectic (local) en bedding
S :G! Sp@n;R)and N :G=H ! Sp(2n,;R )=U (n), the vector kineticm atrix N , the
supersym m etric transform ation law s, the structure of the central and m atter charges,
their di erential relations originating from the M aurer< artan equations (3.58),(3.59),
and the nvariants %y and .. A s far as the boson transform ation rules are concermed
we prefer to w rite down the supercovariant de nition of the eld strengths (denoted by
a superscript hat), from which the supersymm etry transfom ation law s are retrieved.
A s it has been m entioned in previous section it is here that the sym plectic sections
(f op+f 7T 45 if ;) appear as coe cients of the bilinear ferm ions in the supercovariant

eld strengths while the analogous sym plectic section (h a5 ;h ;;h as ;h 1) would ap—
pear In the dualm agnetic theory. W e ilnclude In the supercovariant eld strengths also
the supercovariant vielbein of the G =H m anifolds. A gain this is equivalent to giving the
susy transform ation law s of the scalar elds. Thedressed eld strengths from which the
central and m atter charges are constructed appear instead in the susy transform ation
law s of the ferm ions for which we give the expression up to trilinear ferm ion term s. W e
stress that the num erical coe cients in the aforem entioned susy transform ations and
supercovariant eld strengths are xed by supersymm etry (or, equivalently, by Bianchi
dentities In superspace), but we have not worked out the relevant com putations be-
ing interested in the general structure rather that in the precise num erical expressions.
T hese num erical factors could also be retrieved by com paring our form ulae w ith those
w ritten in the standard literature on supergravity and perform ing the necessary rede —
nitions. T he sam e kind of considerations apply to the centraland m atter charges whose
precise nom alization has not been xed.

47



T hroughout this section we denote by A ;B ;::: indices of SUN ), SUN ) U (1),
being H .+ the autom orphian group of the N {extended supersym m etry algebra. Lower
and upper SU (N ) indices on the ferm ion elds are related to their left or right chirality
respectively. If som e ferm ion isa SU (N ) singlet, chirality is denoted by the usual (L)
or (R) su xes.

Furthem ore for any boson eld v carrying SU (N ) indices we have that lower and
upper indices are related by com plex conjugation, namely: (vag )= v

421 TheN = 4 theory

The eld content is given by the

G ravitationalm ultiplet (vierbein forthe graviton, gravitino, graviphoton ,dilatino,
dilaton):
(Ve a A" asciv) @AB=1; i4) (4 46)

frequently the upper halfplane param etrization S = » isused for the axion-dilaton eld.

Vector m ultiplets:
@ ;%6 )y (T=1; n) (4.47)
T he coset space is the product
SU (1;1) SO (6;n)

G=H = (4.48)
U@1) S(@©(®) O(n))

W e have to enbed
Sp(2;R) SO (6;n)! Sp(2®G+ n);R) : (4.49)

W e rst consider the enbedding of SO (6;n),

S :SO (6;n)! Sp((E+ n);R)
Lt 0
LT SL)= 450
L) 0L ( )
we see that under this enbedding SO (6;n) is a symm etry of the action (not only of
the equation of m otions) that rotates electric elds Into electric elds and m agentic
elds into m agnetic elds. The naturalembedding of SU (1;1) * SL(2;R) " Sp(2;R)
into Sp(2(6+ n);R ) is the S-duality that rotates each electric eld in its corresponding
m agnetic eld,we also want the image of Sp(2;R ) In Sp(2(6+ n);R ) to comm ute with
that of SO (6;n) (sinhce we are looking for a sym plectic enbedding of all Sp(2;R )
SO (6;n)) and therefore we have

S :Sp(2;R) ! Sp(2(6+ n);R)

AL B
oL = (451)

A
¢ c bl

O w

T S
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where = diag(1;1;:::; 1; 1;::) isthe SO (6;n)m etric.

Conceming the coset representatives, on one hand we denote by L (t) the represen—
tative In SO (6;n) of the point £t 2 SO (6;n)=S (O (6) O (n)). On the other hand we
have that SU (1;1)=U (1) ' Sp(2;R)=U (1) is the lower half plane (see appendix) and
is gpanned by the com plex numbervw with In v < 0, (frequently the upper half plane
param etrization S = v isused). A coset representative of SU (1;1)=U (1) is

S
U6 1 1 iN o) A4Tm (452}
N )= i i y Ny )=
ne) - 1 ’ 1+ 573 2@

(In order to show that the SU (1;1) matrix U (v ) profcts to v use (Z13) and (Z19),
that readss = hf ! with h and f com plex num bers). T he coset representative U (v ) is
de ned for any v In the lower com plex plane and therefore U (v ) is a global section of
the bundle SU (1;1) ! SU (1;1)=U (1). (The progction SU (1;1) ! SU (1;1)=U (1) can
be also obtained by extracting s from M )= ¢ ,AUUYA 1(° 1), cf. (Z29)).

W ith the given coset param etrizations the sym plectic em bedded section i is

1 2 2
.L AB 7 R
nk) 1+ 1 &

1 2 2w
L (4.53)

AB /7
v 1t

t 1
L I

h = (hag;h ;)= L
(tas 0 1) N ) i + 1

W e now have all Ingredients to com pute thematrix N in tetm s ofv and L. The
coset representative In Sp(2(6+ m );R) of ;L) sSAU w )A s (L), and recalling
that N = hf ! and (3.62), we obtain after elem entary algebra the kinetic m atrix

N =ReN + ilm N = Rey + ilmw LL": (4.54)

T he supercovariant eld strengths and the vielbein of the coset m anifold are:

Fo=da + fis (@ . B"‘Cz C a ABCVa)
+f (@ P . aViIta PO T ascpVIVY)+ hx (4 55)
P=P 4 pcp °°° (4.56)
PAAIB = PAIB (a é+ ascp = ) (4.57)
(4.58)
where P = P, d and P;, = Pj;d ' are the viebein of S and s(osé)mg(j(;%)
respectively. T he farm ion transform ation law s are:
a=D a+ aTas ° SV, + (4.59)
asc = &P, @ ® ascp + a3Tps cit (4.60)
T=aPi i@ TP raT L+ (461)
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Tabl 2: G roup assignm ents of the edsinD = 4,N = 4
| [vel as [ 2 | aec| m| UG)lys | UGIL: [Ry |
SU (1;1) || 1 1 - 1 1 2 1 2 1 -
SO (6;nY | 1 1 | 6+n° 1 1 |11 6+nY)Y|1 G+nY| -
SO (6) 1 4 1 4 4 1 6 1 6
SO (n% 1 1 1 1 n’ 1 n® n’
U (1) 0| = 0 2 > 1 1 0

In thisand in the follow ing tables, Ry is the representation underwhich the scalar elds
of the linearized theory, or the viebein P of G=H of the full theory transform (recall
text after (3.59) and that P isP in the com plex basis). O nly the left{handed ferm ions
are quoted, right handed ferm ions transform n the com plex conjugate representation
of H . Care must be taken in the transform ation properties under the H subgroups;
indeed according to (4.17) the inverse right rep. of the one listed should really appear,
ie. since we are dealing w ith unitary rep., the com plex conjugate

where the 2{form s T,z and T; are de ned in e.(421]). By integration of these two-

form s we nd the central and m atter dyonic charges given in equations (4.23), (4.24).

>From the equations (£.32),(433) for £;h and the de nitions of the charges one easily
nds:

CD

rSU@ UMy o gIp g > apcep ZCPP (462)
S0 (n% 1 as
r Z1 = EZ Pms + Z21P (4.63)

whexe%"ABCD 7P = Z,5 . In tem s of the kinetic m atrix (453) the nvariant %, for
the charges is given by, cf. (4.217),

1 1
Yoy = 5ZABZAB + 7.2t = 5QtM (N O : (4 64)

The unique SU (1;1) SO (6;n°% Tvariant com bination of the charges that is inde-
pendent from the scalar edsisI? 1,1, so that

[© |
S = G2 LILj: (4.65)

Here, I, L and I, are the three SO (6;n°% hvariants given by

1 1
I = EZAB z®® 7.2t ; L= 2 BECD ZanZcp 2127 : (4.66)
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422 TheN = 3 theory

In theN = 3 case [64]the coset space is:

G = (4.67)

and the el content is given by:

Ve; a AR 0y A= 1;2;3 (gravitationalm ultiplet) (4 .68)
A ;a7 ®)i32z) I=1;:::;n° (vector m ultiplets) (4.69)

T he transform ation properties of the eldsare given in Tablk[3. W e consider the (local)

[vel - [ 2 | | 2] & [Tas | L: [ R |
suU@BmY) | 1 1 [ 3+n% 1 1 1 3+ n’| 3+ n° -
SU (3) 1 3 1 1 3 1 3 1 3
SU (nY) 1 1 1 n® n® 1 n’ 0
U (1) 0| = 32 [3+2 ] 30+2)| n 3 [3+n°

embedding of SU (3;n% i Sp@3 + n%R) de ned by the follow ing dependence of the
m atrices £ and h in term s of the G=H coset representative L,

1
£ = p—E(L ae il 1) (4.70)
h = i( f ) = 1303 ]100 O (4.71)

where AB are antisymm etric SU (3) indices, I is an index of SU (n% and L ; denotes
the com plex con jugate of the coset representative. W e have:

N =kflH = i(f £hH (4.72)

T he supercovariant eld strengths and the supercovariant scalar vielbein are:

F

I
+
|
—h
=
o
)
=]
<
s

1
A B . ABC
EfAB + JfAB R) a C V&+ he:

P/\IA =p A I c ABC IR) A (4.73)
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w here the only nonvanishing entries of the vierbein P are

1 .
PIA = - ABCPIBC = PIAile

(4.74)

z* being the (com plex) coordinates of G=H . The chiral ferm ions transfom ation law s

are given by:

D p+2iT,, % V,%+

>
I

(L):1:2TAB C +
. B i
mw= 1P; @ z asc + Tx At
I . A i
w) = P50 z A+

(4.75)
(4.76)

(4.77)
(4.78)

where Tps and T; have the general form given In equation (4.21]). >From the general

form of the equations (437), (433) for f and h we nd:

rfs = fIPIAB ’
rhyy = hIPIAB 7

1
rfIZ_fCDPCDI;

rh._=

I

2
1
EhCD PCDI .

