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8 On theCutsofScattering Am plitudes
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The use ofcom plex analysisforcom puting one-loop scattering am plitudesisnaturally induced by generalised

unitarity-cutconditions,ful�lled by com plex valuesofthe loop variable. W e reporton two techniques: the cut-

integration with spinor-variables as contour integrals ofrationalfunctions;and the use ofthe D iscrete Fourier

Transform to optim ize the reduction oftensor-integralsto m asterscalarintegrals.

1. G EN ER A LISED U N ITA R IT Y

The application of unitarity as an on-shell

m ethod ofcalculation [1,2]isbased on the prin-

ciples that products ofon-shelltree-levelam pli-

tudesproduce functionswith the correctbranch

cutsin allchannels;and thatany one-loop am pli-

tude is expected to be expressed,by Passarino-

Veltm an reduction, as a linear com bination of

scalar m aster integrals (M I’s), that are charac-

terised by theirown,leading and subleading,sin-

gularities[3].

Dim ensionally-regulated am plitudescan bede-

com posed in term sofM I’sin shifted-dim ensions

as,

A
(4� 2�)

N
=

X

n; 0� j� jm ax

cnj � M
(4� 2�+ 2j)
n ; (1)

where A
(4� 2�)

N
is any N -point am plitude in D -

dim ensions(being D = 4� 2�),and M
(4� 2�+ 2j)
n

isa n-pointM I’sin (4� 2�+ 2j)-dim ensions,with

n 2 f0;2;3;4;:::;N g,and jm ax dependingon the

process.In Eq.(1),thecoe�cientsc nj do notde-

pend on D ,and the whole D -dependence isem -

bedded in the de�nition ofM ’s[4,2],

M
(4� 2�+ 2j)
n =


� 1� 2�


� 1� 2�+ 2j

(4�)jI(4� 2�+ 2j)n ; (2)


k = 2�
k+ 1

2 �� 1((k + 1)=2); (3)

where 
k is the generalised solid-angle, and

I
(4� 2�+ 2j)
n isthescalarn-pointfunction in shifted

�em ail:Pierpaolo.Mastrolia@cern.ch

dim ensions.Thedecom position (1)could befur-

ther sim pli�ed with the help ofrecurrence rela-

tionslinking higher-pointintegralsto lower-point

ones [5]. From Eq.(1),it is clear that the com -

putation oftheam plituderequirestheknowledge

oftwo types ofingredients: the M I’s,and their

coe�cients.In thefollowing,wefocuson thede-

term ination ofthe latterones.

The principle of a unitarity-based m ethod is

the extraction of the rational coe�cients, c nj,

by m atching the m ultiparticle cutsofthe am pli-

tudeonto thecorresponding cutsoftheM I’s.By

considering [6,2,7]the splitting ofLD ,the loop

m om entum in (4 � 2�)-dim ension,into its four-

dim ensional com ponent, L, and its orthogonal

com plem ent L(� 2�), as LD � L + L(� 2�) (with

L2
D � L2 + L2

(� 2�)
and L2

(� 2�)
� � �2 ),the D -

dim ensionalintegration m easure can be written

asaconvolution ofafour-dim ensionalintegration

and an integration on �2,
Z

d
D
LD =

Z

d
� 2�

�

Z

d
4
L = (4)

= 
� 2�

Z

d�
2 (�2)� 1� �

Z

d
4
L :(5)

By applying the above splitting to both sidesof

Eq.(1),the four-dim ensionalkernelofthe am pli-

tude,A
(4)

N
,can be read asexpressed in term sof

four-dim ensionaln-pointM I’s,I
(4)
n ,

A
(4)

N
(�2)=

X

n;j

cnj � (�2)j � I
(4)

n (�2): (6)

W e notice thatthe �2-dependence ofA
(4)

N
isdue

to the presence of�2 in allthe denom inatorsof
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I
(4)
n ,as additionalm ass-term ,and to the poly-

nom ialcoe�cients, c nj � (�2)j. It is therefore

evidentthatto�nd outcnj,itissu�cienttocom -

pute the �2-polynom ials[14]thatare the coe�-

cients ofthe four-dim ensionalM I’s,I
(4)
n ,in the

decom position (6).

I
(4)
n are functions determ ined by their own

branch-cuts. G eneralised unitarity is a very ef-

fective tool to extract the rational coe�cients

offunctionsby exploiting theirsingularity struc-

ture,which isaccessed by im posing(on-shellness)

cut-condition to propagating particles,

(q2 � m
2 + i0)� 1 ! (2�i)�(+ )(q2 � m

2): (7)

In general,the ful�llm ent ofm ultiple-cut condi-

tions requiresloop m om enta with com plex com -

ponents. Since the loop m om entum , L, in

Eq.(6)hasfourcom ponents,thee�ectofthecut-

conditions is to freeze som e of its com ponents,

when notall,accordingtothenum berofthecuts.

