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On the Cuts of Scattering Am plitudes
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T he use of com plex analysis for com puting one-loop scattering am plitudes is naturally induced by generalised
unitarity-cut conditions, fi1l lled by com plex valies of the loop variable. W e report on two technigues: the cut-
integration with spinorwariables as contour integrals of rational functions; and the use of the D iscrete Fourier
Transform to optin ize the reduction of tensor-integrals to m aster scalar integrals.

1. GENERALISED UNITARITY

The application of unitarity as an on-shell
m ethod of calculation [1i2] is based on the prin—
ciples that products of on-shell treelevel am pli-
tudes produce functions w ith the correct branch
cuts in all channels; and that any one-loop am pli-
tude is expected to be expressed, by Passarino—
Veltm an reduction, as a linear com bination of
scalar m aster Integrals (M I's), that are charac-
terised by their own, leading and subleading, sin—
gularities 3.

D in ensionally-regulated am plitudes can be de—
com posed In term s of M I's in shifted-dim ensions
as,
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process. In Eq.El), the coe cientsc 5 do notde-
pend on D , and the whole D -dependence is em —
bedded in the de nition of M ’s [4[2],
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where  is the generalised solid-angl, and
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In is the scalar n-point function in shifted
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din ensions. T he decom position {Il) could be fur-
ther sin pli ed with the help of recurrence rela-
tions linking higherpoint integrals to low erpoint
ones [Ol]. From Eq.(), it is clear that the com -
putation of the am plitude requires the know ledge
of two types of ingredients: the M I’s, and their
coe cients. In the follow ing, we focus on the de—
term nation of the latter ones.

The principle of a unitarity-based m ethod is
the extraction of the rational coe cients, c .5,
by m atching the m ultiparticle cuts of the am pli-
tude onto the corresponding cuts of the M I's. By
considering [627] the splitting of Ly , the Ioop
momentum in (4 2 )<dimension, into its four—
din ensional com ponent, L, and its orthogonal
complement L , j, as Lp L+ L., wih
L L+ L7 ,,and L7, , *), theD -
din ensional integration m easure can be w ritten
as a convolution ofa fourdim ensionalintegration
and an integration on ¢,
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By applying the above splitting to both sides of

Eq.{), the Purdin ensional kemel of the am pli-
(4)

tude, A ', can be read as expressed in tem s of
fourdin ensionaln-point M I’s, Ir§4) ,
X
4 :
A= oy (B 1) 6)
n;j

W e notice that the ?-dependence of A 124) is due
to the presence of 2 i all the denom inators of
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154) , as additional m asstem , and to the poly—
nom &l coe cients, ¢,y ( %)), It is therefore
evidentthatto ndoutc,4,itissu cientto com -
pute the “-polynom ials [14] that are the coe —
clents of the four-din ensionalM I's, II§4) , In the
decom position (d).

154) are functions determ ined by their own
branch-cuts. G eneralised unitarity is a very ef-
fective tool to extract the rational coe cients
of fnctions by exploiting their singularity struc—
ture, w hich is accessed by In posing (on-shellness)
cut-condition to propagating particls,

@ m?+i0)r'r @1 NP m?H: ()
In general, the ful Iim ent of m ultiplecut condi-
tions requires loop m om enta w ith com plex com —
ponents. Since the loop momentum , L, In
Eq.{d) has our com ponents, the e ect of the cut-
conditions is to freeze som e of its com ponents,
w hen not all, according to the num ber of the cuts.
W ith the quadruplk—<cut [8] the Joop m om entum

is com pletly frozen, yielding the algebraic deter—
m ination of the coe cjentsoflé“;(n 4); the
spinorial integration of the doublke-cut [©O10/I1[15]
and triplecut [1916/17] lead to the reconstruc-
tion of 12(4)— and I3(4)—coe cients; while the co-

e clents of I 34) are detected by singlecut. In
cases where fewer than four denom inators are
cut, the loop m om entum is not frozen: the free—
com ponents are left over as integration variables
of the phase—space. W e will discuss two strate—
gies for dealing w ith the degrees of freedom rep—
resented by those variables: 1) analytic inte-
gration of the phasespace with spinor variables
QI0ITII213I4); i) algebraic decom position of
the integrand by m eans of the D iscrete Fourier
Transform (DFT) 23].