A coording to the general study of Section 4.1, ushg (&.23), (424) one nds

H I C
r! )ZAB = Z2P;  amc
1
H AB C
r' )ZI = EZ P:” asc

and the form ula for the potential, cf. {(£27),

1 1
%u = EZABZAB + 722, = EQtM (N )Q

(4.79)
(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

where them atrix M (N ) has the sam e form as In equation (4.29) in temm s of the kinetic

matrix N of equation (4.72),and Q is the charge vectorQ = (9).

TheG = SU (3;n°) nvariantisZ?Z,. Z:Z?' (onecan check that@;(Z2 7.

r 8222, 2:27)= 0) = that

S = 27y 21275
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423 TheN = 5 theory

ForN > 4 theonly available superm ultiplet is the gravitationalone, so that H  aeer = 1.
The coset m anifold of the scalars of the N = 5 theory [33]is:

SU (5;1)
G=H = — (4.87)
U (5)

The el content and the group assignm ents are displayed in Table[d.

Table 4: Transform ation propertiesof edsinD = 4,N = 5

| |Ve] ai]l ascio|A [LY|Rs |
SU (5;1) 1 1 1 - 6 -
SU (5) 1 5 (10;1) 1 5 5
U (1) 0| 2| ;)| 0o | 1] 2
In Tabk[4 the incdes x;y;:::= 1;:::;6 and A;B;C;:::= 1;:::;5 are indices

of the fundam ental representations of SU (5;1) and SU (5), respectively. L3 denotes
as usual the coset representative in the fundam ental representation of SU (5;1). The
antisymm etric couple , ; = 1;:::;5, enum erates the ten vector potentials. The
Jocalem bedding ofSU (5;1) into the G aillard—Zum ino group U sp(10;10) isgiven in term s
of the threetim es antisym m etric representation of SU (5;1), this is a 20 dim ensional
com plex representation, we denote by €Y% a generic elem ent. This representation is
reducible to a com plex 10 din ensional one by Im posing the selfduality condition

1
9 = T (4.88)

here indices are raised w ith the SU (5;1) hem itian structure = diag(1;1;1;1;1; 1).
T he self duality condition (4.88) is com patible w ith the SU (5;1) action (on £¥% acts the
com plex con jugate of the threetim es antisym m etric of SU (5;1)). D ue to the selfduality
condition we can decom pose €Y% as follow s:

gy = £ 6 (4.89)
where ( ; ; = 1; ;5). In the Pllowing we set tt © , t t %, t
t ¢ = t °. The symplectic structure in this com plex basis is given by the m atrix
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1 0 !
1 1 O !
ht; ‘i = > t ;t 0 s (4.90)
1 1
= —t 4 —t 4
2 2
1 YZwn uvw
= fltx — (491)

this last equality im plies that the SU (5;1) action preserves the sym plectic structure.
W e have thus em bedd SU (5;1) Into Sp(20;R ) (in the com plex basis).
The 20 dIn ensional realvector (F ;G ) transform s under the 20 of SU (5;1), as

well as, or xed AB , each of the 20 din ensional vectors E *®  of the embedding
m atrix:
1 f+ih £+ ih
= p—= : 492
U=%5 £ mt n (452)

T he supercovariant eld strengths and viebein are:

A B ABCVa)

T a2 c a (4.93)

(4.94)

F o=da + £ .. + ho:

(R) E

N
Pasco = Pasco BABC D] ABCDE

wherePagcp = ascpr P’ isthe com plex vielbein, com pletely antisymm etric in SU (5)
indicesand Papcp = PABECD |
T he ferm ion transform ation law s are:

A = D A + a3TAB @ BVa-l- (4.95)
asc = &4Pagcp 1@ "+ asTps c1t (490)
) = aPPer e ascpe + (4.97)
w here:
1
TAB == E(h AB F f ABG ) (4.98)
1
N =h e LRE (4.99)
W ith a by now fam iliar procedure one nds the follow iIng (com plex) central charges:
1
Zas=W(1) Q (4.100)

9Strictly speaking we have inm ersed SU (5;1) into Sp(20;Rﬁ),_jn fact thism ap is a localem bedding
but fails to be injctive, indeed the three SU (5;1) elements ~ 11 are all m apped into the dentity

elem ent of Sp(20;R ).
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w here the charge vector is

! R !
1
= F
0= T = iR (4.101)
q 4_ SZG

and ; isthe constant value assum ed by the scalar elds at spatialin nity. >From the
equations (M aurer< artan equations)

1
r UOeIf AB Ef ©P Pasco (4.102)
and the analogous one forh we nd:
1
r 06Nz = 5ZCD Papcp ¢ (4.103)

F inally, the form ula for the potential is, cf. (4.27),
1 AB l t
Yw = EZ Zpp = EQ M (N )Q (4.104)

where thematrix M (N ) has exactly the sam e form as in equation (429), and N is
given in (4.99).

For SU (5;1) there are only two U (5) quartic Invariants. In temn s of the m atrix
AP =7,:2°% they are:

THA = Zap2°" ;  Tr@%)= 2,52%°Zcp2zP? : (4105)

The SU (5;1) invariant expression is

p
Y=% ATrAd?) (TrA )j: (4.106)

424 TheN = 6 theory

The scalarm anifold of the N = 6 theory has the coset structure [651]:

S07(12)
G=H = ——— (4107)
U (6)

W e recall that SO ?(2n) is the real form of O (2n;C ) de ned by the relation:

yL: M = 4
L*C c,; C 1 0 (4.108)
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Table 5: Transform ation propertiesof edsinD = 4,N = 6

| [ve] o] ascialB | S, [ R |
SO7(12) 1 1 1 - 32 -
SU (6) 1 6 (20+ 6) 1 (15;1)+ (15;1) 15
v o[ T éE Ho]a 3+ (1;3] 2

The eHd content and transform ation properties are given in Tablk[d, where A ;B ;C =

1; ;6 are SU (6) indices In the fiindam ental representation and = 1; ;16. The 32
spinor representation of SO ?(12) can be given in temm s of a Sp(32;R ) m atrix, which in

the com plex basiswedenoteby S, ( ;r= 1; ;32). It is the double cover of 5(Q2)

that embeds in Sp(32;R ) and therefore the duality group is this spin group. Em ploying

the usualnotation wem ay set:

1 fy+t+iy £, +ihy

S, = p= , , (4109)
PS £, ity £, iy
where ;M = 1; ;16. W ith respect to SU (6), the sixteen sym plectic vectors(f;h v ),
™M =1, ;16) are reducible iInto the antisym m etric 15 din ensional representation plus
a singlet of SU (6):
(fy shw )! (Eagihas )+ (£ jh ): (4.110)

It is precisely the existence of a SU (6) singlet which allow s for the Special G eom ety
structure of S% (21)2) (ct. (&71), ). Note that the element S, has no de nite
U (1) weight since the subm atrices £ , ; ;£ have theweights1 and 3 respectively. The

vielbein m atrix is

Pascp Pas
P = ; 4111
P, 0 ; ( )

w here

1
Pag = Z‘ Z—\BCDEFPCDEF; PAP = Pag : (4.112)

T he supercovariant eld strengths and the coset m anifold vielbein have the follow ing
expression :

Fo=dA + f,.(@ ® P+a ¢ o 2B°VY)
+asf ¢ . V@4 he: (4113)
Pascp = Pasco BRBC D] ABCDEF = (4114)

19D ue to its Special G eom etry structure the coset space SOU ((61)2) is also the scalar m anifold of an

N = 2 supergravity. The two supergravity theories have the sam e bosonic elds how ever the ferm ion
sector is di erent.
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T he ferm Jon transfomm ation law s are:

a=D o+ DbTas @ BVa‘l‘ (4.115)
asc = BPagsco i@azi 2Py BTre ab 2P c1t (41106)
A= QPBCDEi@aZl 2 F abcper + BTap abA + (4.117)

w here according to the generalde nition (4.21]):

TAB:hABF fABG
T=heF f G (4.118)

W ith the usual procedure we have the follow Ing com plex dyonic central charges:

Zpg = hapgp f,sa (4.119)
Z=hp fqg (4.120)

in the 15 (recall (4.19)) and sihglet representation of SU (6) respectively. Notice that
although we have 16 graviphotons, only 15 central charges are present in the supersym —
m etry algebra. The singlet charge plays a rol analogous to a \m atter" charge (hence
our notation Z , £ ,h ). The charges di erential relations are

1 1
r (U(6))ZAB = EZCDPABCD + le ABCDEFPCDEF (4.121)
1
r GOy _ 2!4!ZAB apcpppPCPET (4122)

and the form ula for the potential reads, cf. (£.27),

1 1
Yoy = 5ZABZAB + 77 = 5QtM (N )O : (4.123)

The quartic U (6) invariants are

I, = (Trh ) (4124)
I, = Tr@a?) (4.125)
I = %ﬁe(“””zmzwzmm (4.126)
L, = (TrA)ZZ (4.127)
I, = 7°2° (4.128)

whereA,® = 2,.Z°? . Theunigue SO (12) variant is

1P
S = 5 B, I, + 32T+ 41, + 4I57: (4129)
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425 TheN = 8 theory

In the N = 8 case [5]the coset m anifold is:

E
G=H = — . (4.130)
SU (8)=Z2

The el content and group assignm ents are given in Tablk[d.