W ith the quadruple-cut [8]the loop m om entum

iscom pletly frozen,yielding the algebraic deter-

m ination ofthe coe�cients ofI
(4)
n ;(n � 4);the

spinorialintegration ofthedouble-cut[9,10,11,15]

and triple-cut [15,16,17]lead to the reconstruc-

tion ofI
(4)

2
- and I

(4)

3
-coe�cients; while the co-

e�cients of I
(4)

0
are detected by single-cut. In

cases where fewer than four denom inators are

cut,the loop m om entum isnotfrozen: the free-

com ponentsare leftoverasintegration variables

ofthe phase-space. W e willdiscuss two strate-

giesfordealing with the degreesoffreedom rep-

resented by those variables: i) analytic inte-

gration ofthe phase-space with spinor variables

[9,10,11,12,13,14];ii) algebraic decom position of

the integrand by m eans ofthe Discrete Fourier

Transform (DFT)[23].

2. D O U B LE-C U T A N D SP IN O R S

By using the splitting ofthe loop variablesas

above,the D -dim ensionaldouble-cut in the P -

channelofany am plitude,i.e. the double-cutof

thel.h.sofEq.(1),can bewritten asaconvolution

ofa four-dim ensionaldouble-cutand an integra-

tion on �2,

�(A
(D )

N
)=

Z

d�
� 2� �(A

(4)

N
); (8)

where �(A
(4)

N
) is the double-cut of the l.h.s of

Eq.(6),

�(A
(4)

N
)=

Z

d
4
L �

(+)(L2
� M

2

1� �
2)

� �
(+)((L� P )2� M 2

2 � �
2)A tree

1 A
tree

2 ; (9)

with A tree
i being the tree-am plitudessewn in the

cut. W e found it convenient to decom pose [11]

the four-dim ensionalloop variable,L,in term s

ofa m assless m om entum ‘,and the m om entum

accrossthe cut,P ,

L� = t‘� + z0 P� ; (10)

t= (1� 2z0)P
2
=h‘jP j‘]; (11)

z0 = (P 2 + M
2

1 � M
2

2 �
p
� � 4�2)=2P 2

; (12)

� = (P 2)2+ (M 2

1)
2+ (M 2

2)
2+

�2P 2
M

2

1 � 2P
2
M

2

2 � 2M
2

1M
2

2 ; (13)

with z0 being the anom alous threshold,and �,

theK �allen function.W ith theabovetransform a-

tion,�(A
(4)

N
)can be written in term s ofspinor-

variables [9,10], j‘i and j‘] (associated to the

m asslessm om enta,‘,through /‘= j‘i[‘j),and can

becastasasum ofterm swhosegeneralstructure

reads,

�(A
(4)

N
)=

X

i

� i ; � i =

Z

h‘d‘i[‘d‘]Ii ;(14)

Ii = �i(j‘i)
[� ‘]n

h‘jP1j‘]
n+ 1h‘jP2j‘]

; (15)

where P1 and P2 can eitherbe equalto the cut-

m om entum P ,orbe a linearcom bination ofex-

ternalvectors;and where the �i’s depend solely

on onespinoravour,say j‘i(and noton j‘]),and

m ay contain polesin j‘i. W e give asunderstood

the dependenceofIi on �
2,through thevariable

z0. The explicit form ofthe vectors P1 and P2

in (15) is determ ining the nature ofthe double-

cut,logarithm ic ornot,and correspondingly the

topology ofthediagram which isassociated to:if

P1 = P2 = P ,

Ii = �i(j‘i)[� ‘]
n
=h‘jP j‘]n+ 2 ; (16)



and theresultwillbenon-logarithm ic,hencecor-

responding to the cutofa 2-pointfunction with

externalm om entum P ; ifP1 = P ,P2 6= P or

P1 6= P2 6= P , one proceeds by introducing a

Feynm an param eter,to writeIi as,

Ii = (n + 1)

Z 1

0

dx (1� x)n
�i(j‘i)[� ‘]

n

h‘jRj‘]n+ 2
; (17)

/R = x/P 1 + (1� x)/P 2 ; (18)

and (because ofthe param etric integral)the re-

sult is logarithm ic,hence containing the cut of

a linear com bination of n-point functions with

n � 3. The spinorialstructure ofEq.(16) and

Eq.(17) is the sam e. Therefore,we discuss the

spinorintegration ofthelatter,becauseitism ore

general.