2.DOUBLECUT AND SPINORS

By using the splitting of the loop variables as
above, the D -dim ensional doublecut in the P —
channel of any am plitude, ie. the doublecut of
the Lh.s ofEq.{), can bew ritten asa convolution
of a fourdin ensional doublecut and an integra—

tion on 2,

Z
@alh= a2 a; (8)
where (& (') is the doublecut of the lh.s of
Eq.(d),
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w ith A [*°*® being the tree-am plitudes sewn in the
cut. W e found it convenient to decom pose [111]
the fourdim ensional loop variable, L, In tem s
of a massless m om entum “, and the m om entum
accross the cut, P,

L =t +zP ; (10)
t= (1 2z)P%=h'PF]; (11)
zo= P?+M? M7 ° 4 2)=2P? ; (12)
= PP+ M7+ MY+
2P°M 7 2P°M 7 2M M Z; (13)

with zg being the anom alous threshold, and ,
the K allen function. W ith the above transform a—
tion, @& I(f)) can be written in tem s of spinor-
variables G101, 71 and '] (associated to the
m asslessm om enta, ¢, through /= §i[‘9), and can
be castasa sum of term sw hose general structure
reads,

Z
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where P; and P, can either be equal to the cut-
momentum P, or be a linear com bination of ex—
temal vectors; and where the ;’s depend solely
on one spinor avour,say Fi (and noton j]),and
may contain poles in ji. W e give as understood
the dependence of I; on 2 , through the variable
Zp. The explicit form of the vectors P; and P,
in (I3) is detem ining the nature of the double-
cut, logarithm ic or not, and correspondingly the
topology of the diagram which isassociated to: if
Pi=Py=P,

L= s (FD[ “T=PFT%; (16)

I;= (1) (15)



and the result w illbe non-logarithm ic, hence cor-
responding to the cut of a 2-point function w ith
extemalmomentum P ; ifP;, = P, P, 6 P or
P, &€ P, 6§ P, one proceeds by introducing a
Feynm an param eter, to write I; as,
1 K 1

I;= n+1) dx (1 x)° M
0 MR P2

X)W, (18)

i @7

K=x¥, + (1

and (because of the param etric integral) the re—
sult is logarithm ic, hence containing the cut of
a linear com bination of n-point functions w ith
n 3. The spinorial structure of Eq. {18) and
Eq. {I7) is the sam e. Therefore, we discuss the
spinor integration of the Jatter, because it ism ore
general.

2.1 . Contour Integrals

O ne can proceed w ith a change ofvariables [18],
decom posing ji and ] into two arbitrary m ass—
lessm om enta, p and g (Iight-cone decom position),

8pjq:d’ =p = 0; (19)
Fi i+ zmi ] Ppl+ zH] (20)
h' d‘i[* d‘]= Igpyldz dz : (21)
Itse ecton ; reads,
z 1
i= (n+ 1) ; dz (1 x) jcogeyegl
I
s dz i(Z)<[ p1+2 z[ gl} ; (22)
"t e(z;iz)
(zjz) = IpR Pl+ zlgR P+
+ zlpR @+ zzkgR @l : (23)

One m ay observe that the z—z-integrand can be
w ritten as a totalderivative w ith respect to z
Z
1= dx (1
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with (z)= (pP @1k zlgP 1)), so that the spinor

Integration has been tumed into a contour inte-
gralofa rational function in z,
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The z-integral can be perform ed by Cauchy’s
residue theorem , summ Ing the residues at the
poles In z (substituting aswellz = z ). There
are two sources of poles to account for: i) the
poles contained in  ;(z); il) the poledue to (z),
whose value is

z = IpP pFoP ql: (26)

To com plete the integration of ; in (28), one
has to perform the param etric integration which
is nally responsible for the appearence of loga—
rithm ic term s in the double—<cut. O n the contrary,
the spinorial integration in (I6) would generate
a contrbution without branch-cuts. W e rem ark
that the role of §i and 7 ]in the integration could
be Interchanged.

At the end of the phase—space integration, by
adding up all the ;’s, one nally gets a result
whose structure is

= s (9 a®y; (27)
2 njj

corresponding to the doublecut of Eq.{d). Out
of {Z1), it is possible to extract the polynom ial
coe clents, cny  ( ?) (n 2): the coe clent

of 134) , the tadpoles, cannot be detected w ithin
the double—<cut, and theirdetermm ination should be
provided by independent inform ations on the am -
plitide. W e recall that the “-dependence of the
coe cients originates from the understood pres—

ence of 2y, given in Eq.{12).

W e observe that a proper choice of the m o-
menta p and g, entering the change of variables
(20), can sim plify dram atically the calculation.
For instance, they detem ine the value of the
z pole, given in Eq.(2d): given g , and the
cutm om entum P , the choice p P q
P?=lgP f],would yied z = 0.