Table 6: Field content and group assgnments n D = 4,N = 8 supeargravity
| [vi] al2a | asc| S, [Ru|

Eq2m 1 1 - 1 56 -
SU (8) 1 8 1 56 28+ 28| 70

The embedding in Sp(56;R ) is autom atically realized because the 56 de ning repre-
sentation of E 77y is a real sym plectic representation. The com ponents of the £ and h
m atrices and their com plex conjugates are

f,.7has ; £ ;02 (4131)

here ;AB are couples of antisym m etric indices, with ; ;A ;B running from 1 to
8. The 70 under which the vielbein of G=H transform is obtained from the four tim es
antisym m etric of SU (8) by in posing the self duality condition

1

@BCD _ Z| ABCDAOBOCODOtAOBOcODo (4-132)

T he supercovariant eld strengths and coset m anifod vielbein are:

F'o=dA + [,z ® ®+a *®C . cV*+ he] (4.133)
Pasco = Pasco mrec p]t hx: (4.134)
where Pagcp = 4% apcperca P°0 ¢ (L lrSU(8)L)AB cp = Pascpid b * coordi-

nates of G=H ). In the com plex basis the viebein Pagcp 0of G=H are 28 28 m atrices
com pletely antisym m etric and selfdualas in (4.137). T he ferm jon transform ation law s
are given by:

a =D a+ aTas ° RAVAES (4.135)
apc = @Papcpi@ -0+ asTps c1t (4.136)
w here: 1
TAB = E(h AB F f ABG ) (4.137)
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with: 1
N = 5h A (E1PE (4.138)

W ith the usualm anipulations we obtain the central charges:

1
Zpp = E(h AB P fasa ) (4.139)
the di erential relations: .
r 3?9z AB — EZ CDPABCD (4.140)

and the form ula for the potential, cf. (4.27),
l AB 1 i
Yu = EZ Zpp = EQ M (N )Q (4.141)

where thematrix M (N ) is given in equation (429),and N in (4.138§).

ForN = 8 the SU (8) lnvariants are

I, = (TrA ) (4.142)

I, = Tr@?) (4.143)
1

I,= PfZ = Y ABCDEFGH 7 7 b ZerZcn (4.144)

where P£7 denotes the Pfa an of the antisymm etric m atrdx (Z a5 )a 5-1;:8,and where
AP =7,:2°%.0ne ndsthe following E 7(;) Invariant [44]:

p
5/=% ATr(A?) (TrA )+ 32Re(PfZ)j (4.145)

For a very recent study ofE 77, duality rotations and of the corresponding conserved
charges see [66].

4.2.6 Electric subgroups and the D = 4 and N = 8 theory.

A duality rotation is really a strong-weak duality if there is a rotation between electric
and m agnetic elds, m ore precisely if som e of the rotated el strengthsF ° depend on
the nitialdual edsG , ie. if the submatrix B 6 0 In the symplectic matrix &7

Only In this case the gauge kinetic term m ay transform nonlhearly, via a fractional
transform ation. On the other hand, under in nitesim al duality rotations (§9)+ (9),
with b = 0, the lagrangian changes by a total derivative so that (in the absence of
Instantons) these transform ations are sym m etries of the action, not jist of the equation

ofm otion. Furthem ore if c= 0 the lagrangian itself is invariant.
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W e call electric any subgroup G . of the duality group G w ith the property that it
(locally) em beds In the sym plectic group viam atrices o2 with B = 0. The param eter
Space of true strong-w eak duality rotations isG=G ..

T he electric subgroup of Sp(2n;R ) is the subgroup of allm atrices of the kind
17 (4.146)

we denote it by Sp.(2n;R ). It is the electric subgroup because any other electric sub-
group is ncluded in Sp.(2n;R ). This subgroup ism axim alin Sp(2n;R ) (see forexam ple
the appendices in [50,68]). In particular if an action is nvariant under in nitesim al
Spe(2n;R ) transform ations, and if the equations of m otion adm it also a =2 duality
rotation symmetry ¥ ! G ,G ! F  foroneormore ndices (no transform ation
on the other indices) then the theory has Sp(2n;R ) duality.

Tt is easy to generalize the results of Section 2.2 and prove that duality symm e-
try under these =2 rotations is equivalent to the follow Ing invariance property of the
lagrangian under the Legendre transform ation associated to ',

L, F;N%=L®FE;N); (4147)

whereN °= (C + DN )& + BN ) ! are the transform ed scalar elds, thematrix 2%
Inplam enting the =2 rotation ¥ ! G ,G ! F . W e conclude that Sp(2n;R)
duality symm etry holds if there is Sp. (2n;R ) symm etry and if the lagrangian satis es
(4.147).

W hen the duality group G isnot Sp(2n;R ) then there m ay exist di erent m axim al
electric subgroups of G , say G . and G . Consider now a theory w #h G duality symm etry,
the electric subgroup G . hints at the existence ofan action S = L invariant under the
Lie algebra Lie(G.) and under Legendre ttansfbmﬁtjon that are =2 duality rotation
inG.Similkrly GY kads to a di erent action S°=  L° that is Invariant under Lie(G?)
and under Legendre transform ations that are =2 duality rotation in G . T he equations
of m otion of both actions have G duality symm etry. They are equivalent if L. and L°
are related by a Legendre transfom ation. Since L%F;N %) 6 L (F;N ), this Legendre
transform ation cannotbea duality symm etry, it isa =2 rotation¥ ! G ,G ! F
that isnot in G , this is possible shce G § Sp(2n;R).

A san exam ple considertheG,. = SL (8;R ) symm etry oftheN = 8,D = 4 supergrav-
ity lagrangian whoseduality group isG = E 4,7, this isthe form ulation ofC remm erJulia.
An altemative form ulation, obtained from dim ensional reduction of the D = 5 super-
gravity, exhibits an electric group G 2 = [Es;6) SO (1;1)n Ty where the nonsam isin ple
group G ! is realized as a Jower trdangular subgroup of E ;,7) In its fundam ental (sym —
plectic) 56 din ensional representation. G . and G ? are both m axin al subgroups of E 77, .
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T he corrseponding lagrangians can be related only after a proper duality rotation of
electric and m agnetic eldswhich nvolves a suitable Legendre transform ation.

A way to construct new supergravity theories is to prom ote a com pact rigid electric
subgroup symm etry to a local sym m etry, thus constructing gauged supergravity m odels
(see fora recent review [67], and references therein ). Tnequivalent choices of electric sub-
groups give di erent gauged supergravities. Consideragain D = 4,N = 8 supergravity.
Them axin alcom pact subgroups ofG. = SL (8;R ) and ong = [Es;6) SO (1;1)In Ty
are SO (8) and Sp(8) = U (16) \ Sp(16;C ) regpectively. The gauging of SO (8) corre—
soonds to thegauged N = 8 supergravity ofDe W itt and Nicolai [33]. A s shown in [34]
the gauging of the nonsam ismplegroup U (1)n Ty; G g corresponds to the gauging of
a atgroup in the sense of Scherk and Schwarz din ensional reduction [35], and gives
the m assive deform ation of the N = 8 supergravity as obtained by Cremm er, Scherk
and Schwarz [36].

5 SpecialG eom etry and N = 2 Supergravity

In the case of N = 2 supergravity the requirem ents in posed by supersymm etry on
the scalar m anifold M g1 Of the theory dictate that it should be the follow ing direct
product: M gea1ar = M M ¢ whereM isa specialK ahlerm anifold of com plex din ension
nandM ¢ aquatemionicm anifold of realdin ension 4ny ,heren and ny are respectively
the number of vector m ultiplets and hyperm ultiplets contained in the theory. The
direct product structure in posed by supersym m etry precisely re ects the fact that the
quatemionic and special K ahler scalars belong to di erent supem ultiplets. W e do not
discuss the hypem ultiplets any further and refer to [77] for the full structure of N= 2
supergravity. Since we are concemed w ith duality rotations we here concentrate our
attention to an N = 2 supergravity where the graviton m ultiplet, containing besides the
graviton g also a graviphoton A, is coupled to n® vector m ultiplets. Such a theory
has a bosonic action of type (4.1l) where the number of (real) gauge edsisn = 1+ n?
and the num ber of (real) scalar elds is 2n°. C om patibilly of their couplings w ith local
N = 2 supersymm etry lead to the form ulation of special K ahler geom ety [75], [76].

T he form alism we have developed so farfortheD = 4,N > 2 theories is com pletely
detem ined by the (local) emn bedding of the coset representative of the scalar m anifold
M = G=H in Sp(@2n;R). It lrads to a at -actually a trivial- sym plectic bundle w ith
local sym plectic sections V , determ ined by the sym plectic m atrix V , or equivalently
by the matrices f and h. W e want now to show that these m atrices, the di erential
relations am ong charges and their quadratic invariant %4 (4.27) are also central for
the description of N = 2 m attercoupled supergravity. This follow s essentially from
the fact that, though the scalar maniod M of the N = 2 theory is not In generala
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cosetm anifold, nevertheless, as forthe N > 2 theories,we havea at sym plectic bundle
associated toM , w ith sym plectic sectionsV . W hile the form alisn is very sin ilar there
is a di erence, the bundle is not a trivial bundle anym ore, and it is in virtue of duality
rotations that the theory can be globally de ned on M .

In the next section we study the geom etry of the scalarm anifold M and in detail its
associated atsym plecticbundle. Then in Section 52we ssehow ,In analogywith N > 2
supergravities, the at sym plectic bundle geom etry of M enters the supersym m etry
transform ations laws of N = 2 supergravity and the di erential relations am ong the
m atter and central charges.

5.1 SpecialG eom etry

T here are two kinds of special geom etries: rigid and local. W hilke rigid special K ahler
m anifolds are the target space of the scalar elds present in the vectorm ultiplets of N =
2YangM illstheordes, the (local) specialK ahlerm anifolds, in them athem atical literature
called pro gctive special K ahler m anifolds, describe the target space of the scalar elds
In the vector multiplets of N = 2 supergravity (that has local supersymm etry). In
order to describe the structure of a (local or pro Ective) special K ahler m anifold it is
Instructive to recall that of rigid K ahler m anifod.

5.1.1 Rigid Special G eom etry

In shorta rigid specialK ahlerm anifold isaK ahlerm anifold M thathasa atconnection
on its tangent bundle. This connection m ust then be com patible w ith the sym plectic
and com plex structure ofM .

