
Applied QCD

B.Z. Kopeliovich a,b and A.H. Rezaeian a

a Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
b Joint Institute for Nuclear Research, Dubna, Russia

Abstract
These lectures stress the theoretical elements that underlie a wide range of phe-
nomenological studies of high-energy QCD, which include both soft and hard
processes. After a brief introduction to the basics of QCD, various aspects of
QCD-based phenomenology are covered: colour transparency, hadronization
of colour charges, Regge phenomenology, parton model, Bjorken scaling and
its violation, DGLAP evolution equation, BFKL formalism, GLR–MQ evolu-
tion equation and saturation. In the last part of the lecture, we employ the light-
cone dipole formalism to describe deep inelastic lepton scattering, Drell–Yan
processes, direct photon production, diffraction, quark and gluon shadowing
in nuclei, the Cronin effect and nuclear broadening.

1 The theory of strong interaction
Strong interactions are described by a quantum field theory known as quantum chromodynamics (QCD).
In many ways QCD is a unique theory. Quantum electrodynamics (QED), and its expansion to the
electroweak Standard Model of particle physics, is also a quantum field theory. However, QED breaks
down at short distances and is not well-defined. QED is a renormalizable theory but it loses all its
credibility as we approach the Landau pole. On the other hand, if the cutoff goes to infinity, QED
becomes trivial. QED is not the only theory with a Landau pole problem; every theory which is not
asymptotically free suffers from this problem. QCD is the only known theory which is free from such
problems. QCD needs only a few parameters to be defined completely: one universal coupling strength
and one mass for each kind of quark.

Despite more than half a century of attempts, our knowledge about many aspects of QCD is still
rudimentary. This is mainly due to the fact that QCD evolves from a few-body theory of free quarks
and gluons at short distances to an extremely complicated infinite-body theory of objects like hadrons
and nuclei, giving rise to a variety of complex physical systems and their interactions. The aim of this
manuscript is to bring together various aspects of high-energy nuclear physics as tools for studying QCD
itself.

1.1 The QCD Lagrangian and its symmetries
The Lagrangian of QCD is given by

L = q̄(iγµ∂µ −m0)q − 1
4

(F aµν)2 + gq̄γµAµq, (1)

where q is the quark field, which is defined in the fundamental representation of the colour and flavour
group, and the conjugate Dirac field is defined as q̄ = q†γ0. The gluon field matrix Aµ = Aaµλ

a/2
is defined in the fundamental SU(Nc = 3) representation, λa being the generators of the gauge group
which satisfy [λa/2, λb/2] = ifabcλc/2. We define g as the strong coupling constant. The field strength
F aµν is given by

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
µ. (2)

The non-Abelian nature of QCD is manifested by the quadratic term in the gauge field strength, which
gives rise to gluon–gluon interactions shown in Fig. 1. The crucial difference between QCD and QED
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Fig. 1: Gluons carry colour charge and interact with each other via these vertices

is the presence of this quadratic term which makes the QCD field equations non-linear. These non-
linearities give rise to a non-trivial dynamics and various rich structures which are unique properties of
the strong interaction. The colour and flavour indices of the quark field are suppressed. m0 is the current
quark mass which is not directly observable if QCD confines quarks. The current quark mass is colour
independent and can be brought diagonal in flavour space. There are six flavours of quarks, each of
which has a different mass. The three light quarks are called up (u), down (d) and strange (s), while the
three heavy quarks are called charm (c), bottom (b) and top (t). The following values for the light current
quark masses are found in the Particle Data tables [1],

m0
u = 2 to 8 MeV, m0

d = 5 to 15 MeV, m0
s = 100 to 300 MeV. (3)

Notice that the quark masses are renormalization scheme dependent. The above values are ob-
tained in a subtraction scheme at a renormalization scale O(1 GeV). In addition to flavour, quarks
carry another quantum number known as colour. Each quark comes in three colours which based on a
convention are called red, green, and blue.

The Lagrangian Eq. (1) has a large classical symmetry: we have the local gauge symmetry
SU(Nc) by construction,

q → Ucq, q̄ → q̄U †c , Uc(x) = exp(iθa(x)(
λa

2
)c),

Aµ → UcAµU
†
c −

1
g
Uci∂µU

†
c .

In QED, there is only one electric charge, and the gauge transformation involves a single phase factor
U = exp(iα(x)). The QCD Lagrangian Eq. (1) also has a global flavour symmetry which does not affect
the gluon fields,

q → UV q, q̄ → q̄U †V , UV = exp(iθaV (
λa

2
)F ), (4)

where (λ
a

2 )F denotes the generators of the flavour group U(Nf ) and Nf denotes the number of flavours.
The above symmetry is referred to as vector flavour symmetry UV (Nf ). When the generator is the unit
matrix, we have a UV (1) symmetry associated with conservation of baryon number. There is another
global symmetry which is exact at m0 = 0, namely chiral symmetry. This symmetry is very similar to
vector flavour symmetry, apart from an extra factor of γ5 in the generator of the transformation.

q → UAq, q̄ → q̄UA, UA = exp
(
iγ5θ

a
A(
λa

2
)F

)
. (5)

Notice that owing to the factor γ5 the quark field and its conjugate partner are transformed by the same
matrix in contrast to vector transformation Eq. (4). This transformation is called the axial-vector trans-
formation and can be combined with the vector transformation to define a bigger symmetry at chiral
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m0 = 0, which is then called chiral symmetry UV (Nf )× UA(Nf ). One may alternatively define right-
and left-handed quark fields by the following transformation

qL =
1− γ5

2
q, qR =

1 + γ5

2
q. (6)

The right- and left-handed massless fermions are eigenvalues of the helicity or chirality (with eigenvalue
±1) and are not mixed together. The chiral symmetry can also be written as UL(Nf )× UR(Nf ).

Not all the above-mentioned symmetries survive quantization. Particles with opposite helicity are
related by a parity transformation, therefore in a chirally symmetric world, the hadrons should come in
parity doublets. However, in real life we do not observe such degeneracy. Therefore one can conclude
that chiral symmetry is not realized in the ground state and chiral symmetry is spontaneously broken.
The Goldstone theorem [2] tells us that the spontaneous breaking of a continuous global symmetry
implies the existence of associated massless spinless particles. This indeed was confirmed due to the
existence of the light pseudoscalar mesons in nature (pions, kaons, and etas), which may be assigned
as pseudo-Goldstone bosons [3]. Moreover, the existence of a quark condensate 〈q̄q〉 implies that the
SU(Nf )L × SU(Nf )R symmetry is spontaneously broken down to SU(Nf )V . Therefore one may
conceive the QCD quark condensate as an order parameter for chiral symmetry breaking. The concept of
spontaneous broken chiral symmetry is the cornerstone in the understanding of the low-energy hadronic
spectrum.

The U(1)A symmetry implies that all hadrons should come with opposite parity partners. How-
ever, this is not the case, therefore this symmetry must be broken somehow. If the spontaneous symmetry
breaking mechanism works here, then one should observe a Goldstone boson associated with U(1)A,
namely an I = 0 pseudoscalar meson having roughly the same mass as the pion. Surprisingly there is no
such Goldstone boson. This problem is sometimes called the U(1)A puzzle. It turns out that the U(1)A
symmetry is explicitly broken by quantum effects. This effect is known as the axial anomaly [4]. The
axial charge corresponding to the axial current j5

µ = q̄γµγ
5q is not conserved because of the contribution

of the triangle graph in Fig. 2. The four-divergence of the axial current is given by

∂µJ5
µ =

∑
q

2imq q̄γ
5q +

Nf

8π2
trGµνḠµν , (7)

where Ḡµν = εµνkλG
kλ/2 is the dual field strength tensor. The last term (gluonic part) is a full diver-

gence, and one may expect this term not to have any physical effect if the QCD vacuum were trivial. It
was shown by ’t Hooft that due to instanton effects, the U(1)A symmetry is not manifested in nature [4].

