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Abstract: We study the supersymmetric properties of D7-branes in the warped deformed
conifold. We consider the κ-symmetry conditions on D7-branes in this specific warped back-
ground, taking into account the background NS-NS 2-form flux. While any holomorphic
embedding defines a supersymmetric D7-brane in the absence of background H-flux, most
of the D7-brane embeddings considered in the literature do not preserve supersymmetry
for the warped deformed conifold without also including brane worldvolume flux. For the
simplest such embedding, we construct numerically the worldvolume flux necessary to re-
store supersymmetry. We also comment on the dual field theory descriptions in terms of
cascading N = 1 supersymmetric gauge theories with flavors. Finally, we discuss some
possible applications of our results to moduli stabilization and vacuum energy uplifting,
gauge/gravity duality, and string inflationary model building.
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1. Introduction

One of the major developments in string theory of the last decade has been the emergence
of warped spacetimes as a setting for a rich variety of physics. To date, perhaps the most
important application of such warped geometries has been in the gauge theory/string theory
correspondence [1, 2, 3]. In this setting, noncompact spacetimes which are warped by the
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presence of background flux have been conjectured to give a dual description of gauge
theories. In many cases, this duality can relate strongly coupled field theories to weakly
coupled gravity theories, and as such offers new tools for studying field theories when
traditional perturbative methods fail.

Another application of warped geometry has been in the study of string theory as a
theory of particle physics. When one compactifies string theory from ten dimensions to
four dimensions, the compactification manifold can support nontrivial background fluxes,
and these fluxes will generically have a backreaction on the geometry, resulting in warping.
The gravitational redshift generated by a strong warp factor can lead to a hierarchy of
scales, thus offers a geometrical explanation for the huge disparity between the electroweak
and the Planck scale [4] (see also [5, 6, 7, 8] for string theory realizations). For the same
reason, warped geometries have also been invoked in supersymmetry breaking scenarios
in string theory, both to lower the scale of supersymmetry breaking [9, 10] and to control
the amount of sequestering [11]. The low energy effective supergravity theory describing
strongly warped backgrounds is challenging to derive, though continued progress has been
made [9, 10, 12, 13, 14, 15, 16].

Warping has also found application in inflationary cosmology. A key issue in infla-
tionary cosmology is to understand the underlying dynamics which allows for a sufficient
number e-folds of expansion. It turns out that warping can be fruitfully used in stringy
cosmological models to construct suitable potentials for slow roll inflation as well as for
motivating new inflationary mechanisms (see [17] and the references therein).

Strikingly, there is a particular warped geometry, the warped deformed conifold in
type IIB supergravity [18, 19], which is simple enough to allow detailed study, but is
also rich enough to have been used in all three of these areas. It has almost anti-de Sitter
asymptotics, and in gauge/gravity duality it is dual to an interesting confining gauge theory.
If one embeds the deformed conifold in a compact Calabi-Yau, and turns on appropriate
three-form fluxes, one finds that the resulting background has a natural and stable hierarchy
of scales [8]. And in cosmology, interesting inflationary models have been also constructed
in the conifold [20, 21, 22, 23].

In this paper, we study a particularly interesting variation of the warped deformed
conifold, in which we add a certain number of probe D7-branes to the background. These
branes fill four noncompact directions and wrap a four-cycle Σ4 in the transverse space.
In the gauge theory dual, these branes add fundamental matter to the theory [24, 25],
offering the prospect of field theory duals which resemble QCD. Moreover, in more phe-
nomenological applications, the D7-branes allow the introduction of gaugino condensates,
which can stabilize Kähler moduli [26] and which can introduce potentials for mobile D3-
branes (candidate inflatons in the scenarios considered in [20, 21, 22]). Given this range of
applications, it is of clear interest to find as many supersymmetric D7-brane embeddings
in the deformed conifold as possible, allowing for greater freedom in model-building. In
this paper we study the supersymmetry conditions for several different classes of branes,
focusing in particular on the cases where worldvolume flux is necessary for the brane to
preserve supersymmetry.

This paper is organized as follows. We begin by reviewing the deformed conifold in
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Section 2, along the way collecting some results which will be useful in the rest of the
paper. In Section 3, we review the criteria for the D7-branes to preserve supersymmetry
(the κ-symmetry conditions) in a general Calabi-Yau flux compactification. We make
use of these results in Section 4, where we study the case of D7-branes in the conifold
with background fluxes. There is one such D7-brane embedding (sometimes known as the
Kuperstein embedding) already known to be supersymmetric with no worldvolume flux
turned on [27]. On the other hand, the embedding first studied in [28] is not supersymmetric
when the worldvolume flux vanishes. Our main result is in Section 4.3, where we construct
the worldvolume flux necessary to restore supersymmetry, by a combination of analytic
and numerical methods. We also offer a criterion that in many cases can show whether a
worldvolume flux is needed to restore supersymmetry, and which is far simpler to verify
than explicitly checking κ-symmetry. In Section 5, we make some observations about the
field theories dual to the conifold with our D7-branes included. Finally, we end with a
discussion of prospects for the future in Section 6.

2. Review of the Warped Deformed Conifold

In this paper we focus on a particular concrete example of a warped Calabi-Yau space,
namely the warped deformed conifold. This geometry is noncompact, but in principle it
can be embedded in a compact Calabi-Yau with background bulk fluxes. We now proceed
to review some facts about the conifold and warped compactifications in general which will
be useful in the rest of the paper.

The conifold is most simply defined as a submanifold of flat C4 given by the equation
[18]

z2
1 + z2

2 + z2
3 + z2

4 = 0 (2.1)

where the zi are coordinates of the ambient C4. This space has a manifest SU(2) ×
SU(2)×U(1) global symmetry, where the SU(2)×SU(2) ' SO(4) acts by rotating the zi
and the U(1)R acts as multiplication of each of the zi by a phase, zi → eiϕzi. The defining
equation of the conifold is also invariant under an overall rescaling of the coordinates,
which implies that it admits a conical metric. The corresponding geometry is a cone over
a five-dimensional Einstein manifold called T 1,1 and the metric takes the form

ds2
6 = dr2 + r2ds2

T 1,1 . (2.2)

where the metric of the T 1,1 base is

ds2
T 1,1 =

1
9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1
6

2∑
i=1

(
dθ2
i + sin2θidφ

2
i

)
(2.3)

and the angular coordinates range as 0 ≤ ψ ≤ 4π, 0 ≤ θi ≤ π, and 0 ≤ φi ≤ 2π. From the
form of the metric it is clear that base is a sphere fibration S1 × S2 × S2 and it turns out
that its topology is actually S3 × S2. The base space has Betti numbers b2 = b3 = 1, and
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the associated harmonic forms are

ω2 =
1
2

(Ω11 − Ω22) (2.4)

ω3 = ζ ∧ ω2 (2.5)

where ζ = dψ + cos θ1dφ1 + cos θ2dφ2 and

Ωij = dθi ∧ sin θjdφj . (2.6)

This space is singular at the tip of the cone where all the zi are zero (and so we will
sometimes refer to this space as the “singular conifold.”)

It is also possible to define the conifold in terms of another set of complex coordinates,
by the equation

w1w2 − w3w4 = 0 (2.7)

which is related to the original defining equation by an obvious change of variables. It
turns out that this alternative description will also be useful to us. One nice property is
that the wi coordinates admit a relatively simple description in terms of the angles on T 1,1:

w1 = r3/2ei/2(ψ−φ1−φ2) sin
θ1

2
sin

θ2

2
, (2.8)

w2 = r3/2ei/2(ψ+φ1+φ2) cos
θ1

2
cos

θ2

2
, (2.9)

w3 = r3/2ei/2(ψ−φ1+φ2) sin
θ1

2
cos

θ2

2
, (2.10)

w4 = r3/2ei/2(ψ+φ1−φ2) cos
θ1

2
sin

θ2

2
. (2.11)

One of the important properties of the conifold is that its singularity can be smoothed
by adjusting moduli. At the tip of the cone, one may perform either a small resolution,
blowing up an S2, or a deformation, by changing the defining equation of the conifold to

z2
1 + z2

2 + z2
3 + z2

4 = ε2. (2.12)

We can make a phase rotation of the zi so that ε is real, and we will always assume this
in the rest of the paper. It is evident from taking a real slice of this defining equation
that deformation results in the appearance of a finite-sized S3 at the tip of the cone. The
deformed conifold preserves the SO(4) isometry of the singular conifold, but the scale
invariance is broken by ε and the U(1)R symmetry is broken to a Z2 subgroup.

This deformed geometry has special relevance in flux compactifications because of its
topology. The existence of a three-cycle allows us to turn on RR 3-form flux on this cycle,
and there are supersymmetric supergravity solutions if we also include NS-NS flux on the
(noncompact) dual cycle.

We now proceed to review flux compactification of the type considered in [8], where
a warped deformed conifold throat naturally develops near the local conifold singularities.
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Let us begin with the ten dimensional warped metric preserving four-dimensional Poincare
symmetry which takes the following form

ds2
10 = e2A(y)g̃µνdx

µdxν + e−2A(y)g̃mndy
mdyn . (2.13)

Here g̃µν , µ, ν = 0, 1, 2, 3 and g̃mn ,m, n = 4 , . . . , 9 are the unwarped metrics for the
non-compact four dimensional space time and the compact six dimensional manifold M6

respectively, whereas eA(y) is the warp factor which only varies over M6.
Following [8], we shall allow for both RR and NS-NS fluxes of IIB supergravity to be

turned on, and they can be written succinctly as:

G3 = F3 − τH3 =
1
6
Gmnp[dym ∧ dyn ∧ dyp] , (2.14)

F̃5 = F5 −
1
2
C2 ∧H3 +

1
2
B2 ∧ F3 = (1 + ∗10)[dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] . (2.15)

Here we have allowed for IIB axio-dilaton τ ≡ τ(y) = C0 − ie−φ to vary over M6 and
in (2.15) we have used self-duality F̃5 = ∗10F̃5, four dimensional Poincare invariance and
Bianchi identity to constrain the expression for F̃5. In addition, local objects extending
into non-compact four dimensions can also be included (which may wrap cycles in M6),
and they need to satisfy the tadpole cancellation condition:

1
2κ2

10T3

∫
M6

H3 ∧ F3 +Qlocal
3 = 0 , (2.16)

where Qlocal3 is the D3-brane charge on the local objects. The supergravity equation of
motion for such configuration of fluxes and local sources then yields:

∇̃2Φ± =
eA

6Im(τ)
|G±|2 + |∇Φ±|2 + 2κ2

10e
2A

[
(Tmm − T

µ
µ )local

4
− T3ρ

local
3

]
, (2.17)

where we have defined the following linear combination:

Φ± = e4A(y) ± α(y) , G± = iG3 ± ∗6G3 , (2.18)

and Tµν and Tmn are four and six dimensional energy-momentum tensors. A special solution
to (2.17) is given by the so-called imaginary self-dual (ISD) configuration:

Φ− = 0 , G− = 0 , ↔ e4A(y) = α(y) , ∗6 G3 = iG3 , (2.19)

(Tmm − T
µ
µ )local

4
= T3ρ

local
3 . (2.20)

In terms of the local sources in IIB, the equality (2.20) can be satisfied by D3 branes or
O3 planes, D5 brane wraps on vanishing two cycle, also known as “fractional D3”; or D7
wraps on non-trivial four cycles, e.g. K3. Turning now from these generalities back to the
conifold, let us turn on M units of F3 along the so-called A-cycle which corresponds to the
minimal S3 in the deformed conifold, and also (−K) units of H3 in the dual B-cycle. The
quantization condition for the fluxes then yields:

1
2πα′

∫
A
F3 = M ,

1
2πα′

∫
B
H3 = −K . (2.21)
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These three form fluxes stabilize the value of ε2 at

ε2 ∼ exp(−2πK/gsM) , (2.22)

and the warp factor at the tip is given by eA0 = e−2πK/3Mgs . The total D3 charge is given
by the intersection form:

1
2κ2

10T3

∫
M6

H3 ∧ F3 = MK = N . (2.23)

The explicit IIB supergravity solution corresponds to the flux configuration described here
was given in [19], where the authors started with N unit of D3 branes and M unit of
fractional D3 branes at the tip of singular conifold, with gsN, gsM � 1. In the near
horizon limit, these branes are replaced by their fluxes, one can obtain explicit expressions
for the corresponding warp factor and fluxes (for reviews, see e.g. [29], [30]).

