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A bstract

W e investigate in the context of brane in ation the possibility of additional Iight scalar elds
generating signi cant power spectrum and non-G aussianities at the end of in ation a ecting the
CM B scale observations. W e consider the gpeci ¢ m echanian outlined by Lyth and describe the
necessary criteria for it to be potentially im portant in a warped throat. W e also discuss di erent
m echanisn s for uplifting the vacuum energy which can lead to di erent dom inant contributions
of the In aton potential near the end of In ation. W e then apply such criteria to one of the
m ost detailed brane in ation m odels to date, and show that in ation can persist towards the tip
of the throat, however for the speci ¢ stable in ationary tra fctory, the light residual isom etry
direction becom es degenerate. W e also estin ate the e ects for other in ationary tra fctories w ith
non-degenerate residual isom etries.
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1 Introduction

In ation [1/Jhas em erged as the standard paradigm describing physics of the very early universe.
Besides addressing several ne-tuning issues in big bang cosn ology such as the atness and horizon
problem s, it provides a fram ework to explain the origin of structure and the cosn ic m icrowave
background (CM B) anisotropy [2]. W hile there is a plethora of e ective eld theory based m od-
els of in ation [3], m any outstanding questions in in ationary cosm ology require a fundam ental
m icroscopic description. Conversely, recent observations of the CM B and large scale structure (4]
lead us to Increasingly precise m easurem ents of the In ationary param eters. T hese m easurem ents
provide usw ith an exciting w indow to probe physics at ultra-high energies [5], far higher than what
current and upcom ing terrestrial accelerators can reach. Thus In ationary cosm ology has becom e
the perfect arena for fiindam ental theory to m est experin ent.

String theory is currently our leading candidate for a quantum theory of gravity. Thus it is
worthw hile to explore explicit realizations of In ation within this fram ework. In this paper, we
w ill focus on one of the m ost well developed In ationary scenarios in string theory, ie. D brane
In ation [0] (see also Refs. [7,18]; for review s, see R ef. [9]and references therein ), where the in aton

eld is denti ed with the position of a space- 1ling m obile D brane, usually a D 3 brane, in a
warped six dim ensionalm anifold [10]. In the original scenario ofR efs. [6,17,18,19,110], an additional
D 3 was Introduced to drive in ation. The D 3 brane is Iocalized by the RR  uxes at the tip of a
warped throat, thus in ation proceeds as them obike D 3 is attracted by a weak D 3-D 3 Coulom bic
force to m ove slow Iy along the warped direction. However, it was also noted in Ref. [10] that
because the volum e m odulus of the com pacti cation couples non-trivially to the canonical in aton,
its stabilized value gives additional H ubble scale correction to the In aton m ass, causing the well
known problem [L1].

An iInportant step towards addressing the  problem explicitly in this concrete setting was
recently m ade In Refs. [12,113] (seealso R efs. [14,115,116,[17]). T he key ingredient in the construction
was the one Joop threshold correction to the non-perturbative superpotential obtained in Ref. [18]
(see also Refs. [19,20]). In R ef. [21]]and other stabilized com pacti cations, non-perturbative e ects
are often Introduced to stabilizem oduli. In the context ofR ef. 21l], such e ectscom e from instantons
on a stack of D 7 branes (or Euclidean D 3 branes). Interestingly, the non-perturbative m oduli
stabilizing force also tums out to give the dom inant contribution to the in aton potentiaﬂ . This
contribution arises because the m obile D 3 brane backreacts on the m oduli stabilizing D 7 branes.
T he correction depends on the holom orphic four cycles w ithin the conifold on which the D 7 branes
wrap. The enbedding of the D 7 branes breaks the isom etry of the deform ed conifold, and thus
the In ationary tra fctory depends sensitively on the choice of the em bedding function de ning the
lociof the D 7 branes. A s a result, explicit slow rollm odels have been constructed by a \delicate"
tuning of the m icroscopic com pacti cation param eters.

W hile the broken angular isom etry directions are stabilized by the coordinate dependent non—
perturbative superpotential, for a given D 7 brane em bedding, there are typically residual isom etries
preserved by the resultant scalar potential. The potential for the elds associated with these
isom etries rem ain  at during the in ationary epoch and so they can take arbitrary values w ithout
a ecting the in ationary tra pctory. Being alm ost m assless, their quantum  uctuations give rise to
a nearly scale invariant isocurvature perturbation spectrum . A sargued by Lyth and collaborators in
Refs. [22,123], these isocurvature perturbations can be converted to the curvature perturbations at
theend of in ation. In the context of D brane in ation, in ation endswhen the open string tachyon

1A Ithough the Coulom bic Hree is subdom nant in com parison to the m oduli stabilizing force, a D 3 brane was
still introduced to end in ation.



condenses between the mobile D 3 and D 3. The critical value of the canonical in aton at which
In ation ends .4 depends on the residual symm etries as they enter into the tachyon potential.
Since g Picks up spatial dependence through the quantum uctuations of the light residual
symm etries, In ation can end on a gpatial slice of non-uniform energy density. A swe w ill see, this
is the case for Instance when the in aton potential is dom inated by the m oduli stabilizing force
towards the end of In ation. T hus, one could in principle expect potentially signi cant contribution
to the power spectrum and non-G aussianities at the end of in ation.

In this paper, we study these multi- eld e ects at the end of brane In ation, and outline the
necessary conditions for them to be signi cant. W e then perform a case study for the sstup con-
sidered in Ref. [13], by explicitly calculating the canonical in aton potential near the tip of the
deform ed conifold, and dem onstrate that in ation can persist in this region provided that the D 3-
D 3 Coulom bic attraction becom es subdam fnant. W e also discuss various m echanisn s to uplift the
vacuum energy which results in a subdom inant Coulom bic potential all the way to the tip of a
warped throat. W e also show that the angular stable in ationary tra fctory for the speci ¢ D 7
brane em bedding [24]used in Ref. [13]can be extended to the entire deform ed conifold. H ow ever,
along the speci ¢ tra ctory considered in Ref. [13], we will see explicitly that the corresponding
residual angular isom etries have vanishing proper separations at the tip. Thus, for this speci c
D 7 em bedding, no signi cant contribution to the curvature perturbation is generated at the end
of in ation. This Im plies that while m ulti- eld e ects can In principle be signi cant in brane In a-
tion, they can only happen w ith other D 7 em beddings, or w ith m ore than one stacks of D 7 branes
present.

T his paper isorganized as follow s. Tn Section[d, we review thebasic setup of ux com pacti cation
and brane In ation, in order to set up our notation. R eaders who are fam iliar w ith the above topics
can skip this section. In Section [3, we recast the m echanisn proposed in Ref. [22] in the context
of brane in ation In a warped throat, and outline the necessary conditions for it to take place. In
Section [4, we discuss various possble uplifting m echanisn s in a warp throat and propose a natural
scenario for an uplifted potential to realize the e ect ofR ef.. [22]. In Section[d, w e explicitly calculate
the canonical in aton potential near the tip of the deform ed conifold and the resulting slow +oll
param eters. The degeneracy of the residual isom etrdes w ill also be shown. W e end with some
discussions In Section [d. W e relegate m ost of the calculationaldetails in a num ber of A ppendices.

2 D3 brane in warped com pacti cations

W e will consider warped com pacti cation of type TIB string theory in four din ensions [25] (see
also earlier works on warped IIB vacua 26,27,128]), w ith the follow ing m etric ansatz

dSZ= e2A(y)e 6u(x)g dx dx + eZA(y)GZu(x)%ndymdyn; (21)

where é ) is the warp factor sourced by branes and uxes, and e**) is the W eyl rescaling factor
required to decouple the overall volum e m odulus from the four din ensional graviton, which can be
taken as O (1). The Intemalm etric ¢, , is taken to be that of a com pact six dim ensional C alabi-
Yau space. In addition to the ansatz (2.1]), we choose the buk RR and NSNS uxes of type IIB

supergravity to regpect four dim ensional Lorentz invariance (and selfduality In the case of the ve
form ux),

1
Gz K B = %Gmnpdym A dy" N dy®; (2.2)

_ Ap-—-oA 1A 2 A 3,
Fs= (1+ )d (v) PaPx” M dxt M dxT N dxT (23)



where we combined the NSNS and RR three form s H3 and F3 with the com plex axio-dilaton
G + e into the com plex com bination G 5.
W e are Interested in the background BP S solutions of the equations ofm otion which im pose the
follow ing relations on the uxes [25],

(y)= e, (2.4)
Gz = 1G3; (2.5)

such that the com plexi ed three form ux is In agihary selfdual.

2.1 Four dim ensional e ective theory

Atenergy scalesm uch lower than theK aluiza-K lein m ass scale, the e ective theory for thiswarped
background is described by four dim ensional N = 1 supergravity. The scalar elds of our theory
consist of closed string m oduli, ncluding the com plex structure m oduli, axio-dilaton and K ahler
m oduli, as well as open string m oduli, such as the positions of D 3 branes and D 7 branes. The

ux-induced superpotential [29] 7

Wevw = Gs3” (26)

stabilizes the com plex structure m oduli and axio-dilaton as described in Ref. 25], where is the
holom orphic (3;0) form of the unwarped CalabiYau space. Lifting (2.8) to F—+theory, we see that
buk and D 7 workdvolum e uxes can also stabilize the positions of D 7 branes as well. W e will
assum e for the rest of the paper that these m oduli are stabilized by (2.8) and its F +theory lift, and
we willwork at energies below the scale of this stabilization. T he stabilized com plex m oduli give
rise to a constant contribution to the superpotential,
Z
W g Gs " : (2.7)
0
T he ram aining closad and open string m oduli consist of the K ahler m oduli, associated w ith the
sizes of holom orphic four cycles, and the positions of D 3 branes In the intemal space. For sin plicity
wewillconsider a singke K ahlerm odulus = + i&, and denote the location of the D 3 brane in the
com pact space by three com plex coordinates z with = 1;2;3. In the presence of a D 3 brane,
the K ahler potential for the D 3 brane elds and the K ahler m odulus is [30]

K ( ;z ;2 )= 3bgl + k (zz )] 3gU (r; ); (2.8)
w here
T
3M
2-M, 2 =8G; (2.10)

k(z ;z ) isthe geom etric K ahler potential for them etric on the CalhbiYau,and , isthe stabilized
valie of when the D 3 brane is at its stabilized con guration: see Ref. [31] for m ore details. It
is In portant to note that there are m any subtle issues Involved in the derivation of the low energy
e ective action for warped com pacti cations. T hese issues discussed in, eg. Refs. [32,133,[34] raise
som e concems about the validity of the above con ectured warped K ahler potential [30]in the strong
warping lim it, though som e recent progress has been m ade towards this end [35,136].