T he phasespace integration just discussed was
used succesfully for an analytic com putation of
non-trivialone-loop corrections. In particular, its
four-din ensional (m assless) version [9,10l16/] has
been applied to com plete the non-supersym m etric
cutconstructible term of the six-glion am plitude
in QCD [10], to com pute the six-photon am pli-
tude n QED [20419], and the cut<constructible
term of a general M HV am plitudes involving a



Higgs plus n-glions n QCD (in the heavy-top
Iim i) 210].

Recently, the e ciency of spihor integration
has been pushed to achieve closed analytic form s
for the generating form ulas of the coe cients of
154) (2 n 4), for an arbitrary m assive pro-
cess [1314], which together w ith 1(54) constitute a
basis of fiinctions in four-din ensions, hence, due
to the relation am ong Eq.{@) and Eq.{d), in D -
din ensions. The form ulas presented in [13[14] -
too long to be shown here — can be evaluated,
w ithout perform ing any integration, by specializ—-
ing the value of input variables that are speci c to
the initial cut-ntegrand as assem bled from tree—
level am plitudes.

W e have as well recently released the padck-
age SAM (Spinors@ M athem atica)22], that In ple—
m ents the spinor-helicity form alisn in M athem at-
ica. T hepackage allow s the use of com plex-spinor
algebra along w ith the m ultipurpose features of
M athem atica, and it is suitable for the algebraic
m anipulation and integration of products of tree
am plitudes w ith com plex spinors sewn in gener—
alised unitarity-cuts.

3.0PTIM IZED REDUCTION

A s an altemative to any phase-Space integra—
tion, in [24[25] there w as proposed a very e cient
m ethod for the reconstruction of the coe cients
in the decom position (). In what follow s, I lin it
the discussion to the so called cutconstructible
term of a scattering am plitude, that corresponds
to the poly-logarithm ic structure arising when
Eq.[d) is evaluated at 2 = 0. I will sketch
the reconstruction of the com plete 2-dependence
2612728297 at the end of the section. The by-
now know n as OPP-reduction allow s the num erical
reconstruction of ¢,¢, by solwing a system of al-
gebraic equations that are obtained by: i) the
num erical evaluation of the integrand at explicit
values of the loop-variable, on the one side; ii)
and the know ledge of the m ost general polyno-
m ial structure of the integrand itself [30/], on the
otherone. Thevaluesofthe loopm cm entum used
for the num erical evaluation of the integrand are
chosen am ong the set of solutions of them ultiple—
cut conditions, i.e. the solutions of the system of

equations obtained by in posing the vanishing of
the cut-denom inators.

3.1. OPPR eduction
The starting point of the OPP reduction
m ethod [24I25]] is the general expression for the
integrand ofa genericm -point one-loop am plitude
that can be written as
N (q)

Ay @= ————; 28
n (@) DD, o, (28)

Y mi; p#60; (29)

Di= @+ ps

where N (q) is the fourdin ensionalnum erator of
the am p]ji:ude@ The manh formula of the OPP-
algorithm is the expression of N (g) in term s of
the denom inatorsD ;,

X4
N (q) = @) (30)
-1
w ith
nw 1 h im 1
4@) = disk + digk- (@) D ;(31)
i< < k< & ijk’
i 1 my 1
3(@) = [Cisx + eijx (@)] D ; (32)
i< j< k & ijk
nw 1h imy 1
2(@) = by + B (@) D ; (33)
i< § 5 1
k1 my 1
1) = lai + ai(q)] D : (34)
i 61

By inserting (30) back in (28), one exposes the
multipole nature of A, . The coe cients of
the multipole expansion can be further split
In two pieces: a piece that still depends on g,
param etrized by d;e;B;a, that vanishes upon in—
tegration, and a piece that does not depend on
g, param etrized as d;c;bj;a. Such a separation is
always possible, as shown in [24], and, w ith this
choice, the latter set of coe cients corresponds
to the ensam ble of the coe cients ofI,i“( 2 =
0) ;(n 2 £0;2;3;49): a;b;c;d in (30) correspond
respectively to ¢y ;C207C307C40 I (Q)).

