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Introduction

T he construction of a superspace path integral form ulation for m axin al supersym m etry
is still an open question. To get a supersymm etry algebra that adm its a functional
representation on the elds is at the heart of the problam and it seem s nevitable in
din ensionsd > 7 that this in plies a breaking of the m anifest Lorentz invariancel

Such a functional representation was determm ined in [3]forthe N = 1;d= 10 theory,
by a supersym m etry algebram ade of 9 generators and a restriction of the ten-din ensional
Lorentzgroup to SO (1;1) Spin(7) SO (1;9). Thisled usto a reduced superspace w ith
9 ferm ionic coordinates. C ovariant constraints were found, w hich do not in ply equations
of motion. They were solved In function of the elds of the com ponent form alisn and
analogous results have been obtained for the N = 2;d= 4;8 cases [41].

A path integral formulation was given for N = 2;d = 4 In tem s of the connection
super elds them selves, which required an im plem entation of the constraints directly in
the path Integral. On the other hand, din ensional argum ents show that the introduc-
tion of a prepotential is needed in the higher dim ensional cases. M oreover, we expect
such higher dim ensional cases to be form ulated In term s of com plex representations of
SU(4) Spin(7).Usingan SU (4) holom orphic form ulation n 8 or 10 dim ensions in plies
a fram ew ork that is form ally \sin ilar" to the holom orphic form ulation in fourdim ensions
that we study in this paper.

W e thus digplay a holom orphic superspace form ulation of the smple N = 1;d= 4
superY ang{M ills theory in its twisted fom , by applying the general procedure of [4].
This superspace form ulation Involves 3 supercharges, a scalar and a (1;0)=vector. It
com pltes the previous works or the N = 2;, d = 4and N = 1; d = 10 twisted
superspace w ith 5 and 9 supercharges, respectively. W e also provide a short discussion
of the resolution of the constraints in termm s of a prepotential. Tt m ust be noted that
reality conditions are a delicate issue for the N = 1 d = 4 superspace in holom orphic
coordinates. H ow ever, this question does not arise in the 10-din ensional form ulation, so
we will not discuss it here.

The st section de nes the notations of the holom orphic N = 1;d = 4 super¥Y ang{
M ills theory and its form ulation in com ponents. The second gives its superspace for-
mulation together w ith the coupling to m atter. T he thid provides a discussion on the

1In lower dim ensions, there is still the possibility to form ulate the m axin ally supersymm etric YM
theory In term s ofa subalgebra of the whole superP oincare algebra, w hile m aintaining m anifest Lorentz
Invariance. In d = 4 for instance, a hamm onic superspace form ulation was given preserving 3=4 of the

supersym m etries [1], which then received a full quantum description [2].



altemative form ulation in superspace Involing a prepotential. The fourth section is
devoted to the N = 2 case, both In com ponents and superspace form ulations.

1 H olom orphic N = 1;d = 4 Yang{M 1ills supersym —

m etry

T he tw ist procedure for the N = 1;d = 4 super{Yang{M ills theory has been described
In 5,6, 7] n the context of topological eld theory. For a hyperK ahler m anifold, one

can use a pair of covariantly constant spinors ,nomalizedby  ~= 1. They can be
de ned by i7" ., = ,where J™" is the com plex structure
Jmn:O; Jmn:O; Jmn:jgmn (l)

Tt pem its one to decom pose form s Into holom orphic and antiholom orphic com ponents.
For the gauge connection 1-form A , one has

A=RAgo+Apg with JAgg = RAam i[JApay = Ao (2)

and the decom position of its curvature isF = dA + AA = F0)+ Faa)+ Fop)- A Diac

spnor decom poses as
m _ _ _ mn __ —
= m = 1t mn + (3)