�������

Fig. 2: The diagram corresponding to the UA(1) anomaly

Finally, at m0 = 0, the QCD Lagrangian is invariant under a scale transformation which is called
dilatational symmetry:

q(x)→ ε3/2q(ε−1x), Aaµ(x)→ εAaµ(ε−1x), xµ → ε−1xµ. (8)

This symmetry is again broken at the quantum level due to the trace anomaly [5].
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2 QCD versus QED
Let us remember the main differences between QCD and QED. QCD is an extended version of QED
which now, instead of one charge, has three different kinds of charge called colour. Similar to the
photon in QED, here massless spin-one particles, the gluons, respond to the presence of colour charge.
The colour charged quarks emit and absorb gluons in the same way as electrically charged leptons do.
However, radiation of a photon does not change the charge of the electron, while a gluon can change
the quark colour. The response of gluons to colour charge, as measured by the QCD coupling constant,
is much more drastic than the response of photons to electric charge. Gluons, unlike photons, interact
directly with each other, although the colour charges, like electric charge in QED, are conserved in all
physical processes. Therefore gluons must be able to carry unbalanced colour charges in contrast to their
counterpart the photon in QED.

3 Non-perturbative features of QCD
In this section we shall recapitulate the most important features of QCD which are not accessible per-
turbatively. These non-perturbative features are unique for QCD and should be traced back to the main
differences between QCD and QED which were given in the previous section.

3.1 Asymptotic freedom
Having introduced the gauge-fixing term and an associated ghost term by means of the Fadeev–Popov
procedure [2, 6], one can carry out perturbation theory in terms of coupling. Similar to QED, a di-
mensionless physical quantity R can be expressed by a perturbation series in powers of the coupling
parameter αs (αs is the notation for g2/4π). Owing to the renormalization process, a renormalization
scale µ enters the calculation [7] in order to remove the ultraviolet divergence. Therefore one can write
the dimensionless quantity R in terms of other available dimensionless parameters Q2/µ2 and the renor-
malized coupling αs(µ2). However, the physical quantity R cannot depend on the arbitrary µ. This
means that R should be renormalization scale invariant:

µ2 dR
dµ2

=
[
µ2 ∂

∂µ2
+ µ2dαs

dµ2

d∂

dαs

]
R (αs(µ2), Q2/µ2

)
= 0. (9)

This equation explicitly shows that any dependence of R on µ must be cancelled by an appropriate µ-
dependence of αs. It is also natural to identify the renormalization scale with the physical energy scale of
the process, i.e., µ2 = Q2. The running coupling is described by the renormalization group equation [7],

Q2 ∂αs
∂Q2

= β
(
αs(Q2)

)
. (10)

Whenever the coupling is small, the β function can be computed perturbatively,

β(αs) = −β0α
2
s(Q

2)− β1α
3
s(Q

2) + ..., (11)

with
β0 =

33 − 2Nf

12π
, β1 =

153 − 19Nf

24π2
. (12)

Therefore one can readily calculate the effective running coupling at one-loop level ignoring the β1 term:

αs(Q2) =
1

β0 ln Q2
Λ2

, (13)

where Λ is a scale parameter of QCD and depends on the subtraction scheme and the number of active
flavours. The present world average for αs at the Z0 mass is αs(MZ) = 0.118 ± 0.002 which leads to

Λ(5)

MS
= (208+25

−23) MeV, (14)
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where the symbol MS stands for minimal subtraction scheme [7] and the superscript indicates the num-
ber of active flavours. This value is taken from an analysis of various high-energy processes [8, 9], see
also Fig. 3. The most striking feature of the running coupling is that it decreases logarithmically with
Q2 for Nf < 17 when β0 > 0. This originates from the self-interaction of gluons which leads to anti-
screening, in contrast to QED where the sign of β0 is negative. Therefore perturbation theory works very
well for large Q2. This phenomenon is called asymptotic freedom [10]. However, if Q2 is near ΛMS ,
perturbation theory does not work anymore and non-perturbative phenomena enter the stage. One of the
biggest challenges of QCD is to connect these two domains. Admittedly, there is yet no unambiguous
method to connect small and large distances in QCD.
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Fig. 3: Right: The running coupling constant as a function of momentum transfer Q2 determined from different
processes. Left: Summary of αs [9].

3.2 Chiral symmetry breaking
In the first section, we introduced the symmetries of the QCD Lagrangian. In the limit of massless
quarks, QCD possesses chiral symmetry UL(Nf ) × UR(Nf ) which means that left- and right-handed
quarks are not mixed:

qL → VLql; qR → VRqR; VL, VR ∈ U(Nf ). (15)

As we have already discussed, owing to the presence of the quark condensate 〈q̄q〉, chiral symmetry is
spontaneously broken, and left- and right-handed quarks and antiquarks can transform into each other:

〈q̄q〉 = 〈q̄LqR〉+ 〈q̄RqL〉. (16)

Dynamical chiral symmetry breaking is one of the important non-perturbative features of QCD which
is responsible for the generation of quark masses1. In order to show that this phenomenon is purely

1There is another very different way to generate mass from the vacuum, the so-called Casimir effect [11], which originates
from the response of the vacuum in the presence of non-perturbative boundary conditions. The existence of boundary conditions
in quantum field theory is not always free from problems (see, for example, Ref. [12]).
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non-perturbative, we employ the QCD gap equation [13],

S(p)−1 = (iγ.p+m0) +
∫

d4q

(2π)4
g2Dµν(p− q)λ

a

2
γµS(q)Γaν(p, q), (17)

where m0 and g are the current-quark bare mass and the coupling constant, respectively. Dµν(p − q) is
the dressed-gluon propagator and Γaν(p, q) is the dressed-quark-gluon vertex. The general solution of the
gap equation is a dressed-quark propagator of the form

S(p) =
1

iγ.pA(p2) +B(p2)
=

Z(p2)
iγ.p+M(p2)

. (18)

One may now use the gap equation to work out the fermion self-energy perturbatively [14]. One obtains,

B(p2) = m0
(

1− α

π
ln(p2/m2) + ...

)
. (19)

It is observed that at all orders of the loop expansion, terms are proportional to the current-quark mass and
consequently vanish as m0 → 0. The quark mass is defined as a pole of the dressed-quark propagator;
therefore no mass is generated at a current-quark mass equal to zero, i.e., the dynamical chiral symmetry
breaking is impossible in perturbation theory and there is no mixing between left- and right-handed
quarks at the perturbative level. Notice that, apart from the trivial solution B(p2) = 0 at m = 0, a non-
trivial solution B(p2) 6= 0 can indeed be found at the chiral point, albeit accessible non-perturbatively.
The renormalization effect is not included in Eq. (17), but it does not change the above argument [14].
The quark condensate2 in QCD is given by the trace of the full quark propagator Eq. (18),

〈q̄q〉 = −i lim
y→xTrS(x, y). (20)

Notice that since q̄q is a gauge invariant object, one may take any gauge to obtain the dressed quark
propagator which has a general form as equation (18). It is obvious that when B(p2) = 0, the quark
condensate does not take place, simply because of the identity Tr γµ = 0. It has been shown in many
non-perturbative approaches that the emergence of a dynamical quark mass leads to the non-vanishing
of quark condensate and vice versa, see, for example, Refs. [17, 18].