2.1. C ontour Integrals

O necan proceedwith achangeofvariables[18],

decom posing j‘iand j‘]into two arbitrary m ass-

lessm om enta,pandq(light-conedecom position),

8p;q:q2 = p
2 = 0 ; (19)

j‘i� jpi+ zjqi j‘]� jp]+ �zjq] (20)

h‘d‘i[‘d‘]= � hqjpjq]dz d�z : (21)

Itse�ecton � i reads,

� i = (n + 1)

Z 1

0

dx (1� x)n hqjpjq]

�

I

dz d�z �i(z)
([� p]+ �z[� q])n

�n+ 2(z;�z)
; (22)

�(z;�z)= hpjRjp]+ zhqjRjp]+

+ �zhpjRjq]+ z�zhqjRjq]: (23)

O ne m ay observe that the z-�z-integrand can be

written asa totalderivativewith respectto �z

� i =

Z 1

0

dx (1� x)n hqjpjq]

�

I

dz d�z
d

d�z

�

�i(z)
([� p]+ �z[� q])n+ 1

�(z)�n+ 1(z;�z)

�

(24)

with �(z)= (hpjP jq]+ zhqjP jq]),sothatthespinor

integration has been turned into a contourinte-

gralofa rationalfunction in z,

� i =

Z 1

0

dx (1� x)n hqjpjq]

�

I

dz

�

�i(z)
([� p]+ �z[� q])n+ 1

�(z)�n+ 1(z;�z)

�

: (25)

The z-integral can be perform ed by Cauchy’s

residue theorem , sum m ing the residues at the

poles in z (substituting as well�z = z�). There

are two sources ofpoles to account for: i) the

polescontained in �i(z);ii)thepole due to �(z),

whosevalue is

z� = � hpjP jq]=hqjP jq]: (26)

To com plete the integration of� i in (25),one

hasto perform the param etric integration which

is �nally responsible for the appearence ofloga-

rithm icterm sin thedouble-cut.O n thecontrary,

the spinorialintegration in (16) would generate

a contribution without branch-cuts. W e rem ark

thattheroleofj‘iand j‘]in theintegration could

be interchanged.

At the end ofthe phase-space integration,by

adding up allthe � i’s,one �nally gets a result

whosestructureis

�(A
(4)

N
)=

X

2� n;j

cnj � (�2)j � �(I (4)

n ); (27)

corresponding to the double-cut ofEq.(6). O ut

of(27),it is possible to extract the polynom ial

coe�cients,c nj � (�2)j (n � 2): the coe�cient

ofI
(4)

0
,the tadpoles,cannot be detected within

thedouble-cut,and theirdeterm ination should be

provided by independentinform ationson theam -

plitude.W e recallthatthe �2-dependence ofthe

coe�cients originatesfrom the understood pres-

ence ofz0,given in Eq.(12).

W e observe that a proper choice of the m o-

m enta p and q,entering the change ofvariables

(20), can sim plify dram atically the calculation.

For instance, they determ ine the value of the

z�-pole, given in Eq.(26): given q�, and the

cut-m om entum P�,the choice p� � P� � q� �

P 2=hqjP jq],would yield z� = 0.

Thephase-spaceintegration justdiscussed was

used succesfully for an analytic com putation of

non-trivialone-loop corrections.In particular,its

four-dim ensional(m assless)version [9,10,16]has

been applied tocom pletethenon-supersym m etric

cut-constructibleterm ofthesix-gluon am plitude

in Q CD [10],to com pute the six-photon am pli-

tude in Q ED [20,19], and the cut-constructible

term ofa generalM HV am plitudes involving a



Higgs plus n-gluons in Q CD (in the heavy-top

lim it)[21].

Recently, the e�ciency of spinor integration

hasbeen pushed to achieveclosed analyticform s

for the generating form ulasofthe coe�cients of

I
(4)
n (2 � n � 4),for an arbitrary m assive pro-

cess[13,14],which togetherwith I
(4)

0
constitutea

basisoffunctionsin four-dim ensions,hence,due

to the relation am ong Eq.(6) and Eq.(1),in D -

dim ensions. The form ulas presented in [13,14]-

too long to be shown here - can be evaluated,

withoutperform ing any integration,by specializ-

ingthevalueofinputvariablesthatarespeci�cto

the initialcut-integrand asassem bled from tree-

levelam plitudes.