In thecaseofa atm anifold, the tw ist isam ere rew ritting of the Euclidean supersym m et-
ric theory, obtained by m apping all spinors onto \holom orphic" and \antiholom orphic"
form s after reduction of the Spin (4) covariance to SU (2). N otice that the Euclidean for-
mulation ofthe N = 1 theory isde ned as the analytical continuation of the M inkow ski
theory. T he Fuclideanization procedure produces a doubling of the ferm ions [8], so that
the complex eds ; .n; n are truly mapped onto a D irac spinor . However, the
tw isted and untw isted actions do not depend on the com plex conjigate elds and the
path integral can be de ned as counting only four real degrees of freedom 2. The tw ist
alsom aps the fourN = 1 supersym m etry generatorsonto a (0,0)-scalar ,a (0,1 )-=vector
» and a (2,0)-tensor ., generators. For form ulating the \holom orphic superspace",we
will only retain 3 of the four generators, the scalar one  and the vector one , . The

2In the Euclideanization procedure, one also gives up herm iticity of the action,buta \frm alcom plex
conjugation” can be de ned and extended in the tw isted com ponent form alisn that restores hemm iticity
[7]



Invariance under and , hasbeen shown to com pletely determm ine the supersym m etric
action [7]. M oreover, the absence of anom aly for the tensor symm etry in plies that this
property can be conserved at the quantum Jlevel (at least at any given nite order in
perturbation theory) [9].

11 PureN = 1 super{Yang{M ills theory

The bosonic elds content of the N = 1 pure super{Yang{M ills theory is m ade of the
Yang{M ills edA = A, dz" + A, dz" ,and an auxiliary scalar eld T ,while the ferm ionic

eds are one scalar ,one (1;0)fom , and one (0;2)fom ,,. T he transform ation
law s of the various elds in tw isted representations are

Ay = m n By = Gun
Am=O nBAn= nmn
m:O m n= Fun GunT
(4)
=T n =20
T =0 LT =D,
mn = Fmn m pq:O

T he three equivariant generators and , verify the follow Ing o —shell supersym m etry
algebra
= 0; £ jng=0C + "@AL); f,;.9=0 (5)

The action forthepureN = 1;d = 4 super{Yang{M ills is com pletely determ ined by the
;m Invariance. Tt isgiven by [5, 7]
Z

Sli;l= d4xp

— 1
gTr Eanan+T(T+ﬂmnan) man n Tt D" m (6)

TheW essand Zum no m atterm ultiplet and its coupling to pure N = 1 super{Yang-
M ills w ill only be discussed in the fram ew ork of superspace.

1.2 Elm ination of gauge transform ations in the closure rela-
tions
The algebra (5) closes on gauge transform ations, due to the fact that in superspace, where

supersym m etry is linearly realized , one breaks the supergauge Invariance to get the trans-
form ation law s of the com ponent elds (4). To be consistent w ith supersym m etry, this



In tum Im plies to m odify the supersym m etry transform ations by adding eld dependent
gauge transform ations, resulting in non linear transfomm ation law s. T his supergauge is
analogous to the W ess and Zum ino gauge in ordinary superspace and such an algebra is
usually referred as an algebra of the W ess and Zum ino type. In this section, we show
how the use of shadow eldsm akes it possble to rem ove these gauge transfomm ations,
by applying the general form alismn of O]to the N = 1;d= 4 case. This In tum pem its
one to m ake contact w ith the general solution to the superspace constraints given in the
next section.

To introduce the shadow s, one replaces the know ledge of the ;. generators by
that of graded di erential operators Q and Q , which represent supersymm etry in a
nilpotent way. Let | and ™ be the comm uting scalar and (0;1)-vector supersym m etry
param eters, regpectively. The actionsof Q and Q on the (classical) elds are basically
supersym m etry transform ationsas in (4) m nusa eld dependent gauge transform ation,
that is