In type IIB com pacti cations the ux superpotential (2.4) does not depend on the K ahler
m oduli, so we need other ingredients to stabilize these elds. One m echanian for stabilizing the
K ahlerm oduli is to include non-perturbative e ects through gaugino condensation on a stack ofD 7
branes or a Euclidean D 3 brane instanton. B ranes w rapping a four cycle associated w ith a K ahler
modulus produce a non-perturbative contribution to the superpotential which dependson  and
the D 3 brane position z of the form

Wop=A(z )e? ; (211)

witha= 2 =n,wheren > 1 forgaugino condensation on D 7 branesand n = 1 fora Euclidean D 3
brane. T he prefactor A (z ) is a holom orphic function and can be written as [18,119,(20]

7 (212)

where A, depends on the stabilized com plex structure m oduli and has m ass din ension 3. The
dependence on the position of D 3 branes show s up through the em bedding function £(z )= 0 of
the four cycle In the CalabiY au space, where f (0) represents the value of the em bedding function
when the D 3 brane is stabilized.

T he total superpotential

f
W :W0+A0 E— e H (2.13)

and the K ahler potential (2.8) give rise to the F term contribution to the scalar potential which
depends on the K ahler m oduli and the D 3 positions,

Ve(;z3;2z)=e K D WD W 329 F : (214)

Substituting the general superpotential (2.13) aswellas the explicit expression for the inversem etric
K  solved in Ref. [15] into (2.14), the explicit form for Vi ( ;z ) is given by

2 nh i L o
Ve l( ;2 2z )=— U(x; )+ k kk jf\T,.j2 SWW, +WW,
‘ 30U (r; ¥
2 _ _ 1 _
+ —— k kW W, +k kW, W, +-k W,Ww,. ; (2.15)
3U (x; )Y '

where a subscript of a letter with a comm a denotes a partial di erentiation w ith respect to the
corresponding com ponent. Clearly the scalar potential depends on the detailed form of the little
Kahler potential k(z ;z ) and its derwvatives, as well as the holom orphic D 7 brane em bedding
function £ (z ).

2.2 W arped deform ed conifold

The localized uxes and sources can backreact on the geom etry and generate a non-trivial warp
factor & V) 23]

2
£28 _ 22 1323;“]2 + 2o O (@e4A )2+ %eZA (T" . T )local; (2.16)



where T™ | is the stress energy tensor of ‘ocalized’ sources such asD 3 and D 7 branes. W hen uxes
are tumed on along the A and B cycles in the neighborhood of a conifold point in the intemal
Space,
Z
> o F3=2 M ; (247)
ZA
1
> OBH3= 2 K ; (2.18)

R
they generate a strongly warped “hroat’. The com plex structurem odulus 2 = , ofthe conifod
is stabilized at an exponentially sm all value [25]

P_ _
2272 TaM Y%Al ; (2.19)
w ith
o 0:718050 ; (220)
2 K (221)
dg = X
0 P 3g.M

T he geom ety is that ofa warped deform ed conifod, w hose construction in supergravity is known as
the K lbanov-Strassler (K S) throat [37]. N otice that iIn ourde nition of the deform ation param eter
2, the exponential warp factor a, explicitly appears. The six din ensional deform ed conifold can
be described by a deform ation of the em bedding of the sinqular conifold in C* as
X4
(2" Y= %; (2.22)

A=1

where we w ill use the SO (4) rotational sym m etry of the coordinates z to m ake the deform ation
param eter real.

T he detailed m etric of the warped deform ed coniold is given in A ppendix [Al, so here we just
note that far from the “ip’ of the throat w here the deform ation is concentrated, them etric is sim ply
that of a sinqular conifold,

3
dsé 5 dr’ + r’d %1;1 = dr? + #d %1;1 p (2.23)

where the space T'# isa E instein-Sasakim etricw ith the topology ofS? S and wede nef? = 3r=2
for notational sin plicity. N ear the tip of the throat, S? shrinks to zero size while S° rem ains nite
w ith its size given by the defom ation param eter w ith the m etric

ds? 2 d?+ *d,+d ;5 : (2.24)

Here the param eter 2 R is related to the radial coordinate r and the em bedding coordinates z
via

2cosh = P f=r: (2.25)
A=1
W ehope our readersdo not confuse  here w ith the IIB axio-dilaton shown in 2.2). T hroughout the

ram aining text, denotes this coordinate. T he expressions for the com plex em bedding coordinates
7* given in tem s of real coordinates are listed in A ppendix [A].



2.3 D3 brane dynam ics

W e are Interested in the dynam ics of m obile D 3 branes in the background discussed above. For
slow Iy m oving D 3 branes, the kinetic term is derived from the pullback of the buk deform ed
conifold m etric

1 4 P— 4u v
whereg = @ Q@ k denotes the buk deform ed conifold m etric. In general (2.24) is a non-Inear

sigm am odel, so it isnot always straightforw ard to canonically nom alize allthe eldssin ultaneously
Into the form V4

| Opu—
Shom = d4X 33.433 a a : (227)

In particular, far from the tip of the throat where we can write the m etric as (2.23), we can write
the kinetic term for a spatially hom ogenous D 3 brane as

+ r’dein (2.28)

where a dot indicates a derivative w ith respect to the tim e coordinate t. For m otion only in the
large radial direction, we can dentify

r__

3 2 P — 2
- (t) ET3e Yr(t)= Tz e P(b) (229)
as the canonically nom alized scalar eld in the radial direction far from the tip. Sin ilarly using
(2.24), near the tip of the throat the intemalm etric is of the form given by (2.24) and the kinetic
term becom es V4 o

Sps=Tsy d'% fuje®™ 2 2+ 2d,+d— (230)

Again, for them otion only in the snallradial ( ) direction, we can identify

r ___

(t) T—; e (v (2.31)
as the canonically nom alized scalar eld near the tip. Note that we have focused on two regions
In the deform ed conifold, where the canonical In aton can be de ned as a sin ple function of local
coordinates. H owever, in general, thede nition of the canonicalin aton valid for the entire deform ed
conifold can be m ore nvolved, and it should interpolate between the two asym ptotic lin its (2.29)
and (2.31]). Furthem ore, w e restricted our analysis above to caseswhere them ultiple el tra fctory
is com posed of a single eld (the radial direction) and consider only quantum uctuations in the
lTight angular directions. M ore generally, how ever, the In ationary system consists of m ultiple elds
for which sin ple analytic expressions of the canonical in aton elds in tem s of the coordinates is
not possible.

In the setup of Refs. [10,/113], In ation proceads as a m obile D 3 brane is driven towards the tip
of the warped deform ed conifold, where a D 3 brane is Iocated. The D 3-D 3 interactions are through
two di erent potentials. In the closad string channel, D 3 and D 3 interact gravitationally via the
potential

Vo vI- 71)[(}(](’;; )3;]); (232)



where
3D,

16 °T{y v
Here Dy = 2T3a§ is the warp factor at the tip of the warped deform ed conifold. One should
ram em ber that j y joontains loth radial and angular separationd. Furtherm ore, in the open
string channel, w hich becom es relevant as the D 3-D 3 separation approaches the local string length,

tachyon condensation develops, whose contribbution to the overall scalar potential can be derived
from open string one-loop com putation is given by

D(¥ vyJ=Do (2.33)

Ve (¥ vI=BTF ¥ v & ° + ; (2.34)

where T is the com plex tachyon eld. The dot ellipsis indicates that the tachyon potential can
receive higher order contributions in D 3-D 3 separation 3  yjB8]. W hile the high order tem s
In the D brane sgparation can change the behavior of the tachyon potential w ithin the tachyon
condensation surface, there is hardly an efolds at such an all ssparation that such higher order
contributions can be ignored. To estim ate the range the tachyon condensation surface occupies in
the coordinate space, we can consider near the tip, w here the localgeom etry approachesR =~ & S°.
The D 3-D 3 separation then becom es

¥ovd o i f0 o+ s (2.35)
Here is related to r via .25) and in this coordinate D 3 radial position is = 0, and 2
and 5 denote the nite angular separations between D 3 and D 3 on S? and S?, respectively.
O ne should alwo note that in addition to the D 3 at the tip of the deform ed conifold, there can
be additional distant D 3 or other supersym m etry breaking sources, eg. D 7 w ith supersymm etry
breaking worldvolum e ux, present in the bulk. T heir presence also Increases the potential energy
and needs to be taken into account: in fact they will play an in portant role In our subsequent
discussion.

In the presence of D 3 or D 7 branes which wrap on a speci ¢ supersymm etric four cycle in
the throat and generate non-perturbative superpotential, som e of the angular coordinates which
correspond to broken isom etries are stabilized by the F term scalar potential Vi . Furthem ore the
stabilized values of these directions are in fact the same for D 3 and D 3 31/,139]. However there
can also be residual isom etry direction (s) which rem ain Iight com pared w ith the canonical in aton.
T hus generally In ation ends when these elds reach the tachyon condensation surface given by

P+ T o=ap % (2.36)

Here > and 2 indicate that the only varying angular coordinates correspond to the residual
isom etry directions, and their precise expressions depend on the speci ¢ em beddings.

A s the deform ed conifold is usually attached to a com pact buk CalkbiYau manifold, which
contains additional ISD  uxes that further break these at residual isom etries, these can possibly
givem asses to the corresponding D 3 and D 3 elds. To analyse such e ects for D 3, we can consider
a probe D 3 and use gauge/string duality [40] (buiding on earlier works [41l,[42]), the symm etry
breaking can be encoded by deform ing the probe worldvolum e theory with irrelevant operators.
H ow ever the consistent equations of m otion would then require such temm s to be vanishing, that is
forD 3, thebulk ux does not generate m asses for the residual symm etry elds. For D 3, such buk

’The potentialV, 5= aswritten divergeswhen 7 yj! 0. However asdem onstrated in R ef. [138], the Coulom bic
potential gets an oothed out to nite value through regqularization as the separation becom es local string length.



ux generates perturbation in its action through the dependence on the warp factor, an estim ate
for such e ect was given in Ref. [43]: this generates a m ass to the residual isom etry elds forD 3 of
the order R
as
aM O

L (237)
with n 329, o that the buk m ass ©or D 3 residual isom etry is exponentially suppressed, and we
still have an approxin ate isom ettyﬁ .

3 The residual isom etries and the Lyth e ect

In this section, we w illgive a generaldiscussion on them echanisn proposed in R ef. [22],which can
potentially generate signi cant contrdbutions to the curvature perturbation at the end of in ation
due to the presence of the light residual isom etry elds. Furthem ore we will also outline the
necessary criteria for such e ect to take place in a warped throat. Som e earlier related discussions
n the context ofbrane in ation appeared in R efs. [23,/144], though aswe w ill see, our resultsdi er in
details. In the follow Ing,we w ill refer to this additional contrdbution to the In ationary perturbation
at the end of In ation as the Lyth e ect.