In the large radius limit, the supergravity solution including these 3-form fluxes (but
with the axion and dilaton constant) has the useful description (due to Klebanov and
Tseytlin, or KT) [31]:

ds2
10 = e2A(r)(dxµdxµ) + e−2A(r)

(
dr2 + r2ds2

T 1,1

)
(2.24)

e−4A(y) =
27
4r4

πgsα
′2
(
N +

3
2π
gsM

2 log(r/r0)
)

(2.25)

gsF̃5 = d4x ∧ de4A(r) + ∗10(d4x ∧ de4A(r)) (2.26)

F3 =
Mα′

2
ω3 (2.27)

B2 =
3gsMα′

2
log(r/r0) ∧ ω2 (2.28)

H3 = dB2 =
3gsMα′

2
dr

r
∧ ω2. (2.29)

This solution possesses a naked singularity at small r; however, in the full KS solution the
deformation of the conifold resolves the singularity.

For later use, we will record here the explicit Kähler form and the NS-NS B-field on
the warped deformed conifold. SO(4) invariant expressions can be found in [29]:

J = K′(ρ)

(
4∑
i=1

dzi ∧ dz̄i

)
+K′′(ρ)

(
4∑
i=1

z̄idzi

)
∧

 4∑
j=1

zjdz̄j

 , (2.30)

B2 = b(ρ)εijklziz̄jdzk ∧ dz̄l , b(ρ) =
igsMα′

2|ε|4
ρ coth ρ− 1

sinh2 ρ
, (2.31)

where K(ρ) the Kähler potential for the deformed conifold is defined implicitly as:

K′(ρ) =
(

sinh(2ρ)− 2ρ
2|ε|2 sinh3 ρ

) 1
3

, (2.32)

K′′(ρ) =
(5 + cosh(2ρ)− 6ρ coth ρ)

6|ε|2 sinh ρ(ρ− cosh ρ sinh ρ)
K′(ρ) . (2.33)
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Here ()′ denotes the differentiation with respect to r3, and the usual radial coordinate r is
related to the coordinate ρ by

r3 =
4∑
i=1

|zi|2 = |ε|2 cosh ρ . (2.34)

The following definitions, taken from [30], prove to be notationally convenient:

η1 = εijklziz̄jdzk ∧ dz̄l , η4 =
4∑
i=1

z̄idzi ∧
4∑
j=1

zjdz̄j , η5 =
4∑
i=1

dzi ∧ dz̄i , (2.35)

and we will make use of these forms in the calculations to follow. In the large ρ limit, b(ρ) ∼
ρε−4 exp(−2ρ) ∼ r−6 log(r) and one finds that the potential B2 varies logarithmically with
r, as in [31].

3. Supersymmetry Conditions

Given the rich physics that has arisen from the study of D7-branes in warped flux
compactifications, it is interesting to find as many different stable configurations of D7-
branes in these backgrounds as is possible. Because supersymmetry guarantees stability,
and is typically a simpler property to check than non-supersymmetric stability, we will
focus on a search for supersymmetric D7-branes in warped throats with flux. We begin
by reviewing the supersymmetric embedding conditions given in [32, 33] for D7 branes
wrapping a four-cycle in a generic Calabi-Yau three-fold, and then in the next section we
will apply these conditions to specific examples of embeddings in the warped deformed
conifold.

Consider a CY three-fold M6 with Kähler two-form J , a background NS-NS 2-form
potential B2, and some number of coincident D7-branes which fill out the four transverse
Minkowski space-time dimensions and extend in four directions on the compact manifold.
There is a vector fieldA supported on the D7-brane worldvolume, and its curvature F2 = dA

combines with the background B2 to form a gauge invariant combination F̂ .

F̂ = B̂2 + 2πα′F2 , (3.1)

where we use ˆ to denote the pull-back of bulk quantities on to the D7-brane worldvolume.
In [32, 33], it was found that the κ-symmetry condition for D7 branes wrapping a

four-cycle Σ4 in M6 are as follows:

1. The four cycle Σ4 must be holomorphic. In other words, the D7-brane locus may be
written as a holomorphic equation in the complex structure of the CY.

2. The generalized F̂ field strength is a two-form of pure (1, 1) type, or

F̂2,0 = F̂0,2 = 0 . (3.2)
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3. The Kähler form J pulled back to Σ4 and the generalized field strength F satisfy the
equation:

e−AĴ ∧ F̂ = tan θ
(
e2A

2
Ĵ ∧ Ĵ − 1

2
F̂ ∧ F̂

)
. (3.3)

In (3.3) we have included the warp factor eA in (2.13) and the constant θ is specified by
the supersymmetry conditions for a given supergravity background solution [32]. These
conditions are equivalent to the requirement that the D7-brane configuration is a local
energy minimum, and in the fluxless case are equivalent to the condition that Σ4 is a
minimal surface.

F̂ must also satisfy a modified Bianchi identity:

dF̂ = Ĥ3 , (3.4)

where Ĥ3 is the pull-back of H3 = dB2. Equation (3.4) arises from the definition of F̂
when the gauge field strength by itself is closed and is necessary to guarantee cancellation
of the global anomaly for open fundamental strings ending on the D7 branes [34]. Taken
together, the condition (3.4) and the supersymmetry conditions are sufficient conditions
for the equations of motion from the D7 brane action to be satisfied.

In the case of the warped deformed conifold, the parameter θ is zero and the condition
(3.3) simplifies to

Ĵ ∧ F̂ = 0 , (3.5)

F̂ satisfying (3.5) is said to be “primitive.” An alternative and very useful interpretation
[32] for conditions (3.2) and (3.5) is that the generalized field strength F̂ is anti-selfdual:

F̂ = − ∗4 F̂ , (3.6)

where the Hodge star operation ∗4 is taken with respect to the induced metric on the four
cycle.

In terms of complex embedding coordinates {zi}, J and B2 are manifestly (1, 1). There-
fore in the absence of the magnetic field F2, F is also of the type (1, 1) satisfying the
supersymmetry condition Eqn. (3.2).

4. Supersymmetric D7 Embeddings in the Conifold

In this section we shall examine several holomorphic D7-brane embeddings in the singular
conifold that have appeared in the literature. In the absence of background H-flux, the
only requirement for a D7-brane to be supersymmetric is holomorphy of its embedding
equation. Several such holomorphic embeddings have been proposed, and in the singular
conifold limit, the κ-symmetry conditions are trivially satisfied, and in some cases the
supercharges have been explicitly constructed [37]. However, the supersymmetry conditions
are more complicated when H-flux is turned on, and our goal in this section is to explore
this situation in detail.
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We will focus first on linear holomorphic embeddings in the interest of simplicity.
There are two natural classes of linear embeddings, given by either the description of the
conifold in terms of the zi coordinates or the wi coordinates. The embedding z1 = µ was
studied in detail in [27] and it satisfies the supersymmetry conditions (3.5) even on the
deformed conifold without needing any additional world volume flux. Curiously, among
the commonly studied classes of embeddings it appears to be the only one that does not
require a flux.

Another simple class of linear embeddings was introduced in [28] and is most naturally
expressed in the wi coordinates as, for example, w1 = µ. When nontrivial H-flux is turned
on, this embedding is not supersymmetric without also turning on the world volume field
strength F2. We will exhibit the necessary flux, thus demonstrating that this class of
D7-branes can in fact be made supersymmetric. To make the calculations tractable we
have taken the large-radius (KT) limit of the warped deformed conifold, but it would be
interesting to study these branes in the full KS geometry as well.

In the following section we will refer to the relevant D7-branes as being in either
the “z-embedding” or the “w-embedding”, depending on the natural coordinates of the
embedding equation. Having understood the simplest D7-brane embeddings, we will also
see that many other more complicated embeddings will require worldvolume flux to be
supersymmetric.

4.1 z-Embedding

We begin by considering the embedding for the deformed conifold proposed in [27]

z4 = µ , µ ∈ C . (4.1)

This embedding breaks the SO(4) isometry group of the deformed conifold down to the
SO(3) which rotates {z1, z2, z3}. It was shown to be supersymmetric in the deformed
conifold for real µ [27]. We review the calculation here, generalizing as well to complex µ.

In order to check the supersymmetric condition (3.3), the pull back of the NS-NS B-field
for this embedding can be obtained from

η̂1 = η1z4=µ = B11̄dz1 ∧ dz̄1 +B12̄dz1 ∧ dz̄2 +B21̄dz2 ∧ dz̄1 +B22̄dz2 ∧ dz̄2 , (4.2)

where the various components are given by:

B11̄ = −|z3|−2(z1z̄3 − z3z̄1)(z2µ̄− z̄2µ) ,

B12̄ = (z3µ̄− z̄3µ) + |z3|−2 (z1z̄3(z1µ̄− z̄1µ) + z̄2z3(z2µ̄− z̄2µ)) ,

B21̄ = −(z3µ̄− z̄3µ)− |z3|−2 (z̄1z3(z1µ̄− z̄1µ) + z2z̄3(z2µ̄− z̄2µ)) ,

B22̄ = |z3|−2(z2z̄3 − z3z̄2)(z1µ̄− z̄1µ) ,

and
z3 =

√
(ε2 − µ2)− (z2

1 + z2
2) . (4.3)
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The components of the Kähler two-forms J are given by:

η̂5 = η5(z4=µ) = J ′11̄ dz1 ∧ dz̄1 + J ′12̄ dz1 ∧ dz̄2 + J ′21̄ dz2 ∧ dz̄1 + J ′22̄ dz2 ∧ dz̄2 , (4.4)

η̂4 = η4(z4=µ) = J ′′11̄ dz1 ∧ dz̄1 + J ′′12̄ dz1 ∧ dz̄2 + J ′′21̄ dz2 ∧ dz̄1 + J ′′22̄ dz2 ∧ dz̄2 . (4.5)

Here the various functions are given by:

J ′11̄ = 1 +
|z1|2

|z3|2
, J ′22̄ = 1 +

|z2|2

|z3|2
, J ′12̄ =

z1z̄2

|z3|2
, J ′21̄ =

z̄1z2

|z3|2
. (4.6)

J ′′11̄ = −(z1z̄3 − z3z̄1)2

|z3|2
, J ′′22̄ = −(z2z̄3 − z3z̄2)2

|z3|2
, J ′′12̄ = J ′′21̄ = −(z1z̄3 − z3z̄1)(z2z̄3 − z3z̄2)

|z3|2
.