Q ! (o) Q A ) (7)

w ith ™ o and i is the contraction operator along ™ . These operators ocbey
02=0;0%= 0;f0;0 g= !L . The scalar shadow el c and the (0;1)$om shadow

ed , are a generalization of the elds introduced in [10]. They carry a U (1) charge
+1and 1, respectively. The action ofQ and Q increases itby 1 and 1, respectively.
Let m oreover Q Q+Q .Theprperty 0?2 = 'L xes the transform ation laws of ¢
and ;. In fact, the action ofQ on all elds, classical and shadow ones, is given by the
follow ing horizontality equation

d+Q 1)@+ lcti N+ @+ lcti (P=F+! go+tgl) +1i (8)
together w ith its B ianchi dentity
d+o '"1)E+! qont+tgl ) +i )R+t JF+!D gt gl( ) +1 1= 0 (9)

mpliedby +Q !i)>= 0.Hereandelsswhereg( ) Gun " dz" . Thetransom ation
law s (4) can indeed be recovered from these horizontality equations by expansion over
form degree and U (1) num ber, m odulo gauge transform ations w ith param eters ! ¢ or
i 1.Theauxiliary T scalar eld is introduced in order to solve the degenerate equation
hwvokvingQg( ) +Q ! ,withQ = !T [!c; ]. M oreover, the elds in the rhsof
(8) can be Interpreted as curvature com ponents.

Let us tum to the action of Q on the shadow elds. For the sake of notational
sim plicity, we will om it from now on the dependence on the scalar parameter ! . To



recover its dependence, it is su cient to rem ember that Q increases the U (1) g num ber
by one unit. T he horizontality conditions in ply three equations for the shadow elds

Qc= &; Q@ 1)+Q c+ [cji 11=1A; Q (i 1)= ({1 1) (10)

Due to the nilpotency of i , the third equation is de ned m odulo a contracted (0;2)

even form , of U(l)y number 2, thatisQ ; = 1 , + 1;1 1]. To solve the

1
Al
2

second equation, we introduce an odd (0;1)form ¢ of U (1)z num ber zero. This gives
O 1=¢g I i1]landQ c=1icg+ iA.ShcewemusthaveQ? =L on all eds,we

nd

Q 1=a [c 4] Qe= &
1 Qo = [cial (11)
Q 2= ; &
2= [ 2] 2[01 1] 0o = o] Cf

. . Q c=1ig+ 1A
Q 1=1 2+ 5[1;1 1]

) . Qa=ig+Z , (12)
= 27 1] = 1
Q 2 2[1rl 2] 12[1/[111 11l 0 =2 , E[l;g 1]

with & i ;da .

2 N =1;d= 4 holom orphic superspace

2.1 De nition of holom orphic superspace

W e now de ne a \ twisted holom orphic " superspace for N = 1 theories by extending
the 7z, , z, bosonic space w ith three G rasan ann coordinates, one scalar and two (0;1)

#° (m ;p= 1;2). The supercharges are given by

Q Q
— + #m@mr m
° @ © Q#m
Q%= 0; f0;0ng= @ ; fOn ;Qng= 0 (13)

T he covariant superspace derivatives and their anticom m uting relations are

@ @
e Too g &
r?=0 fr ;rng= @, fro,;rag= 0 (14)



T hey anticom m ute w ith the supersym m etry generators. T hey can be gauge-covariantized
by the introduction of connection super elds A (C My ;AL ;AL ) valued in the ad pint
of the gauge group of the theory

Y 1 +C; Tn To+ln; G @ +Ay; 6 @ +A, (15)

T he associated covariant superspace curvaturesarede ned as M = m ;m )

Fyn [éM ;@N ] 2 rf\z
W, 6] Lo frifng+ @ (16)
XmN [rAm ;@\N ] zmn %ffm ;rAng
so that
Fyn = @y Ay @Ay + Ay jAy ] T=rC+C?
LIJMerM @MC RM ;C] Lm=rrm+rmC+frm;Cg+Am (17)
XmN = TrnphAy @Nrm Ay ;rm] Zmn:rfmrng"'rfmrng
Bianchi dentities are given by F = A ;F ], where and F denote collectively

(r ;T o ;@ ;@ ) and the superspace curvatures. T he supergauge transform ations of the

super-connection A and supercurvature F are
Al e®A+n); FIoefFé (18)

w here the gauge superparam eter 0 can be any given general super eld valued in the Lie
algebra of the gauge group. The \in nitesin al" gauge transform ation is A = Ad+ A ;A ].