3.3 Confinement
Another important non-perturbative feature of QCD is colour confinement [10]. Loosely speaking, con-
finement is defined as the absence of any free coloured objects in nature. But it is possible that there exists
a composite coloured particle which can form colourless bound states with another coloured particle like
quarks. Colour confinement is still not properly understood, and a clear and indisputable mechanism re-
sponsible for this effect remains yet to be discovered. The basic property of confinement can be explored
by looking at heavy qq̄ propagation at a large distance R in a time interval T . The behaviour of such a
system can be described by the Wilson loop,

W (R, T ) = Tr
[
P exp

(
i

∫
C
AaµT

adxµ
)]

, (21)

where T a denotes the generator of SU(3). One can show that at large time interval T ,

W (R, T →∞) = exp (−TV (R)) , (22)
2Note that, at finite density and temperature, the formation of a quark Cooper-pair condensate 〈qq〉 6= 0 is also possible,

leading to colour symmetry breaking, the so-called colour superconductivity phenomenon (BCS) [15] and diquark Bose–
Einstein condensation (BEC) [16].
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where V (R) is the static potential between the heavy quarks. At large distances this potential grows
linearly:

V (R→∞) = σR. (23)

Therefore the Wilson loop at large R and T behaves as W (R→∞, T →∞) = exp (−σTR), which is
the so-called area law and indicates confinement.

Confinement originates non-perturbatively, since it is associated with a linear potential with a
string tension

σ ∝ Λ2 exp
(
−
∫

dg

β(g)

)
, (24)

which is obviously non-perturbative in the coupling. Note that the string picture of quark confinement
is not free of flaws, since string breaking will occur once the potential energy approaches the quark pair
creation threshold.

It is well known that for confinement it is sufficient that no coloured Schwinger function possesses
a spectral representation. This is equivalent to saying that all coloured Schwinger functions violate
reflection positivity [13]. Another way of realization of QCD confinement is due to the Gribov theory,
in which colour confinement is determined by the existence of very light (almost massless) quarks [19].
There are in fact many different ways that confinement can be realized, such as monopole condensation,
infrared enhancement of the ghost propagator, etc. For a review of this subject see Ref. [20].

One may wonder if there is a non-trivial solution for the gap equation B(p2) 6= 0 which gives rise
to a pole of the quark propagator, for this might contradict QCD confinement since the quark is coloured.
Indeed this is one of the subtle points in every QCD model and can not be easily resolved. In principle,
there will be a long-range force between massive quarks to confine them and also a short-range spin–
spin interaction between massive dressed quarks. The former will modify the low-momentum part of
the propagator to remove the quark from being on-shell. Actually, this describes a phenomenologically
motivated picture of a constituent quark model based on dynamical symmetry breaking. Having said
that, it is very hard to incorporate dynamical symmetry breaking and confinement into a QCD model. In
fact, many models constructed to describe the low-energy properties of hadrons [18, 21] are assumed to
be only dominated by quark flavour dynamics and dynamical symmetry breaking, and are indeed reliable
only at intermediate scales, between the confinement scale of a few hundred MeV up to a scale of about
1 GeV.

4 Evidence for coloured quarks
Historically, the idea of colour degrees of freedom emerged as a viable solution to the problem of how
to construct the wave function for the doubly charged ∆++ baryons [22]. The wave function of ∆++ in
space, spin and flavour is symmetric and violates the Pauli exclusion principle, since ∆++ is a fermion
with spin 3/2. This problem was resolved by introducing a new degree of freedom, the colour degree of
freedom, and requiring that the ∆++ wave function be antisymmetric in the colour degrees of freedom.

Although coloured states are not detected in experiments, and only colour singlet states exist in
nature, there is much experimental evidence in favour of a colour degree of freedom. One of the direct
experimental tests for a colour degree of freedom comes from e+e− annihilation into hadrons. In the
e+e− annihilation process, first a pair of quarks e+e− → qq̄ is produced which then fragment into
hadrons. The cross-section for producing a free qq̄ pair is the same as for producing a µ+µ− pair except
for the quark charge and colour number which should be replaced with the muon charge, see Fig. 4.
Therefore in order to extract information about the QCD content of e+e− annihilation, in particular, the
colour degrees of freedom, it is convenient to express the total cross-section of e+e− → qq̄ annihilation
in units of the cross-section for µ pair production,

R =
e+e− → Hadrons
e+e− → µ+µ−

. (25)
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Fig. 4: e+e− annihilation into a qq̄ or µ+µ− pair

The cross-section to produce any number of hadrons is proportional to that to produce a µ+µ−

pair. This is because a highly virtual photon decays to quarks in a time scale t ∼ 1/
√
s, while a hadron

with mass Mh needs a formation time t ∼ 1/Mh. Therefore there is not enough time for confinement to
affect the annihilation cross-section and one can assume that the produced qq̄ pair fragments into hadrons
with unit probability,

σ(e+e− → Hadrons) ∝ σ(e+e− → µ+µ−). (26)

Therefore one finds
R = Nc

∑
q=u,d,..

e2
q , (27)

where the factor Nc is the number of colours and eq denotes the quark charge. The summation in the
above equation is over all flavours that are kinematically allowed. Depending on energy, various flavour
degrees of freedom contribute,

R =


2
3Nc (u, d, s),
10
9 Nc (u, d, s, c),
11
9 Nc (u, d, s, c,b).

(28)

Up to about 3 GeV only u, d and s contribute, while at higher energies charm and b quarks start con-
tributing as well. If one assumes that Nc = 3, then Eq. (28) predicts R = 2, 10

3 and 11
3 , respectively. If

we ignore nonperturbative effects close to threshold, such as the formation of bound states, we expect
R to present a series of steps as a function of

√
s. In Fig. 5 we show various experimental data which

show remarkable agreement with more detailed perturbative QCD calculation based on the assumption
that Nc = 3.

Another strong evidence of colour degrees of freedom is the measurement of the neutral pion
decay into photons, π0 → γγ. The pion decay rate is computed from the triangle diagram shown in
Fig. 6. Because of the quark loops, the decay rate is proportional to N 2

c . The experimental value of the
pion decay rate can only be described by Nc = 3 [24].

5 Colour transparency (CT)
So far we have treated colour as just a new quantum number, a new degree of freedom. Is there any
evidence that this colour is responsible for the strong interactions?

If an interaction is controlled by colour, how can colourless hadrons interact? Apparently, only
due to the spatial distribution of colour (carried by quarks and gluons) inside the hadrons, i.e., due to the
existence of hadronic colour-dipole momentum.
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Fig. 6: Decay of pion to photons

This observation immediately leads to experimentally observable consequences. Since colourless
dipoles of vanishing size cannot interact, the interaction cross-section of such a dipole (say, quark–
antiquark) with other hadrons should vanish when the transverse dipole separation goes to zero [25],

σ(rT ) ∝ r2
T . (29)

This remarkable relation deserves commenting upon: (i) only transverse dipole separation matters, since
at high energies longitudinal momentum transfer vanishes; (ii) the quadratic rT -dependence is dictated by
dimension counting, no other dimension parameters can be used here (the QCD scale ΛQCD may enter
only via the coupling αs); (iii) an additional logarithmic dependence on rT may and does exist [25];
(iv) such a small-rT behaviour is common for QED and QCD; however, in the former case the total
cross-section is predominantly elastic, while in the latter case it is inelastic.
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5.1 Quasielastic scattering off nuclei
The experimentally measured total hadronic cross-sections is a result of the interplay of different dipole
sizes whose probabilities are controlled by the hadronic wave functions. In some cases the probability
of small size configurations in a hadron can be enhanced leading to a reduced interaction cross-section
of such a hadron. An example is elastic electron–proton scattering, ep → e′p′, with high momentum
transfer [26, 27], as illustrated in Fig. 7

*

*

Fig. 7: Top: deep-inelastic electron–proton scattering, ep → eX , at large Bjorken x: the virtual photon knocks a
valence quark out of the proton, whose remnants form the final hadronic state X . Bottom: elastic ep → e′p′: the
initial proton caught in a small size configuration survives a strong kick with increased probability.

When the recoil proton has a reduced size3, it should interact more weakly than a regular proton
with other targets. Such a possibility exists, if the elastic ep scattering is embedded into a nucleus, i.e., in
a quasielastic A(e, e′p)A∗ reaction. The benchmark to compare with in this case is the expectation based
on Glauber model calculations, where the recoil proton attenuates exponentially with the path length in
the nucleus and with the normal proton–nucleon cross-section.