M ore precisely, follow Ing [49], see also [50], a rigid specialK ahler structure on a
Kahlermaniold M with K ahler form K isa connection r that isreal, at, torsionfree,
com patible w ith the sym plectic structure ! :

r! =0 (51)
and com patdble w ith the aln ost com plex structure J of M :
dJ=0 (52)

whered, : '(TM ) ! 2(TM ) is the covariant exterior derivative on vector-valied
form s. Explicitly, f J = J @ whereJ are lforms,andr@ = A @ ,withA 1-
foms,thend, J=dJ @ J "A @ = (dJ +A ~J )@ .Notie that the torsionfree
condition can be sin ilarly written d, I = 0,where T is the dentity map In TM , locally
I=dx @ . The two conditionsd, J = 0,d, I = 0 for the real connection r can be
written in the com plexi ed tangent bundle sin ply as

d: =07 (53)
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where '? is the profction onto the (1;0) part of the com plexi ed tangent bundle;
bcaly P =dz" .

The atness condition is equivalent to require the existence of a covering of M w ith
lIocal fram es fe g that are covardantly constant, r e = 0. T he corresponding transition
functions of the real tangent bundle TM are therefore constant invertible m atrices;
com patibility with the sym plectic structure, equation (5.0l), further in plies that these
m atrices belong to the fundam ental of Sp(2n;R ), where 2n is the realdim ension of M
(each fram e fe g can be chosen to have m utually sym plectic vectors e ).

Flatnessofr (ie., thevanishing ofthe curvatureR , oreguivalently d> = 0) in plies
that (5.3) is equivalent to the existence of a Iocal com plex vector eld  that satis es

r = 17 (54)
[hint: n a at reference frame d, = d, and Poincare lemma for d im plies that any
d, €losed section is also d, -exact]. Studying the com ponents of this vector eld (with
respect to a at D arboux coordinate system ) we obtain the existence of local holom or-
phic coordinateson M , called specialcoordinates, their transition functions are constant
Sp(2n;R ) matrices, so that the holom orphic tangent bundle TM isa at sym plectic
holom orphic one. Corresponding to these special coordinates we have a holom orhic
function F', the holom orphic prepotential. In termm s of this data the K ahler potential
and the K ahler form read

1 CF & o in =
K= -Tn -z' dz*~ dz? ; (5.5)
2 @zt
K = iQQK iﬁn e dz* ~ dz’ iﬁn ( 11)dzt~ dz’ (56)
= = — - - Z zZo = — i Z Z ; o
2 @z@z? 2 ) !

Q°F
@ziQzd *

where z' are special coordinates, and 5 =

An equivalent way of characterizing rigid specialK ahlerm anifolds is via a holom or-
phic sym m etric 3-tensor C . T his tensorm easures the di erence between the sym plectic
connection r and the Levi€ irita connection D , whose connection coe cients we here
denote § and {j.

De ne

Pr=r1 D

T he nonvanishing com ponents of Py are

Ak Ko.oopk . ak KooAak (5.7)

ij hiy 4 ij ’ ij ij ij

this is s0 because the com ponents A of the connection r are constrained by condition
(53). Since D and r are realand torsionfree we further have that the lower indices in

: - Iy K kK _ ak K Ak _ ak .
(5.1) are symm etric, and the reality conditions A 5= AL 5rAY = AL, Siee
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both D and r are sym plectic we have that for any vectoru 2 T, M , Pg )y :Tu M !
T, M is a generator of a sym lectic transform ation,

u® (v;w))= D, K (v;w))= K Dyv;w)+ K (v;Dyw)
u (v;w))=r K (v;w))= K (r yv,;w )+ K (Vv;r yw)
0= K (Pgrlyviw)+ K (v;(Pg JyW ) : (58)

Ifwesstu= & ,v= @,w = @,and use thatK isa (1;1)fom ,we ocbtain

Ak k= 0: (5.9)

1] 1]

Then the com ponents of
P,=P+P

are jast A% and A}i(j. T his Jeads to de ne the tensor

ij
Cip = dgpBly : (5.10)

Settingu = @ ,v= @;,w = @ In (5.8) we cbtain that C;y Is totally symm etric in its
indices. Since D ; *?) = 0 we easily compute, recalling (84),Ci5 = hr; jriry i,
hence we obtain the coordinate independent expression for C = Cjydzt  dzd  dz*,

C= hr ;rr 1i: (5.11)
Flatnessofr = D + Py, ie.d? = 0,is equivalent to
R+d,P+d,P+P"P+P" P =20 (5.12)

whereR = dZ is the Levi€ ivita curvature and d, P is the exterior covariant derivative
action on thel-fom P with valuiesin TcM T.M (whereT. M isthecom plexi ed cotan-—
gentbundk). Now in (5.12),theterm R+ P *"P +P ~P 2 @M ;End(TcM ;TcM )),
ie., thistem maps T*PM (or T °PM ) vectors into (1,1)-om svalied n T *OM (or
TOYM ). On theotherhand P 2 (End(T¢M ;TcM )), in particular it maps T *¥'M
vectors into form svalied in T ©*M , and annihiktesT 1M vectors (henceP P = 0).
Sin ilar properties hod for the com plex conjugate P ,with T *P'M replaced by T ©4'M ,
and ord, P and dp P . It ollow s that equation (5.17) is equivalent to two independent
equations,

R+P~ "P+P" "P=0 (5.13)
dyP = 0 : (5.14)

Since the covariant derivative of the m etrric vanishes, this Jast equation is equivalent to
dp C = 0. In local coordinates we have

dC.y S "Cyy " Cy=0: (515)
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where C;5 = Cyydz". This equation splits in the condition
@ =0; (5.16)
so that C is holom orphic, and the condition @; C = 0, that can be equivalently w ritten
D;:Cy= D4C;y (5.17)

where C; isthematrix C; = (Cyri ke 1sum,ie,Ci2 M ;T "PM T @9 ), 5o that
D ; is the covariant derivative on functions valnied in T “?'M T 0N .
T he local coordinates expression of (5.13) is

R = C s Cpy ¢ (518)

In conclusion a rigid special K ahler structure on M Im plies the existence of a holo-
m orphic sym m etric 3-tensor (cubic form ) C that satis es (5.13) and (5.17).

V iceversa ifa Kahlerm anifold M adm its a sym m etric holom orphic 3-+tensor C that
satis es (5.13) and (8.17), then M is a specialK ahlerm anifold. Indeed the contraction
of C with themetric gives P, s0 that wecan de ner = D Pr. The symmetry of
C Implies thatd, P = 0 so that r is torsionfree and com patible with the com plex
structure, d, J = 0. The symmetry of C also implies (5.8) so that r is sym plectic.
Fially (513) and (5I7) inply thatr is at.

In specialcoordinates the holom orphic 3-tensorC issin ply given by C iy = % e°F

@zieziezk °
5.1.2 LocalSpecialG eom etry

W e have recalled that to a rigid special K ahler m anifold of dim ension n there is canon—
ically associated a holom orphic n dim ensional at sym plectic vector bundle. On the
other hand, to a profctive (or Iocal) special K ahlerm aniold M , of din ension n® there
is canonically associated a holom orphic n = n%+ 1 dim ensional at sym plectic vector
bundle. The increase by one unit of the rank of the vector bundle w ith respect to the
din ension of the m anifold is due to the graviton m ultiplet. T he m athem atical descrip-
tion involves the n = n®+ 1 din ensionalm anifod L, total space of a line bundle over
M .

K ahlerfi odge m anifolds and their associated principal bundlesM” ! M
Consider a K ahler-Hodge m anifod, ie. a triple M ;L;K ), where M is Kahler w ith
integralK ahler form K , so that it de nesaclass K ]2 H M ;Z ), and

L! M

is a holom orphic hem itian line bundle with rst Chem class equal to [K ], and with
curvature equalto 2 iK (recall that on a hem itian holom orphic vector bundle there
is a unigue connection com patible w ith the hem itian holom orphic structure).
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Consider the com plex m anifold M” , that isL w ithout the zero section of L, ! M . The

m anifold M~ is a principal bundle over M , w ith structure group C  (com plex num bers

m nus the zero); the action of C  on M’ is holom orphic. The hem itian connection

canonically associated to L ! M iInduces a connection on M* so that In TM™ we have
the subspaces of horizontal and vertical tangent vectors.

A nother property of them anifold M” is that it has a canonical hermm itian line bundle

L ! M ;itisthepullbback toM” ofL ! M ,so that the beron the pointm 2 M is

Just the berofl on thepointm = @)2 M ,
L L
? ?
? ?
Yy Yy (519)
M M
Explicitly ‘L= f@m;*); (‘)= (m)g.The lnebundle L istrivial indeed we have
the globally de ned nonzero holom orphic section
: M ! L
m T (v ,m)
m; )7 mj; ; ): (520)
In the last line we used a local trivialization of M ! M (and henceforth of L ! M )
given by a localsection s, saym = s(m ) (m ; ). This Induces a local trivialization
s = s of the Iinebundle L ! M . Explicitly s associates to m the point s(m ) of

L,so thata genericelement = s(m ) 2 [ isdescribed by the triple (m ; ; ),and in
particular
)= (sm))= sm) mm; ; ): (521)

It can be shown thatM” is a pseudoK ahler m anifold (ie. a Kahlerm anifold where
the m etric has pseudoR iem annian signature). The K ahler form is

K = 2—1@@3'3'2 ; (522)

where j j° is the evaluation on  of the hem itian structure of (L) (this latter is
trivially inherited from the hem itian structure of L ). W ith respect to the correspond-
ing K ahler m etric, horizontal and vertical vectors are orthogonal, m oreover the K ahler
m etric is negative de nite along vertical vectors, and positive de nite along horizontal
vectors, where K" j__ = j j* K [ Thus (M ;K ) has Lorentzian signature.