To begin ourdiscussion, let us rst estin ate them axinum value at which the residual isom etry
direction (s) can reach on the tachyon surface. For sin plicity we consider the situation where only
a single residual isom etry is presentH. The tachyon condensation surface is given by (2.34),
from which we can estin ate them axinum D 3-D 3 angular ssparation < In the residual isom etry
direction for the in ationary tra gctory to reach the tachyon surface n eld space. This occurs
when = 0 and D 3 reaches non-vanishing $° at the tip of deform ed coniold. Sin ple algebra then
gives

1
L= —p . (3.1)
3 gsM

Here we have used the de nition 1=T5 = (2 )g. ® and 5 denotes a m easure factor on S° which
depends on the angular stable tra fctory for the speci ¢ D 7 em bedding. W e have also absorbed the
O (1) num erical factor in the de nition of 2 into ;. It is worth noting that the m axinum angular
separation . is not warp factor suppressed because of the a3 factor n *=*. This is in contrast
to the singular conifold case where is suppressed by ap, in which case the angular range is
exponentially small. W hile the factor 1= g;M  is generally am all, the m easure factor 1= 5 can be
large, and whether c constitutes a nestuned initial condition needs to be exam ined on a case—
by-case basis. If . exceads the allowed value for , tachyon condensation would necessarily
take place away from S°at > 0

T he canonical nom alization for a residual isom etry direction on S ° isgiven in R ef. [31] such
that

P — 2
#2 ngSM Oe uao 3 . (3.2)

3A ttentive readers m ay also note that there can be further contribution to the potential for the D 3 residual
isom etry direction com ing from (2.32), which can give an e ective m ass of O ag . However In the scenario which
w il be described later, such term w ill be decoupled.

‘Hereweuse to highlight such a special residualangular direction and in general it should be a fiinction of the
usualangular coordnates given in A ppendix [Al, whose speci ¢ form is dictated by speci ¢ D 7 brane em bedding.

SA snallmassdue to buk uxeson the D 3 residual isom etry direction discussed earlier m ay change the story.
H ow ever it is proportionalto aj*’,which is even am aller than the possible e ectivem assof O a3 com ing from the
Coulom bic term . T herefore if we can ignore the C oulom bic contrdbution in our proposed scenario discussed in the
next section, we should sim ilarly ignore such contribution to D3 for consistency.




To precisely extend the analysis in the near tip region, where the m etric is given by (2.24), one also
should consider the contribution from S? as the isom etry direction can generally ber over both

S? and S°. Assum ing only and directions are dynam ical, the m etric takes the generic form

d?+ (3+ 2 2)d ?. Finding the canonically nom alized residual isometry eld would require
diagonalization of such m etric. Nevertheless, sinhce , and 3 can atmost be O (1), we expect the
canonical nom alization (3.J) rem ains valid at the leading order of a 2 expansion. T herefore in
such an approxin ation, the allowed value for # at the end of in ation when it reaches the tachyon
surface is bounded by

P— age 8
#e #C = ngSM e ap 3 c= P—: (33)

From (231) and (2.36), we can cbtain the relation between the value of canonical in aton at the
end of In ation and the residual isom etry as

r r
T
®(#e) = ge‘*u B2 0 ggM ©02( _P]= == (34)

Untilnow the analysis hasbeen classical, how ever additional curvature perturbation can be gener—
ated at the end of in ation due to the quantum uctuations of #.

In our case where there are two elds associated w ith the radialdirection which is denti ed as
the iIn aton and the residual isom etry direction, follow ing the N form alism [@5]the pow er spectrum
can in principle be separated Into two parts as

H H
P = % N24 ZEX NZ P o+P_; (35)
2 ’ 2 ’
w here the subscript k denotes the quantity evaluated at the m om ent where the perturbation asso-

ciated w ith the wave num ber k crosses the horizon during in ation, and
N = Hdt (3.6)

is the num ber of efolds. Notice that we have not used the subscript but for the canonical
In aton, as its de nition in term s of the usual radial coordinate requires precise denti cation of
the horizon exit scale In the full deform ed conifold, and we hope this does not confuse w ith the
angular coordinate. Here P is the power spectrum generated by the canonicalin aton eld at the
m om ent of horizon crossing and is given by the standard form ula

2

1 Hy
P = 2mn 5 Z (3.7)
M " 2
w here
M2 @u=@ °
" 2l (3.8)
2 \Y

with V being the In aton potential is the slow-roll param eter. W hereas P _ is the additional
contribution due to the quantum uctuations of # at the end of In ation, whose explicit form we
w i1l w rite out shortly. Note that the comm on prefactor H,=(2 ) in (3.9) com es from the fact that
both and # are relatively light com pared with H, during In ation.
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In general, # is lighter than the canonical n aton eld (see (2.37) and the discussion below )
and does not contribute signi cantly to the eld tra fctory. But towards the end of in ation, the
isom etry direction # com es into the play shce € does depend on the Iight ed #. via (3.4) and
in tum its quantum uctuation #(x) can give spatialdependence to  ©. In other words, °(x)
takes slightly di erent values at di erent parts of the universe, and such spatial variations can be
quanti ed using the perturbation in the num ber of efolds at the end of In ation, N i = J(x).
Thisextra . attheend of in ation isa new contribution to the total curvature perturbation other
than  due to the canonical n aton.

Letusnow derive the explicit form ofP _. Since the in ationary epoch is com pletely dom inated
by the canonical in aton ,we have the single eld result

@N H
; —_— = — (39)
@ _
so that )
5 H 1
Nfi= — = > * (310)
r _ 2M Pl"
T he derivative of the extra efolds at the nalm om ent is given by
QN @N @ 1 @ °
- (311)

= g Py
et . @ e#,  arZr ek

where the subscript = indicates the canonicalin aton near the tip given by (2.31) and the derivative
@ °=Q#. can be derived from (3.4) as

@ © #e
= p—Pp—": (3.12)
P 2r/ #g m

e

T herefore the additional power spectrum generated at the end of In ation is given by

n #2 2
oo 51"6 @i 2
1 #2 H ?
= - : (313)
4" #2  # 2 My
Here, ". is the slow +oll param eter evaluated at = ¢, and one can substitute away the #.
dependence above using (3.4). For this contrdbution to dom inate, by com paring (3.7) with (3.13),
we require r_
@ e "e
& — (3.14)
@#e "k
U sing (3.12) this becom es the condition
r
"k 1
e & "o Vet —  #o; (3.15)

2

where we have used the fact that # is very at so that its am plitude is alm ost frozen during the
whole In ationary phase, ie. #, # . In order for the two contributions to the power spectrum P
in (3.H) to be com parable, we need the slow <oll param eter " to ram ain an allat the end of .n ation,
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so that (3.12) to be of O (1). However if such conditions are satis ed, as can be read from (3.13),
the resulting power spectrum is very sensitive to the angular m otion towards the end of in ation
and thus the naive prediction of P based on the estin ate m ade far from the tip can be com pletely
sooiled.
To estin ate the non-linear param eter fy; [46], we need to go beyond the leading expansion of
o:using (3.11]), we can easily nd that

3 1 @°N=@ ° @ °=e#Z
=z Z + = 316
57" 2 (@N=@ ) _ (@N=R )@ °=e#.7P o)
From (3.9),we can see that the rst temm in the curly brackets becom es
RN =@ °
_— = . 2% 317
(@N =@ )? R ( )
w here ) )
@v=(@
P (3.18)
is another slow +oll param eter, and the second term
@2 °=@#? o #. 7 Mg
= =2" — p—": 3.19
(@N=Q@ 3)@ °“=Q#.7P #e #2 # ( )

So farwe have only considered the sin pli ed situation where only the tachyon potential (2.34) is
present and have hence ignored other potential term swhich can also becom e dom inant near the end
of n ation. O ne candidate is the D 3-D 3 Coulom bic interaction in (2.33) which can be ignored at
large radius w here the singular conifold approxin ation is su cient, but can dom inate near the tip
of the deform ed conifold. In fact as both the Coulom bic and the tachyon potential depend on the
D 3D 3 separation 7 vy J, if they dom inate towards the end of in ation, the in ationary tra ctory
would be driven to incident on the tachyon surface at a right angle. By an appropriate rotation in
the —# plane, the e ect described earlier can then be shown to vanish, as on the tachyon surface
there is no orthogonal com ponent for the eld trafctory. To have a signi cant Lyth e ect aswe
described above, it is necessary in our case to ensure that the C oulom bic potential is insigni cant,
hence the end-of-n ation surface di ers from the equienergy Surﬁoéa .

Another necessary criterion for the Lyth e ect to give a signi cant contribution is that the
slow woll param eter " ram ains an all at the onset of tachyon condensation: In other words, In ation
should persist into the deform ed conifold region. A s we will dam onstrate explicitly in the later
sections and appendices, the Coulom bic interaction which tend to give large " near the tip can be
naturally m ade Insigni cant (depending on the uplifting m echanism s), and so In ation ends only
when the D 3-D 3 annihilates.

4 An alternative schem e for uplifting

Having reviewed the Lyth e ect and the necessary conditions for it to take place in brane In ation,
In this section, we w ill begin w ith elucidating di erent possible uplifting m echanisn s for generating
de Sitter vacua necessary for a realistic vacua at the end of n ation. By considering the relative

T his is how ever not necessarily true in general, since the num ber of e-HMds depends non—bcally on the dynam ics
during In ation: see eg. Ref. [47]. W e thank M isao Sasaki for related com m unications.
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strengths between these potentials In a warped throat, we then propose an altemative scenario
w here the distant sources or D ~term s on D 7 branes dom inate over the D 3 at the tip of deform ed
conifold in contributing to the vacuum energy, and are responsible for the m a prity of uplifting.
This allow s us to decouple the D 3-D 3 C oulom bic potential towards the end of in ation.

4.1 U plifting potentials

In general, the F term scalar potential Vi generated by ux and non-perturbative correction
gives rise to an anti de Sitter m ininum after all the m oduli are stabilized 21]. To obtain a de
Sitter vacuum at the end of in ation, it is therefore necessary to include extra uplifting tem (s) to
raise the coan ological constant to a positive value. In the setup described earlier, the leading tem
D o=[U (r; )} i the D 3-D 3 potential given by (2.37) essentially plays that role. To cbtain a an all
positive cosn ological constant, one can estin ate that at the tip of the deform ed conifold [13]

Do=[U(*>; ¢)F
1< — . 0@3): (4.1)
Ve (235 £)73

Here ; is the stabilized volm e before the uplifting and 2> indicates that the potentials are
evaluated at the bottom of the throat. O ne should also note that the upper bound is required for
the stability of the y . The requirem ent (4.1]) couples the scale of the C oulom bic potential D ; to
the scale of Vi . Away from the tip, the adiabatic approxin ation can be taken such that rem ains
at its instantaneousm ininum ateach radiallocation,and - (r) can be shown to be a m onotonously
Increasing function of r. Since ¥V j exp( a )= which reaches itsm axinum at the tip, one can
then ensure a positive coan ological constant provided that the lower bound of (4.1]) is satis &d.