2.2 Constraints and their resolution

The super eld interpretation of shadow elds is that they param etrize the general -
dependance of the solution of the superspace constraints, while in com ponents they
provide di erential operators w ith no gauge transform ations in their anticom m utation
relations. To elin nate super uous degrees of freedom and m ake contact w ith the com —
ponent formm ulation, wem ust In pose the follow Ing gauge covariant superspace constraints

1
2=2,,=1Ly = 0; Xnn = Egmnxpp Gm n (19)

They can be solved in temm s of com ponent elds as follow s. T he supergauge sym m etry
(18) allow s one to choose a supergauge o that every antisymm etric aswell as the st



com ponent of [ is set to zero. W e also x the rst component Cj = 0, so that we
are left w ith the ordinary gauge degree of freedom corresponding to 0} . T he constraint
2., = 0 then inplies that the whole [, super-connection is zero. The constraint 2 = 0
In plies that one m ust have

C=8K K%, K4=0 (20)

where & is a function of the #, . One de nes (@fm ) A, .TheconstrantL, = 0

In plies

@ @
A, = r,C= @K‘l‘ @, & @AV (21)
Then, with (g 7753 nn,we have
an:rmAn: mn Fan (22)
It ollow s that . 1
cC= #"A7, E#m # an E#m #"An AL ] (23)
It only rem ains to determ ne the eld com ponent content of A, .Wede neA, 3 An,
(@EAm )D n and . The trace constraint on X, , = r A, Inplies
Am = Am + #pgpm + m #p (@pAm + gpm T )+ #p#qgm [p@q] (24)

W e see that thewhole physical content in the com ponent eldsstand in the independant
part of the curvature super ed W, ,

1
Wodoo= nt #°Fm  GuT)+ #H Q0 eDa Do o) (25)

T he general solution to the constraints can be obtained by a supergauge transform ation,
whose super eld param eter has vanishing rst com ponent. Tt can be param etrized in
various m anners. T he follow ing one allow s one to recover the transform ation law s that
we com puted in com ponents in the section (1.2) for the full set of elds, including the
scalar and vectorial shadow s

F=ecfbge=c 1+ (c+e #Q, &) (26)

where ~ and e are regpectively com m uting and anticom m uting functions of #* and the
coordinates z" ;z" , with the condition ~j = 0. These elds appear here as the longitu—
dinal degrees of freedom 1In superspace. T he transform ation law s given in Egs. (4) are
recovered for ~ = e= 0,modulo eld-dependent gaugexestoring transform ations.



2.3 PureN = 1;d= 4 super-Yang{M ills action

To express the pure super{Yang{M ills action in the tw isted superspace, we obsarve that
the Bianchidentity r , + [C; , ]inplies that the gauge invariant function Tr ,
is  independent. Its com ponent In #* #" can thusbe usad to w rite an equivariant action
as an integral over the fi1ll superspace

Z Z
Sgo = d#"d#" Tr W, W, = d#"d#"d Tr 2, ¥, CQ,A,
Z
= d#"d#" d Tr A, rA, CF,, (27)
R 1
Berezin integration isde ned as d#™ d#” X, » E@f @%an,wherexmn isa (2;0)-

form super eld. By use of the dentity Tr ( %anan + %me Fo )= Tr (%anFm“ )+
"surface term \, one recovers after in plem entation of the constraints the tw isted form of
the N = 1 supersymm etric Yang{M ills action (6),up to a totalderivative [11].

Here, the constraints (19) have been solved in temm s of com ponent elds without
using a prepotential. They m ust be In plem ented directly in the path Integralwhen one
quantizes the theory, which run over the unconstrained potentials. T his is perform ed by

the follow ing superspace integral depending on Lagrange m ultipliers super elds
Z