(4.7)
By either tedious or computer assisted algebra, one now obtains

η̂5 ∧ η̂1 = 0 , (4.8)

η̂4 ∧ η̂1 = 0 . (4.9)

From equations (4.8) and (4.9), we can confirm that the SUSY condition (3.3) is satisfied
by the holomorphic embedding (4.1), as noticed in [27]. Moreover as F̂ = B̂2, the Bianchi
identity (3.4) is also trivially satisfied.

4.2 w-Embedding

Let us now consider the holomorphic embedding given in [28]:

w1 =
z1 + iz2√

2
= µ , µ ∈ C . (4.10)

This embedding breaks the SO(4) ∼= SU(2)× SU(2) rotational symmetry of the deformed
conifold to the U(1) subgroup which rotates w3 and w4 by opposite phases. By combining
(4.10) with the defining equation of the deformed conifold, we can also deduce that

w2 =
z1 − iz2√

2
=
ε2 − (z2

3 + z2
4)

2µ
, (4.11)

which leaves us only {z3 , z4} or {w3 , w4} and their complex conjugates as the independent
variables parameterizing the four cycle wrapped by the D7 brane. In this case we shall first
demonstrate that supersymmetry is broken and then using numerical methods construct
the additional world volume flux which restores it.

To check the supersymmetry condition (3.5), the pull-back of the NS-NS two form field
B̂2 = b(ρ)η̂1 can be obtained by calculating

η̂1 = η1(w1=µ) = B33̄ dz3 ∧ dz̄3 +B34̄ dz3 ∧ dz̄4 +B43̄ dz4 ∧ dz̄3 +B44̄ dz4 ∧ dz̄4 , (4.12)
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where the various components are:

B33̄ = i

{
(z4z̄3 − z3z̄4)

(
1 +
|z3|2

|µ|2

)
+
z3z4√

2µ
(z̄1 + iz̄2)− z̄3z̄4√

2µ̄
(z1 − iz2)

}
, (4.13)

B34̄ = i

{
(z4z̄3 − z3z̄4)

(
z3z̄4

|µ|2

)
− i(z1z̄2 − z̄1z2) + (|z3|2 + |z4|2)− z2

3√
2µ

(z̄1 + iz̄2)− z̄2
4√
2µ̄

(z1 − iz2)
}
,

(4.14)

B43̄ = i

{
(z4z̄3 − z3z̄4)

(
z4z̄3

|µ|2

)
+ i(z1z̄2 − z̄1z2)− (|z3|2 + |z4|2) +

z2
4√
2µ

(z̄1 + iz̄2) +
z̄2

3√
2µ̄

(z1 − iz2)
}
,

(4.15)

B44̄ = i

{
(z4z̄3 − z3z̄4)

(
1 +
|z4|2

|µ|2

)
− z3z4√

2µ
(z̄1 + iz̄2) +

z̄3z̄4√
2µ̄

(z1 − iz2)
}
. (4.16)

Notice that η̂1 is now only invariant under the U(1) subgroup, and the invariance can be
made manifest by changing into the coordinates {w3, w4, w̄3, w̄4}.

The components for the pull-back of the Kähler form Ĵ = K′(ρ)η̂5 +K′′(ρ)η̂4 can also be
obtained by calculating:

η̂5 = η5(w1=µ) = J ′33̄ dz3 ∧ dz̄3 + J ′34̄ dz3 ∧ dz̄4 + J ′43̄ dz4 ∧ dz̄3 + J ′44̄ dz4 ∧ dz̄4 , (4.17)

η̂4 = η4(w1=µ) = J ′′33̄ dz3 ∧ dz̄3 + J ′′34̄ dz3 ∧ dz̄4 + J ′′43̄ dz4 ∧ dz̄3 + J ′′44̄ dz4 ∧ dz̄4 . (4.18)

Here the various functions are given by:

J ′33̄ = 1 +
|z3|2

|µ|2
, J ′44̄ = 1 +

|z4|2

|µ|2
, J ′34̄ =

z3z̄4

|µ|2
, J ′43̄ =

z4z̄3

|µ|2
. (4.19)

J ′′33̄ = S3S̄3 , J ′′34̄ = S3S̄4 , J ′′43̄ = S4S̄3 , J ′′44̄ = S4S̄4 , (4.20)

S3 = z̄3 −
(ε̄2 − (z̄2

3 + z̄2
4))z3

2|µ|2
, S4 = z̄4 −

(ε̄2 − (z̄2
3 + z̄2

4))z4

2|µ|2
. (4.21)

Similarly, η̂4 and η̂5 are now only invariant under the U(1) isometry rotating the phase
of w3/w4. Given the expressions for B̂2, and the pull-back of the Kähler form J for the
embedding (4.10), we can now calculate the wedge products explicitly and check if the
supersymmetric condition (3.3) is satisfied. Let us calculate them in turn:

η̂5 ∧ η̂1 = i
(z3z̄4 − z4z̄3)

|µ|2
(
|z1|2 + |z2|2 + |z3|2 + |z4|2

)
dΩ

= −
|ε|4 sinh ρ cosh ρ sin

(
θ1+θ2

2

)
sin
(
θ1−θ2

2

)
|µ|2

dΩ (4.22)

with dΩ = dz3∧dz4∧dz̄3∧dz̄4, and we have used the explicit coordinates on the deformed
conifold given in Appendix A. Notice that the overall expression in (4.22) is in fact real as
i(z3z̄4 − z4z̄3) = 2Im(z4z̄3). Similarly

η̂4 ∧ η̂1 = − i(z3z̄4 − z4z̄3)
|µ|2

4∑
i 6=j=1

(ziz̄j − zj z̄i)2dΩ

= −
|ε|6 sinh3 ρ sin

(
θ1+θ2

2

)
sin
(
θ1−θ2

2

)
|µ|2

dΩ . (4.23)
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Here we notice that the summation in (4.23) is in fact positive definite, since each term
in the summation (including the negative sign) is nothing but (Im(ziz̄j))2. Combining
(4.22) and (4.23), we can finally write down the expression for Ĵ ∧ B̂2 (including the scalar
functions):

Ĵ ∧ B̂2 = −K′(ρ)b(ρ)
|ε|4 sin

(
θ1+θ2

2

)
sin
(
θ1−θ2

2

)
3|µ|2

sinh2 ρ

(
5 + cosh(2ρ)
sinh(2ρ)− 2ρ

)
dΩ , (4.24)

where the scalar functions K′(ρ) and b(ρ) are as given in (2.32) and (2.31). The expres-
sion (4.24) is manifestly non-vanishing and we conclude that in the absence of additional
worldvolume flux F2, supersymmetry is broken.

4.3 Restoring Supersymmetry with Worldvolume Flux

Because B̂2 is not primitive, it is clear that D7-branes in the w-embedding are not su-
persymmetric without the addition of worldvolume flux. In this section we will attempt
to construct the necessary flux. After setting up the problem, we explore the asymptotic
behavior of the flux in sections 4.3.1-4.3.4 before turning to a numerical solution in section
4.3.5. The results are summarized in section 4.3.6. Part of our solution agrees in appropri-
ate asymptotic regimes with a previous proposal in [35], with some corrections which we
describe in detail.

Our strategy is to first find a basis of 2-forms on the D7 worldvolume which are (1,1)
and primitive. Then we take a linear combination of these forms and impose the Bianchi
identity, which gives a system of partial differential equations for the coefficients of the
basis forms, and we proceed to solve this system.

To make the calculations more tractable we will suppose the parameter µ is much
greater than the deformation parameter ε so that we may work in the KT region of the
deformed conifold. In this region, the background geometry is simply that of the warped
conifold with no deformation but with nontrivial background fluxes. The advantage of
taking this limit lies in the symmetries of the background. In taking w1 = µ on the
deformed conifold the isometries of T 1,1 are broken down to a single U(1), but in the KT
limit the isometry is U(1)×U(1). In addition to the U(1) on the deformed conifold which
rotates w3 and w4 by opposite phases, there is an extra U(1) in the KT region which acts
as w2 → e2iαw2, w3 → eiαw3, w4 → eiαw4. The U(1)2 isometry implies that instead of
having a four-variable problem, we can use the isometry to eliminate the azimuthal angles,
reducing our problem to a problem of two spatial variables.

It is useful to express our embedding in terms of explicit coordinates on the conifold.
Upon restricting to w1 = r3/2ei/2(ψ−φ1−φ2) sin θ1

2 sin θ2
2 = µ, we see that we may eliminate

r =

(
µ

sin θ1
2 sin θ2

2

)2/3

, ψ = φ1 + φ2, (4.25)

and take µ to be real. In terms of these angular coordinates, large r corresponds to θi → 0
and when θ1 = θ2 = π we are at the minimal radius to which the D7-brane extends.
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When pulled back to the locus w1 = µ, the Ωij in (2.6) may be written as

Ω11 = −2iµ2 dw4 ∧ dw̄4

(|w4|2 + µ2)2
(4.26)

Ω22 = −2iµ2 dw3 ∧ dw̄3

(|w3|2 + µ2)2
(4.27)

Ω12 + Ω21 = −2iµ2w3w̄4dw4 ∧ dw̄3 + w4w̄3dw3 ∧ dw̄4

|w3||w4|(|w3|2 + µ2)(|w4|2 + µ2)
(4.28)

To check primitivity, we need the Kahler form (up to a factor) pulled back to the D7 brane
worldvolume :

Ĵ ∝ Q1Ω11 +Q2Ω22 + cot
θ1

2
cot

θ2

2
(Ω12 + Ω21) (4.29)

where

Qi =
3
2

+ cot2 θi
2
. (4.30)

There are two simple anti-self-dual (1,1) forms which are relevant to us:

X1 = Ω11 +
1
2

tan
θ1

2
tan

θ2

2
Q2 (Ω21 + Ω12) (4.31)

X2 = Ω22 +
1
2

tan
θ1

2
tan

θ2

2
Q1 (Ω21 + Ω12) (4.32)

There is also a third anti-self-dual (1,1) form, but it plays no role in the later calculations:

X3 = dθ1 ∧ dθ2 − sin θ1 sin θ2dφ1 ∧ dφ2. (4.33)

It is not hard to see that any component of X3 in F̂ will either induce a violation of the
Bianchi identity or will be singular.