The observable usually measured in such experiments is nuclear transparency, defined as,

Tr =
σ(eA→ e′pA∗)
Z σ(ep→ e′p′)

. (30)

Based on the above ideas of colour transparency one should expect a deviation rising with Q2 from the
Glauber model predictions. Unfortunately no experiment performed so far has provided clear evidence
for such an effect. The results of the dedicated experiment E18 at SLAC [28] are depicted in Fig. 8.
Apparently, data show no preference either for Glauber, or CT based models. Other measurements of
A(e, e′p)A∗ reactions were not successful either, when searching for a CT signal. To fit the cross-section
of this reaction by powers of A dependence, σ(e, e′p) ∝ Aα, a rise of α with Q2 would be a signal of
CT. However, the collection of data [30] depicted in Fig. 9 versus Q2 shows no rise. Moreover, the value
α = 0.75 agrees with what one should expect from the Glauber model.

Analogously, the experiment in quasielastic proton–proton scattering, A(p, 2p)A∗, performed at
BNL [31] did not provide any clear signal of CT. Although data deviates from the Glauber model pre-
dictions, at higher momentum transfers the agreement is restored.

Why did these experiments fail to observe a CT effect? It turns out that it is not enough to produce
a small-sized configuration in a hard reaction. The produced hadron has to maintain this small size
during propagation through the nucleus. It is clear that in a sufficiently long time interval the hadron will
develop its wave function and restore the regular size. The time scale controlling this process is called

3Strictly speaking this is not a proton. This state can be projected either into a proton (as in the present case), or proton
excitations.
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Fig. 8: Nuclear transparency measured in
quasielastic scattering on iron (upper panel)
and gold (lower panel) in the E18 experi-
ment at SLAC [28]. Dashed and solid curves
present expectations based on the Glauber
model and CT [29].

Fig. 9: Data from different experiments on quasielastic electron
scattering, A(e, e′p)A∗, for A-dependence of the cross-section
fitted by Aα [30]. The curve is α = 0.75.

formation time and for a recoil proton is given by

lf <
2Ep

m2
p∗ −m2

p

≈ 0.4 fm×Ep [GeV] . (31)

Here Ep is the energy of the recoil proton and mp∗ is the mass of the first proton excitation. In order to
have lf � RA for heavy nuclei, RA ≈ 5 fm, the proton energy should be much higher than 10 GeV.
The highest energy of recoil protons in the E18 experiment was Ep ≈ 4 GeV which is too low to keep
the size of the produced hadron small within the nuclear range.

This is the principal problem of quasielastic scattering where the photon energy ν and virtuality are
strongly correlated, 2mpν = Q2. Thus the recoil proton energy is Ep ≈ Q2/2mp. Therefore one must
go to extremely high virtualities, Q2 ≥ 20 GeV2, just in order to increase Ep. However, the cross-section
becomes vanishingly small.

5.2 Diffractive electroproduction of vector mesons
Diffractive virtual photoproduction of vector mesons is free of this problem. The space–time develop-
ment of this reaction is illustrated in Fig. 10.
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Fig. 10: Virtual diffractive photoproduction of vector mesons. A virtual photon fluctuates into a q̄q pair of trans-
verse separation r2

T ∼ Q2 which propagates through a nucleus, interacts diffractively, and being brought to the
mass shell develops the wave function of the vector meson.
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At very high energies, the q̄q fluctuation lifetime

tc =
2Eγ

Q2 +M2
q̄q

(32)

(which is also called coherence time), becomes very long. So one can treat the q̄q dipole propagating
through the nucleus as ‘frozen’ by Lorentz time dilation at the initial size r2

T ∼ 1/Q2. Thus one can keep
the scale Q2 finite, while the photon (and vector meson) energy can be increased with no restriction. This
is the main advantage of this process for the search for CT effects compared to quasielastic reactions.
The first measurements proposed in Ref. [32] and performed by the E665 Collaboration [33] confirmed
the theoretical expectations [34] of CT effects depicted in Fig. 11. The high photon energy in this
experiment led to lc � RA and allowed us to greatly simplify theoretical calculations. It turns out that at
the opposite limiting case of lc � RA and high Q2, the photon energy may be still high enough to keep
the formation time scale of Eq. (31) sufficiently long to observe CT effects. In this case a signal of CT
would be a rising energy dependence of nuclear transparency. Corresponding measurements are under
way at Jefferson Lab [30].

Similarly to diffraction, quasi-free hadron scattering off a nucleus can be performed at high en-
ergies, while the hadron size can be controlled by transverse momentum p2

T ≈ −t [35]. In the case of
Reggeon exchange, the pion formfactor suppresses large-sized configurations in the hadronic wave func-
tion at rather small t. Measurements were performed by the PROZA Collaboration [36] with 40 GeV
pions in quasi-free charge exchange scattering π−A → π0A∗. The results are depicted in Fig. 12 in
comparison with Glauber model expectations (dashed curve) and calculations including CT effects [35].
Notice that both models predict a peak at −t ≈ 0.6 GeV2, because the cross-section of free scattering,
π−p → π0n, has a minimum at this momentum transfer, and the position of the minimum in quasi-free
scattering is shifted by multiple interactions in the nucleus.

Fig. 11: Nuclear transparency as a function of Q2 for
carbon, calcium, and lead. Data points from the E665
experiment at Fermilab [33] are compared with calcu-
lations [34].

Fig. 12: Nuclear transparency in quasi-free charge ex-
change of pions on carbon. Data are from Ref. [36].
Solid and dashed curves represent calculations [35] in-
cluding or disregarding CT effects, respectively.

6 Bags, strings and more
The gluonic condensate in vacuum pushes the energy density below the perturbative level, εvac < 0.
If the colour field of the valence quarks suppresses vacuum fluctuations, then the energy density inside
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the hadron is higher than outside. Therefore the vacuum tries to squeeze the hadron. However, the
chromo-electromagnetic energy (E2 + H2)/2 inside a smaller volume rises leading to an equilibrium,
as illustrated in Fig. 13(a). Thus hadrons look like bubbles in the QCD vacuum, this is the key idea of
the MIT bag model [37].

a b

hε =0

vacε   <0

Fig. 13: (a) Pictorial illustration for the MIT bag model; (b) a stretched bag becomes a tube of a constant cross-
section, which can be treated as a string

What happens if a quark is knocked out with a high momentum? On account of the same properties
of the QCD vacuum the chromo-electric flux is squeezed into a tube of a constant cross-section,

πr2 =
g2

8κ
, (33)

as illustrated in Fig. 13(b). Here g is the colour charge at the ends of the tube; κ is the energy density
stored in the tube per unit of length. This pattern of colour fields is quite different from that in QED, as
illustrated in Fig. 14.

QCDQED

− +

LκV(r) = 

ba

LV(r) = α

− +

Fig. 14: (a) Electric field pattern in QED: the potential falls with charge separation as 1/L; (b) Colour field pattern
in QCD: the field is squeezed into a tube which breaks up by production of q̄q pairs tunnelling from vacuum

The potential between two electric charges falls with distance as 1/L, while in QCD it rises lin-
early. In fact, the rising with distance of a string potential explains the observed linearity of Regge
trajectories (see below).

Usually the transverse size is not important, so the tube may be treated as a one-dimensional string,
and κ is called string tension. It can be either calculated on the lattice, or related to the universal slope
of Regge trajectories α′IR = 0.9 GeV−2 [38],

κ =
1

2πα′IR
≈ 1

GeV
fm . (34)

This energy is sufficient for the creation of a couple of constituent quarks via tunnelling from the vacuum.
One can hardly stretch a string longer than 1 fm, since it breaks into pieces, as illustrated in Fig. 14(b).
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The q̄q pairs produced from vacuum via the Schwinger mechanism completely screen the field of the
end-point colour charges due to the linearity of the string potential [38]. The Schwinger phenomenon
and existence of light quarks are the main reasons for not observing free quarks and gluons (colour
screening).