In addition, if there are also distant D 3 branes present outside the throat, for exam ple in other
throat(s), they can also contribute to the vacuum energy and their contrlbbution can be given by

D
Votner = —— (42)

U )P
In general, weg not know the explicit value of D giher. However it is in portant to know that
as these extra D 3 branes are outside the warped deform ed conifold, D gmer 1S Independent of the
warp factor ap, and such a contributions can outweigh V; .55 whose m agnitude is controlled by ag .
Inclusion of such a contribution willalso m odify (4.]) from Do ! Do+ D other-

An altemative approach was suggested in Ref. [48] by localizing supersym m etry breaking ux
on the D 7 brane worldvolum &}, which induces a D term potential in the low energy e ective four
din ensional supergravity. T he advantage of this approach is that the uplifting e ect can be studied
within a el theoretical fram ework. For our purpose, in the m ost sim plistic setupﬁ, such D —tem
potential is given schem atically by

v ()= —2 (43)
m (L )= :
voEm U (; )7F
T he precise value of the constant v, depends on the explicit world volum e ux F 5 and is propor—
tional to the integral '~ Fp,; 49, where J is the pulbback of the K ahler form of the am bient

"The fur cycle where D 7 w raps on does not necessarily have to be the ones where gaugino condensation takes
place.

8By sin plistic we m eans that we have ignore the contribution com ing from the additionalm atter eld charged
under theU (1) gauge el associated w ith Fp 7, and furthemm ore thiscon guration can be generalized to non-A belian
gauge group U (N ).
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Calabi¥Y au onto the four cycle the D 7 wraps on. The four cycles which D 7 branes w rap on can be
outside the warped throat or if they are inside the warp throat, explicit power counting can then
show thatvpy should contain additional extra warped factor ag 501.

N otice that while (43) is proportionalto [U (r; )] 3, unlke V, 555, it does not depends on the
D 3D 3 separation ¥ vy 3J. Furthem ore, as noticed in Refs.[51,[52] and explicitly dem onstrated
In Ref. [50] (using the results of Ref. [53]) D term uplifting is sub fcted to an extra constraint. In
N = 1 supergravity, them agnitude ofthe D term potential is in fact proportional to that of F <term
D W ,therefore the D -temm potential (4.3) cannot uplift a supersym m etric antide Sitterm inin um
satisfying D Vi = (E . However by explicitly ntroducing D 3 hence breaking supersymm etry, we
can In principle circum vent such constraint.

W e can w rite these uplifting potentials in an universal fashion as

D(¥ vI
Vp(t; V)= —————; (4.4)
0 U (r; )P
w here 8
. . DO 1 P - +Dother forD3D 3 (b: 2),'
D(¥ vI=, 16 T3y v3 (4.5)
. Vb forD temm (b= 3):

Here we have ncluded the tem

Dy 3D
U (r; )F16 °T¢y v

(4.6)

Veoulonb =

in the D 3-D 3 interaction to highlight the fact that its scale isalso set by D , even though it gives a
negative contridbution to the total energy. T he interplay between the D term potentialVp and the
F term scalar potentialVy w illbecom e crucialwhen we Jater consider the possibility of generating
signi cant contrbution to the curvature perturbation at the end of in ation.

4.2 Proposed scenario

In contrast to Ref. [I13]which we brie v review in A ppendix [Bl, in the scenario we w ill consider,
while a D 3 brane can stillbe present at the tip of the deform ed conifbd for tachyon condensation to
take place at the end of the in ation, the additionaldistant D 3 branes or supersym m etry breaking
D 7 branes w ill be responsible for uplifting. T hat is, In term s of their m agnitude,

Dother DO; (4-7)

or equivalently
G DU (r; ): 4.8)

In other words, we would like to decoupl the D, dependent term s In (4.H): in particular the
Coulom bic tem Ve ouiom b v vi / aly vy7i isdecoupld in the entire throat.

Such decoupling of C oulom bic interaction is very natural. Them axin alm agnitude Ve quiomp Can
take isgiven by 3al=(4 ? ®U?),whih corresponds to theD 3-D 3 separation ¥ vy on the tachyon
condensation surface. W ithout additional dom inating uplifting sources, such potential dom nates

°T his isa generic feature of Vy ofKK LT type,howeversuch a D —~term hasbeen show n to uplift non-supersym m etric
antide Sitterm inimum [50,,[52].
1% e are gratefiil to Femando Q uevedo for a discussion on this point.
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near the tip region, and the scale of ¥/ ( 23; » )jis therefore coupled to that of the C oulom bic tem

D,. Thisalso i plies ¥r ( *; )j/ aj,although Vy does not contain a; in its expression a priori.

However In the presence of additional dom inating uplifting sources, the scale of Vi does not have

to couple to Dy, but rather should couple to these additional uplifting term s whose m agnitudes

are independent of the warp factora,. Thiscan allow Vr (r; ) W ( %; ») to dom nate over the

D 3-D 3 C oulom bic Interaction Ve ouom b NOL only at Jarge radius but also In the near tip region.
Here we Introduce a param eter s given by the ratio

s= 2 ——""; (4.9)

w here \/’D(+ " denotes that we are only keeping the positive de nite term in both expressions in (4.9).
T his allow s us to w rite the overall potential we are considering schem atically as

V =Vp (r; )+ Vp (r; )+ Veng

= %+ V4 Veouomp + Vena + (5 D)Ve (225 5) (4.10)

w here
Ve =Ve(r; ) V(77 5); (4.11)
v =v e ) P e (4.12)

and Vg consists of the potentials that only becom es signi cant near the end of in ation, eg. the
tachyon potential (2.34) and the possible buk m ass term for the residual isom etry direction. N otice
thatasU (r; ) can be shown to be a m onotonously increasing function ofr, W ispositive de nite
while VD(+ ' is negative de nite. W ith a slight abuse of notation, here we have not speci ed Vyp @ it
can in principle consist of contributions from the distant D 3, or supersymm etry breaking D 7, or
both along with D 3 at the tip. T he condition (4.7), or equivalently (4.8), then translates into the
requirem ent

Ve Veoulomb 7 (4.13)
and we consider the situation where this condition holds for all values of the m obilke D 3 brane
coordinates. In temn s of the available param eters which we can tune, (4.13) transhktes into the
condition AoM 3 al=M /, %), where Ajappears in Z13). AsM 2 ° 1landa 1,the
condition (4.13) can be easily m et w ith suitable choice of A, .

In the absence of D +em uplifting potential, such decoupling of Ve oyion b &y vy7 does
not yield signi cant qualitative di erences to the overall In aton potential at large radius r =3,
The canonical in ation potential should behave qualitatively sim ilar to the one In Ref. [13] (see
(B_4)). I fact, one can show that the potential (B.4) can yield sn all slow oll param eter " until
very small radius (see A ppendix [Bl), that is, in ation can persist well into the deform ed conifod.
M oreover, at snallradiuisr  2° where in ation ends, the condition (4.13) can in principle allow
for signi cant contributions to the curvature perturbation via the Lyth e ect discussed earlier,
leading to noticeable changes In the power spectrum P and the non-linear param eter fy; due to
the residual isom etry direction.

5 An explicit case study of the Lyth e ect in brane in ation

In this section,we will rst calculate the canonical in aton potential near the tip of the deform ed
conifold w ith non-perturbative superpotential generated by the K uperstein em bedding [24], and
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dem onstrate that the slow +oll param eter " can ram ain an all near the tip region for the uplifting
scenario described in the previous section. W e w ill then discuss the possibility of the Lyth e ect in
this setup. W e w ill dem onstrate that, for the soeci ¢ angular stable tra Fctory of this em bedding,
the residual isom etry direction becom es degenerate for the entire deform ed conifold, hence the
accidental disappearance of the Lyth e ect. W e therefore conclude that while the general sstup
described earlier constitutes the necessary criteria for the residual isom etries to signi cantly a ect
obsarvations, the angular stable in ationary tra Ectory, govemed by the geom etry of the speci ¢
em bedding, w ill determm ine w hether it actually takes place or not.

5.1 Potential near the tip of deform ed conifold

N ear the tip of the deform ed conifold, the com plicated K ahlerpotential (&_27) sin pli es to (A_28)
after using the constraint (2.22) to rew rite

7t = 2 (z1)? : (51)

=1

U sing the form ula given in Ref. [15], the m etric and its inverse derived from the sin pli ed K ahler
potential (A_28) are given by

C ZiZ5

Kij=—53 gyt 203 ; (52)
2-3 i

y . Z'Z

klj:T = r3 N (5.3)

Here the indices i, 3= 1;2;3, where we have also used (2.23). R aising and lowering of the indices
isdoneby *.Using (52) and (3),we can nd the F -termm scalar potential vald near the tip of
deform ed conifold as

Vg = Vkgrr + Vg ; (54)
w here
2 2ae? A (z4)T jas ?

V, = 1+ W e Re , — +c V1 = ; (55
KKLT [U (r; )F 0 A(Zl) 6 }ﬁ 13 ( )

3 2 P, . P, _ 9

2022 < 23 L1 ZA 2Ry _ L2 T

Vi = 44, 5 Re AA; 70 Z— ;
TU3U @ )P 3 r? o

(56)

where A; = @A (z)=@z* and A = QA (z)=@Zz’ so that if A (z*) becom es constant V ; vanishes and
Vkxir reduces to the F term scalar potential considered in R efs. [10,121]]. H ere we have separated
the contrdbution from the dependence of non-perturbative superpotential on the m obile D 3 brane,
V.
W e can now again consider speci cally the K uperstein en bedding [24(]

fzh= 2 ; (5.7)
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and w ithout loss of generality we w ill take real deform ation parameter 2 R and 2 R asnoted
earlier. The function A (z7) and A ;(z?) in (53) and (5.8) becom e

1 1=n
. z
A(z))=p, 1 — ; (5.8)

A(z)= — 1 = g (59)

Evidently A (z') and A ;(z!) should preserve an SO (3) residual sym m etry group of rotation am ong
£22;2%;z%g. In portantly, w ith such a choice of D 7 enbedding, the F +em scalar potential again
reduces to a function of £ ;&;r; 7' F;z! + z'g Instead of alldeform ed conifold coordinates, ie.