HH int: in the coordinates (z'; ), associated to the local trivializationmw = s@m ) (m ; ) nduced

by a section s of L, we have j 7 = $7F. M oreover horizontal vectors read u = u'@; u'a; ¢-

where the local connection 1-om on M isa = a;dz! = jsj2 @5F. The pseudoX ahler form reads
2 K= @@ pFdztrdz'+ $Fd ~d + @pFdzird + @ Ffd ~dz.
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Conceming the pullback K on M" of the Kahler form K on M ; while K is in
generalonly closed, K isexact,

K = 2—1@@]ogj 2 (523)

This last formula easily follow s by pulling back the usual local curvature formula for
the hem itian connection K = 5-@@ log 57 and by observing that  logif = loghT =
g g g .

In conclusion, one can canonically associate to a K ahler-H odgem anifold M ;L ;K )
a pseudoK ahlerm anifold (M ;K" ) that carries a free and holom orphic C  action, and a
Inebundle L ! M thathasa canonicalglobalholom orphic section

Thebundle I can be naturally denti ed as the holom orphic subbundle of T M™ given
by the vertical vectors of M” w ith respect to the holom orphic C  action. The global
holom orphic section corresponds to the verticalvector eld thatgives the In nitesin al
C action. Under this denti cation we have

K(;)= —3F: (524)

T his equation show s that under the denti cation TM™ Jert L the corresponding her—
m itian structures are m apped one Into m inus the other.

Special K ahler m anifolds
Follow Ing [49], M ;L ;K ) is specialK ahler if M" ;K" ) is rigid special K ahler and if is
com patible w ith the sym plectic connection 1.

A (profctive or local) special K ahler m anifold is a Kahler -Hodge m anifold
M ;L ;K ) such that the associated pseudoXK ahlerm anifold (M” ;K ) has a rigid special
pseudoK ahler structure ¥ which satis es

o= 0. (525)

Notice that (529) is equivalent to the condition ¥, = u Prany u 2 T M,
A s shown in [50], since ¥ is torsionfree and  at, then condition (5.29) in plies the C
nvariance of ¥, ie. dRy(F V) = £, wdRyv where Ry, denotes the action of b 2 C
N otice also that equation (5.29) is the global version of eg. (52.4).

For ease of notation In the follow Ing we denote the at torsionfree sym plectic con-—
nection ¥ on M” sinply by r .

W e now construct a at symplectic 2n = 2n’+ 2 dinensionalbundle H on M that
is frequently used in the literature In order to characterize profctive goecial K ahler
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m anifolds. W e ntroduce a new C action on TM" . On M~ it is the usual one Ry =
mb= o ,whereb2 C ,whil on vectors we have

Vi 7 b 'dRyv, : (5.26)

>From now on by C action weunderstand thenew abovede ned one. Thus forexam ple
shceb 'dRy, » = b1 np,then isnot invariant under ([5.28). O n the other hand the
Jocal section (vertical vector eld) s, obtained from a local section s of L, satis es
b 'dRyS, = Sy (0orb 'Ry s= s) and is therefore C  invariant. A C  inwvariant fram e
associated w ith Jocalcoordinates z ofM  and w ith the Jocalsection s of L is (! @@zi ;@i );
it is given by the coordiates (X ;X %)= ( z'; ),theyareC invariant (b 'Ry, X = X )
and therefore are hom ogeneous (pro pctive) coordinates of M .

W ede ne the 2n = 2n°+ 2 dinensionalrealvectorbundleon M (dingM = 2n9),
H! M (527)

by dentifying its local sectionsw ith the C  invariant sections of TM™ . Tn otherwords H
is the quotient of TM” via the C  action (52d). A point (m ;h) 2 H is the equivalence
class [ ;v, )]where ;v )  (m%uUyo) fm®= mband b 'dR, = Upo. Under
thisquotient ‘L  TM  becom es L, whilke the subbundle TM" 3., of horizontal vectors
becomesl TM T herefore we have two natural inclusions

L H and L TM H : (5.28)

Since the C  action is holom orphic, then H is a holom orphic vector bundle on M of
rank n°+ 1. Sihce K isa C invariant 2-<form the sym plectic structure of TM™ goes
to the quotient H : indeed K (u;Vv) is a hom ogeneous function on M ifu and v are C
nvariant vector elds of TM’ . Sim ilarly also the at sym plectic connection r induces
a at sym plectic connection on H (see for exam ple [50]). The nclusion I, H in plies
that

LY H! M (529)

has a nonvanishing global holom orphic section.

In the ollow ng we work in TM™ , but we choose C  invariant tensors and therefore
our results inm ediately apply to thebundle H . Let’sconsider a C  invariant at local
sym plectic fram Ing of TM” , thatwedenoteby feg= fe ;£ g, = 1;:::2n, = 1;:::n.
The framing is at because re = 0;r £ = 0, and it is sym plectic because In this

12H int: denote by @ j the horizontal lift in T, M of the vector v 2 Ty M . Then the map
L TM ! (TM Jior)=c action de ned by (‘n Vo )T [('n 56 F, )] n & 0,and by 07 0 iswell
de ned, linear and infctive.
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basis the sym plectic m atrix is in canonical form : the com ponents K (e ;e ),K (e ;f ),
K (f ;e ),K (f ;£ ) read

0O 1
1 0 (530)
W ith respect to the fe ;f g fram e, the global section  has local com ponents =
e =X e +F f .Wealoodenoteby thiscolumn vector of coe cients,
X
« ) F (5.31)

The Iocal functions X ,F on M’ are holom orphic, ndeed (5.29) I plies thatr isa
(1;0)form valued n TM”" ,shcer ( e)=d e =@ e+ @ e ,weocbtain@ = 0.
In conclusion (X ;F ) are local com ponents of the global sym plectic section  of the
tangent bundle TM" .

Each entry X ,F isalso a Jocalholom orphic section of the linebundle L ' ! M .
Indeed from the transform ation propertiesof undertheC actionm 7 R, :w) ()=

e ™) (or under a change of local trivialization s%m )= ™ )sm )) we have
0
X X
=e ) ; (532)
F F

therefore for each nvertble we have that l(s)s isa section of L ! M orequiva—
lently each X  and each F  are the coe cients of sections of . ' ! M .

In conclusion (X ;F )are localcom ponents of the global sym plectic section ofthe
tangent bundle TM" . Each entry is also a local holom orphic section of the line bundle
L ! M .Under change of Jocal trivialization of TM" we have

0
X X A B X
_ g _ ; (533)
F F CD F

where S = 2§ is a constant sym plectic m atrix. W e can also consider a change of
coordinates on M , say z ! z'. Provided we keep xed the frame of TM" and the
trivalization of L, we then have that X and F Dbehave lke local functions on M ,
X (z)=X% (9, F (z)= F°2") (here X ® (z) = X ® (s(z)) etc.).

Tt can be shown [50]that from the setof2n elem entsfX ;F g onecan always choose
a subset ofn elem ents that form a localcoordinate system on M™ . Contrary to theK ahler
case (where the m etric is R i&m anninan) in this pssudoK ahler case In general neither
fX gnorfF garecoordinatessystam son M’ . The fram e fe ;f g isdeterm ined up to a
sym plectic transform ation, if using this freedom we have that the £X g are coordinates
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functions then the fX g are nam ed special coordinates. The sections F  can then be
seen as functions of the X and are obtained via a prepotential F,

@F
= — (5.34)
@X
Recalling (5.23) and (2.24) we have
i _
K = 2—@@]ogjh 1 (535)
and for the corregponding \K ahler" potentialK we hav
K= Ilgih; 1i; (5.36)
n these form ulbe we usad the standard notation
h I_l: K" ( /_)
U sing the com ponents (X ;F ) expression (5.36) reads
0 1 X
K= bgiX;F) ; g L= Dglif x X F)I: (537)

By considering localsections of thebundleM” ! M ,wecan then pullback the potential
K to localK ahlr potentialson M .
Under the action ofe ™) 2 C onM" (orequivalently under change of trivialization
ofM" ! M )wehave
K=K+ f+ £ (5.38)

thus show ing that e © de nes a global nonvanishing section of the bundle L L! M,
in particular this bundle is trivial. Explicitly this global section is € ) [s;s]where s is
any localsection of M" ! M and [s;s]= f(s ; !s); 2 C g isthe corresponding local
section of L. L.

Sym plectic Sections and M atrices from local coordinates fram es on M

Let’s exam ine faw m ore properties of special K ahler m anifolds and introduce those
sym plectic vectors that we have seen characterizing the geom etry of the supergravity
scalar elds. Consider a vector u 2 Tnfl’mM , this can be lifted to a horizontal vector
@2 T"P'M . Because of (529) the covariantderivativer 4 isagainavectorin T &M,
then

h;rgi=0 ;h ;r 4 i=0 ; (5.39)

Asusualwhen K is integralK = ;-gydz' ~ dz' = --@;@ Kdz'~ dz! = ~@eK .
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the st relation holds because K = h; i isa (1;1)fom , the second relation holds
because horizontal and vertical vectors are orthogonal under K (recall paragraph after
(522)).

Subordinate to a holom orphic coordinate system fzlg ofM , and a local section s of
L ! M wehave the Iocalcoordinates (z; ) onM" . T he corresponding vector elds are
(@i;@i ). A more natural frame on M~ is given by considering the vertical vector eld
associated to the action ofC on M7,

Q
& = (5.40)

and the horizontal lift €, of the vector eds @; on M

e .