7 Hadronization of colour charges
Thus a colour charge is always accompanied by an anti-charge neutralizing its colour. The colour field
in between forms a tube/string which is a very unstable construction, q̄q pairs pop up via tunnelling from
vacuum, as shown in Fig. 14(b), and the string is never much longer than 1 fm. The probability of such
a string breaking over time interval T is given by

P (T ) = 1− exp

−w T∫
0

dtL(t)

 , (35)

where L(t) is the time-dependent length of the string, and the probability density for the creation of a q̄q
pair per unit time per unit length is given by the Schwinger formula [38]

w =
(κr
π

)2
exp

(
−2πm2

q

κ

)
≈ 2 fm−2 . (36)

The string length L(t) gets shorter after each break, thus delaying the next pair production. There-
fore hadron momenta rise in geometric progression, i.e., build a plateau in rapidity. This process is
illustrated on a time-coordinate plot in the c.m. frame of the initial q̄q pair (e.g., e+e− annihilation), and
in the target rest frame (e.g., in DIS) in Fig. 15 on the left and right, correspondingly. Since both ends
of the string are moving in the same direction and with the same velocity (the speed of light), the length
of the string is independent of time. Its maximal possible value is Lmax = mq/κ. However, after each
break of the string it becomes about twice as short, as illustrated in Fig. 15.
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Fig. 15: Time-coordinate development of string fragmentation in the centre-of-momentum (left) and target rest
(right) frames

Notice that the leading quark loses energy at a constant rate, dEq/dz = −κ, through the whole
hadronization process, until the creation of a hadron that includes this quark. It is interesting to notice
that in perturbative QCD the leading quark loses energy for gluon radiation also at a constant rate,
dEq/dz = −(2αs/3π)Q2 [39].
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8 Regge phenomenology
The theory of Regge poles is a quite dormant topic. It does not seem to be taught very much anymore. In
addition there is often found an attitude that the subject is obsolete, because it is identified so strongly
with the pre-quark, pre-parton era of the S-matrix, dispersion-relations approach to strong interactions.
This point of view is just plain wrong. The Chew, Frautschi, Regge et al., description of high energy be-
haviour in terms of singularities in the complex angular momentum plane is completely general. And the
basic technique of Watson-Sommerfeld transform should be a standard part of the training in theoretical
particle physics.

—James Bjorken [40]

8.1 Poles in angular momentum plane
The energy dependence of the amplitude is governed by poles (or cuts) in the complex angular momen-
tum plane [41],

A(s, t) =
∑
r

hr(t) ξr(t)
(
s

s0

)αr(t)

, (37)

where we sum over different Regge poles r, and hr(t) is a phenomenological residue function which is
not given by the theory, but is fitted to data. It depends on t, but not on energy, and correlates with the
choice of the parameter s0.

The phase factor ξr(t) depends on the Regge pole signature σ = (−1)J , where J are spins (even
or odd) of mesons lying on the trajectory.

ξr(t) =

 i+ ctg
[
π
2αr(t)

]
if σ = −1

−i+ tg
[
π
2αr(t)

]
if σ = +1 .

(38)

The energy-dependent factor (s/s0)α(t) is controlled by the Regge trajectory α(t) which is nearly
straight, α(t) = α(0)+α′t, as is demonstrated in the Chew–Frautschi plot in Fig. 16. This is the miracle
of Regge theory: the linear Regge trajectories bridge the low-energy physics of resonances (t = M 2 > 0)
with high-energy scattering (t < 0).

Fig. 16: Regge trajectories for mesons and soft pomeron

High energies are dominated by reggeons with highest trajectories αr(t), the Pomeranchuk pole
(pomeron),

αIP (0) ≈ 1.1; α′IP ≈ 0.25 GeV−2 , (39)
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and leading reggeons,

αf (0) ≈ αω(0) ≈ αρ(0) ≈ αa2(0) ≈ 0.5 ; α′IR = 0.9 GeV−2 . (40)

The first important prediction of the Regge pole theory was shrinkage of the elastic slope with
energy. The slope parameter controls the t-dependence of the elastic cross-section, dσel/dt ∝ eBt.
According to (37) the slope parameter B rises with energy as

B(s) = B0 + 2α′IP ln(s/s0) , (41)

where B0 is a phenomenological parameter.
The pomeron parameters Eq. (39) were extracted from data on elastic scattering. The pomeron

intercept αIP (0) comes from data on total hadronic (mostly pp and p̄p) cross-section fitted with the
energy dependence (37), while the parameter α′IP is related to the elastic slope Eq. (41). Corresponding
data are shown in Fig. 17.
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Fig. 17: Dependence of the total cross-section (left) and elastic slope (right) on centre-of-mass energy. Open and
closed points correspond to p̄p and pp collisions, respectively. The curves show calculations based on the pomeron
model of Ref. [42].

8.2 Triple Regge phenomenology
The cross-section for the inclusive process a+ b → X + c can also be expressed in terms of the Regge
approach. Here we focus on the most interesting case of diffractive excitation, c = b, via pomeron
exchange. To sum up all final-state excitations X , one can apply the unitarity relation to the pomeron–
hadron (IP − a) amplitude as shown in Fig. 18. Provided that the effective mass of the excitation is large
(but not too much so), s0 � M2

X � s, one can describe the pomeron–hadron elastic amplitude via
pomeron or secondary reggeon exchanges in the t channel. Then one arrives at the triple-Regge graph,
Fig. 18, which corresponds to the cross-section,

dσab→Xbsd
dxF dt

=
∑

r=IP,IR

GIPIPr(t)(1− xF )αr(0)−2αIP (t)

(
s

s0

)αr(0)−1

, (42)

where xF is the Feynman variable for the recoil particle b defined in the centre of mass, xF = 2p||b /
√
s ≈

1−M2
X/s.
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Fig. 18: The cross-section of single diffraction, a + b → X + b, summed over all excitation channels at fixed
effective mass MX

Equation (42) contains new phenomenological functions, effective triple-Regge vertices, GIPIPIP (t)
and GIPIPIR(t). The diffractive cross-section can also be expressed in terms of the pomeron–hadron total
cross-section σIPatot (s′ = M2

X). Most interesting is the asymptotic (s′ = M2
X � s) of this cross-section

related to the triple-pomeron coupling,

G3IP (t) = σIPatot NIPbb(t)2 . (43)

Here NIPbb(t) is the pomeron–hadron vertex known from bb elastic scattering. Thus one can extract
from data on single diffraction the pomeron–hadron total cross-section, σIPatot [43], which carries unique
information about the properties of the pomeron. The results shown in Fig. 19 demonstrate an amazingly
small cross-section, less than 2 mb. This is at least an order of magnitude less than one could expect.
Indeed, the pomeron as a gluonic object should interact more strongly than a meson, i.e., the pomeron–
proton cross-section could be about twice as big as the pion–proton one. Such a weak interaction of the
pomeron is probably the strongest evidence for the location of the glue in hadrons within small spots [44].
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Fig. 19: The pomeron–proton total cross-section extracted from single-diffraction data, pp → pX , as a function
of the invariant mass MX , which is the centre of mass energy in the IPp collision

8.3 Building the pomeron
It has been a natural and simple assumption made in the early years of Regge Theory that the pomeron
is a Regge pole with a linear trajectory and an intercept αIP (t) = 1. Nowadays, however, we have a
multi-choice answer, and it is still debated whether the pomeron is

– a Regge pole (probably not, since αIP (0) varies with Q2 in DIS);
– the DGLAP pomeron [45, 46], which corresponds to a specific ordering for radiated gluons in the

ladder graph in Fig. 29, p2
i+1 < p2

i ≤ Q2 (see Section 9.2);

17

APPLIED QCD

67



– the BFKL pomeron [47] which does not have ordering in transverse momenta of radiated gluons,
but has no evolution with Q2 either [48] (see Section 10);

– something else.