We can take the following linear combinations of X1 and X2 which have nice properties:

P = Q1X1 −Q2X2 = Q1Ω11 −Q2Ω22 , (4.34)

Q = X1 −X2 . (4.35)

The form P is closed, dP = 0, while Q has a particularly simple exterior derivative:

dQ =
dθ1

sin θ1
∧ Ω22 −

dθ2

sin θ2
∧ Ω11 . (4.36)

We will use P and Q as basis two-forms for the worldvolume flux, and search for an
anti-self-dual form F̂ = α(θ1, θ2)P + β(θ1, θ2)Q which satisfies the Bianchi identity. It is
enlightening to write the forms P,Q explicitly in complex coordinates:

P

2iµ2
=
(

3
2

+
|w3|2

µ2

)
dw3 ∧ dw̄3

(|w3|2 + µ2)2
−
(

3
2

+
|w4|2

µ2

)
dw4 ∧ dw̄4

(|w4|2 + µ2)2
(4.37)

Q

2iµ2
=

dw3 ∧ dw̄3

(|w3|2 + µ2)2
− dw4 ∧ dw̄4

(|w4|2 + µ2)2

+
(

µ2

|w3|2
− µ2

|w4|2

)
w3w̄4dw4 ∧ dw̄3 + w4w̄3dw3 ∧ dw̄4

(|w3|2 + µ2)(|w4|2 + µ2)
(4.38)
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By counting powers of w3,4, we see that in the limit w3, w4 →∞, Q is non-singular while P
is potentially log-singular. On the other hand, when w3 or w4 vanishes, P is non-singular
while Q can be log-singular.

If one prefers to parameterize the D7-brane worldvolume by the angular coordinates
(θ1, φ1, θ2, φ2), the basis forms may be written as

P =
(

3
2

+ cot2 θ1

2

)
dθ1 ∧ sin θ1dφ1 −

(
3
2

+ cot2 θ2

2

)
dθ2 ∧ sin θ2dφ2 (4.39)

Q =
1
2

(
tan

θ1

2
cot

θ2

2
− cot

θ1

2
tan

θ2

2

)
(dθ2 ∧ sin θ1dφ1 + dθ1 ∧ sin θ2dφ2)

+dθ1 ∧ sin θ1dφ1 − dθ2 ∧ sin θ2dφ2. (4.40)

Let us now turn to the Bianchi identity which F̂ must satisfy. The B-field in the
Klebanov-Tseytlin geometry is B2 = 3gsMα′

2 log r
r0
ω2, so that pulling back H3 = dB2 to the

D7-brane worldvolume we have

dF̂ = Ĥ3 = −gsMα′

2

(
cot

θ1

2
dθ1 + cot

θ2

2
dθ2

)
∧ ω2 (4.41)

Plugging in the ansatz F̂ = α(θ1, θ2)P+β(θ1, θ2)Q, we obtain a first-order system of partial
differential equations for α(θ1, θ2) and β(θ1, θ2):

∂θ1α = − S

Q2
∂θ2β −

1
Q2

∂θ1β +
1

Q2 sin θ1
β +

k

Q2
cot

θ1

2
,

∂θ2α =
S

Q1
∂θ1β −

1
Q1

∂θ2β +
1

Q1 sin θ2
β +

k

Q1
cot

θ2

2
. (4.42)

where we have

S =
cos θ2 − cos θ1

sin θ1 sin θ2
, k = −gsMα′

4
. (4.43)

This system of differential equations is challenging to solve but we will show that
numerical methods combined with some analytic tricks will allow us to find a solution.
The system with two functions can be converted to a second order partial differential
equation for the function β(θ1, θ2) by differentiating and eliminating ∂θ1∂θ2α. Explicitly,
the second order equation of interest takes the form[

∂θ1
S

Q1
∂θ1 + ∂θ2

S

Q2
∂θ2 − ∂θ1

1
Q1

∂θ2 + ∂θ2
1
Q2

∂θ1 +
1

Q1 sin θ2
∂θ1 −

1
Q2 sin θ1

∂θ2

+
1

sin θ2
∂θ1

(
1
Q1

)
− 1

sin θ1
∂θ2

(
1
Q2

)]
β(θ1, θ2)

= −k
(

cot
θ2

2
∂θ1

(
1
Q1

)
− cot

θ1

2
∂θ2

(
1
Q2

))
. (4.44)

Our main task in the following subsections will be to solve this complicated equation.
Once we have solved for β(θ1, θ2), we can then find the second function α(θ1, θ2) by

the following procedure. From the system (4.42), we construct the quantity (∂2
θ1

+ ∂2
θ2

)α.
This procedure results in a standard Poisson-type equation for α(θ1, θ2) with a complicated
source term which depends on the function β(θ1, θ2).
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4.3.1 Boundary Conditions and Finiteness

Before turning to the numerical analysis of the flux equations, we need to identify the
boundary conditions which we expect the function β(θ1, θ2) to satisfy (Recall that the
angular coordinates are defined over the range (0, π).) We claim that there is a unique set
of physical boundary conditions on the supersymmetry-restoring flux. For the function β,
the boundary conditions turn out to be compatible in a certain large-radius limit with the
proposal of Benini [35].

The primary physical constraint on β is that we expect its contribution to the flux,
βQ, to be finite. One then finds that the allowed boundary behavior of β is tied to the
asymptotic properties of the two-form Q. There are three important regimes to consider:

• θ1 = π or θ2 = π: When one or the other of the angles θi = π, the only physical
choice of boundary conditions is Dirichlet:

β(π, θ2) = β(θ1, π) = 0. (4.45)

The simplest argument for this comes from examining the basis two-form Q in (4.38).
For example, in the limit θ1 → π, we have |w4| → 0 so the basis form Q exhibits a
logarithmic divergence. To exclude this singular flux, we must set β = 0.

• θ2 → 0 with θ1 > 0, or vice versa: In this limit, |w4| → ∞ with |w3| finite, and
one sees from (4.38) that Q is O(1). Thus the only constraint in this limit is that β
is finite.

• θ1, θ2 → 0 simultaneously: In this limit, Q actually vanishes as 1/|w|2, with
|w3,4| → ∞. Then finiteness of the flux only requires that β grows no faster than

1
sin4 θi

as θi → 0.

To specify the large radius (small θ) boundary conditions precisely, we will now study the
second and third limiting cases in detail. The second case may be usefully regarded as a
“factorization” limit in which the D7-brane worldvolume splits into two branches. Along
one branch we have θ1 → 0 and along the other, we have θ2 → 0. The two branches connect
when both θ1, θ2 → 0, corresponding to the third case, which represents an “interpolating”
limit between the two branches.

For the second function α, the associated asymptotics may be studied similarly. The
basis form P is regular in the interior of the D7-brane worldvolume, but has logarithmic
singularities when θ1 or θ2 vanishes. This logarithm is physically acceptable, as it is
compatible with the log growth of the fluxes in the KT solution. Therefore when either
angle vanishes, we require that α grows no faster than log r. On the other hand, in the
interior of the brane, we expect α to be finite.

4.3.2 Large Radius “Factorization” Limit

Let us take the limit θ2 → 0, with θ1 held fixed. The various terms in (4.44) have the
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behavior

S → tan
θ1

2
1
θ2

(4.46)

Q2 →
4
θ2

2

(4.47)

Multiplying the equation for β by θ2 and taking the limit as θ2 → 0, we see that (4.44)
reduces to the following, discarding terms of order θ2

2:[
∂θ1

1
Q1

tan
θ1

2
∂θ1 +

1
4

tan
θ1

2
θ2∂θ2θ2∂θ2 − ∂θ1

1
Q1

θ2∂θ2 +
1
Q1

∂θ1 + ∂θ1

(
1
Q1

)]
β

= −2k∂θ1

(
1
Q1

)
(4.48)

Unfortunately this differential equation is not separable, but it does have homogeneous
scaling with θ2 – all terms are of zeroth order.

In the previous subsection we argued that in this limit β should be finite. Thus the
leading small θ2 behavior should be for β to be constant as a function of θ2. The equation
(4.48) simplifies to

∂θ1
1
Q1

tan
θ1

2
∂θ1β + ∂θ1

(
β

Q1

)
= −2k (4.49)

and the solution is

β = −2k +
c1

2 sin2 θ1
2

(
cos θ1 − 8 log sin

θ1

2

)
+

c2

2 sin2 θ1
2

(4.50)

with two integration constants which we need to determine. We may fix one constant
by requiring consistency with the Dirichlet boundary condition β(θ1 = π) = 0, which is
satisfied if

−2k − c1

2
+
c2

2
= 0. (4.51)

We will be able to obtain a second constraint after we have performed the analysis in the
next subsection.

Now we can substitute into the first order equations to solve for α. In the small θ2

limit these reduce to

∂θ1α = −1
4

tan
θ1

2
θ2∂θ2β (4.52)

θ2∂θ2α =
tan θ1

2

Q1
∂θ1β −

1
Q1

θ2∂θ2β +
1
Q1

β +
2k
Q1

. (4.53)

The first equation reduces in our limit to ∂θ1α = 0 because β is independent of θ2. The
second equation with β plugged in gives α ∼ −2c1 log θ2.
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4.3.3 Large Radius “Interpolating” Limit

When θ1 and θ2 are simultaneously small, the asymptotic analysis of section 4.3.2 breaks
down. For example, there can be terms of the form θ2

θ1
which we discarded in the strict θ2 →

0 limit but are order one when the two angles are small simultaneously. This immediately
raises the question of whether it is possible for the solutions along the two branches θ1 = 0
and θ2 = 0 to be mutually consistent when both angles are small, so that the flux smoothly
interpolates between the two branches. In the following analysis we answer this question
in the affirmative.

To proceed, we have found the following change of variables to be useful:

u = − log
(

sin
θ1

2
sin

θ2

2

)
(4.54)

v = log

(
sin θ1

2

sin θ2
2

)
(4.55)

where u is clearly related to the original radial coordinate r as in (4.25) The natural limit
to take with both of the θi small is simply

u→∞ , v held fixed. (4.56)

Now we turn to the decoupled second order equation (4.44) for β, in the u and v

coordinates. We may expand the resulting equation in powers of e−u for large u, in the
form (

O0 + e−uO1 + e−2uO2 + . . .
)
β = g0 + e−ug1 + . . . (4.57)

with homogeneous and inhomogeneous parts separated. It is tedious but straightforward to
find (multiplying the equation obtained from (4.44) by an overall factor to reduce clutter)

O0 =
∂2

∂v2
+ 2 coth v

∂

∂v
+ 1 (4.58)

O1 =
cosh v

4

(
3
∂2

∂u2
− 2

∂

∂u
− ∂2

∂v2

)
+

3
2

sinh v
∂2

∂u∂v

−1
2

(
7 sinh v +

1
sinh v

)
∂

∂v
− 2 cosh v (4.59)

g0 = −2k (4.60)

g1 = 4k cosh v (4.61)

In principle one can now expand β in powers of e−u and construct a solution iteratively,
order by order in e−u.

At the zeroth order in the expansion, we encounter a small surprise: in the large u
limit, the leading homogeneous part of the equation for β reduces to an ordinary differential
equation,

O0βh = 0. (4.62)
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This equation is easily solved:

βh = f1(u)
v

sinh v
+ f2(u)

1
sinh v

(4.63)

Demanding that β is non-singular at v = 0 sets f2 = 0.
At leading order, f1(u) can be any function of u, but in the full solution its form

must be compatible with all the other asymptotics we have identified. This eliminates
most possibilities for f1. For example, a natural ansatz one might try is to set β =
−2k + f1(u) v

sinh v +O(e−u) with f1(u) of zeroth order in e−u, so that the leading homoge-
neous solution and the leading particular solution are of the same order. However, a little
manipulation shows that this ansatz must be wrong, because the homogeneous part van-
ishes when v → ±∞. The resulting function cannot possibly satisfy the Dirichlet boundary
condition (4.45).