W e have as well recently released the pack-

ageS@M(Spinors@ M athem atica)[22],thatim ple-

m entsthespinor-helicityform alism in M athem at-

ica.Thepackageallowstheuseofcom plex-spinor

algebra along with the m ulti-purpose featuresof

M athem atica,and itissuitable forthe algebraic

m anipulation and integration ofproductsoftree

am plitudes with com plex spinorssewn in gener-

alised unitarity-cuts.

3. O P T IM IZED R ED U C T IO N

As an alternative to any phase-space integra-

tion,in [24,25]therewasproposed a very e�cient

m ethod forthe reconstruction ofthe coe�cients

in thedecom position (6).In whatfollows,Ilim it

the discussion to the so called cut-constructible

term ofa scattering am plitude,thatcorresponds

to the poly-logarithm ic structure arising when

Eq.(6) is evaluated at �2 = 0. I will sketch

thereconstruction ofthecom plete�2-dependence

[26,27,28,29]at the end ofthe section. The by-

now known asOPP-reduction allowsthenum erical

reconstruction ofcn0,by solving a system ofal-

gebraic equations that are obtained by: i) the

num ericalevaluation ofthe integrand atexplicit

values ofthe loop-variable,on the one side; ii)

and the knowledge ofthe m ost generalpolyno-

m ialstructure ofthe integrand itself[30],on the

otherone.Thevaluesoftheloopm om entum used

forthe num ericalevaluation ofthe integrand are

chosen am ongthesetofsolutionsofthem ultiple-

cutconditions,i.e.thesolutionsofthesystem of

equationsobtained by im posing the vanishing of

the cut-denom inators.

3.1. OPP-R eduction

The starting point of the OPP reduction

m ethod [24,25]is the generalexpression for the

integrandofagenericm -pointone-loopam plitude

thatcan be written as

A m (q)=
N (q)

D 0D 1 � � � Dm � 1

; (28)

D i = (q+ pi)
2
� m

2

i ; p0 6= 0; (29)

whereN (q)isthefour-dim ensionalnum eratorof

the am plitude.2 The m ain form ula ofthe OPP-

algorithm is the expression ofN (q) in term s of

the denom inatorsD i,

N (q) =

4X

�= 1

� �(q) (30)

with

� 4(q) =

m � 1X

i< j< k< ‘

h

dijk‘ + ~dijk‘(q)

i m � 1Y

�6= ijk‘

D �;(31)

� 3(q) =

m � 1X

i< j< k

[cijk + ~cijk(q)]

m � 1Y

�6= ijk

D �; (32)

� 2(q) =

m � 1X

i< j

h

bij + ~bij(q)

im � 1Y

�6= ij

D �; (33)

� 1(q) =

m � 1X

i

[ai+ ~ai(q)]

m � 1Y

�6= i

D �: (34)

By inserting (30) back in (28),one exposes the

m ulti-pole nature of A m . The coe�cients of

the m ulti-pole expansion can be further split

in two pieces: a piece that stilldepends on q,

param etrized by ~d;~c;~b;~a,thatvanishesupon in-

tegration,and a piece that does not depend on

q,param etrized asd;c;b;a. Such a separation is

alwayspossible,asshown in [24],and,with this

choice,the latter set ofcoe�cients corresponds

to the ensem ble ofthe coe�cients ofI
(4)
n (�2 =

0);(n 2 f0;2;3;4g):a;b;c;d in (30)correspond

respectively to c00;c20;c30;c40 in (6).

2 A m (q)istheintegrand ofA
(4)

m
(�2 = 0),de�ned in Eq.(6)



3.2. Top-D ow n System

Thegoalofthealgorithm isreducedtothealge-

braicalproblem of�tting the coe�cientsd;c;b;a

by evaluating thefunction N (q)a su�cientnum -

ber oftim es,at di�erent values ofq, and then

inverting the system . Accordingly,let us de�ne

thefollowing functions,

R ijk‘(q)� N (q)
�

m � 1Y

�6= ijk‘

D �

�� 1
; (35)

R
0
ijk(q)� (N (q)� � 4(q))

�
m � 1Y

�6= ijk

D �

�� 1
; (36)

R
00
ij(q)� (N (q)�

4X

�= 3

� �(q))
�
m � 1Y

�6= ij

D �

�� 1
; (37)

R
000
i (q)� (N (q)�

4X

�= 2

� �(q))
�
m � 1Y

�6= i

D �

�� 1
: (38)

W easwellde�neasfqgijk‘ thesetofthesolutions

ofD i = D j = D k = D ‘ = 0. Having de�ned our

setup,from Eq.(30) we can derive the following

setsofequations:

h

R ijk‘(q)= dijk‘ + ~dijk‘(q)

i

q2fqgijk‘

; (39)

h

R
0
ijk(q)= cijk + ~cijk(q)

i

q2fqgijk

; (40)

h

R
00
ij(q)= bij + ~bij(q)

i

q2fqgij

; (41)

h

R
000
i (q)= ai+ ~ai(q)

i

q2fqgi

; (42)

which m ustbesolved necessarily in cascade,top-

down: in Eq.(39), N (q) is a known quantity,

nam ely an input ofthe algorithm ;but the l.h.s

ofeach other equation becom es a known quan-

tity (num erically evaluable), only after solving

theequation which preceedsit.