Gluons seem to be the most suitable building material: already the Born graph provides αIP (0) =
1. The higher order corrections are expected to pull the intercept above one. These corrections are
dominated by ladder type graphs shown in Fig. 20. A ladder is a shadow of gluon bremsstrahlung
according to the unitarity relation, Fig. 41.

P

Fig. 20: Perturbative pomeron represented by the Born term, two-gluon exchange, and higher order terms having
a form of gluonic ladder graphs

The leading-log approximation (LLA) corresponds to keeping those terms only, where each cou-
pling αs has a big factor ln(s). For fixed coupling, the BFKL result is not a Regge pole but a cut with an
intercept

αIP (0)− 1 =
12αs
π

ln 2 . (44)

This result will be derived in Section 10, see Eq. (86). Unfortunately, the next-to-leading-log corrections
(extra powers of αs) to the intercept are of the same order [49],

αIP (0) − 1 =
12αs

π(1− 6.5αs)
ln 2 (45)

and it may even be negative for most reasonable values of αs.
However, it does not look reasonable to describe a soft pomeron, controlling soft hadronic interac-

tions at high energies perturbatively. Similar ladder graphs, but built of light hadrons, e.g., of pions and
σ mesons as depicted in Fig. 21, well describe many features of soft hadronic collisions [50]. One can
adjust the poorly known σ-pion coupling to reproduce the pomeron intercept. However, its closeness to
one, which is very natural in QCD, looks like an accidental coincidence in this model.

Fig. 21: Ladder graphs built of pions and σ mesons as a model for the soft pomeron

8.4 Duality
Reggeons correspond to the exchange of valence quarks. The description of meson–meson scattering
amplitudes in terms of interacting q̄q pairs in the t channel (reggeons), or in the s channel (resonances)
are dual [41], as illustrated in Fig. 22.

No s channel resonance is possible in pp and K+p elastic amplitudes. However, t channel reg-
geons are present. To comply with duality the reggeons must cancel each other in the imaginary part
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Fig. 22: The amplitude for meson–meson interaction via quark exchange. Dashed lines show intermediate inter-
actions within a quark–antiquark pair in the t channel (left), or in the s channel (right)

of the amplitude. For this reason, pairs of leading reggeons must be exchange-degenerate, f with ω,
and ρ with a2, i.e., their Regge trajectories and residue functions must be identical, differing only in the
signature factors (phases) [41]. Data depicted on the Chew–Frautschi plot in Fig. 16 indeed confirm this
expectation.

The sums f + ω and a2 + ρ must be real for pp and K+p, but imaginary for p̄p and K−p. Data
at low energies dominated by reggeons nicely confirm this. For the same reason spin effects are much
stronger in pp and K+p, than in p̄p and K−p.

9 Deep-inelastic scattering
The basic idea of Deep-Inelastic Scattering (DIS) is to use a lepton probe to study a hadron. A lepton of
momentum k acquires a momentum k′ by exchanging a virtual photon of momentum q with the proton
of momentum P and mass m

N
. After the collision, the rest of the energy is transferred to the unobserved

final stateX with massM
X

. The kinematics of DIS is characterized by a few Lorentz-invariant variables,
see Fig. 23.

ν ≡ P · q
mN

,

W 2 ≡ (P + q)2,

s ≡ (P + k)2. (46)

X
P

k k’

qγ*

Fig. 23: Electron–proton deep-inelastic scattering

We define two other commonly used variables, namely the Bjorken variable

x =
Q2

2P · q =
Q2

2mNν
≈ Q2

Q2 +W 2
, (47)

where Q2 = −q2, and the relative energy loss of the lepton

y =
P · q
P · k ≈

Q2 +W 2

s
. (48)
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The kinematic limits are Q2 < W 2 and x > Q2/W 2 which leads to 0 ≤ x ≤ 1. The value of x = 1
is reached when the proton is scattered elastically. The differential cross-section for inclusive scattering
has the following form

dσ(eP → e′X) =
1
2s

d3k′

(2π)32E′
∑
X

(2π)4δ4(P + k − pX − k′)|A|2, (49)

where one sums over all final hadronic states. The matrix element squared after summing over polariza-
tion of the virtual photon becomes

|A|2 =
2παem
Q2

〈P |Jµ†(0)|X〉〈X|Jν (0)|P 〉Lµν , (50)

where the leptonic tensor is

Lµν ≡ 〈ū(~k′)γµu(~k)ū(~k)γν ū(~k′)〉,
= 2(k′µkν + k′νkµ − gµνk′ · k) . (51)

In the above expression, we ignored the electron mass. We define the hadronic tensor as

W µν =
∑
X

〈P |Jµ(0)|X〉〈X|Jν (0)|P 〉(2π)4δ4(P + q − pX), (52)

=
∫
d4xeiqx〈P |Jµ(x)Jν(0)|P 〉, (53)

where the second equation is obtained by using completeness for states of X . The hadronic tensor
is directly related to the imaginary part of the forward Compton scattering amplitude via the optical
theorem. We should stress that the hadronic tensor cannot be computed by perturbative QCD. However,
one can write down the most general tensor from the available momentum vectors P µ, qµ and from
gµν by using the transversality of the electromagnetic current qµW µν = qνW

µν = 0, and parity and
time-reversal symmetry W µν = W νµ:

W µν =
(
−gµν +

qµqν

q2

)
F1(x,Q2) +

(
P µ +

qµ

2x

)(
P ν +

qν

2x

)
F2(x,Q2)

ν
, (54)

where F1,2(x,Q2) are the so-called structure functions. Making use of the above expression, the DIS
cross-section reads

d2σ

dxdQ2
=

4πα2
em

Q4

{(
1− y − x2y2m2

N

Q2

)
F2(x,Q2)

x
+ y2F1(x,Q2)

}
. (55)

In the next section, we consider whether F1 and F2 can be independent. The DIS can be viewed as γ?p
scattering. The cross-section for a virtual photon with helicity λ can be defined as

σλ =
4π2αem

2s
εµ(λ)ε∗ν(λ) ImT µν , (56)

where the forward virtual Compton scattering amplitude T µν is related to the hadronic tensor,

W µν =
1

2π
DiscT µν = lim

ε→0

1
4πi

(T µν(q0 + iε)− T µν(q0 − iε)), (57)

with
T µν = i

∫
d4xeiqx〈P |T (Jµ(x)Jν(0))|P 〉. (58)
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Here, T is the time ordering operator. Note that the relation between the hadronic tensor and the Compton
scattering amplitude is a manifestation of the optical theorem. Using Eqs. (56) and (58), one obtains the
corresponding cross-section for transverse and longitudinal photons,

σT =
4π2αem
Q2(1− x)

2xF1(x,Q2),

σL =
4π2αem
Q2(1− x)

[(
1 +

Q2

ν2

)
F2(x,Q2)− 2xF1(x,Q2)

]
. (59)

It is sometimes common to define linear combinations of the structure functions

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2), (60)
FT (x,Q2) = 2xF1(x,Q2). (61)

The usefulness of the above definition is that γ?p scattering for transverse and longitudinal photons can
be defined in terms of FL,T .

9.1 Bjorken scaling and parton model
In the late 1960s, experimental results from SLAC [51] surprisingly showed that the structure function
F2(x,Q2) is nearly independent ofQ2 at a fixed x. In Fig. 24, we show the measured values of F2(x,Q2)
for various Q2 as a function of x. It is obvious that all data points seems to lie on a single curve which
show that within error bars F2 is independent of Q2. This phenomenon is called Bjorken scaling [52,53].