What we need is a form for the function f1(u) so that the homogeneous piece βh
approaches a constant in the limit u→∞, v → ±∞ (which corresponds to (θ1, θ2)→ (0, π)
or (π, 0). There is only one such function which suffices, up to subleading terms:

βh = beu
(

1
u

v

sinh v

)
+ . . . (4.64)

Note that the growth of this βh for u→∞ is sufficiently slow to be physically acceptable, as
determined in section 4.3.1. At the next order in e−u, we find that the system of equations
is solved by

β = βh − 2k +O(1/u) (4.65)

We will fix the coefficient b in the next subsection.
Let us now turn our attention to the second function α. The coupled first order

equations for α and β in the u and v variables, expanded to leading order in e−u, are:

∂uα = −e−u (cosh v (∂uβ + β + 2k) + 2 sinh v∂vβ) (4.66)

∂vα = −e−u (cosh v∂vβ + sinh v(β + 2k)) (4.67)

To leading order at large u (and including the first subleading term in 1/u), this is solved
by

α = α0 − 2b log u− bv coth v
u

+O(1/u2) (4.68)

Because the basis form P was closed by itself, α can always be shifted by a constant α0.
One curious feature of the function β which is clear from the large-u expansion is

that the first subleading term for small θ2 depends as 1/ log(sin θ2
2 ); in radial coordinates

this appears as 1/ log(r) rather than as a power of r. The function 1/ log(sin θ2
2 ) has the

amusing property that although it vanishes when θ2 → 0, its first derivative with respect
to θ2 diverges. We will make use of this subleading behavior in the next section.
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4.3.4 Consistent Boundary Conditions and Subleading Asymptotics

Having found asymptotic solutions in two different large radius regimes, we now must check
that these solutions are mutually consistent. Along the way, we will need to compute the
next-to-leading asymptotic behavior of the solutions to our PDEs.

The first additional consistency requirement will fix the ambiguity we left in (4.50).
There we had two integration constants, c1 and c2, with one relation given by demanding
consistency with the “small radius” Dirichlet boundary condition. To fix the second inte-
gration constant, we can take the simultaneous limit θ1 → 0 and θ2 → 0 (recall that we
have solved for the exact θ1 dependence in the small θ2 limit) and then compare with the
results of the “interpolating” asymptotic; the results should agree. For the limit of small
θ2, we can take (4.50) with (4.51) imposed to find

β ∼ −(2k + c1)

(
1− 1

sin2 θ1
2

)
− 4c1

sin2 θ1
2

log sin
θ1

2
(4.69)

whereas for (4.65) written in the angular coordinates, we find

β ∼ 2b
sin2 θ1

2

(
1− 2

log sin θ1
2

log sin θ2
2

)
− 2k (4.70)

(In (4.69) and (4.70) the∼ is meant to imply that subleading terms of order
(

log sin θ2
2

)−1
have

been dropped, although we have retained a term proportional to log sin
θ1
2

log sin
θ2
2

.) Demanding that

the terms proportional to a constant times 1

sin2 θ1
2

and log sin
θ1
2

sin2 θ1
2

are in agreement sets 1

c1 = 0 (4.71)

b = k. (4.72)

Note that with c1 = 0, we have

β = 2k cot2 θ1

2
(4.73)

in the leading small θ2 limit. This asymptotic for β are identical to the proposal of [35].
The interested reader will find a comparison of our notations in Appendix D.

To obtain a more detailed matching, and to see the leading nontrivial behavior of α, we
must go on to the first subleading order. Expanding in the natural expansion parameter,
1/ log θ2, we write

β = −2k + β0 +
β1

log θ2
+

β2

log2 θ2

+ . . . (4.74)

1One slightly subtle point is that in the factorization limit θ2 → 0, in principle we should also collect

contributions at all orders of en(v−u), from the point of view of the interpolating asymptotic. However, the

additional contributions which we drop are not proportional to 1

sin2 θ1
2

so they do not affect the matching

of these particular terms.
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The function β0 was given in (4.73) and the solution for β1 has the same form:

β1 =
c3

2 sin2 θ1
2

(
cos θ1 − 8 log sin

θ1

2

)
+

c4

2 sin2 θ1
2

. (4.75)

As with the leading order, we set the two integration constants as follows. One constant
is set by demanding consistency with the small radius Dirichlet condition and the second

is set by comparing with the term proportional to log sin
θ1
2

log sin
θ2
2

sin2 θ1
2

in (4.70) (the other terms

cannot be matched directly without working at higher order in the large-u expansion,
because we have discarded 1/u corrections in βh which can shift these terms.) These two
constraints set

c3 = c4 = k. (4.76)

so

β1 =
k

sin2 θ1
2

(
cos2 θ1

2
− 4 log sin

θ1

2

)
(4.77)

Now, to find the leading behavior of α, we plug into the the equations (4.52), (4.53)
and solve. The answer is analytic but somewhat complicated:

α = α0 − 2k log
∣∣∣∣log

θ2

2

∣∣∣∣+
k

log2 θ2

(
− log2 sin

θ1

2
+ 2 log sin

θ1

2
log cos

θ1

2

+
1
2

log sin
θ1

2
+

1
2

Li2(sin2 θ1

2
)
)

(4.78)

The leading log log is consistent with the behavior in the large-u limit of (4.68), but its
appearance is perhaps a bit surprising from the perspective of the “factorization” limit
in Section 4.3.2. In the factorization limit, at leading order the log log is not necessary to
solve the field equations (although it could have been included), but it is actually necessary
to include it to solve consistently at first subleading order.

4.3.5 Numerical Solution

In this subsection we construct a numerical solution for the functions α and β characterizing
the D7-brane worldvolume flux; the numerical computation gives strong evidence that the
D7-branes in the w-embedding are supersymmetric with the addition of this flux.

In the preceding analysis, we identified a self-consistent set of asymptotic solutions
for the differential equation (4.44). The task that remains is for us to show that these
asymptotics correspond to a smooth solution over the entire worldvolume of the D7-brane.

Under more fortunate circumstances, we would be able to invoke existence and unique-
ness theorems for solutions of this PDE, and the task of showing that the D7-brane is
supersymmetric would be complete. As it happens, the mathematical problem we must
solve is not of a standard type. The second-order PDE for β is elliptic through most of its
domain, but it fails to be elliptic on the line θ1 = θ2, where the equation vanishes identically
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(recall that the second order equation was obtained by differentiating and subtracting the
first order equations.) We are not aware of general theorems for this type of equation2.

In lieu of an abstract existence proof, we will attempt to demonstrate the existence of
a solution numerically, employing a finite element method. Strictly speaking, this method
is only guaranteed to converge for elliptic problems, but we will proceed anyway under the
assumption that near-ellipticity is enough. The danger that we face is that along the line
θ1 = θ2 where ellipticity fails, everything is a solution, including spurious behavior, and
the numerics can potentially be quite unstable.

We have used the publicly available FreeFEM++ package [36] to perform the numerical
calculations. This software uses the variational, or “weak” formulation of the finite-element
problem. We use the default UMFPACK algorithm. In the calculations shown below, we
have used a mesh with 2558 vertices, and we have checked by varying the mesh that the
solutions we obtain are not mesh-dependent.

A trick that is useful in taming the spurious solutions of our non-elliptic PDE is to
impose Dirichlet boundary conditions whenever possible. Fortunately the asymptotic anal-
ysis of the preceding subsections allows us to do precisely this. The boundary conditions
we have chosen are that β vanishes when either angle θi = π as in (4.45) and along the
boundary where θi → 0 we require that β is given by the asymptotic form in (4.65) with
b = k as determined by the analysis in section 4.3.4.

Although the flux due to β is finite, in our formulation the function β diverges as θ1

and θ2 simultaneously vanish, so we have solved instead for a rescaled function γ defined
by

γ(θ1, θ2) =
(

1− cos2 θ1

2
cos2 θ2

2

)
β(θ1, θ2). (4.79)

which does not have this singular behavior. We also impose a small cutoff, θi > θc = 10−7

to prevent problems with division by zero. To be specific, our boundary conditions for γ
take the form

γ(θ1, π) = γ(π, θ2) = 0 (4.80)

γ(θ1, θc) = −2k +
2k

sin2 θ1
2

log sin θc
2 − log sin θ1

2

log sin θc
2 + log sin θ1

2

(4.81)

γ(θc, θ2) = −2k +
2k

sin2 θ2
2

log sin θc
2 − log sin θ2

2

log sin θc
2 + log sin θ2

2

(4.82)

This form was chosen to agree with the asymptotic solution (4.73) in the limit θc → 0 and
to be compatible with the solution (4.65) in the “interpolating” limit.

The result for γ is shown in Figure 1. We see that the gradient of γ appears to grow
near the boundaries θi → 0, consistent with the subleading asymptotic dependence 1/ log θi.

2Incidentally, the fact the we obtained an ordinary differential equation rather than a PDE in the limit

of section 4.3.3 was a sign of this degeneracy. Sometimes it is possible for such a degenerate equation to be

rendered elliptic by cleverly dividing by zero, but in this case it is not clear to us that such a technique is

applicable, as it would make the asymptotic ODE (4.62) singular.
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Figure 1: The γ component of the flux, as found by a numerical calculation. We have set k = 1.

Near the origin, this effect becomes more pronounced; we believe it reflects the behavior
of the subleading asymptotics in the θi coordinates and does not represent a physical
singularity. The most important thing to take from this diagram is that the solution exists
and it appears to be free of spurious behavior.

For the second function α we have implemented the procedure of constructing a Poisson
equation with a β-dependent source term. The boundary conditions on α are of generalized
Neumann type – the normal derivatives of α must be compatible with the first order system
of equations (4.42). Strictly speaking, these boundary conditions leave our problem slightly
ill-posed, but the ambiguity simply corresponds to shifting α by a constant, which was
expected because the basis form P was closed. Figure (2) shows our result for α. The
mildly singular behavior at the origin appears to be compatible with the log u dependence
expected from (4.68), and near the corner (θ1 = π, θ2 = π) it appears that α flattens out
and approaches a constant.

4.3.6 Summary of Results

Because the calculation of the supersymmetry-restoring flux was quite complicated, let us
pause to summarize the result. The self-dual (1,1) flux can be written as a linear combi-
nation of two basis two-forms P and Q which are defined in (4.35). We have constructed
a full solution numerically which appears to be smooth everywhere in the interior of the
brane worldvolume, and which is presented graphically in Figures (1) and (2).

The fact that our solution for the D7-brane flux is numerical is somewhat unfortunate,
as it makes the flux awkward to use in calculations. However, the numerical solution
does have relatively simple behavior at large and small radius, and we have given analytic
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Figure 2: The α component of the flux, computed numerically in terms of the angles θi. We have
set k = 1.

expressions for the large radius asymptotics. The leading asymptotics are consistent with
the proposal of Benini [35]; we have extended his result by demonstrating that the flux can
be continued over the entire D7-brane worldvolume.

The small radius asymptotics (θ1 ≈ π and θ2 ≈ π simultaneously) are that β = 0 and
α is a constant.