Ve Ve ( & Tzt + 2h) (510)

T he angular coordinates that appear explicitly in Vi ( ;&;r; %' §;2' + z') correspond to the broken
isom etry directions and they are exclusively encoded in the com binations %' § and z!' + z!, therefore
to obtain the angular extrem um tra ctory am ounts to nding the tra pctory where

ey'f @zt + 2t
@ 3 @ i
wheref ;g include all the broken angular isom etry directions of the deform ed conifold. In A ppendix
[Cl, we explicit obtain the angular stable tra fctory given by

—0; (5.11)

r
1 B+ 2
Sl = — (512)
r r3 2
7% = i 2 ; (5.13)
22=z"=0: (5.14)

A Jong such tra fctory, the SO (3) residual isom etry preserved by the D 7 en bedding (5.7) is further
broken down to SO (2) rotating z°> and z*. W e can also stabilize the axion el & as in Ref. [13],
by arranging W ; to be a an all negative constant. T he resultant two— eld potential is then given by
Ve (r; )= Vkkir (r; )+ Vg (r; ),where

______ _* 2=n
2 2ae® A,LT pJ:3+ 2
Vigxrr (L7 )= 1+ —p—
U (r; )?F 2
8 . » 9
< - =
I ALE 1+—]§_+—2 + 29 K+ c? o1 - ; (545)
AoJ 2 6 s
P 2(1=n 1)
Vel )= e Pof 1+ —p—r3+ i 1 —2
S 3n?[U (r; )P 2 f
nw |
2=3 pIS_l_ 2 pr3+ 2
> 7o 2an—p§— 1+ —]_ez— : (5.16)

W ewillnow include the e ect of the uplifting potential as given in (4.5). In our scenario, we have

(+)

decoupled Ve ouion b, S0 We should strictly include the positive de nite term , ie. V, . W e can also
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further integrate out by assum ing that evolves adiabatically and rem ains at its Instantaneous
m Inimum , which is given by h i
e Ve + V)" (r;)

=0: (5.17)
@
= »(r)
T his eventually leads to a single eld potential
V(r)= Ve 55 2 (@)1+ Vo I 2 (0)]+ Vg - (5.18)

N otice that we have not speci ed whe‘cher\/'D(+ ! is attributed to distant D 3 orD 7, as in the absence
of Ve ouomb s these two cases can be treated on equal foting calculationally. (5.17) is in fact a
transcendental equation, which is solved num erically in general. But in A ppendix [D] we derive the
Jow est order approxin ated expression given by

Jr) o 1+ @ ) (5.19)

w here the coe cient ¢, is given by

3"1=3 " 1 1
1+ — +0 — (5.20)
4n 0
Finally, we note that the function r( ) can bederived from (2.29) and (2.31]), and a good working
expression relating canonical in aton to the radial coordinate r in this region can be given by
r...
2
r( )= — + 43 (521)
3T;
Now we have all the inform ation to write the single eld In aton potential near the tip of the
deform ed conifbld. Putting (5.19), (8.16), (5.19) and (E21]) togetheg, the single eld potential for

C =

the canonical In aton along the angular stable trafctory z! = (r*+ 2)=2 isgiven by
V()= Vegor FC )i 2( )1+ Ve B )i o0 )+ Ve B )i 20 )1+ Vena s (522)
where
pil 2=n
v [ ( )] 2 2ajqofe2a 2 (r) . r3+ 2
r; - (r)]= + —p—
AR £U Ir; - (r) B2 2
8 . v 9
< j,\TOjav(r) o+ ° a 4=3 ’ B
1 —e 1+ —p— + — 2 5(r) k+ c 1 =
AoJ 2 6 s ;
(523)
T S b l+—p—pr3+ L
r; - (r)]= — —
e 3n%fU [r; » (r) B> 2 3
" 4
2=3 prS+ 2 lDr3+ 2
2an—p— 1+ —p— ; (5.24)
2c 2 2 2
DNy yJ
Vo B 2 ()] ——— = (5.25)
fUlr; -0k

The function D “ (4 v7j) can be read o from @.3) by kesping only positive de nite term and
Veng Cconsists of the potentials that are signi cant at the end of in ation, eg. the tachyon potential.
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5.2 Slow roll param eter near the tip of the throat

G iven the in aton potentialas (5.22), now we can calculate the slow oll param eter (3.8) which
is needed in determ ining the overall am plitude of the power spectrum P as (3.13) and we will
dem onstrate that it can ram ain an all near the tip of deform ed conifold in our scenario, ie. the
in aton potential (5.27) isvery atnear the tip. By chain rule, we can w rite

M2 er ° ev=er °

"2 ; (526)
2 e v

where, using (5.21), the derivative of r w ith respect to  is given by

S
@r 2 4=3
- - = 1 — . (527)
g 3T3 r?

A s shown in m ore detail in A ppendix [E], " is a com plicated finction of r. To get a clearer dea, let
us evaluate the expression (5.2d) at the tip: it reads

QV=Rr 1 3 sb 3% s 2sbc ,3 S @D
= G c + — + = —
\Y% = 23 S 1 U(2:3; ) 4 U(2:3; F) D Q@r = 2-3
3G2 2=3
N 4 gt = 528
470 (7; 5) 22 >28)
where
1

G= 1+ — : (529)

To work out the num erical value for (5.28), it is usefiil to express In termm s of the geom etric pa-—
ram eters describbing the bulk and the throat. How to write (5.28) in tem s of which param eters is
described in A ppendix [El, and the result is

( n |

@V=Gr _ 3 b 3., a0 = L, g 30 >
\Y% 22 S 1 3NBy;IlogQ 2 C c
B,2 '2°clgQ g1z @00 L4 123sbc3l:6 a0Q
Bg 302 c ON B:Q*2 c
" 3:2# 2
b2 g g 29
N B, IlgQ C
" 2 1=2 3=2 ' # )
Be 3Q 3-12 a0Q 14 3l 200
B,8 12°clogQ c c

(5.30)

To obtain a de nite number, we use the sam ple set of param eters given in Ref. [13]: N = 32,
Q =12,Bs= 9,and By = 15. Then we can see that to the lowest order expansion around the
tip

000504265 43

n(r) (S l? 1 ? H (5.31)
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Two comm ents are in order: rst, it is clear that exactly at the tip, ie. r = 273 the swxoll
param eter is sin ply "4, = 0. Second, away from the tip, "(r) can be reasonably an allby choosing
the param eters to allow for signi cant curvature perturbation spectrum at the end of in ation
through the Lyth e ect described in Section 3. In Fig.[ll, we show the in aton potential (527) and
the slow o1l param eter " (5.24).
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Fiure 1: (Left) the in aton potential (522) and (right) the slow <oll param eter " (5240). W e
nom alize M p; = 1 and for sin plicity we set Ay = 1. The point r= 2= = 1 denotes the tip from
which there is no further radialdigplacem ent. A s shown in the right panel, the potential isvery at
near the tip.

5.3 The angular stable tra ctory and the degenerate residual isom etry

In this section, we w ill argue that the angular stable tra fctory near the tip region (5.12)—(5.14)
for the K uperstein em bedding (5.7) is in fact vald along the entire deform ed conifold by show ing
explicitly that the extrem alvalues of the broken isom etry directions along (5.12)—(5.14) are dentical
to the ones for the stable trajfctory in the sihgular conifold (B_.l), despite very di erent scalar
potential in each region. A long this speci ¢ tra gctory, we w ill then show that the proper distance
associated w ith the residual isom etry direction preserved by the K uperstein em bedding vanishes.

To begin with, we can rew rite the tra fctory (5.12){5.14) In term s of the  coordinate de ned
in (2.29) such that

7! = cosh5 ; (532)
7% = i shh = ; (5.33)
22=z"=0: (5.34)

C om paring the above w ith the deform ed conifbld coordinates (A_4){A ), while one needs to soke
transcendental equations in general, for su ciently sin ple trafctory like ([532)-{5.34), one can
easily transhte it in temm s of the restriction on angular coordinates

+ +
b o= ,=0; it 2 (5.35)
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T hese tw 0 equivalent branches are the stabilized values of the isom etry directions broken by the K u-
perstein an bedding (5.7). E xactly the sam e com binations of angles also appear w hen one com pares
the angular stable tra fctory in the singular coniold (B.l) w ith the corresponding em bedding coor-
dinates w ritten in tem s of the angles. Since the em bedding coordinates (A_8)—{A_9) nterpolate the
entire throat, and that the stabilized angular values are the sam e in both asym ptotic regions, it is
suggestive that the angular stable tra fctory (5.12){5.14) isvald not only in the regions near or far
away from the tip but also for the entire deform ed conifold. Tt would be interesting to dem onstrate
this explicitly w ith the In aton potentialderived from the fulll warped deform ed conifold m etric.

One should note that on each branch, the dependence on the com bination [ (1+ 2)E2
vanishes from the scalar potential Vi (z! + z!; %' F;r; ), despite the fact that and ( 1 + ,)=2
appear indiidually in z' and z'. Foreach branch, the corresponding com bination can take arbitrary
value w ithouta ecting the resultant tra pctory. Furthem ore, it is also obvious that the com bination
(1 ,)=2doesnotappear explicitly in z' or z! hence in the scalar potential. Both ( ;  ,)=2 and
one of [ (1+ 2)E2 are the residual isom etries preserved by the stable In ationary tra fctory
in the K uperstein embedding (5.7).

T he presence of the light additional residual isom etries can in principle give signi cant con-
trbution to the power spectrum by the Lyth e ect we discussed In Section [3, by coupling them
w ith the canonical in aton through the tachyon potential at the end of the In ation. H owever the
m agnitude of such e ect is also controlled by the stabilized values of broken isom etry directions,
and the dependence is encoded in them easure factors , and 3. W e can easily calculate them by
using (A_19)+A_21l) and w ritihg out explicitly the m etrics of $? and S° in tem s of the deform ed
conifold angular coordinates as

(2=3)3
d oo @)+ (@) ; (5.37)
(2=3)"" 1
dsimD— @V + @)+ @) (5.38)
R estricting them to the speci ¢ trafctordes (5.39) and (5.36), we obtain
(2:3)2=3 5
+ M d2=0; d3=de[+(l+ 2):'9':0,' (539)
(2=3)** 2
d,=0; d3=de[ (1+ ) =0: (540)
Hence forboth ( ; 5 )=2 and [ (1+ 2)E2,theirm easure factors , and 3 vanish dentically
along (5.12)—(5.14), or equivalently (539) and (5.3d). In otherwords, even though theD 3-D 3 angu—
lar separations [( ; ,)=2]and £f[ ( 1+ 2)F2g can be nite, the proper separations along

these directions In fact vanish. T herefore, despite having the necessary conditions, eg. an all slow —
roll param eter " for the Lyth e ect to be potentially signi cant, the calculations here dem onstrate
that, due to the degeneracy of the residual isom etry directions, it in fact does not take place along
the speci c angular stable tra fctory considered . H ow ever, for other em beddings that preserve som e
residual isom etries on the S° at the tip of the conifold [31], our results in Section [3 can be ussd to
estin ate the size of these end of in ation e ects. O ne can easily use for exam ple the ormulk (3.13)

to obtain the ratio between the power spectrum at the horizon exit and the end of in ation as
P i "k 1
= = > : (541)
Py e 2 [(#c:#e) 1]

T he ratio ".=". can be as arge asO (l,wthe ( o= o) & 1,therefore .n the scenarioc we described

1 see the discussion in A ppendix [BI.
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eariler, where C oulom bic attraction is decoupled, P | can possibly give com parable contribution to
the power spectrum Py .