541
e ( )

@
€= e Fj°e; 5T @ = @+ @K
In (841), BF = h(s;s) is the hem itian form of L ! M . A1l these vector els have
degree 1 and are Independent from the section sofL ! M .
W ede ne
ri=rg : (542)

The new sectionsr ; are exactly the horizontalvector eds @, ndeed from (529) we
obtain

r; =@ ;ro = €= (5.43)
Sin ilarly
r{=0; ry =0 : (544)
R ecalling (5.39) we ocbtain
h;r ;i=0 (5.45)
hr; ;r 4 i=0 (540)
h;r;i= 0: (5.47)

N otice also that h ; i is invardiant under horizontal vector elds,
€h; i=r sh; i=hr; ; i+h;r ;i=0 (5.48)

where in the last passage we used (5.39) and (5.44). Smibrly r h ; i= 0.
Them etric associated to the K ahler form (5.22) on M” isblock diagonalin the € ;@;
basis, (see paragraph follow ing (2.22)),

. . .2
%o O _ 3=5j . 0 _ J3J . .20 . (5.49)
0 0 By 0 Jigy
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Because of (5.48) the associated Levi€ ivita connection coe cients of M in the @ basis
of horizontal vectors concide w ith those of M 1 the =& basis,

@zt

N;j = qk@iqjk = gkl@igjk = l] : (5.50)
In tem s of the sym plectic frame feg = fe ;f g, that is at, we have r =
r( e)=d( Je,andr; = G( Je =08 +@K ,ie,
X X X
, = @. K . 1
rs g @ F + @3 F (5.51)

R ecalling the interpretation of X or F as coe cients of local sections of L. ' ! M
we read in equation (2.21]) the covariant derivative of L 1! M .

4

It is also convenient to nom alize and thus consider the (non holom orphic) non—
vanishing globalvector eld on M™ given by

V=e " : (552)

rv=¢&r; ; ryv=~&Ttr =0;
r V= eKzzr{ ; riv=§&"r, =0
Exp]jcjtlywehav
1 1
r;V = (@lV + E@lKV )e ; T {Vz (@{V 5@{KV )e =0 (5.53)
1 1
rV= (Vv + 5@{KV )e ; riV= (&;V 5@{KV )e = 0 : (5.54)

Each coe cientV  ofV with respect to theC invariantbasise isalso a coe cient ofa
Icalsection of thebundleL ' L' ! M . Thisbundlehasconnection &K @K .
Equation (5.53) can be Interpreted as the covariant derivative of these line bundle local
sections.

From (536),and (5.49)-(547) we have

we nd also structive to obtain the covariant derivative of the section V via this straighforward
calculation that uses @iK = 1,
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hWw;vi= 1i ;

( )

W;riVi= 0 ; (5.50)

hr 3V;r vi= 0 ; (5.57)

W;r vi= 0 (5.58)

>From (2.49),oralo from [r ;r (]= @3@K = gyandhr xr3V,;Vit+thr V;r Vvi= 0,
we have

hr ;V;r Vi= igy; (5.59)

(where gj;= @@K = 2 1 Ky isactually gy , the pullback via of the positive

de nitemetricon M ). If we consider an orthonomm al fram e fe;g, (I = 1;:::n%onM ,
er=e@; ; @y=¢ee jgy=¢€¢€ 1 ; (5.60)
we lift this fram e to a fram e of horizontal vectors of T *#)M” , and fwe set
Vy = V;rLV) ; M = O;l;:::no; (5.61)

wherer ; = el r (), then relations (556), (557), (553), (559) read

The index M m ixes holom orphic and antiholom orphic indices in order to com pensate
for the Lorentian signature of themetric ' g?{ in (5.59), (5.59).

Explicitly the colum n vectors of the com ponents of the sectionsVy = V , e are
vV = = e ; r;V = ; (5.63)

and they can be organized In a 2n  n matrix

Vo= Wirv )= Rkt (5.64)
w!= WY Ty oy M T hy R ’

In the last passage we have denoted by f (respectively h) then n matrix of entries
f (respectively h y ).
TheN = 2 special geom etry relations (5.67) are equivalent to
ik f

0 . , .
(£¥;hY) 1 0 noC il 1le: fYh+ h'f = il (565)
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and

0 1 f .
(£5;h") 10 " =0 ie:  f'h+ h'f =0 (5.66)

T hese two relations are equivalent to require the realm atrix

AB _P; Ref mInf

b7
CD Reh Imh > 67)

to be sym plectic. V ice versa any sym plecticm atrix &F  leads to relations (5.69), (5.66)

by de ning i = 1@1—52 ¥ :Thematrix

ff A B
= = A' o
v h h CD ’ (5.68)

where A = #5 ;] , rotates the at real symplectic frame fe g = fe ;£ g in the
fram e fVy ;V, g that up to a rotation by A ' = AY is also real and sym plectic (but

not at). This fVy ;Vy g frame comes from a local coordinate frame on M , Indeed

Vy = (€72 ;e¥2el@). The symplectic connection 1-4om in this fram e is sin ply
=V !dv,indesd r e = 0 is equivalent to

dav =V (569)

' P o e
Wecan write = b ; and see this equation as a condition on the Levif vita
connection ! and thetensorP ofM’ . Theblock decom position } ¥ follow sby recalling

that M is In particular a rigid special K ahler m anifold. The di erence Py = ¢ D
between the at sym plectic connection and the Levi€ vita connection is given by the
holom orphic symm etric three form C (cf. (&.11)))

C= hr ;rr 1i: (5.70)
T he properties of C previously discussed in the rigid case apply also to this profctive

Soecial geom etry case.

52 TheN = 2 theory

>From the previous section we see that the N = 2 supergravity theories and the higher
N theories have a sin iar at sym plectic structure. T he formm alisn is the sam e, Indeed
since the antisym m etric of the U (2) authom orphism group ofthe N = 2 supersym m etry
algebra is a singlet we have

fag=fpas shasg =hogas (5.71)
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where £ ;;h ( are the com ponents of the global section V , therefore from  (5.64) we have
as in (4.22),

f=(0Ew)= Eapgif)i
h= (thy )= (hash 1), (5.72)

as it should be, the sections i II have K ahler weight opposite to the i *®  sections.

The di erence between the N = 2 cases and the N > 2 cases is that the scalar
maniold M ofthe N = 2 case isnot In general a coset m anifold. The at sym plectic
bundle is therefore not in general a trivial bundle. The gauge kinetic term N =
hy £ ™ depends on the choice of the at symplectic frame fe g = fe ;£ g. This
latter can be de ned only locally on M” (and therefore on M ). In another region we
have adi erent fram e fe’ g = f&’ ;f gand therefore a di erent gauge kinetic term N °©
In the comm on overlapping region the two form ulations should give the sam e theory,
this is Indeaed the case because the corresponding equations of m otion are related by a
duality rotation. A s a conssquence the notion of electric or m agnetic charge depends
on the at fram e chosen. In this sense the notion of electric and m agnetic charge is not
a fundam ental one. T he sym plectic group is a gauge group (where just constant gauge
transform ations are allowed ) and only gauge invariant quantities are physical.

A related aspect of the com parison between the N = 2 and the N > 2 theories is
that the special K ahler structure determ ines the presence of a new geom etric quantity,
the holom orphic cubic form C , which physically corresponds to the anom alousm agnetic
moments of the N = 2 theory. W hen the special Kahler m anifold M is itself a coset
m anifold [78], then the anom alous m agnetic m om ents C ;. are expressible In termm s of
the vielbein of G=H , this is for exam ple the case of the N = 2 theories with scalar

. o7 su@aa) 0 (62) . S07(12)
manifold G=H = T @) 56 0@ and G=H = ) [78].

To com plete the analogy between the N = 2 theory with n° vector m ultiplets and
the higher N theories n D = 4, we also give the supersym m etry transform ation law s,
the central and m atter charges, the di erential relations am ong them and the form ula
for the potential %y .

T he supercovariant ekctric ed strength ¥ is

F =F +f » %, i, | .s"V®+ho (5.73)
T he transom ation law s for the chiralgravitho , and gaugino * eldsare:

A =TI A + ABT + ; (5.74)

Bzt Ay T gl BE o+ ; (5.75)



w here:
T=heVF £f G ; (5.76)

T= T;ejwihT; = h ;F £G ; (5.77)

are respectively the graviphoton and them atter vectors. In (5.74)), (5.79) the position of
the SU (2) autom orphisn index A (A ;B = 1;2) isrelated to chirality, namely ( 5 ; )
are chiral, ( *; | ) antichiral.

In order to de ne the sym plectic invariant charges let us recall the de nition of the
m agnetic and electric charges (the m oduli independent charges) in (4.10). The central
charges and the m atter charges are then de ned as the Integrals over a sphere at spatial
in nity of the dressed graviphoton and m atter vectors (4£.21]), they are given in (4£.23),
(4.24):

(Zw)= 232, = (.) 0 (5.78)

where ;| is the valie of the scalar elds at spatial in nity. Because of (5.61) we get
Inmediately:
rIZ = ZI: (5.79)

This relation can also be written r (Zas = Z1 ag , and considering the vielbein 1-
form P! dual to the frame e; introduced in (5.60) and setting r Plr; we obtain
rZag = Z:P' ap

T he positive de nite quadratic invariant %y In temm s of the charges Z and Z; reads

1 1
Yoy = 5zz + 7.2t = 5QtM (N )O : (5.80)

Equation (5.80) is obtained by using exactly the sam e procedure as in (4.27). nvariance
of %y inplies that it is a wellde ned positive function on M .

6 D uality rotations in N oncom m utative Spacetim e

Field theories on noncomm utative spaces have received renewed interest since their
relevance In describbing D p-branes e ective actions (see [79] and references therein).
N oncom m utativity in this context is due to a nonvanishing N S background two form
on the D p-brane. First space-like (m agnetic) backgrounds (B 6 0) were considered,
then NCYM theordes also with tim e noncommutativity (B 6 0) have been studied
[82]. The NCYM theories that can be obtained from open strings in the decoupling
Imit %! 0 are those with B space-like or light-like (eg. Bo; = B1;), these were
also considered the only theories w ithout unitatrity problem s [83 ], how ever by applying
a proper perturbative setup it was shown that also tin e-gpace noncom m utative eld
theories can be unitary [84].
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Follow Ing [79], gauge theory on a D p-brane w ith constant two-form B can be de-
scribed via a comm utative Lagrangian and el strength L (F + B ) or via a noncom m u—
taLtJ'yeoneIp(ﬂ@),v\rhereﬂ"D = @A Q@A iA 2A . Here ? is the star product, on
coordinates [x 2x ]= x ?x X ?x =1 ,where dependson B and them etric
on the D p-brane. T he com m utative and the noncom m utative descriptions are com ple-
m entary and are related by SeibergW itten map (SW map) [79], [80,81]. In the °! 0
lim it [79] the exact e ective electrom agnetic theory on a D p-brane is noncom m utative
electrom agnetism (NCEM ), this is equivalent, via SW m ap, to a nonlinear com m utative
U (1) gauge theory.