When one angle (say θ2) is taken to be small, the leading behavior of β is

β = 2k cot2 θ1

2
(4.83)

which is consistent with the earlier proposal of [35] (see Appendix D), and α has the leading
behavior

α = α0 − 2k log
∣∣∣∣log

θ2

2

∣∣∣∣ . (4.84)

Here the log log behavior gives a deviation from the result of [35].
When both angles are small, the asymptotic analysis is somewhat different. In terms

of the coordinates defined by (4.54) and (4.55), the leading asymptotic is given by

β = keu
(

1
u

v

sinh v

)
− 2k (4.85)

where we have included the −2k at the first subleading order in e−u, and the leading
asymptotic for α is

α = α0 − 2k log u. (4.86)
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4.4 Other Embeddings

In this subsection we point out that several well-known examples of D7-branes embed-
dings are not supersymmetric without the inclusion of worldvolume gauge flux. It would be
interesting, though presumably quite difficult, to study whether a supersymmetry-restoring
flux exists in each case.

Interestingly, given a holomorphic embedding there is a simple criterion that in many
cases can immediately show that D7 worldvolume flux is necessary for supersymmetry.
When the D7-brane is embedded holomorphically, it is possible to write its embedding
equation in terms of the wi coordinates: g(wi) = 0, say. Then if g(wi) is a polynomial, in
the limit of large radius r one may approximate g(wi) by truncating to its terms of highest
rank. If the resulting homogeneous polynomial contains a factor of one of the wi (up to
an SO(4) rotation), then in the large radius limit the brane embedding admits a branch
which locally looks like the simple w-embedding, which as we have already seen requires a
nontrivial flux to be supersymmetric.

Let us now turn to some examples that have been studied in the literature. The
holomorphic embedding (4.1) admits a generalization that was proposed in [27]

z4 = f
(
z2

1 + z2
2

)
, (4.87)

where f(x) is an arbitrary function of x = z2
1 +z2

2 . However, we may also write x = 2(w1w2),
so if f(x) is a polynomial, then in the large radius limit f ∼ (w1w2)p for some p, and it
may be approximated by p copies of the w1 = 0 and w2 = 0 embeddings. Based on the
argument given above, we would expect this embedding to be non-supersymmetric without
a worldvolume flux, and we have checked this explicitly in Appendix B. A similar argument
applies to the Karch-Katz embedding [25]:

w1w2 =
z2

1 + z2
2

2
= µ2 , µ ∈ C , (4.88)

and the interested reader will find details of the check in Appendix C. Finally, there is an
interesting class of embeddings proposed by Arean et al in [37] given by

4∏
i=1

wpii = µP . (4.89)

This embedding admits a factorization in terms of the wi in the large radius limit, so based
on the examples we have studied so far we expect that it will require a worldvolume flux
to be supersymmetric.

One might hope that, as in the case of the w-embedding, that the necessary worldvol-
ume fluxes might be constructible for more general embeddings – the fact that the flux we
constructed vanishes for the part of the D7-brane that dips into the throat is a promising
sign. The explicit calculations are daunting, however. A general holomorphic embedding
will break all the isometries of the conifold, and the resulting system of equations one would
need to solve to find the flux can be a system of partial differential equations for three func-
tions of four variables. Ideally one would hope for a more abstract proof of existence for
solutions, and we leave this as an interesting but difficult open problem.
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5. Field Theory Remarks

The D7-branes in the warped conifold geometry that we have studied in the previous
section have an interesting interpretation in the dual gauge theory. In this section we make
some remarks about the field theories for the various brane embeddings we have studied
in the earlier part of the paper (For a good review of cascading field theories, see [38].).

When no D7-branes are present, the dual gauge theory of the warped deformed conifold
is a non-conformal field theory with a product gauge group SU(N+M)×SU(N) and matter
fields A1,2, B1,2 which transform in the bifundamental color representations (N + M,N)c
and (N + M,N)c. The theory also has a superpotential

W = λTr(AiBjAkBl)εikεjl. (5.1)

When M = 0, the gauge theory is actually superconformal [39]. Moreover, one can show
that the moduli space of the field theory corresponds to the moduli space of N D3 branes
probing the conifold geometry. To see this, take some number of D3-branes and move
them away from the tip of the conifold by giving expectation values to the fields Ai, Bj .
Imposing the F-term and D-term equations, one discovers that with the identifications

w1 = A1B1, w2 = A2B2, w3 = A1B2, w4 = A2B1 . (5.2)

we recover precisely the defining equation of the conifold (2.7).
WhenM 6= 0, conformal invariance is broken and the theory undergoes renormalization

group flow [19, 31]. Along the RG flow, the two gauge group factors take turns being
strongly coupled; when one of them goes to strong coupling, one can perform a Seiberg
duality which results in a weakly coupled description. Each Seiberg duality causes the gauge
group to change from SU(N +M)× SU(N) to SU(N)× SU(N −M) [40]. Ultimately, in
the far IR, this “cascade” must end, as the gauge group ranks cannot be negative. At that
point, the theory undergoes confinement, and has a dynamically generated scale which is
related to the deformation parameter of the conifold [19].

When we add D7-branes in the gravity theory, the gauge theory is correspondingly
modified by the addition of a number of matter fields charged as fundamentals of the
gauge group. The introduction of additional matter should change the duality cascade
pattern, and it was argued in [28] that the extra matter causes the duality cascade to slow
down as the RG scale decreases.

5.1 Cascade Pattern for z embedding and its Generalizations

The analogue of the KS duality cascade when we include probe branes embedded by
z1 = µ, is actually quite simple, and is manifestly self-similar, as was pointed out in [41].
Although the discussion in this subsection will contain nothing new for experts, for the
sake of explicitness, we review here the cascade analysis.

Because the worldvolume flux can vanish for the supersymmetric z-embedding, it is
reasonable to guess that the appropriate field theory description for the z-embedding in the
KS background differs from that of the singular conifold theory only by changing the ranks
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of the gauge groups from SU(N)× SU(N) to SU(N +M)× SU(N). The superpotential
for the case of one such D7 brane (which one can motivate based on RG flow from a related
orbifold theory [28]) is

Wz1=µ = λ1q(AαBα − µ)q̃ + λ2
(qq̃)2

2
. (5.3)

the additional quarks q and q̃ transform in the (N + M,1) and (N + M,1) representations
of the SU(N + M) × SU(N) gauge group (of course we can also choose q and q̃ to be
charged under the SU(N) gauge group instead.) One check of this superpotential is that
if we probe the theory with a D3-brane, then the quarks, which one can think of as D3-D7
strings, become massless precisely when the probe D3-brane intersects with the D7. The
superpotential has an obvious generalization to the case of K coincident D7-branes. Let us
consider the case where the additional quark q transforms in the (N + M,1) representation,
so that the quark is coupled to the SU(N+M) factor which flows to strong coupling. As in
the case of the regular KS cascade, there are mesonic operators Mαβ = AαBβ, and because
of the added quarks there are also operators which we label as C,D and N :

(Cα)ma = (Aα)mi q̃
i
a , (Dα)am = qai (Bα)im , Na

b = qai q̃
i
b , i = 1 . . . N+M, a , b = 1 , . . . ,K .

(5.4)
These additional SU(N +M)-invariant quantities and along with the original mesons Mαβ

allow us to rewrite the total modified superpotential for the z embedding into:

WTotal = hTr (MαβMγδ) εαγεβδ + λ1Tr(DαCα − µN) + λ2
N2

2
. (5.5)

Now, as the SU(N +M) factor flows to strong coupling, we see that we have Nc = N +M

and Nf = 2N +K, so we are in the conformal window and may perform a Seiberg duality.
Under this duality, the weakly coupled theory with gauge group SU(N−(M−K))×SU(N),
and 2N +K flavors coupled to the SU(N − (M −K)) factor. Notice that in contrast with
the original KS theory, where the difference between the ranks of two gauge groups remain
unchanged throughout the duality cascade, here the difference between the ranks reduces
by K at each step of the cascade. The resulting dual superpotential now receives the
following additional contributions:

1
Ξ

[
Tr(Mαβa

αbβ) + Tr(Cαq′bα) + Tr(Dαa
αq̃′) + Tr(Nq′q̃′)

]
. (5.6)

Here aα and bα are the dual fields for Aα and Bα, under the SU(N − (M −K))× SU(N)
gauge group, they transform as (N− (M−K),N) and (N− (M−K),N) representations
respectively; whereas the K q′ and q̃′s, the dual quarks and anti-quarks for q and q̃ trans-
forms in the (N− (M−K),1) and (N− (M−K),1) representations.

Now, we may integrate out the SU(N − (M −K)) singlets. First, note that one obtains
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the following F-term equations:

Mαβ : 2hεαγεβδMγδ +
1
ξ
aαbβ = 0 , (5.7)

N : λ2N − µ+
1
ξ
q′q̃′ = 0 , (5.8)

Cα : λ1Dα +
1
ξ
q′bα = 0 , (5.9)

Dα : λ1Cα +
1
ξ
aαq̃

′ = 0 . (5.10)

Substituting (5.7)-(5.10) into (5.5) and (5.6), we obtain the superpotential for the weakly
coupled SU(N − (M −K))× SU(N) theory:

WDual = − 1
ξ2

(
1

4h
Tr(aαbβaγbδ)εαγεβδ +

1
λ1
q′
(
bαaα −

ξµ

λ2

)
q̃′ +

1
2λ2

(q′q̃′)2

)
. (5.11)

This superpotential (5.11) has exactly the same functional form (up to field re-definitions
and extra constants) as the original superpotential (5.1) and (5.3), except that the quarks
are charged under the gauge group which flows to weak coupling.

Now let us note that if the additional quarks q, q̃ are coupled to the gauge group that
flows to weak coupling, the analysis proceeds essentially as before, except that it is simpler
because the quarks q and q̃ do not bind to form mesons. After performing a Seiberg
duality on the strongly coupled gauge group, the two gauge groups switch roles again and
the quarks q, q̃ will again be coupled to the gauge group which flows to strong coupling.
Thus after two steps of the cascade, the theory is fully self-similar.

5.2 The vacua for Kuperstein-like Embeddings

As was shown in [27] and reviewed in Section 4.1, the simple z-embedding is supersym-
metric for all µ on the full deformed conifold. Therefore it is interesting to study the case
of a D7-brane embedded by z1 = µ in the extreme infrared (µ ∼ ε), where the conifold
becomes deformed. In this case, the quarks due to the D7-brane have masses of the order
of the confinement scale and can modify the IR dynamics of the theory.