Sc = d#"d#"d L .Tr BZ+ B"" "2+ K" L, + W' " Xun (28)

where B™ " is symm etric and W" " is traceless. T he resolution of the constraints is such
that the formm al integration over the above auxiliary super elds gives rise to the non—
m anifestly supersym m etric form ulation of the theory in com ponents, w ithout introducing
any determ nant contribution in the path-integral. H ow ever, due to the B ianchi dentities,
B, B™" and W"" adm it a Jarge class of zero m odes that must be considered in the
m anifestly supersym m etric superspace Feynm an rules. They can be summ arized by the

follow ing invariance of the action
zeroB: f\)\; zeroerl: I{\p)\(mnp) @p)\pmn; Zerol_Pmn: I’)p)\mnp (29)

where A™"P) is com pletely symm etric and A™"P is traceless in itsm n indices and sym —
m etric in np. This feature is peculiar to tw isted superspace and the appearance of this
In nitely degenerated gauge symm etry was already underlined in [4] and is detailed in
O]. W e will not go in further details in this paper, and let the reader see in [9] how
it may be possble to dealw ith this technical subtelty by use of suitable profctors in
superspace.



One neads a gauge xing-action Sgr . It isdetailed for the analogous N = 2 tw isted
superspace n [4, 9] as a superspace generalization of the Landau gauge xing action in
com ponents. O ne also neads a gauge- xing part Scgr for the action of constraints (28),
and the totalaction forN = 1;d = 4 superYang{M ills in holom orphic superspace reads

SgY:Ml = SEQ + SC + SGF + SCGF (30)

24 W essand Zum ino m odel

W e then tum to the m atter content of the theory and consider asa rst step the W ess
and Zum no super eld formulation. W e introduce two scalar super eds @ and @, and
one (2;0)super ed X, , - These super elds correspond to the scalar chiraland anti-chiral
super elds of ordinary superspace. T hey take their values in arbitrary representations of
the gauge group. T he chirality constraints of the superPoincare superspace are replaced
by the follow Ing constraints

r®=0; r ,®P=0; rX.,= 2%me P (31)

W e de ne the follow Ing com ponent elds corresponding to the unconstrained com po-

nents of the super elds as an]J mn;(@gxmn)jl Tmn;q)jl ;(@iq))]l ;CDB
(= P)d nilgr g ®)d  Ton. W e then deduce
m l m n

anz mn T 2#[m @n] + Ton + #m( @m mn T 2g’m[m@n] )+ #m #n@p@p (32)

The free W ess and Zum no action can be written as
Z

SW 7 = d#m d#nd q)an

_ 4 P— 1 mn m n m m
= d'x gTr ET Ton G o+ @ @n@ (33)

2.5 G auge coupling to m atter

Tn order to get the m atter coupling to the pure super{Y ang{M ills action, we covariantize
the constraints. T his can be shown to be consistent w ith those of (19). W e thus have

r®=0; 1,P=0; 7 X,n= 2% P (34)



In order to ful 1these new constraints, we m odify the m atter super elds as follow s
m 1 m n m m n l
b= # m —#" 4 Ton + # Ay + U # (= mn An q)
2 2
anz mn t 2#[mDn] + #m #n + Ton + #m( @m mn t ng[mDn]

20 m ny )t #n#.(@DF + h ) (35)

T he total action of super{Yang{M ills coupled to m atter then reads
Z

Ssym +M ater = A#"d#°d Tr @A, rA, CFn.) ®PX,, (36)

which m atches that of [7]. A W Z superpotential can be added in the tw isted superspace
form alisn as the sum of two termm s, one which is written as an integraloverd and the

other as an integral over d#™ d#" .

3 Prepotential

W enow tum to the study of a tw isted superspace form ulation for the pureN = 1 super-
Yang{M ills theory that involves a prepotential. Ttissu cient to consider here the abelian
case. T he super-connections (C ;I ;A, ;A, ) count altogether for (1+ 2+ 2+ 2) %= 56
degrees of freedom , 8 of w hich are Iongitudinaldegrees of freedom associated to the gauge
nvariance In superspace (18). The constraints (19) for 2 and 2, , can be solved by the
Introduction of unconstrained prepotentials as

C=rD,; I,=r,A (37)

which reduces the 16 degrees of freedom In [, to the 8 degrees of freedom In A. G auge

Invariance for the prepotentials now reads
D! D+a; A! A+ (38)