6 D iscussion

In thispaper,we studied the systam atics ofm ulti- eld e ectsattheend ofwarped D branein ation.
W e discussed the necessary criteria for the isocurvature perturbations generated by the angular
m otion of a m obile D 3 brane to be converted into the curvature perturbations usually associated
w ith its radialm otion in this scenario. W e found that the signi cance of the end of in ation e ects
considered in Ref. [22] depends on the speci ¢ m echanisn for uplifting the vacuum energy. If the
uplifting is due to som e distant D 3 branes or a D ~temm  potential, the Coulom bic potential can
easily becom e subdom inant even towards the end of iIn ation, and the e ects described in R ef. [22]
can In principle be signi cant. However, In them ost explicit D brane in ation constructed to date
112,l13], the D 7 brane em bedding chosen [24]does not yield such e ects, regardless of the uplifting
m echanisn . T his Jatter result is speci ¢ to the em bedding of the m oduli stabilizing branes as well
as the nfrared geom etry of the throat. A long the stable tra fctory for the em bedding considered in
Ref. 24], the proper distance for the residual isom etry direction vanishes in the entire throat, the
m oduli space vanishes at the tip. Tt would be interesting to exam ine other D 7 brane em beddings
and/or other warped throats which leave a m oduli space of vacua at the tip. Exam ples of such
em beddings for the deform ed conifold appeared in R ef. [31]], w here the residual isom etry directions
reside on the nite size S°. However, nding an angular stable trafctory in these exam ples m ay
rem ain challenging. Nevertheless, our results underscore the inm portance of multi- eld e ects In
string In ation, as noted also in the context of DBI in ation recently in Ref. [54] (see also earlier
discussions In Refs. [55,156]).
A sdiscussed In Section [3, the strength of the Lyth e ect depends on the ratio ",=".. Since the

at region of the In aton potential considered in Refs. [12,/13] is an in ection point, ", depends
sensitively on where around the in ection point corresponds to the CM B scale. G iven a D brane
In ation model which can yield the Lyth e ect considered here, a precise detem ination of the
am plitude of such e ectswould require theuse of the fullK S m etric [37]. T his is yet another context
In which details of the warped geom etries in the infrared can have signi cant e ects on the CM B
obsarvations [57]. Furthem ore, regardless of the Lyth e ect studied here, a detailed com parison of
theW M AP data with m icroscopic param eters of D brane In ation requires identifying the relevant
part ofthe In aton potentialwhich generates the observed CM B anisotropy, and the fullK S m etric
is essential. W ork along these lines is underw ay.

F inally, onem ay hope to also realize the curvaton m echanian [58]using these Iight elds. In the

setup wediscussed , however, in ation endsasD 3 and D 3 annihibte and thus the w ould-be curvaton

elds them selves disappear. For the sam e reason, any m ulti- eld e ect [59] after In ation w ill not
be present as Iong as they are associated with D 3 or D 3 branes. N evertheless it would be interesting
to In plem ent the curvaton scenario in a di erent setup satisfying a num ber of constraints [60].
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A D etails of the warped deform ed conifold

Herewe collect a few facts conceming the various coordinates param eterizing the deform ed coni-
fold. It isde ned via the equation

" Y= ?%; @ 1)
A=1

and the D 7 brane embeddings we use are given In temm s of one or the other of these sets of
coordinates. T hese coordinates can be related to coordinates on the S° at the bottom of the throat
as follow s. W e follow Ref. [61l]]w ith som em odi cations to their notation. W e de ne them atrix W
as

W LWoRY ; A 2)

w ith pP_ P
=2 r 2

W ; A3
0 0 5 ( )

where L, and R are SU (2) m atrices param eterized by three Euler angles (W e are using the standard

r-variable on the conifold, related to that In Ref. [6ll]by r= rf;;e). W e choose the convention

W3 Wy 1 22+ izt b 17

W = — ?—_ . .
Wi Wy >zl + iz? Z + iz*

; (A 4)
w here we have chosen the w 's so as to agree w ith (32)~«35) of Ref. [18]when we use the param eter—
ization of Euler angles given in (224) and (2.25) ofRef. [61]. One Indeed nds that

1X4 1
A 2 2
detW = wiw, WWg= > (z* ) = P ; (A D)

A=1

as required. At generic r > 273, one of the six Eulr angles n L and R is redundant, and the

rem aining ve along w ith r param eterize the deform ed coniold. Forr 223 the deform ed conifold
is well approxin ated by the sinqular conifold, w ith the angles param eterizing T 1% .
The com plex anbedding coordinates of deform ed conifold fz!;z?;z°;z°g can be expressed in
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tem sof the realcoordinatest 2R ; 2 [0;4 1; 1,2 [0; 1; 1,2 100;2 , = + 1 as

+ + +
z'= cosh — cos — 2 cos 2y isnhh — cos — 2 sin -2 ;
2 2 2 2 2 2
(A 6)
+ + +
7% = cosh — cos — 2 sn -1~ % 4 isnh — cos — 2 s — z ;
2 2 2 2 2 2
@A .7)
+
73 = cosh — sn 2 s -+ 2% 4 ishh — sh ° sin 2 ;
2 2 2 2 2 2
(A 8)
+
a— cosh — sin !  sn ——2 isinhh — s — > s L 2
2 2 2 2 2
A 9)

At the tip of the throat r= 273, we can reduce the com plex coordinates z* i tem s of the angles
ofthes® £ ;! ; ga

z = snhn - sh —— ; (A 10)
2 2
|
7= sn - o8 — @ 11)
2 2
'+
7> = cos — cos ; (A 12)
2 2
!+
z'= cos — sh > @A 13)

W e see that In this case, S° isa realslice ofeach z coordinate and the m etric is given by

d;=d' +cos d f+d?+sh’ d?: @ 14)

Al M etric

It is convenient to work in a diagonalbasis of the m etric by using the basis of one form s [37]

., e € , & é

g —PE—; g —PE— 7

, e+¢é , €+é

g —PE—; g —PE— ;

g &; (A 15)

12N ote that the exact relation between these coordinates and those of (&_8)—{A _J)) can be obtained by dentifying
the non-vanishing 3 in the m etric using the viebeins de ned in the next subsection.
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w here

e S:In]_d 17 (A 16)
62 dl; (A -17)
e cos sh,d, sh d,; (A 18)
e sh sh,d,+ cos dyj; @ 19)
e d + oosid |+ oos ,d ,: @A 20)
T he m etric of the deform ed conifold is then
4= 2R () sl T @ s’ S @ @) s’ - @V @
2 3K ()1 2 2
(A 21)
w here s
[shh(2 ) 2]
K = : A 22
() 51 onh ( )
T he ten dim ensionalm etric takes the warped form
dsiy = €*  dx dx + e®"dsf; (A 23)
w here the warp factor is given by the expression [37]
e4A( )= 2223 (gsM 0)2 8=3 I( ); (A 24)
w here Z
xcothx 1 | -3
I( )  [sinh(2x) 2xT°: (A 25)

sinh? x
A .2 Little K ahler potential

T he warped deform ed conifold m etric (& 21l) can be obtained from the \little" K ahler potential
k(z ;z )as
g =0@Q0%k: (A 26)

Because the angular directions of the warped deform ed conifold are isom etries they do not appear
explicitly in the little K ahler potential, and In general the K ahler potential only depends on the
radial coordinate  through 1]

k( )=— d%sh@ 9% 2°7; @ 27)

w here w ithout loss of generality we set the iIntegration constant to zero. U sing the relation between
and r, we can approxin ately solve for the Jarge and an all r lin its as

8
2 Erz forr =3,
4
k@r)! 2
(r) N c L, s (A 28)
kot —(x ) forr ;

2=3

where c= 217°=3""3  1£1887.
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B Briefreview of the \D elicate U niverse"

In R efs. [12,13], the authors considered the region of large D 3-D 3 separation, so that the deform ed
conifold can be approxin ated by its sihgular 1in it. T he expression for the F <+term potential (2.14)
is then greatly simpli ed. T he non-perturbative superpotential is generated by D 3 or D 7 brane
w rapping a four cycle of the conifold (m ade com pact by the bulk geom etry). Further, their presence
partially breaks the full SO (4) isom etry group of the deform ed conifold. For exam ple, consider the
sin plest K uperstein embedding given by holom orphic function (5.7) which breaks SO (4) down
to an SO (3) subgroup rotating £z?;z°;z'g. The trafctory of the canonical in aton then further
breaks it to SO (2). One should note here that in the presence of the bulk NSNS B- eld, the
D 7 brane embedding (5.7) can ram ain supersymm etric w ithout additional wordvolum e ux: by
contrast, the supersym m etric D 7 em beddings considered in the singular conifold Iim it as given in
Refs. [62,163,64] can only ram ain supersymm etric on these four cycles in the deform ed conifold
w ith additionalworkdvolim e ux tumed on [65].

U sing the singular conibd metric and (5.7) to calculate Vy , the authors then inchided the
Coulom bic potential Vj, ;55 as given by (4.9) such that the cancellation of the negative vacuum
energy of Vy is due to the com bination of the D 3 branes at the tip of the deform ed conifold and
distant bulk. T hey stabilize the isom etry directions broken by D 7 branes, and the resulting angular
stable tra pctory is given by

3=2 Ve + Vo =
ol = £§$ @(Fg .DBDB)ZO: B 1)

Here f ;g runs through the broken isom etry directions and (B_Jl) also in poses constraints on other
em bedding coordinates z?> = iz ; z° = z* = 0. The axion & can also be stabilized by tuning
the perturbative superpotential W  to be negative. To proceed obtaining single eld in ation, an
adiabatic approxim ation is taken to stabilize the volum e m odulus by solving the equation

@(Ve + Vp3p3)(X; )
@

T he authors approxin ated the solution of (B_2) by

(r) o 1+ & ; (B 3)

where is the enbedding param eter In (5.7) and the coe cient ¢ 5_, [l  1=(Rar)ENn 7),and
o Is the stabilized volum e at the tip of the throat after Including the uplifting term V, 555 . Finally,
the canonicalin aton was related to the radial coordinate of the m obile D 3 brane via (2.29).
Putting everything together, the single In aton potential derived at Jarge brane ssparation for
the tra ctory (B.1l) is subsequently given by

( n S_#)
239 Fe 2 . Woi . 3
V()= h( ,)*™ 2a +6 68 jhrl‘“+ = h(,) —
(TS e FVE A Y a S I
DO+Dothers
| B A4
U(.; )P ®4)
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w here

3=2
r

h(,)=1+ — ; B .5)
_ ° . (B 6)
" 4na , 2=M L ’
3 _
2 _ 2.0 2y B .7)
2
Here the approxin ation D ( ) Do + D others 1S taken for large radius r 223, The explicit

in aton potential (B_4) represents one of the m ost well developed and top-down brane in ation
m odel to date, which explicitly includes the e ects of com pacti cation and m oduli stabilization. To
obtain su ciently atregion ofV ( ), the param eters in the iIn aton potential need to be delicately’

tuned. For the speci ¢ set of param eters considered in R ef. [13] (see below Fi. 2 there), the in aton
potentialV ( ) has a sharp drop, however it is induced by the D 3-D 3 C oulom bic interaction which
only becom es signi cant near the tip of the throat, w thout which the in aton potential is In fact
an ooth and In ation continues untilm uch am aller radius into the deform ed conjfo . However In
such region, the singular conifold approxin ation should break down. In Fig.[Jd we show the e ective
potential (B_4) and the related slow roll param eterdd.