2 AL (q) isthe integrand ofA ) ( 2 = 0),de ned n Eq.[@)



3.2. Top-Down System

T hegoalofthe algorithm isreduced to thealge—
braicalproblem of tting the coe cientsd;c;bja
by evaluating the function N (q) a su cient num —
ber of tin es, at di erent values of g, and then
nverting the system . A ccordingly, let us de ne
the follow Ing functions,

my 1 ]
Rix- (@) N (@) D i (35)
6 ijk‘
my 1 1
RY, @ M@  4@) D i (36)
6 ijk
© X4 my 1 )
RE@ M (@) @) D 7 (37)
=3 613
X4 my 1 )
RPa@) ™ @ @) D (38)
=2 61

W easwellde neasfqgijx- the set ofthe solutions
ofD;=D53= Dy =D.= 0. Having de ned our
setup, from Eq.{30) we can derive the fllow ing
sets of equations:

h i
Rk (@) = digxr + dige- () ; (39)
. 92fqgigx -

h

jok @)= cijx + ek Q) ; (40)

h . 92 £qg; i

RE (@) = by + By (@) ; (41)
. 92 £qg;y

h i

RP(@) = ai+ ai(@) ; (42)
q2 £qg;

which m ustbe solved necessarily in cascade, top—
down: in Eq.(39), N (g) is a known quantity,
nam ely an input of the algorithm ; but the lh.s
of each other equation becom es a known quan-—
tity (num erically evaluable), only after solving
the equation which preceads it.

3.3. Polynom ial Structures and DFT

An in portant observation is due. The rh.s of
each of the equations (39)-{42) is a polynom ial
function. W ithout presenting their explicit ex—
pressions (see 23] for the detailed presentation),
the general structure is the follow ing: the vari-
ables are the com ponents of g not=frozen by the
cutconditions; the degree is known; while the

coe cients are the unknowns to be determ ined.
The problem to be tackled is thus a well known
m athem atical sub fct: poynom ial interpoktion.
In order to nd out the coe cients of a polyno—
m ial, one can avoid the num erical inversion of a
system , which is a very delicate operation, due
to the possibility of a vanishing determm inant in
critical kinem atic regions.

The D iscrete Fourder Transform (DFT) is a
very e cient tool to extract the coe cients of
a polynom ial, by evaluating it at special values
of the variables [I323[31]. Let us show how it
works In the case of a polynom ial of degree n In
one variable, x,de ned as,

P, (xX)= c X ot (43)
=0

At the st step, one generates the set of discrete
values P, 5 (k= 0;:5n),

Xt J ik
Pnx Pn(xx)= Cs e (e (44)
=0

by sam pling P, (x) at (n + 1) equidistant points
on the -—circle,

Xe= e D (45)

At the second step, using the orthogonality
2 ik 5 £y )
e” n e nd=n .o ; (46)

one can obtain the coe cient ¢ . sin ply by pro-
Jrction,

: k
EER (47)

In fact, the rh.s of Eq.{42) is a degree1 poly-
nom ialin a single variable, whose coe cients are

easily determ ined by the sam isum and the sam i
di erence of two num erical values of R . But the
rh.s of Egs.{@0)-{42) are m ultivariate polynom i-
alsofhigherdegree. To nd out their coe cients

weused amodied DFT, that is a Fast Fourder
Transform -like algorithm , suitable to m inim ize
the num ber of the num erical calls respectively of
R O;R OO, and R(m, being exactly the sam e as the



num ber of the unknowns, and to avoid the kine—
m atical singularities em erging at the vanishing of
the circleradius . In so doing, one can deter—
m Ine all the unknown coe cients, am ong which
the O ™ -order ones, respectively disk ¢ 7Cijk sbigrai,
correspond to the coe cients of the M I's in four—
din ension.

For the reconstruction of the complete 2-
dependence of the coe cients in Eq.([d), the de-
com position (30), must be slightly extended to
account for the presence of 2 2829]. T he start-
ing point, in this case, is AL ( 2), which con—
tains a num erator N (g; 2y and denom inators
Di= D 2. The reduction proceeds exactly
as above, w ith the di erence Egs.(3I)-{42) con-
talning an extra dependence on 2. Since the

2_dependence is still polynom ial, one can use
the DFT also in this case, having to deal with
R;RY%R®, and R® with 2 asadditionalvariable
[13]. The exiility of the profction-procedure
hereby presented extends its range of app licability
to tackle the determ ination of the coe cients of
polynom ial structures w herever should this issue
occur. W e nally rem ark that the param etriza-
tion of the free (Integration) variables as com —
plex unitary phases yields aswella very e ective
perform ance of C auchy’s residue theorem w ithin
the contexts of factorization—and unitarity-based
m ethods, where the on-shellness properties are
naturally captured by polar structures of com plex
phases.
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