O wning to their de nition, the prepotentials are not uniquely de ned. Indeed, they can
be shifted by the additional transformationsD ! D+ SandA ! A T ,whereS,T
obey r S = 0 regpectively r , T = 0. The constraint L,, = 0 inplies that A, can be
expressed In term s of the prepotentials, A, = rr,A r_,rD. Itsgauge nvariance

is given by
A, ! rr,A+0ad T) ro,rO+0+S)=2A, + @0 (39)

10



W enow perform a gauge choice and choose = A sothatwe x[, = 0. Theran aining
gauge Invariance isthen glven by D ! D + S+ T . The Jast constraint X, ,, = Gun 1is
then solved by ntroducing

A, = r"Pumn (40)

sothatX,, = T'nA, = %gmnr of gPP%. A lthough the residual gauge Invariance is well
established in the case when we consider the theory w ith the fiill set of generators, it is
still unclear how exactly it happens in reduced superspace. But as a m atter of fact, we
are left w ith the two unconstrained prepotentials D and P, , , counting for 16 degrees of
freedom , which perm its one to w rite the classical action. W e consider the curvature W, ,
which reads in temm s of the prepotentials as

Y, =rr"P,, Q,rD (41)

Tt obeys trivialy the Bianchi dentity r W, = 0,and its rst com ponent isa (1;0)-vector
of canonicaldim ension 3=2,thatwe dentify with , @, c of the previous section, when
the supergauge nvariance is restored. Since the rst com ponent of the super eld (41) is
the sam e as that of W, In the previous section, both super elds are equal. Tt ollow s that
the classical N = 1;d = 4 superYang{M ills action can also be written as an integral
over the full superspace, In function of an unconstrained prepotential
Z Z
Spo = d#"d#" Tr W, W, = d#"d#"d Tr P rrrP, + P, G, rrD

(42)

In fact, it corresponds to the tw isted version of the superPoincare superspace action,
once the tensorial coordinate has been elin inated. W e are currently studying how this
form ulation could be extended toa N = 2;d = 8 superspace in a SU (4) formulation [91].

4 N = 2;d = 4 holom orphic Yang{M ills supersym —
m etry

W e now de ne the holom orphic form ulation of the N = 2;d = 4 Yang{M ills supersym —
m etry and see how it can be decom posed Into thatoftheN = 1 supersymm etry. W e rst
focus on the com ponent form ulation and afterw ards we give its superspace version. T he
latter w ill Involre 5 farm ionic coordinates, as com pared to the 3 farm ionic coordinates of
the N = 1 twisted superspace.

11



4.1 Com ponent form ulation

The com ponent formulation of N = 2;d = 4 superYang{M ills iIn tem s of com plex
representations hasbeen discussed In [6,12,13]. W e consider a reduction of the euclidean
rotation group SU (2), SU (2)g to SU (2), U@, with U (1) SU 2k . The
two din ensional representation of SU (2)g decom poses under U (1) as a sum of one
din ensional representations w ith opposite charges. In particular, the scalar and vector
supersymm etry generators decompose as® = + and & = + ,where isthe
com plex conjugate of ,so that j 3= ig( ). Thesubsets ( ; )and ( ; ) form two
N = 1 subalgebras of the N = 2 supersymmetry, ( ; ) being related to those of the
previous sections

=0; £ ;g= tT(); ‘=0
frning=0; fnimng=%mn 7707 fmning=20 (43)
Quite concretely, the transform ation laws for pure N = 2 super¥Yang{M ills can be
obtained from the holom orphic and antiholom orphic decom position of the horizontality
equation in SU (2) SU (2)O tw isted form ulation [7]. T his equation involves the graded

di erential operator
Q QO+ 0« (44)

which verify (d+ Q + Qx  $ i )= 0.0Onede nes
A=DRAgg+tApnt Sct k (45)

where ¢ is a scalar shadow eld and 1 = 1349)+ 1(04) Ivolves \holom orphic" and
\antiholom orphic" vector shadow eHds. Q and Qk are constructed out of the wve d,
and supersym m etry generators w ith shadow dependent gauge transform ations

Q $0 (S Ok K (& 1) (46)