In this section we consider a D 3-brane action In the slow Iy varying eld approxi-
m ation, we give an explicit expression of this nonlinear U (1) theory and we show that
it is selfdualwhen B (or ) is light-like. Via SW map solutions of U (1) nonlinear
electrom agnetisn are m apped into solutions of NCEM , so that duality rotations are
also a symmetry of NCEM , ie.,, NCEM is selfdual [85], [52]. W hen  is spacelke we
do not have selfduality and the S-dual of space-1lke NCYM is a noncom m utative open
string theory decoupled from closed strings [87]. Related work appeared in [88{90]. W e
m ention that selfduality of NCEM was hitially studied In [86]to rstorderin .On
one hand it is per se interesting to provide new exam ples of selfdual nonlinear elec-
trom agnetisn , as the one we give w ith the lagrangian (6.17). On the other hand this
lagrangian is via Seberg-W itten m ap, and for slow Iy varying elds, ust NCEM . For-
mally NCEM ressmblesU (N ) YM on comm utative space, and on toriw ith rational
the two theories are T dual [91]. Selfduality of NCEM then hints to a possible duality
sym m etry property of the equations ofm otion of U (N ) YM .

SelfD uality of the D 3-brane action

Consider the D 3-brane e ective action in a TIR supergravity background w ith constant
axion, dilaton NS and RR two-form s. T he background two-form s can be gauged away
in thebuk and we are left with the eld strength ¥ = F + B on the D 3-brane. Here B
isde ned as the constant part of F ,0rB = F Jpaa11 Since F vanish at spatialin nity.
For slow Iy varying elds the Lagrangian, in E instein fram e is essentially the Bom-Infeld
action with axion and dilaton. W e set for simplicity N = j.‘l]pand gs = 1, where gg
is the string coupling constant. The lagrangian isthen L = — det(@+ % ). The

explicit expression of G, is obtatned from thede nition G = && and is (cf. (2.39))

QF

F ,cf. Potnote 2, Section 2.1. One can then consider a duality

Here F
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rotation by an angle and extract how B (the constant part of F ) transform s

2
; _ B + BB B
B = cos B sin & : (6.2)

L R 2
1+ —B 7 BB )

O pen/closed strings and light-like noncom m utativity
The open and closed string param eters are related by (see [79], the expressions for G
and rst appeared in [92])

1 1
=G ~+ —
g+ B 0
1=(G1 =O)G(Gl+=o)=Gl 02G
s -
detG P P
Ge=gs ————————— =g, detG det(G '+ = 9 =g, detg ! det(g+ B)
det(g+ ®B)

T he decoupling lim it 1 Owith G4;G; nonzeroand nite [79]ladsto a wellde ned

eld theory only if B is space-like or light-like. Looking at the closed and open string
coupling constants it iseasy to see w hy one neaeds this space-like or light—like condition on
B in perform ing this lim it. C onsider the coupling constants ratio Gy =gs, that expanding

the 4x4 determ inant reads (hereB?=B B g g , 2= G G and soon)
r r
G 0 2 0 4 2 04
— = 1+ 2 ( 2= 1+ —B? —(BB ): (6.3)
% 2 16 2 16

Both G, and g, must be positive; sihce G and  are by de nition nite for °! 0 this
in plies = 0and ? 0.Now =0, det =0, detB =0, BB = 0.
|

Tn this case from (63) we alo have 2= ®B?. Tn conclusion in order orthe °! 0
Iin it de ned by kesping G5;G; nonzero and nite [79], to be wellde ned we need
B? 0; BB =0 ie. 2 0; =0 (64)

T his is the condition forB (and ) to be space-like or light-ke. Indeed w ith M inkow ski
m etric and in three vector notation (64) reads B 2 E? 0andE ? B.

If we now require the %! 0 lin it to be com patible with duality rotations, we
inm ediately see that we have to consider only the lightJke caseB? = BB = 0. Indeed
under U (1) rotations the electric and m agnetic eldsm ix up, In particularundera =2
rotation (6.2) a space-lke B becom es tim e-like.
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In the lightlke case det(g + B )= det(g), relations (£3) sin plify considerably.
The open and closed string coupling constants coincide, since we sest g5 = 1 we have
Gs = gs = 1,this also in plies det(G )= det(g) so that the hodge dual eld F ? with the
g m etric equals the one w ith the G m etrdc. U s of the relations

= - ; - - — (65)

vald for any antisym m etric tensor , show s that any two-tensor at least cubicin  (or
B ) vanishes. It ®llows that g G = and that the raising or lowering of the and
B indices is independent from them etric used. W e also have

B = 0°¢ : 66)

Selfduality of NCBTIand NCEM
W enow study duality rotations for noncom m utative Bom-Tnfeld (NCB I) theory and its
zero slope lin it that sNCEM . T he relation between the NCBIand the BILagrangins
is [19]

B (®;G; ;G.)= Lg:(F + B;g)+ O (QF )+ totder: (6.7)

where O (@F ) stands for higher order derivative corrections, P is the noncom m utative
U (1) eld strength and we have set gs = 1. The NCB1I Lagrangian is

d

1
B (®;6; ;6.)= 7 det(G + ®)+ 0 (@P) : 638)

s

In the slow Iy varying el approxin ation the action ofduality rotationson B, ; isderived
from selfduality of Ly;. IFP isa solution of the B,°°’ EOM then P° cbtained via

B SW m!ap F dua]jty!mt.F o SW m!ap oo

0,~0.

is a solution of the @gsf ’
and g’= g, = 1.

In the light-lke casewe have G, = g; = 1, the B rotation (6.2) sinpli es to

"EOM where GY%;G% °are obtained using (€3) from g% B

B? = cos B sn B : (69)
U sing (6.9) the U (1) duality action on the open string variables is
G’=G ; ° = cos sin : (6.10)

For lightdke, solutions P of ¥/ arem apped into solutions POof*/ °. Thuswe can
m ap solutions of %/ into solutions of %/ , therefore the theory described by K%/ has
U (1) duality rotation sym m etry.
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In order to show selfduality of NCEM we consider the zero slope lin it of (6.7) and
verify that the resulting Jagrangian on the rh s. of (6.1) is selfdual. W e rew rite Ly ; In
term s of the open string param eters G ;

S

P —
. __1p detgr )= G det@+ B+ F)
BI = T SHg R detig+ ®B)
1P
= — detG+ F +G F): (6.11)

T he determ inant In the last line can be evaluated as sum of products of traces (N ew ton—
Leverrier formula). Each trace can then be rew ritten in termm s of the six basic Lorentz
invariants F?; FF ; F ;F ; %= = 0, explicitly

detG ldetG+ F +G F)= (1 F)’+ ®EF2+1 F FF ] %dFF )

Finally we take the °! 0 lim it of @_), by dropping the in nite constant and total
deriwvatives the resulting Lagrangian is G tin es

F? £ F FF
- (6.12)
1 i F
W e thus have an expression or NCEM In teimsof P, and G (ofcourse G can be
taken ), L}PEM = GPEM ’
1 ip2 L1 p FrF
Poy PP = A = + 0 (RF ) + tot:der: (6.13)
4 1 F
The Lagrangian (6.17) satis es the selfduality condition (3.20) with * = , = 0,
a=d= 0,c= Dband therefore NCEM is selfdual under the U (1) duality rotations
EI0)and F°= cos F sih G.Thechangein ! 9 thatisnotadynamical ed,

can be cancelled by a rotation In space so that therefore we can m ap solution of the
EOM of (6.13) into solutions of the EOM of (€.13) w ith the sam e value of

T hisduality can be enhanced to Sp(2;R ) by considering also axion and dilaton elds;
also H ggs elds can be coupled, the coupling ism inin alin the noncom m utative theory.
U sing this duality one can relate space-noncom m utative m agnetic m onopoles w ith a
string (D 1-string D 3Jorane con guration) to spacenoncom m utative electric m onopoles
(possibly an F-string ending on a D 3-brane) [52,53].
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7 A ppendix: Sym plectic group and transform ations

7.1 Sym plectic group (A ;B;C;D and f;h and V m atrices)

T he sym plectic group Sp(2n;R ) is the group of real2n  2n m atrices that satisfy
s* S = (71)

Setting S = 4¢ we explicitly have
A'C C®A=0; B'D D®B=0; AD CB=1: (72)
Since the transpose of a sym plectic m atrix is again sym plectic we equivalently have
AB" BA®=0; CD" DC® =0 ; AD" BC =1": (73)

In particular A'®C;B™D ;CA ;BD ;A 'B;D C;AB%DC' are symm etric m atrices
(In case they exist).

IfD is invertible we have the factorization

A B 1 BD ! ptlo 1T 0

cD 0 1 0 D D c 1

whereA =Dt '+ BD C lowsfrom BD = D¢
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T he com plex basis
Tt is often convenient to consider the com plex basis #& '} rather than { . The
transition from the real to the com plex basis is given by the sym plectic and unitary
matrix A ', where

1 1 I

A= p= ; A '=DRAY: 7
19—2 i1 (7.5)
A symplectic m atrix S, belonging to the fundam ental representation of Sp(2n;R ), In
the com plex basis reads
U=2A 'SA : (76)

There is a 1-1 correspondence between matrices U as In (Z4) and complex 2n  2n
m atrices belonging to U (n;n) \ Sp(2n;C),
1 0O 1

U = : (7.7)

1 0 1 0 0
1 0 1 0

Yy — . t
v 0 1 v 0O 1 ! v
Equations (Z.1) de ne a representation of Sp(2n;R ) on the com plex vector space C 2" .

Tt is the direct sum of the representations and , these are real representations of
realdin ension 2n. (T he representation is the vector space of all linear com binations,

w ith coe cients in R, of vectors of the kind ).