Suppose the number of units of 3-form flux, after having decreased from the D7 back-
reaction, is M∗3. To investigate the moduli space of the theory, we use the standard trick
of probing the theory by adding a single mobile D3-brane. The gauge group on the D3
brane probe is SU(M∗ + 1) × U(1), and we have matter fields aα and bα transforming
respectively in (M∗ + 1,1) and (1,M∗ + 1) representations, moreover we also have an
additional quark q′ coming from 3-7 string transform in (M∗ + 1,1). By self-similarity,
the UV superpotential on the probe here is essentially identical to (5.11), but with the
fields and the parameters modified accordingly. At low energy, the UV superpotential can

3The explicit value M∗ can be deduced from the pattern of the flavor cascade described earlier to be

M∗ =
p

(M −K/2)2 − 2NK −K/2.
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be written again in terms of the SU(M∗ + 1) invariant quantities and it also acquires a
non-perturbative Affleck-Dine-Seiberg superpotential [42]:

WADS = (M∗ − 2)

(
Λ̃3M∗

detΩ

) 1
M∗−2

. (5.12)

Here the determinant of the 3× 3 meson matrix detΩ is given by

detΩ =
N

2
εαγεβδMαβMγδ − εαγεβδCαDβMγδ , (5.13)

whereas the various gauge invariant quantities are defined similarly as in (5.4). From (5.12)
and (5.13) we can deduce the F -term equations:

Mαβ : εαγεβδ(hMαβ − S(Ω)(NMαβ − CαDβ)) = 0 , (5.14)

N : λ2N +
1
2
S(Ω)εαγεβδMαβMγδ = λ1µ , (5.15)

Cα : λ1ε
αβDβ = S(Ω)εαγεβδDβMγδ , (5.16)

Dα : λ1ε
αβCα = S(Ω)εαγεβδCαMγδ . (5.17)

with

S(Ω) =

(
Λ̃3M∗

det Ω

) 1
M∗−2 1

det Ω
. (5.18)

One class of simple solutions to these F-term equations is given by setting Cα = Dα = 0
and we have

N =
1

2λ2

(
λ1µ±

√
(λ1µ)2 − 4λ2hdetMαβ

)
,

hdetMαβ =

(
Λ̃3M∗

N detMαβ

) 1
M∗−2

. (5.19)

The deformed conifold branch naturally appears when we consider the limit (λ1µ)2 �
4λ2hdetMαβ, which yields:

detMαβ ≈

(
λ2Λ̃6M∗

h2M∗−3

) 1
2M∗−1

. (5.20)

Another extreme limit which can be taken is that (λ1µ)2 � 4λ2hdetMαβ, and again simple
algebra shows that we recover the deformed conifold. These limits precisely correspond to
moving the probe D3-brane away from the flavor D7 branes, and locally it detects the
deformed conifold geometry.

It would be very interesting to understand the other regions of the moduli space especially
with Cα, Dβ 6= 0.

– 28 –



5.3 w-embedding and its Generalizations

Now let us move to the cascade analysis for w-embedding and its generalizations, such
as the ACR embeddings [37]. We shall begin by relating the superpotential for various
ACR-embeddings to the one for the simplest w-embedding (4.10); we then on the cascade
pattern for the simplest w-embedding, as the more complicated cases can be analyzed
similarly.

Recall that for the w-embedding (4.10), an appropriate additional term to the KS su-
perpotential (5.1) was given in [28]:

Ww1=µ = λq(A1B1 − µ)q̃ , (5.21)

where q can transforms in the representation (N + M,1) and q̃ transforms in the (N + M,1)
representation of the gauge group. This superpotential can be generalized to many other
interesting cases. Take for example the Karch-Katz embedding [25], w1w2 = µ. In the large
radius limit, we may approximate this embedding equation by w1w2 = 0, which factorizes
into two branches w1 = 0 and w2 = 0. On the field theory side, this naturally corresponds
to introducing two sets of additional quarks {q1} and {q2} with the superpotential

κ1q1(A1B1)q̃1 + κ2q2(A2B2)q̃2 . (5.22)

At smaller radius, however, the two branches meet and at least one set of quarks will be
massive. We can describe this with superpotential terms of the form

γ1q2q̃1 + γ2q1q̃2 with γ1 � γ2 . (5.23)

Taking the larger of the two masses and integrating out the associated quarks, we obtain
a superpotential of the form q[(A1B1)(A2B2) + γ2]q̃, as desired. Of course if we continue
further and integrate out quarks using the γ2 mass term we will be left with a trivial
superpotential.

Now, for the more general ACR embedding, we can implement a generalization of the
procedure we have described for the Karch-Katz embedding. Again, the ACR equation
can be factorized into different branches in the vanishing µ limit, each of which is given by
wi = 0 for some i, motivating superpotential terms of the form

p1∑
n1=1

κn1qn1(A1B1)q̃n1+
p2∑

n2=1

κn2qn2(A2B2)q̃n2+
p3∑

n3=1

κn3qn3(A1B2)q̃n3+
p4∑

n4=1

κn4qn4(A2B1)q̃n4 ,

(5.24)
which are simply linear combinations of the simplest w-embedding. By adding appropriate
mass terms and integrating out quarks as they become massive, it is not hard to see that
we can flow to a superpotential of the form

WACR = λq
[
(A1B1)p1(A2B2)p2(A1B2)p3(A2B1)p4 − µP

]
q̃ , (5.25)

which is related to the ACR embedding equation in a direct way.
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Now, in the case with no three-form flux on the conifold, the D7 branes in the w-
embedding factorizes further into two branches, using the relation (5.2) w1 = A1B1. A
superpotential reflecting this factorization property was proposed in [28] and studied in
[35]:

Wflav = g1QA1q̃ + g2qB1Q̃ . (5.26)

By introducing the quark mass terms m1qq̃+m2QQ̃ , m2 � m1 the familiar superpotential
term (5.21) (up to appropriate redefinition) can be recovered by introducing the quark mass
terms m1qq̃+m2QQ̃ and integrating out appropriately. The cascade pattern for this type of
superpotential has been studied in [35], with the result that the self-similarity under Seiberg
duality transformation no longer presents in this case and a sequence of additional terms
involving singlet states and quarks is generated. Explicitly the resulting superpotential
after a step of cascade is given by:

λ1Tr(aαbβaγbδ)εαγεβδ + λ2(P̄ a2q
′ + q̃′b2P + Σ0q

′q̃′) . (5.27)

Here λ1,2 are combinations of coupling constants and dynamical scale; Σ0 is an additional
gauge singlet field. In the proposal of [35], the cascade is almost self-similar; at each
step the term with the singlet Σ acquires additional A,B fields and (at least naively)
becomes more and more irrelevant. This unusual cascade deserves further study; perhaps
the worldvolume flux we constructed in section 4.3 may shed some light on the nature of
the field theory.

6. Discussion

We conclude with a few comments on extensions and possible applications of our results.
Having seen that worldvolume fluxes can restore supersymmetry, it would of course be
interesting to study fluxes for embeddings other than the simple linear w-embedding, and
to extend our calculations to the deformed conifold. As we have already remarked, this is
in general a daunting mathematical exercise, but perhaps it will be possible to prove an
existence theorem of some kind for the necessary fluxes, possibly based on the topology
of the embedding. Understanding the worldvolume flux may also help in extending the
calculations of D7-brane backreaction along the lines of [41, 43]. It would also be interesting
to study D7-branes in warped cones other than the conifold.

In the gauge/gravity duality, these D7-branes add flavor to the dual KS gauge the-
ory, with corresponding prospects for understanding mesons and baryons in a confining
theory. It might be interesting to revisit the calculations of the meson spectrum, as for
example in [44], with worldvolume fluxes turned on. In particular, it would be interesting
to understand better the physical meaning of the closed (1,1) form P which we identified
in Section 4.3, which one can turn on without breaking any supersymmetry; it should
correspond to deformation of the field theory by some operator. A clearer understanding
of these supersymmetry-restoring fluxes may also be important in clarifying the nature of
the duality cascade with probe w-D7-branes.

There are also potential applications to inflationary model building. The model con-
structed in [22] used a very special brane embedding to generate the inflationary potential,
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but with several different supersymmetric brane embeddings, one can imagine combining
D7-branes in various ways to obtain many other inflationary models. It would also be very
interesting to understand if the presence of extra flux can modify the explicit expression for
the gaugino condensate given in [21]. It was argued in [22] that at the leading order expan-
sion of D7 DBI action, the additional supersymmetric flux should not modify the results
obtained in [21]. Combining the severe constraints of holomorphy of the superpotential and
the global symmetries preserved by the embedding, one is tempted to conclude that the
potential due to the gaugino condensate in the deformed conifold should be quite similar
to that of the singular conifold. Having a supersymmetric D7 configuration including the
necessary world volume flux should allow us check such a statement explicitly, following
the calculations in [21].

Also, it would also be interesting to consider small deviations from the extremal limit,
and allow supersymmetry to be softly broken by a D-term potential whose magnitude is set
by
∫

Σ4
J ∧F where Σ4 is the four cycle which D7 brane wraps on in the deformed conifold

[45] (see also [46] for an interesting construction in the resolved conifold.) Combined with
the fact that Σ4 is generally warped, this may allow us to consider a variety of interesting
scenarios for supersymmetry breaking.
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A. Deformed Conifold Coordinates

The embedding coordinates {zi} transform as 4 under the SO(4) isometry group. An
alternative parametrization for the deformed conifold constraint (2.12) can also be given
by a 2× 2 complex matrix:

W =
1√
2

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
≡

(
w3 w2

w1 w4

)
, (A.1)

defining equation for the conifold can then be expressed in terms of W as

detW = w3w4 − w1w2 = −ε
2

2
. (A.2)

The coordinates {wi} now transform as (2,2) under SO(4) ∼ SU(2)L × SU(2)R isometry
group. The complex embedding coordinates of deformed conifold {z1, z2, z3, z4} can be
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expressed in terms of the real coordinates {ρ ∈ R , ψ ∈ [0, 4π] , θ1,2 ∈ [0, π] , φ1,2 ∈ [0, 2π]},
S = ρ+ iψ as:

z1 = ε

[
cosh

(
S

2

)
cos
(
θ1 + θ2

2

)
cos
(
φ1 + φ2

2

)
+ i sinh

(
S

2

)
cos
(
θ1 − θ2

2

)
sin
(
φ1 + φ2

2

)]
,

z2 = ε

[
− cosh

(
S

2

)
cos
(
θ1 + θ2

2

)
sin
(
φ1 + φ2

2

)
+ i sinh

(
S

2

)
cos
(
θ1 − θ2

2

)
cos
(
φ1 + φ2

2

)]
,

z3 = ε

[
− cosh

(
S

2

)
sin
(
θ1 + θ2

2

)
cos
(
φ1 − φ2

2

)
+ i sinh

(
S

2

)
sin
(
θ1 − θ2

2

)
sin
(
φ1 − φ2

2

)]
,

z4 = ε

[
− cosh

(
S

2

)
sin
(
θ1 + θ2

2

)
sin
(
φ1 − φ2

2

)
− i sinh

(
S

2

)
sin
(
θ1 − θ2

2

)
cos
(
φ1 − φ2

2

)]
.

(A.3)

In the large radius limit ρ → ∞, ε cosh(ρ/2) ≈ ε sinh(ρ/2) ≈ r3/2√
2

, the deformed conifold
coordinates (A.3) and (A.1) smoothly reduce to those of singular conifold.

B. Generalized z-Embeddings

We next examine a generalization of the holomorphic embedding (4.1) proposed in [27]

z4 = f
(
z2

1 + z2
2

)
, (B.1)

where f(x) is an arbitrary function of x = z2
1 + z2

2 = 2(w1w2). This class of embedding
generally breaks the SO(4) isometry group down to the U(1) which rotates w1 and w2 by
opposite phases.