3.3. Polynom ialStructures and D FT

An im portantobservation isdue. The r.h.s of

each of the equations (39)-(42) is a polynom ial

function. W ithout presenting their explicit ex-

pressions(see [23]forthe detailed presentation),

the generalstructure is the following: the vari-

ablesare the com ponents ofq not-frozen by the

cut-conditions; the degree is known; while the

coe�cients are the unknowns to be determ ined.

The problem to be tackled is thus a wellknown

m athem aticalsubject: polynom ialinterpolation.

In orderto �nd outthe coe�cientsofa polyno-

m ial,one can avoid the num ericalinversion ofa

system ,which is a very delicate operation,due

to the possibility ofa vanishing determ inant in

criticalkinem atic regions.

The Discrete Fourier Transform (DFT) is a

very e�cient toolto extract the coe�cients of

a polynom ial,by evaluating it at specialvalues

ofthe variables [13,23,31]. Let us show how it

worksin the case ofa polynom ialofdegree n in

one variable,x,de�ned as,

Pn(x)=

nX

‘= 0

c‘ x
‘
: (43)

Atthe�rststep,onegeneratesthesetofdiscrete

valuesPn;k (k = 0;:::;n),

Pn;k � Pn(xk)=

nX

‘= 0

c‘ �
‘
e
� 2�i k

(n + 1)
‘
; (44)

by sam pling Pn(x) at(n + 1)equidistantpoints

on the �-circle,

xk = � e
� 2�i k

(n + 1) : (45)

Atthe second step,using the orthogonality

n� 1X

j= 0

e
2�ik

n
j
e
� 2�ik

0

n
j = n �kk0 ; (46)

one can obtain the coe�cient c ‘ sim ply by pro-

jection,

c‘ =
�� ‘

n + 1

nX

k= 0

Pn;k e
2�i k

(n + 1)
‘
: (47)

In fact,the r.h.s ofEq.(42) is a degree-1 poly-

nom ialin a singlevariable,whosecoe�cientsare

easily determ ined by thesem i-sum and thesem i-

di�erence oftwo num ericalvaluesofR. Butthe

r.h.s ofEqs.(40)-(42)are m ultivariate polynom i-

alsofhigherdegree.To �nd outtheircoe�cients

we used a m odi�ed DFT,that is a Fast Fourier

Transform -like algorithm , suitable to m inim ize

the num berofthe num ericalcallsrespectively of

R 0;R 00,and R 000,being exactly the sam e as the



num berofthe unknowns,and to avoid the kine-

m aticalsingularitiesem erging atthevanishing of

the circle-radius �. In so doing,one can deter-

m ine allthe unknown coe�cients,am ong which

theO th-orderones,respectively dijk‘;cijk;bij;ai,

correspond to thecoe�cientsoftheM I’sin four-

dim ension.

For the reconstruction of the com plete �2-

dependence ofthe coe�cients in Eq.(6),the de-

com position (30), m ust be slightly extended to

accountforthepresenceof�2 [28,29].Thestart-

ing point, in this case, is A
(4)
m (�2), which con-

tains a num erator N (q;�2) and denom inators
�D i = D i � �2. The reduction proceeds exactly

as above,with the di�erence Eqs.(39)-(42) con-

taining an extra dependence on �2. Since the

�2-dependence is still polynom ial, one can use

the DFT also in this case,having to dealwith

R;R 0;R 00,and R 000 with �2 asadditionalvariable

[13]. The exibility ofthe projection-procedure

herebypresentedextendsitsrangeofapplicability

to tackle the determ ination ofthe coe�cientsof

polynom ialstructureswherevershould thisissue

occur. W e �nally rem ark that the param etriza-

tion of the free (integration) variables as com -

plex unitary phasesyieldsaswella very e�ective

perform ance ofCauchy’sresidue theorem within

thecontextsoffactorization-and unitarity-based

m ethods, where the on-shellness properties are

naturallycaptured bypolarstructuresofcom plex

phases.
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