The m axin al com pact subgroup of U (n;n) isU (n) U (n); because of the second
relation in (Z.7) the m axin al com pact subgroup of Sp(2n;R ) isU (n). The usual em —
bedding of U (n) into the com plex and the fundam ental representations of Sp(2n ;R ) are
respectively

uo0 Reu Imu
. . 7.8
Ou ! Inu Reu ! (78)
where u belongs to the fundam entalof U (n).
The f and h m atrices
The f and hmatricesaren n com plex m atrices that satisfy the two conditions
0O 1 f
Y .hY _ s Cne ¥ YE o 2
(f¥;nh") 10 n il ie: fh+ h'f = il (79)
and
0O 1 f
.t _ Co t te _
(f;h") 10 h 0 ie: ffh+ hf=0 (710)
T hese two relations are equivalent to require the realm atrix
A B P—- Ref Im £
cCD 2 Reh Imh (7.11)
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to be In the fundam ental representation of Sp(2n;R ). V ice versa any sym plectic m atrix
20 IJeadsto relations (7.9), (Z.10) by de ning

f 1 A 1B
= p— 712
n 19—2 cD ( )
In termm s of the £ and h m atrices we have
U AlAB A 1 f+ih £+ ih (713)
- cp “TF3 £ mf wm '
The V m atrix and its sym plectic vectors
Them atrix
A B f f
V = - A = hh (7.14)

transform s from the kft via the fundam ental representation of Sp(2n;R ) and from the
right via the com plex representation of Sp(2n;R ). Since A is a sym plectic m atrix we
have that V isa symplctic matrix, V: 3 v = & ', hence also its transpose V 5,
v Iigtvt= 91 :The columns of the V matrix are therefore m utually sym plectic
vectors; also the row s are mutually sym plectic vectors. Explicitly if V  is the vector

w ith com ponents given by the -th row ofV ,then V vV = ,where = 0 '
7.2 The coset space Sp(2n;R)=U (n) (M and N m atrices)
A 1l positive de nite sym m etric and sym plectic m atrices S are of the form

S=9gg" ; g2 SpEln;R): (7.15)

Indeed consider the factorization (Z4) (since S is positive de nite also its restriction to
an n dim ensional subspace is positive de nite, therefore D is invertible). T he factoriza-
tion (Z.19) is obtained for exam ple by considering the sym plectic m atrix

p

P
1 BD ! D !
0 ; (7.16)

0
D

P_
where them atrix D is the unique positive de nite square root of the sym m etric and
positive de nitem atrix D . (N otice that the sam e proof show s that any sym m etric and
sym plctic matrix £.5 with invertible and positive de nite matrix D is of the form

gg" and therefore is positive de nite).
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W ecan now show that the coset space Sp(2n ;R )=U (n) is the space of all positive def-
Inite symm etric and sym plectic m atrices. Them axin al com pact subgroup of Sp(2n ;R )
isH = fg2 Sp(2n;R);gg"= 1g,and we have seen in (Z.8) that it isU (n).

W e then denote by gH the elam ents of Sp(2n;R )=U (n), where H = U (n), and
consider the m ap

_Sp(@n;R)
©Um)
gH T ggd* (7.17)

! £S 2 Sp(2n;R);S = Stand S positive de nitey

Thism ap iswellde ned because it does not depend on the representative g 2 Sp(2n;R)
of the equivalence classgH . Form ula (Z.19) show s that thism ap is surfctive. In fctivity
isalso easily proven: ifgg® = g% then ¢° 'g(g” 'g)*= 1,s0 thatu= g° 'gisan elem ent
of Sp(2n;R ) that satis esuut= 1. Thereforeu = g’ *gbelngs to them axin alcom pact
subgroup H = U (n), hence g and g° belong to the sam e coset.

TheM and N m atrices

Notice that then nmatricesf = (£ ) z-1;:n , are nvertble. Indesd if the colum ns
of f were linearly dependent, say £, °= 0,ie. £ = 0,with a nonzero vector ,then
sandw iching (79) between Y and we would obtain

£ Yh + W'f =i7Y &0 (7.18)

that isabsurd. Sin ilarly also them atrix h = (h , ) is invertibble. W e can then de ne the
nvertbblen n matrix

N = hf ! (719)
that is symm etric (cf. (Z.10)) and that has negative de nite in aginary part (cf. (Z.9))

N=Nt; TN = %(N N Y)= %(ffy)l; (7.20)
(while N ! has positive de nite inagiary part N ' N Y = i(hhY) '). Any sym -
m etric m atrix w ith negative de nite in aginary part is of the form (Z.19) for som e (£;h)
satisfying (Z9) and (Z.1Q) (just consider any f that satisfyes (Z20)). There is also
a 1-1- correspondence between symm etric com plex m atrices N w ith negative de nite
In aginary part and sym m etric negative de nitem atricesM of Sp(2n;R).Given N we
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consider

MO )= 1 ReN T N 0 T 0
0 1 0 TaN ! ReN 1
_ N +ReN InN 'ReN ReN In N '
- MmN 'ReN N ‘!

.0 1 . N InN 'NY N fnN ‘!
= 1
1 0 MmN 'NY MmN !
.0 1 hhY  hfY
= 1 2
1 0 fhY ffv
0 1 h
= 1 2 hY £Y
10 e )
h
= 2Re c ( hY £Y) (721)

Since sym m etric negative de nitem atricesM of Sp(2n;R ) param etrize the coset gpace
Sp(2n;R )=U (n), them atrrices N too param etrize this coset space.

U nder sym plectic rotations (5.33) we have

f £ £ A B £
| = =
h ° h Sy C D h (722)
and
N ! N°= C+DN)A+BN) *: (7.23)

T he transform ation of the in agiary part of N is (recall (Z.20))
TN ! N%  @A+BN)YmN @+ BN )* (724)
T he transform ation of the corresponding matrix M (N ) is

M N)! M N%=5""M ™N)s !; (725)

this last relation easily ollows from (721)) and from  » = & [ .

T he relation between the negative de nite symm etric matrix M de ned in (Z.21])
and S de ned in (7.19) can be obtained from their transform ation properties under
Sp(@n;R),

M = S '= S : (726)
W ealohaveM = V Yy 1
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7.3 Lie algebra of Sp(2n;R) and U (n) (a;b;c;d m atrices)

Ifwewrite 25 = 19 + 25 with @ nitesmalwecbtah thatthe2n 2n matrix
ab

727

o d (727)

belongs to the Lie algebra of Sp(2n;R ) ifa;b;c;d are realn  n m atrices that satisfy
the relations
a"= d; B=b; d=c: (728)

The Lie algebra of U (n) in this fundam ental representation of Sp(2n;R ) is given by the
m atrices
a b

ba
with b= IF,a= a‘.
In the complx basis (Z.d) the Lie algebra of Sp(2n;R) is given by the 2n  2n
m atrices

ab
729
b a ( )
where a and b arecomplex n  n m atrices that satisfy the relations
a’= a; b=b: (7.30)
0
The Lie algebra of U (n) In this com plex basis is given by the m atrices ga w ith

ay= a.

8 Appendix: UnilateralM atrix Equations

T he ram arkable sym m etry property of the trace of the solution of the m atrix equation
(3.107) hoMds form ore generalm atrix equations. T his trace property and the structure
of the solution itself are studied in [18], and with a di erentm ethod In [70]; see also [71]
fora uni ed approach based on the generalized B ezout theoram ,and [69 ] for convergence
of perturbative solutions of m atrix equations and a new form of the noncom m utative
Lagrange Inversion formula.

In this appendix we prove the symm etry property of the trace of certain solutions
(and their pow ers) of unilateralm atrix equations. These are N ® orderm atrix equations
for the variable X w ith m atrix coe cients A ; which are allon one side, eg. on the lft

X =RAo+ A X + A,X 2+ i+ A XV (8.1)
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T he m atrices are all square and of arbitrary degree. W em ay equally consider the A ;'s
as generators of an associative algebra, and X an elem ent of this algebra which satis es
the above equation. W e consider the form al solution of (8.1]) obtained as the lin it of
the ssquence X g = 0,X g1 = Ag+ A X + AX 2+ i+ Ay X[ ¢ It ds convenient to
assign to every m atrix a din ension d such thatd(X )= 1. Using (8.1]), the din ension
ofthematrix A; isgiven by d(A;)= 1 1.

F irst note that we can rew rite equation (8.1]) as

X X
=0 k=1
T he right hand side factorizes

X okl
1 Ay = (1 AX™)1 X):
=0 k=1m=0

Under the trace we can use the fundam ental property of the logarithm , even for non-—
com m utative ob Fcts, and obtain

X X ox1!
Tr log(l Ay) = Trlg(l AX™)+ Trlog(l X ):

i=0 k=1m=0

Usihg dAayx) = k 1 and dX ) = lwehave d@,X™)=k m 1 and we see
that all the words in the argum ent of the rst logarithm on the right hand side have
sem ipositive dim ension. Since all the words in the expansion of the second term have
negative din ension we obtain

X
Trlog(l X )= Trlog(l Ay) : (8.2)
0 d< 0
On the right hand side of (8.2) one m ust expand the logarithm and restrict the sum to
words of negative dim ension. Since d(X ) = r by extracting thedimension d = r
term s from the right hand side of (8.2) we cbtain

o i 1!
Tr * = r PP TrS@FPAT ::AY ) ¢ (8.3)
01 .ssay -

P
T he relevant point is that all the term s In the expansion of Tr log (1 If: oA:) areauto-

m atically sym m etrized, this explains the sym m etrization operator S in theAg;A ;A
m atrix coe cients.
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If the coe clent A y isunity, we have the follow ing dentity for the sym m etrization
operators of N + 1 and of N coe cients (words)

an

SAFAT AT ), -1 = SAPAT A 1)

T his is obviously true up to nom alization; the nom alization can be checked in the
com m utative case.

T he trace of the solution of (3.107) can now be cbtained from (8.3) by considering
r=1land N = 2 and by setting A, to unity.
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