O f course, it is possible that one can try to select a di erent set of param eters such that
the slow roll param eters " and becom e order one at much larger radius w ithout including the
Coulom bic interaction. T he point we would lke to em phasize is that for the purpose of param eter
scanning, consistently excluding the tip region in the analysisofin ation im poses further constraints
(In addition to obtaining a su cient num ber of efolds, and the correct am plitude of the power
Spectrum , etc). However if we relax such constraints and allow the in ationary epoch to extend
deep into the deform ed conifold region, one neads to take into account the full deform ed conifold
m etric. A s we have explicitly shown In them ain text, " can ram ain an all in this region, using the
m etric near the tip of deform ed conifold. In other words, In ation ends when the canonical In aton
reaches its Iin it In  eld range, rather than when " becom es large. In such case, there can potentially
be an additional contribution to the curvature perturbation arising from quantum uctuations in
the Iight residual isom etry directions, which can signi cantly m odify the estim ates m ade far from
the tip.

In relation to the scenario we proposed in them ain text, where Ve quinp iSneglected, the potential
(B_4) should be regarded as the ultraviolet com pletion of our in aton potential (5.22) w ith uplifting
exclusively done by distant D 3 branes. A ssum ing that the at region :n (B_4) (near its .n ection
point) corresponds to the lJarge obsarvable scales, and thatm ost but not all the efolds are generated
there, this allow s us to have an estim ate of "y, near the horizon exit. To m ake such statem ent precise
of course requires the calculation of the in aton potentialw ith respect to the fulldeform ed conifold

131 e thank D aniel Baum ann for com m unicating about this issue.
M“Toplbt H=H?,wehave used [66]

B oMZ v, C oM ov,, Mg v, T,
— = +
HZ 2 v 3 v 3 v v
4,6 V ° 5.6 Y fy 5.6 Vi Y Mg v, v, v
+ = L - — + +
9 Pl v 6 "t v v 18 Pt v v 9 v V2
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Fiure 2: (Upper left) the in aton potential (B.4) and the resulting slow roll param eters, (upper
right) " and (lower left) . W e show both cases where the C oulom bic piece proportionalto r* is
present (solid Iine) and absent (dotted line). A s can be seen, w ithout the Coulom bic term in ation
proceeds deep inside the throat, ie. very snall r region, but (B_4) is no m ore vald there. In the
lower right panel,we show H-=H 2 which is exactly equivalent to the acceleration of the scale factor:

H=H ? < 1means acceleration. C karly, the criteria § j= 1 does not guarantee that in ation ends

at the corresponding point, especially when the Coulom bic term is negligible which is the scenario
we discussed in them ain text.

m etric, this is an interesting although potentially challenging direction, which we shall retum in
the near future.

C Stability analysis for angular extrem um tra jctory

In this appendix we will explicitly obtain the angular extrem um trafctory for the K uperstein

em bedding (5.7) in the near tip region of deform ed conifold, and dem onstrate its stability.
First, w ithout lost of generality, we take both and to be real, and let us write the F <term
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scalar potential Ve = Vkkir + V p In the llow ng form :

2a 2 fe 22 7, °" ' z " a _ 2
Vgxir = L) R p g Fod, = + 22 k+ ¢ 1 —
U (x; )?f AoJ 6 T
( )
. 5 1=-n . . 5 1=(2n)
7+ z 7+ z
“A (@ ) 1 1 1+3212]2 1 é—leOj. 1 1 1+]le]2 Y B )
Ao
(1)
and
2 2a 2(1=n 1) 2=3 5
31\-0]29 1 ]Zl]2 an Z
- = 1 + = 1 2 g — +cc
" 3n2U (r; )7 c 2 r’ 1A
z1+ Z T 32 it
—C: ) 1 1 1 12
=3 | 717 N Z+ 7 _2 (za + z1) _2 27, F 14 _2
c 2 r3 an r3 2 r3 2 3
(C2)

Such explicit orm s (C.1l) and ({C_2) will be usefil in the subsequent stability analysis. Note that
both A and C have m ass dim ension 4 and the ram aining term s are din ensionless, and we have
rew ritten the expressions in tem s of 7; 7 and z; + z; wherever possible. From (C_I) and (C2), Vi
now becom es a finction of ,r,z + 7z and ¥ F. To extract the Iight degree of freedom am ong all
the isom etry directions, we rst try to stabilize asm any angular directions explicitly broken by the
presence of D 7 as possible.

R ecalling the analysis of R ef. [13], where the tra fctory in the singular conifold along which the
linear variations of %, ¥ and z, + z; vanish, we can again apply this analysis and w rite down the
variation of z; being

X4
0 0
zl( ) = jz](- ’; (C3)
=2
o)
with ; 2 R. Here 21(0);22(0);25)0);220) are the coordinates of a ducial point and from here
27 37 47 37 4 f ig are Jocal coordinates on the base of the cone. Vanishing of the linear
variations can then be w ritten as
x4 h i
j21j2= 5 zl(o)zo)+ zl(o)zo) = 0; (Cc 4)
=2
X4
@+z)=i 5z % =0 c 5)
=2
For (C_4) to be satis ed rallf ig,we need to have
0 o (0
zj(. ) = 1/03-21(); (C ®b)

where %; 2 R. Usihg the SO (3) symmetry, one can st %, 6 0 while %3 = %, = 0. (C_3) then

2 2
in plies 21(0) is strictly real. Sub fcting zl(o) and 22(0) to the constraint zl(o) + 22(0) = ? and the
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o) 2 ©0) 2

de nition r’ = #F+ #f= 1z + z, ,wecan see that
r
3 2
%y = ; c.7
2 55 2 (C.7)
leading to the angular extrem um tra fctory along
r
3. 2
0) r+
z, = ; (C 8)
r 2
3 2
22(0) = i 2 (C 9)

N otice that in the sihhqular conifold Im it ! 0,[C_8) and (C.9) reduce to the one in (B_).
Let us now proceed w ith the stability analysis for {C.8) and (C.J). W e rst notice that along
these tra fctories the linear perturbations in ;, ¥ and z;, + z; disappear, and we can further see that

1 i
21=Z](_0) 1 — §+ §+ g + 5%2 (2 2 3 3 4 4)+ H (C.lO)
0 1 5 2, .
Z+ zp=2z 1 5 S+ oS+ 5+ ; (C 11)
) 0)2 2° 2 2 2
=2 1 R P S S : (C12)
Then we nd that
@ijlj2 2 22
mo= £+ ?) mizjfr B3t 4 g (C 13)
@%(z; + z1) r—
- 27 - 2+ ) 2+ 133t o ja); (C .14)
R I
50 that them assm atrix along the extram al tra fctory is given by
1
X +2°Y=(2+ ?) 0 0 00
a2y B 0 X+Y 0 00¢
~_ =B 0 0 X+Y 00k ; (C 15)
&€ 5 E 0 0 0 0 0A
0 0 0 0 0
W here
P— Qv
X = 203+ ) —m—— ; (C 16)
@(Zl+zl)0
Qv
Y= (F+ %)= : C 17)
@jzl:?o

T herefore, three angular directions, viz. ,, 3 and 4 have de nite m asses squared no m atter
positive or negative, while 3 and 4 ram ain perfectly at unless any other e ect which breaks the
symm etry is Introduced, eg. bulk m ass term s. Hence, ifwe are to look for light angular directions
which can give rise to interesting and/or dangerous e ects at the end of in ation, there are two of
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them provided that the other three directions are stabilized. First we m ust check whether this is
Indeed achieved.

From (C.1l) and {C_2), after som e calculations, we can nd that or Vg gt

@v A P 3 5 2(1 1=n) 0 N j\] ) pIS 5 1=n 1
3+ S +
KKLT = — 1 —p— @1 O? 1 p— + BA ; (C18)
@z + z1) n 2 2 PoJ 2
@V A p]:3 5 2(1 1=n) N j\] ) P 3 5 1=n 1
+ e r’+
IliKLT _ _ 1 N @1 = Oj. 1 —p— + BA ; (C 19)
@]lez 0 n 2 2 jAOj 2
and for Vg
P 2(2 1=n)
@Vyp C 34 2
_— ==1 —5—
Gz + 2z1) 2
( n p '#
1 2=3 r3 2 n2 2(]:3_,’_ "2) r?;_i_ 2
1 — an 1 — — 1
n c ? 2r3 r3 Y5
n #9
p 2 _
B+ 2 2 2 23+ 2) 2
+an 1 —p——o 1 — — ; (C 20)
2 rs o
P 2(2 1=n)
@ VF C 3+ 2
- = — 1 —p=
@:lej2 0 "2 |
( 2=3 _3 2 2 P 3 2 P 2 #
. 1 r . 23+ 2) 3+ 1
— an — —
n c ? 2r3 r3 Y5
9
pr3+ 2 2 2=3 2 =
+ 1 — + 2an 1+ — : c21
P =3 R ( )
T hus, from
C= A ; (C 22)
6an?
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| P 2(1 1=n)
A 23+ ?2) 3+ 2
X = — —p=
n 2
8 D - " #
< e Woj, o+ ° SR
2 RoJ 2 6 r r3
" I#)
p p
1 1=n ¥ p °2 . 2 2+ %) P+ 2 . c 23)
6 anc ¢ 2r3 3 Y5
A r3 L2 P T 2(1 1=n)
Y= — 5 1 ——
n 2
8 o )
- =n
<1 ¢ FoJ, g ° R P
— — + - + + —
2 PoJ 2 6 ancr’ r3
" p p L)
1 1=n = ¢ 2 . 2 2+ 2) o+ 2 . C 24)
6 anc 2 23 r3 Y35 )
Note thatwe can write Y using X as
p P 201 1=n) ( " # )
r’+ 2 A 5 r+ =3 2 23+ 2) 2
Y = p—X + ©+ )1 —p—— 1+ + 3 === - _
2 6n 2 2 ancr’ r3
(C 25)

To estin ate the stability near the tip, et us take the Iim it r* | 2, ie. very close to the end of
the In ationary epoch. Then, from (C_.23) and (C_.24), we can see that

n #
2(1 1=n) . 1=n
2A e a 2
X ! —_— 1 - 1 —Wo?l — + =(2 k) — (C 26)
n 2 AoJ 6
" #
2 2(1 1=n) . 1=n
A " 1 e a 1
vioo= -1 - - Wody 20 )
n 3 2 Aoj 6 6anc 4=
A 2 2(1 1=n) 1
= X 4+ = - 1 — 4 1 — 4+ — (C 27)
3n anc 43

Further, in this lin it, all the eigenvalues in {C.19) become X + Y , so that for the angular stability
along ,, 3 and 4 we require that
2 2(1 1=n) 1

X+Y= 1 — X+ — — 1 - 4 1 — 4+ ——— > 0: (C 28)

3n anc 43

To com plete the analysis w e therefore need extra nform ation, eg. the valuie of the stabilized volum e
modulusatthetip and theratio = .Sihce = istheratio ofthesizeofthetip to thedistance
of the stack of D 7 branes to the tip , one can easily tune it such that = < 1. Therefore it
is su clent to check the positivity of ([C26). For this, we apply the results we establish in the
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Hllow ing appendix (D_4) and (D_J) related to ,: then the tem s in the square brackets of (C_24d)
can be written as

1

. 1=n
<3 2 1 s
€ Iod, = (€ 29)

— + 2 - —
2 Roj ( s 3 2
T hus the angular stability depends on the product bs: if ks > 3 we obtain negative sign while

s < 3 it becom es positive. Since we know that the power b for our uplifting potential is either 2
(forVy s53) or 3 (Brvy oy ) and that1 < s . O (3), the product ks lies in the range

2 1 s
3 2 6

ol o

2<kbs. 0(9): (€ 30)

W e can therefore see that tlbe condition for angular stability s > 3 can be naturally satis ed. T hus
we conclude that 21(0) = (r3 + "?)=2 is the stable tra fctory we have been searching for very

near the tip.