The general expression for the pull-back of NS-NS B-field in this case is given by:

η̂1 = η4z4=f(x) = B11̄dz1 ∧ dz̄1 +B12̄dz1 ∧ dz̄2 +B21̄dz2 ∧ dz̄1 +B22̄dz2 ∧ dz̄2 , (B.2)

with the various components given by the expression in (4.2):

B11̄ = 2
{

(z3z̄2 − z2z̄3)(f̄ ′z̄1 − f ′z1) + (f2z1 − f̄2z̄1)(z4z̄2 − z2z̄4)
}
,

B22̄ = −2
{

(z3z̄1 − z1z̄3)(f̄ ′z̄2 − f ′z2) + (f2z2 − f̄2z̄2)(z4z̄1 − z1z̄4)
}
,

B12̄ = (z4z̄3 − z3z̄4) + 2
{

(z1(z3z̄1 − z1z̄3)f ′ + z̄2(z3z̄2 − z2z̄3)f̄ ′)− (z3 → z4, f
′ → f2)

}
,

B21̄ = (z3z̄4 − z4z̄3)− 2
{

(z̄1(z3z̄1 − z1z̄3)f̄ ′ + z2(z3z̄2 − z2z̄3)f ′)− (z3 → z4, f
′ → f2)

}
.

(B.3)

Here

z3 =
√
ε2 − (x+ f2(x)) , f ′(x) =

df(x)
dx

f2 = −1 + f ′(x)
2z3

, (B.4)

the expression for the previous case (4.1) is recovered by setting f ′(x) = 0. The pull-back
of the Kähler two-form for the generalized Kuperstein embedding can be written as:

η̂5 = η5(z4=f(x)) = J ′11̄ dz1 ∧ dz̄1 + J ′12̄ dz1 ∧ dz̄2 + J ′21̄ dz2 ∧ dz̄1 + J ′22̄ dz2 ∧ dz̄2 , (B.5)

η̂4 = η4(z4=f(x)) = J ′′11̄ dz1 ∧ dz̄1 + J ′′12̄ dz1 ∧ dz̄2 + J ′′21̄ dz2 ∧ dz̄1 + J ′′22̄ dz2 ∧ dz̄2 . (B.6)
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with the components

J ′11̄ = 1 + |z1|2p(x) , J ′22̄ = 1 + |z2|2p(x) , J ′12̄ = z1z̄2p(x) , J ′21̄ = z2z̄1p(x) , (B.7)

J ′′11̄ = S1S̄1 , J ′′22̄ = S2S̄2 , J ′′12̄ = S1S̄2 , J ′′21̄ = S2S̄1 , (B.8)

p(x) = 4|f ′(x)|2 +
|1 + 2f ′(x)|2

|z3|2
, (B.9)

S1 =
1
z3

[
(z3z̄1 − z1z̄3) + 2z1(z3z̄4 − z̄3)f ′(x)

]
(B.10)

S2 =
1
z3

[
(z3z̄2 − z2z̄3) + 2z2(z3z̄4 − z̄3)f ′(x)

]
(B.11)

Notice here that these expressions reduces to the ones for simple Kuperstein embedding
(4.1) when f ′(x) = 0. To check the SUSY condition for the generalized embedding (4.87),
we can first calculate

η̂5 ∧ η̂1 =
(z1z̄2 − z2z̄1)
|z3|2

([z̄3(1 + z2
3)f ′(x)− z3(1 + z̄2

3)f̄ ′(x)]

+ (z3z̄4 − z4z̄3)[2|f ′(x)|2(1 + |z3|2) + f ′(x) + f̄ ′(x)])dΩ , (B.12)

where dΩ = dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2. For an arbitrary f(x), the above expression does not
vanish unless f ′(x) = 0. One can also in principle calculate η̂4 ∧ η̂1, and demonstrate that
it is non-vanishing for arbitrary f(x). In fact, one can consider a special case f(x) = x,
i.e. z4 = z2

1 + z2
2 ; for each specific value of z4, this is identical to Karch-Katz embedding

(4.88), which we will also show momentarily to be non-supersymmetric. We thus conclude
that the embedding (4.87) cannot be supersymmetric in the deformed conifold for arbitrary
function f(x). However, with additional world volume flux, the supersymmetric condition
can still in principle be satisfied.

Let us remark also on a statement in [27] that the κ-symmetry conditions must be
satisfied because of a symmetry argument. The argument used the following logic. Under
the interchange z1 → z2, z2 → z1, the Kahler form J and the embedding equation are
invariant, while B2 gets a minus sign. Thus Ĵ ∧ B̂ acquires a minus sign under the inter-
change. There is also a rotational symmetry (from the SO(3) preserved by the embedding
equation) rotating z1 and z2, under which J , B, and the embedding equation are all in-
variant. One can write Ĵ ∧ B̂ = φ(z1, z̄1, z2, z̄2)dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2. Then φ is invariant
under the rotation but acquires a minus sign on the interchange, and [27] claimed that the
only function which could satisfy both properties is φ = 0. This claim is not correct, as
z1z̄2 − z2z̄1 is a counterexample.

C. Karch-Katz Embedding

We consider next the holomorphic embedding given in [25]

w1w2 =
z2

1 + z2
2

2
= µ2 , µ ∈ C , (C.1)

which explicitly breaks the SO(4) isometry group into SO(2) × SO(2), and these SO(2)
subgroups act by rotating the phases of the ratios w1/w2 and w3/w4. In the asymptotic
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limit r3 � |µ|2 limit, the embedding (4.88) can in fact be viewed as two copies of the D7
brane w-embedding we have earlier (4.10) w1 = 0 and w2 = 0, and they intersect and fuse
together at some finite radius by turning on D7-D7 interactions.

The pull-back of the NS-NS two form field in this case is given by calculating:

η̂1 = η1(w1w2=µ2) = B11̄ dz1 ∧ dz̄1 +B13̄ dz1 ∧ dz̄3 +B31̄ dz3 ∧ dz̄1 +B33̄ dz3 ∧ dz̄3 (C.2)

where the various components are given by:

B11̄ = |z2|−2(z1z̄2 − z2z̄1)(z3z̄4 − z3z̄4) ,

B13̄ = −
{

(z2z̄4 − z4z̄2) + (z1z̄4 − z4z̄1)
z1

z2
+ (z2z̄3 − z3z̄2)

z̄3

z̄4
+ (z1z̄3 − z3z̄1)

z1z̄3

z2z̄4

}
, (C.3)

B31̄ =
{

(z2z̄4 − z4z̄2) + (z1z̄4 − z4z̄1)
z̄1

z̄2
+ (z2z̄3 − z3z̄2)

z3

z4
+ (z1z̄3 − z3z̄1)

z̄1z3

z̄2z4

}
, (C.4)

B33̄ = |z4|−2(z1z̄2 − z2z̄1)(z3z̄4 − z3z̄4) , (C.5)

with
z2

2 = 2µ2 − z2
1 , z2

4 = (ε2 − 2µ2)− z2
3 . (C.6)

The components for the pull-back of the Kähler form J can also be calculated from:

η̂5 = η5(w1w2=µ2) = J ′11̄ dz1 ∧ dz̄1 + J ′33̄ dz3 ∧ dz̄3 , (C.7)

η̂4 = η4(w1w2=µ2) = J ′′11̄ dz1 ∧ dz̄1 + J ′′13̄ dz1 ∧ dz̄3 + J ′′31̄ dz3 ∧ dz̄1 + J ′′33̄ dz3 ∧ dz̄3 .(C.8)

The various functions here are:

J ′11̄ = 1 +
|z1|2

|z2|2
, J ′33̄ = 1 +

|z3|2

|z4|2
, J ′13̄ = J ′3̄1 = 0 . (C.9)

J ′′11̄ = −(z1z̄2 − z̄1z2)2

|z2|2
, J ′′33̄ = −(z3z̄4 − z̄3z4)2

|z4|2
,

J ′′13̄ = −(z1z̄2 − z̄1z2)(z3z̄4 − z̄3z4)
z2z̄4

, J ′′31̄ = −(z1z̄2 − z̄1z2)(z3z̄4 − z̄3z4)
z4z̄2

. (C.10)

The SUSY condition (3.5) can be checked by calculating the wedge products in turns:

η̂5 ∧ η̂1 = −(z1z̄2 − z2z̄1)(z3z̄4 − z4z̄3)
|z2|2|z4|2

(
|z1|2 + |z2|2 + |z3|2 + |z4|2

)
dΩ ,

where dΩ = dz1∧dz3∧dz̄1∧dz̄3. In (C.11) we have a product of positive definite sum with
a generically non-vanishing number −4Im(z1z̄2)Im(z3z̄4). Similarly we calculate η̂4 ∧ η̂1

and obtain:

η̂4 ∧ η̂1 =
(z1z̄2 − z2z̄1)(z3z̄4 − z4z̄3)

∑4
i 6=j=1(ziz̄j − zj z̄i)2

|z2|2|z4|2
dΩ .

Once again we have a product of a positive sum and a non-vanishing number. We can
again show that the SUSY condition (3.3) is not satisfied for Karch-Katz embedding (4.88)
without additional magnetic field F2. This result is perhaps not so surprising given the fact
that Karch-Katz embedding can be regarded as two copies of w-embeddings asymptotically,
and we have shown that w-embedding cannot be supersymmetric unless additional world
volume flux is turned on.
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D. Comparison with Benini’s Proposal

Benini [35] has proposed a form for the asymptotic flux in the limit of large radius. The
purpose of this Appendix is to compare our notation with his so that it is clear how our
proposal compares with his in the relevant limit.

In the large radius limit, we may take one of the angles θ1 or θ2 to vanish. A helpful
piece of intuition is that the worldvolume of the D7-brane in this limit “splits” into two
branches, corresponding to one or the other θi vanishing.

Let us take the limit where one of the angles, say θ2, is small, and then work order-by-
order in θ2. The D7-brane worldvolume in the compact directions can be described by the
coordinates θ1, θ2, φ1, φ2. However, to compare with the large radius limit we will trade θ2

and φ2 for r and ψ.
In this limit, the (1,1) basis forms P and Q take the form

P ∼
[

3
2

Ω11 + 3
dr

r
∧ g5

]
+ cot

θ1

2
(dθ1 ∧ g5 − 3

dr

r
∧ sin θ1dφ1)

Q ∼ −1
2

tan
θ1

2
(dθ1 ∧ g5 − 3

dr

r
∧ sin θ1dφ1) (D.1)

where g5 = dψ + cos θ1dφ1 + cos θ2dφ2. The claim in [35] was that the term in square
brackets in P was a solution to the inhomogeneous Bianchi identity in the large radius
limit. This corresponds to a combination of P and Q with α = 2k and β = 2k cot2 θ1

2 , or
in other words

F̂ = 2kP +

(
2k

sin2 θ1
2

− 2k

)
Q (D.2)

which we have written in a form to make clear the comparison with formulas such as (4.69).
If one took the large radius limit on the other branch, with θ1 small, the form of F̂ is

almost the same, with θ1 and φ1 replaced by θ2 and φ2 everywhere, and multiplication by
an overall factor of −1 (due to the antisymmetry of the basis two-form ω2 which appears in
the background 2-form potential B2.) In our formalism, this sign flip is built into the basis
forms P and Q which are antisymmetric under the interchange of indices 1↔ 2, while the
functions α and β are symmetric.

Finally, note that our asymptotic form for α in the large radius limit (4.84) in the
radial coordinates is

α = −2k log log r + const +O(1/ log r) (D.3)

with a leading log log term; this term is effectively constant in the leading 1/ log r approx-
imation, but it does affect the field equations at subleading order (and therefore has to be
included), as we argued in Section 4.3.4.
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