An antiselfdual 2-<form splits n holom orphic coordatesas ! ( 2p0); ©02)7 aa))
where ;) is subfcted to the condition ,, = %Janpq oq- W e thusde ne a scalar
as pn = %un and the holom orphic horizontality equation can be w ritten as

F QA + AA
=Feont+tFant+tFoent+t S +9( ) + )+ gl )N )

+i e+ i e+ st +3F @7

12



w ith B fanchi dentity
QF = [R;F] (48)

By expansion over form degrees and U (1) number, one gets transform ation law s for
N = 2 super{Yang{M ills in holom orphic and antiholom orphic com ponents. In order
to recover the transform ation laws for N = 1 supersymm etry (4) together w ith those
of the m atter multplet In the adpint representation ' = (T, ,;
one can proceed as follow s. O ne rst derive from (46,47 A48) the transform ation law s for
the physical elds under the equivariant operator x . One then obtains the action of
the N = 1 vector generator by restricting the constant vector K to its antiholom orphic

m

Toni m? mof 7 7 s

com ponent ™ ,so that x ! n - Finally, the action of the holom orphic com ponent
of the scalar operator ® on the various elds is com pletely determ ined by the requirem ent

that it satis estheN = 1 subalgebra 2= Oand f ;,g= @, + @A ).

4.2 N = 2 holom orphic superspace

W e extend the superspace ofthe N = 1 case Into one w ith com plex bosonic coordinates
Zn s Zn and ve G rasan ann coordinates, one scalar  , two \holom orphic" #" and two

\antiholom orphic" #" (m ;m = 1;2). T he supercharges are now given by

@ @ @
-— + #m @m + #m @m; m ’ m 49
Q e Q e Q e (49)

T hey verify

Q2= 0; fO;Qug= Qy ; fOu iOng=10 (50)
with M = m ;m . T he covariant derivatives and their anticom m uting relations are

@ @
T T
r2=0 fr;rug= @y fry ;ryg= 0 (51)

T hey anticom m ute w ith the supersym m etry generators. T he gauge covariant superderiva—
tives are

r r+C; Ty ru + My Gy @ + Ay (52)

from which we de ne the covariant superspace curvatures

Fun [@\M ;é\N ] 2 fz
W, 6] Ly fritug+ G (53)
Xu n [fM ;@N] DIV %ffM irANg
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They are subfcted to Bianchi dentities and the supergauge transform ations of the
various connections and curvatures follow analogously to the N = 1 case.

T he constraints for the N = 2 case are

1

1
Ly = 0; Zmn = Zmn = 0; Zmn = Egmnzpp; Xon = Egmnxpp (54)

T heir solution can be directly deduced from [4, 9], by decom position into holom orphic
and antiholom orphic coordinates. T he full physical vector superm ultiplet now stands in

the scalar odd connexion, which in the W ess{Zum ino-lke gauge is
c=xK+ ( K% (55)
w here
m m l m n l m n m
2 2
1
+§#n#n(#mDm +#mDm ) #m#m#m#m[; ] (56)

T here is an analogous decom position for ~in [4]. T he general solution to the constraints
is recovered by the follow Ing supergaugetransform ation

f =Wt tlgroces o" 14 (c+e #Q, + #Q, )e) (57)

where ~ and e are respectively comm uting and anticom m uting functions of #" ;#" and
the coordinates z" ;z" , w ith the condition ~§ = 0. Transform ation law s in com ponents
can then be recovered, which m atch those In (47) and (48).

T he action is then given by

2
sty = d'd Tr CcrcC+ 503 (58)

To recover the previous results of the N = 1 super{Yang{M ills theory w ith m atter in
the ad pint representation, one rst integrates (58) over the variable, which gives
Z
Sy = d#TrIs (59)

Further integration over the #" variables, or equivalently derivation with r , , yiedstwo
term s which are both nvariant under the N = 1 scalar supersymm etry generator. In
tum, they can be expressed as an integralover the fulltwisted N = 1 superspace, which
yields the supergpace action given in (36) w ith m atter in the ad pint representation.
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