D D erivation of approxim ated stabilized volum e

P

Having derived the angular stable tra gctory z; = (2 + ?2)=2,we are keft with a two— ed
potential Vi (r; ) = Vikur (X7 )+ Vg (r; ). In this appendix we will derive an approxin ate
expression of the stabilized volme ,(r) in tem of the radial coordinate r that is given by (5.19).

D .1 Stabilized volum e at the tip

W ithout taking into account of the uplifting term and the additional contribution from the D 3
brane position, we have the usualantide Sitterm ininum of KK LT com pacti cation, the stabilized
volum em odulus r isde ned to be

V
@F(r;) =0: (D 1)

@ r= 273; = .

Explicitly r can be given by the transcendental equation

j _ au
Fode e gim o1y e, (D 2)
PoJ 3
where G isde ned by (5.29) and

T hus at the tip, the potential is given by

a2 2p,Fe?e ¢

G . (D 4)
3U

Ve (= ""; = p)= Vkxuir oo =

Notice that V ; vanishesatr= <2>.

Now consider including the e ect of uplifting term Vp (r; ) which we assum e to take the fom
in (43). W e expect such a term contrbutes a an all shift to the stabilized volum e at the tip of the
throat o= ¢ + ,which is form ally de ned as

2
@y + Vp) @V +@VD _0; D 5)
@ =3, _ @ 2 @

r= 0 F 0
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w here

Qv 2BV bv,
b b 21 b+ 1) —+ Ko D 6)
@ 0 2 9 K F F 2
Solving (0_3) and (D_4),we obtain
" , , # 1
kO F @ VF
— 1 (b+ 1)y»— b+ 1)+ (D .7)
F 2 F WD @ 2
W e can also nd that
@%Vg _2a *Pofe - o 20 a’Ur , 5. 16a
@ % s, U? 3 3 30U«
2 2 2_2a
a e
24 oS G
3Ur
=239 (x= *7; = )3; D 8)

w here we have used the fact that typically & 1. T he shift of the stabilized volum e can then be

approxin ated as
bs

2
2a¢ g

where the param eter s is the uplifting ratio given by (4.9).

; (D 9)

D .2 Radialdependence

Now let usalso take Into account the dependence of the stabilized volum e on the brane position,
denoted as ;(r). Fom ally this am ounts to soking the equation

@V (r; )+ Vp (r; )]

=0: D .10
e ( )

2 ()

From (5.13), (516) and (4.9) and the previous analysis, the volim em odulus ~ appears in both the
exponential and the polynom ial, ({D_.10) is thus in fact a transcendental equation. To sin plify the
analysis, one notices that In the large = o lin it, one can approxim ate - (r) in the polynom ialby

o [13], as the di erence is exponentially suppressed. T hen we are left w ith a quadratic equation of
X  exp( a;)given by

A, X2+ AX  By= 0; (D 11)
so that 2 s | l3
1 2A 47 oA
o= —bgd=—2 1 1+ 2% 5. D 12)
a Al Al

Two comm ents are in order: rst, we note that

2D (¥ Yj)/ 1
yb+ 1 bl
0

Ay = ; (D 13)

with b= 2 or 3. T herefore, unless we care for corrections beyond O (1= é’*l),the factor 4AOA2:A5
In the square root does not alter the leading contribution if there exist term sup to O (1= ]OO),whjch
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is indeed the case as will be shown. Second, since we are interested in the region very close to
r= 273, the prim ary expansion param eterwillber 2 which we denote by x below . Thus we
expect

s 1,
2A 4A (A A 1
=2 1 1+ 022 = 2240 o1
A, A7 A, 5
1 1
=7 oML+ 0 — + +-0
0 0
1 1
+ O@M)+ 0 — + +—% X + : (D J14)

A fter som e calculations, we can nd that schem atically

A,

a

=€ 7 (o+ ax); (D 15)
Ay
w here the coe cients are given such that
1
F
313 ! 1
C = 1 — +0 — (D .17)
4n F
so that
C
2 P L+ X (D 18)
arg

O ne notices that in contrast with Ref. [13], where the leading radial degpendence enters at order
r’?, here w ith the deform ation parameter 6 0, we only have a rational expansion. Furthem ore
as p and , onl di ersatorder 1= ;,wecan replace by , 1 (D_18).

E Calculations of the slow roll param eter

In this section we present explicit calculation of the slow +oll param eter " given in them ain text.
From (2.8), (519), (520) and (&_29), the derivatives of - (r) and U [r; ,(r)]with respect to the
radial coordinate r are given by

@ '>(r) 3 1=3
- = G ; Ed
Qr 4an ( )
Ul; » 313 3
@U [ .(r)]= G (i 2, E 2)
@r 2an 2=3

respectively, where G isagain given by (529). G iven these, now let us calculate the derivatives of V
w ith respect to r from (523), (524) and (5.23). For notational sin plicity, from below let usdenote

p
P
g(r) l+—p§—: (E 3)
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W ecan nd,after som e sim ple calculations, that the rst derivatives w ith respect to r are given by

@Vkxir _, 3 1=3G 1,1 6c . 3r?
—_— = -+ — r
Qr RRDT n 2 au 2=3y 2n 2[g(r) 1h(r)
2 2afp,Fe® ¢ -n
e ()T
B 3 1=3 3r2 1=3 10=3
HoJs g G+ ¢ 2 G+c ;
Ao 4n 4n ’[g(r) 1h(r) 2 2an r
(E 4)
@ Vg 31 1 6c 1 3r?
=V, G -+ — — P+ =1
Qr n 2 au 2=3y n 2 ?[gr) 1p(r)
2 3 2a
}\-ofe (1=n 1)
s L)
SR L (O SN R (E 5)
JR— [ n H
r3 gr) 1 22 % 2¢? angir bl
. - . . 1=3
ev, 1 & vy ®HF yI 37 3<i 2 E 6)
@r Ub @r U 2an 2=3

A s can be read from the above expressions, iIn general " is a com plex functions of r. To catch a
clearer feeling, it would be usefill to evaluate them at the tip, ie. atr = = (E4), EF) and
(E_d) then becom e

@Vkk LT . .3 3= 2=3
_— = _ 23— G c ; E.7
ar o Vo -2 BJUF oan 7 ( )
@ Ve . . 3 2 i 1 2=3
@r . = j‘]KKLT J- 2-3 jazanF G e 5 2an—G ’ (E .8)
(CAVS 1 @D i s 3 _
D 1= G 3 £ 9)

T

. 23 Ug 2an

r=

where Vxg 11 3. 22 isgiven by (D_4) and Uy by (D_3). Hence, we have

@V 3 '_ _ 3 3 123 B G2 2=3
— = Verir 3o =3 G c ¥ 4 2an—G *
Cr __ . Ur 2an a’n? 73 2c¢ ?
1 @D 4. s 37 _
= — - G 3¢ > (E 10)
Ur @r __ .- Ur 2an
Further, from (49) we can relate Vp J_ 2-s with Vggir Jo 2-3 by
) Dd_ 2 , .
VD Jo 2=3 = [ljib = Sj‘]KKLT J= 2=37: (E .11)
F
This further sin pli es (E.10) to
Qv 3 sb 3 _ 2sbc ,_ s @D
- = j]KKLT }.: 2=3j G C 2=3 + 2=3 + - —
@r __ . Ug 4 Ugp D Qr __ .-
3G? 2=3 _
4 gt 23 (E 12)

+
4 2Jp 2c ?
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Likew ise, using the fact that Vyi_ 25 = 0,

Vj:: 223 = VRRLT j:: 23+ Vg j:: 2=3 + Vp 1: 2=3
=Vkkir 3= 2=3 + Vp Jo 23

= (S 1)j"£7<KLT }I: 2=3j: (E .13)
T hus, at the tip we obtain
QV=@r 1 3 sb3'? sy 28kc ,, s @D
= G c + + = —
\Y po 23 S 1 Ug 4 Ug D Qr __ .-
3G2 2=3

4 -Gt . (E 14)

+
4 2y, 2c 2
Note that D contains the factor y vy jand that its derivative is given by

@y sz 2(r 2:3)
Qr

; (E.15)
we can easily see that the tarm Involving @D (¥  yJ)=Qr in factvanishesatr= *7 forv, ;53 with
b= 2,whereas for Vi temn wWith b= 3 such term wvanishes dentically asD (y vy J)= ¥ . In other
words, "og for the two di erent uplifting m echanian s only di er in b. T he canonically nom alized
in aton near the tip is denti ed as in (231) and @ = (@r=@ )Q@.. Notethat and , ,andr
have m ass dim ension of {3/2, 2 and {1 respectively, so it can be easily seen that (@V=@r)=V has
m ass dim ension 1 by counting the dim ensionful param eters.

Since (E.14) is clearly nite, from the chain rule (527) one can easily see that the slow-roll
param eter " in fact vanishes dentically at thetip r = 2°,or = 0. However we can expand
around the tip and obtain the lowest order approxin ation as

. M2  @V=er ° s s
(r) ST - r ; (E 16)

r= 2=3

with (@V=Qr)=Vij_ .-s given by EI4). We can express "(r) in tem s of the com pacti cation
param eters describing the bulk and throat geom etries [13]. Several usefill expressions are

r _
=T A= & i (E.17)
_ 2=3
Tyv Tyv 216
= = — ; E 18
Q r (2 2)1-3 31:2a0 ’ ( )

B,20bgQ By 2bgQ

— = —_—; E 19
Bg 3 12, B3 (2 2)2302 ( )
2 T32 W 3 2\2=3~ 2
MPl=—V6 = éNB6T3(2 ) Q ; (E.ZO)
3N
Ur 25 2—B4JogQ : (E 21)

Here fyy denotes the ultraviolet cuto radius where the deform ed conifold is attached to the bulk
CalkbiYau,r isthem inimalradiusofD 7,and B, and B4 denote the contributions of the throat
to the warped volum e of the wrapped four cycle and to the total warped volum e of the com pact

37



space V' , respectively. Substituting these into (E.14) and (E.16) and after a little calculations, we
nd
( n |

QV=QRr _ =3 3 sb 531:12 a0 1y 3 a0
\Y% 22 S 1 3NBy;IlogQ 2 C c
B,2 '2°clgQ g1z @00 L4 123sbc3l:6 aoQ
B 302 c ON B Q2 c
n 3:2# 5
b2 g g 29
NB, ]OgQ C
" Y #)

2 1-2 3-2

Bs 3Q 312 aoQ 14+ 3 aoQ

B,8 12°clogQ c c

(B 22)

W e can also obsarve from above that for the two di erent uplifting m echanism s, the value of "(r)
only di er in b.
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