SLAC
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F
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Fig. 24: SLAC data on DIS for structure function [51]

An intuitive explanation of this phenomenon was given by Feynman [54], within the parton model.
In the parton model, one assumes that the proton is made of pointlike charged constituents, called partons
which interact incoherently. Then the total γ?p cross-section can be written as an incoherent sum of
photon–parton cross-sections. We work in the Breit frame in which proton and virtual photon are moving
collinearly and the virtual photon does not carry the energy, but only momentum. Assume that the
scattering is elastic and the parton of type q carries a fraction η of the proton’s momentum, see Fig. 25.
For massless partons, we have

(q + ηP )2 = 2ηP.q −Q2 = 0, (62)

which leads to
η = x. (63)

This implies that in the Breit frame, the Bjorken x is the momentum fraction of the proton carried away
by the struck quark.
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In order to calculate the γ?p scattering cross-section in the parton model, one should first calculate
the eq → eq cross-section, which can be obtained from those for e+e− → qq̄ by crossing symmetry.
Equivalently, one may first calculate the cross-section for transverse and longitudinal photons scattering
off a spin-1/2 parton, see Fig. 25,

σγ
∗q
T =

4π2αemZ
2
f

Q2(1− x)
δ

(
1− x

η

)
,

σγ
∗q
L = 0 . (64)

xP
P

q

(1−x)P

xP+q

Fig. 25: Parton picture of DIS and Bjorken x

For massless quarks, the longitudinal cross-section has to be zero because of helicity conservation.
Now, by comparing Eqs. (64) and (59), one can define the structure function in parton language, namely
by introducing the density qf (x) of quarks of flavour f inside the proton,

F2(x) = x
∑

f=u,d,..

Z2
f (qf (x) + q̄f (x)) , (65)

FL = 0. (66)

At this order, the structure functions depend only on x and not on Q2. When the longitudinal structure
function vanishes, one obtains the Callan–Gross relation [55],

F2 − 2xF1 = 0. (67)

This equation is approximately confirmed by experiment and proved that partons are fermions with spin
one half. It is common to define valence quarks uv, dv , .., as

uv = qu − q̄u,
dv = qd − q̄d, (68)

where q̄u, q̄d are called sea antiquarks. It is also possible to measure DIS on the neutron and extract the
neutron structure function. Assuming strong isospin symmetry, we have the following relations between
the parton distribution functions in the proton and neutron:

qu/n = qd/p, q̄u/n = q̄d/p, q̄d/n = q̄u/p, qs/n = qs/p, qc/n = qc/p, (69)

and so on. The convention is always to refer to the proton PDFs and drop the subscript /p or /n.
At this stage, one may wonder why the proton form factor F (Q) falls steep with Q, while the

structure function does not. The answer is that the form factor is the probability for the proton to survive
intact a kick of strength Q. The stronger the kick, the less survival probability. However, in the case of
inclusive DIS, all final states are allowed, so the total probability saturates and is independent of Q. A
similar situation is known to happen in hadronic collisions, where the t-slope of single diffraction is half
that for elastic pp, because of the disappearance of one of the proton form factors.
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9.2 Scaling violation and DGLAP evolution equation
In the previous section we showed that at leading order the partonic sub-process of DIS eq → eq is
Q2 independent which leads to Bjorken scaling. This would be correct if the number of partons were
constant. However, they are not classical particles but quantum fluctuations. A photon of virtuality Q
can resolve partons with transverse momentum kT < Q but is blind to harder fluctuations. Increasing Q,
one can see more partons in the proton. Correspondingly, the parton distribution slowly changes with Q,
shifting to smaller x due to momentum conservation, i.e., it is expected to rise with Q at small x, but to
fall at large x, see Fig. 26. The Q2 dependence of the structure function can be described by the DGLAP
(Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) equations [45].
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Fig. 26: Comparison of the measured structure function F2 with QCD fits [56]

One of the major successes of QCD has been the prediction of the pattern of Bjorken scaling
violation as shown in Fig. 26. We will explain that the presence of gluon radiation controls the behaviour
of Bjorken scaling violation. At higher order in αs one should also include gluon radiation eq → eqg.
As in the previous section, one obtains at next order

F2(x,Q2)
x

=
∑
f

Z2
f

[
qf (x) +

αs
2π

1∫
x

dx1

x1
g(x1)

{
Pfg

(
x

x1

)
ln
(
Q2

µ2

)
+ ...

}]
, (70)

where g(x1) denotes the gluon density of the proton. The origin of the ln(Q2/µ2) is easy to understand.
The struck quark acquires transverse momentum pT with probability αs d

2pT
p2
T

. On the other hand, partons
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with p2
T > Q2 are suppressed. Now, integrating over all phase space, pT produces the logarithmic

term αs lnQ2/µ2. The parameter µ was introduced as a cutoff regulator. The divergence when µ → 0
corresponds to a case that the outgoing gluon becomes exactly collinear with the incoming quark. This
means that the internal quark line becomes on-shell leading to the logarithmic divergence. This is called
collinear divergence. The function Pfg is a quark–quark splitting function [45, 57]

Pfg(z) =
4
3

(
1 + z2

1− z
)
. (71)

The splitting function Pfg shows the probability for a quark to turn into a quark and a gluon. This
function is independent of the regularization and is universal.

Note that the structure function equation (70) is now obviously Q2 dependent, violating Bjorken
scaling. We also introduced an ad hoc parameter µ, called the factorization scale, which separates the
underlying physics into two parts: all physics at scales below µ contained in the parton distribution, and
all calculable physics at scales above µ are part of the partonic scattering cross-section. It is important to
mention that although we have obtained Eq. (70) at the higher order, the leading logarithmic behaviour
is universal and this factorization formula is valid at any order of αs. Since µ is not a physical quantity,
observables should not depend on it. Therefore

dF2(x,Q2, µ)
dµ

= 0 , (72)

and
Q2dqf (x,Q2)

dQ2
=
αs
2π

∫ 1

x

dx1

x1
PfG

(
x

x1

)
g(x1, Q

2) . (73)

This is one of the DGLAP equations [45] which describes the evolution of the quark density. In the
same fashion one can obtain the DGLAP equations for gluon density g(x1, Q

2). Altogether one obtains
Nf + 1 coupled equations (ignoring antiquark for simplicity) describing the Q2 evolution of the singlet
parton densities qf (x1, Q

2) and g(x1, Q
2),

Q2 d

dQ2

 qf (x,Q2)

g(x,Q2)

 =
αs
2π

1∫
x

dx1

x1

 Pff

(
x
x1

)
Pfg

(
x
x1

)
Pgf

(
x
x1

)
Pgg

(
x
x1

)

 qf (x1, Q

2)

g(x1, Q
2)

 , (74)

where the splitting function Pff , Pfg, Pgf and Pgg can be computed from pQCD order by order. The
analytic calculation of these splitting functions to next-to-next-to-leading order has been carried out in
Ref. [57]. In Fig. 27 we show the lowest typical diagrams corresponding to the various splitting functions.

Fig. 27: Four types of diagram corresponding to DGLAP splitting functions of QCD

The steep rise of F2 at small x in Fig. 26 can be simply seen from the double log DGLAP equation,

∂2xg(x,Q2)
∂ ln(1/x)∂ lnQ2

=
Ncαs
π

xg(x,Q2). (75)
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For a fixed coupling constant αs, the solution can be approximated by

xg(x,Q2) ∝ exp

(
2

√
Ncαs
π

ln(1/x) ln(Q2/Q2
0)

)
. (76)

This equation clearly indicates that at small x and high Q2 the gluon density rises.
The parton distribution function (PDF) cannot be calculated from first principles. However, their

scale evolution can be perturbatively computed via DGLAP equations. We therefore calculate the µ2

dependence of the PDFs. In this way knowing the value of PDF at a given scale by fitting data is
sufficient to obtain information about PDFs at all scales via DGLAP evolution equations. The DGLAP
equation is a special kind of a renormalization equation. It is obvious from the lnQ2/µ2 term that one
should not choose µ too far from Q2 since the log term will become large enough to compensate the
smallness of αs and perturbative computation will become questionable.

The typical strategy for extracting PDFs from DIS data is first to introduce ad hoc PDFs at some
scale and then to evolve them with DGLAP to other scales, and finally compare F2 at higher values of
Q2 with data and adjust the starting PDFs. Having good data with high statistics one can single out PDFs
for different parton species. Such parametrizations are provided by three collaborations: GRV [58],
MRST [59] and CTEQ [60] in leading and next-to-leading orders. In Fig. 28 we show typical PDFs at
Q2 = 10 GeV2 as a function of x.

Fig. 28: PDFs xf(x, µ2) at µ2 = 20 and 104 GeV2 as a function of x. It is clearly seen that the gluons and the
valence quarks are more important at small and large x, respectively. The curves are obtained from the NNLO
global analysis [61]. The figure is taken from Ref. [62].

Having results for the PDFs, one can check how much of the proton’s momentum is carried by
quarks and antiquarks. The data show that ∫ 1

0
dxF2 ≈ 0.5 . (77)
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This result is quite significant, since it shows that only half of the total momentum is carried by all quarks
and antiquarks in the proton. Another half of the proton momentum is carried by partons which do not
interact with the photon, apparently gluons.

9.3 Factorization theorem
A cross-section of any hadronic reaction with a hard scale generally gets contribution from short- and
long-distance interactions, and is hence not computable directly in perturbation theory for QCD. Fac-
torization theorems [63] allow one to derive predictions for the hadronic cross-sections by writing the
cross-section as a convolution product of factors, namely an infrared finite part for the short distance
which is calculable in perturbative theory, with a nonperturbative function which is universal to many
different processes, but noncalculable at the perturbative level. The applications and predictability of
perturbative QCD rely on the factorization theorem.

There has been tremendous effort to examine factorization theorems for various processes; for a
review see Ref. [63]. For inclusive processes, it has been shown that the factorization theorem holds if
(1) all Lorentz invariants defining the process are large and comparable, except for particle masses, and
(2) one counts all final states that include the specified outgoing particles or jets, namely in processes as
hadron A+ hadron B → hadron C+X , the X denotes anything else, in addition to the specified hadron
C .

For example, in DIS, the factorization theorem for the structure functions has the following form,

Fi(x,Q) =
∑
a

∫ 1

x

dξ

ξ
fa/H(ξ, µ)Cia(x/ξ,Q/µ, αs(µ)) + ... (78)

which is valid in the Bjorken limit in which Q gets large with x fixed. The sum is over all species of
partons, namely gluons, quarks, and antiquarks of different flavours. The function fa/H denotes the PDF
of parton of type a in hadron H . The hard process-dependent factor Cia is ultraviolet dominated, that is, it
receives important contributions only from momenta of order Q. This ensures that one can perturbatively
calculate Cia in power of αs(Q) [see Eq. (70)]. Notice that the factor Cia depends only on the parton type
a, and not directly on our choice of hadron A. The parameter µ in Eq. (78) defines the limit between the
short-distance dynamics. The ability to calculate the Cia leads to great predictive power for factorization
theorems. For instance, if we measure F2(x,Q) for a particular hadron A, Eq. (78) will enable us to
determine the PDFs fa/A. Then we predict F1(x,Q) for the same hadron A, in terms of the same fa/A
and calculable C1a.

10 BFKL formalism
We recall that the DGLAP equations take into account all the contributions proportional to

[αs(Q2) ln
(
Q2

Q2
0

)
]n, (79)

which arises from ladder type diagrams with strong ordering in the transverse momenta, see Fig. 29, i.e.,

p2
T1 >> p2

T2 >> . . . (80)

For processes where x is small, but Q2 is not sufficiently large to make the double logarithmic ap-
proximation valid, the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [47] has been proposed. In
this scheme, the gluonic branching in the ladder diagrams has ordering in longitudinal momentum (see
Fig. 29)

x1 >> x2 >> . . . (81)
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Fig. 29: The QCD improved parton model, xi denotes the longitudinal momentum fraction of the partons with
respect to the target

This resums, in the so-called ln(1/x) approximation, the terms

[αs(Q2) ln
(

1
x

)
]n. (82)

At the same time there is no ordering in transverse momentum, one may have

p2
T1 ∼ p2

T2 ∼ .... ∼ p2
Tn. (83)

In the high-energy limit, the scattering processes are dominated by partonic processes with gluon ex-
change in the t channel. The BFKL equation accounts for resummation of multiple gluon radiation when
s >> t.

The BFKL equation is more conveniently written in terms of the unintegrated gluon density
φ(x, k2

T ) which relates to the gluon density g(x,Q2) introduced in the previous section by

xg(x,Q2) =
∫ Q2

0
dk2

Tφ(x, k2
T ). (84)

The unintegrated gluon distribution gives the probability of finding a gluon in the hadron with longitudi-
nal momentum fraction x and transverse momentum kT . Note that there is no unique definition for the
unintegrated gluon density in terms of gluon density [64,65]. For comparison of various parametrizations
for the unintegrated gluon distribution in different schemes, see Ref. [64].

At leading order in ln(1/x) the BFKL equation can then be written in the following simple form:

∂φ(x, k2
T )

∂ ln(1/x)
=
Ncαs
π2

∫
dp2

T

(kT − pT )2

(
φ(x, p2

T )− k2
Tφ(x, k2

T )
p2
T + (kT − pT )2

)
. (85)

Equation (85) is illustrated in Fig. 30. The first term in Fig. 30 corresponds to two-gluon exchange, the
initial condition for Eq. (85). The first and second terms on the right-hand side of Eq. (85), correspond to
the second (real) and third (virtual) terms in Fig. 30, respectively. Iterating the BFKL kernel leads to the
ladder diagrams shown in Fig. 20. Note that the gluon propagators and vertices in Figs. 20 and 30 are not
the usual QCD vertices and propagator. The vertices are effective Lipatov vertices and the propagators
are the so-called reggeized gluon propagators generated by iterating the BFKL kernel [47]. We refer the
interested readers to Refs. [47, 66, 67] for derivation of the BFKL equation. For a recent review of the
subject see Ref. [68].

It is rather straightforward to see that for a fixed coupling αs, the solution for the unintegrated
gluon density up to a constant is

φ(x, k2
T ) ∝ (1/x)αIP−1, αIP − 1 =

4αsNc

π
ln 2 . (86)
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Fig. 30: Schematic representation of BFKL evolution for unintegrated gluon distribution. The dashed vertical
denotes the cut.

However, it is important to notice that, based on the BFKL equation, the number of gluons rises with
1/x forever. This strongly indicates that some physics must be missing here. That is because in QCD
the gluon fields can not be stronger than Aµ ∼ 1/g at very small coupling g. Therefore, when the gluon
field reaches a density with

Fµν
Q2
∼ 1
g
, (87)

we expect some new physics to be at work in order to slow down the rise of gluon density. We shall
elaborate more on this problem in the next section.

The total cross-section of quarkonium–quarkonium scattering, in the lowest order in the coupling
αs, in the simplest model of two-gluon exchange between two quarkonium is energy independent

σ ∼ s0 , (88)

where s denote the centre of energy of the system. However, experimental data indicates that hadronic
cross-sections increase as power of s, see Fig. 17

σ ∼ s∆, (89)

where ∆ is called the pomeron intercept. Finding an explanation for the experimental value of ∆ has
been one of the remaining challenges of QCD. The DGLAP equation has been successful in describing
the DIS data, but it cannot reproduce the energy growth of hadronic cross-sections. One of the interesting
features of the BFKL formalism is that it naturally leads to an energy-dependent cross-section. One can
show that cross-sections mediated by the BFKL exchange grow as a power of energy

σ ∼ sαIP−1 , (90)

where αIP is given in Eq. (86). Unfortunately the value of αIP − 1 ≈ 0.8 is higher than the experimental
value 0.2–0.3 observed in DIS experiments. Before going to higher-order corrections to the BFKL kernel,
it is important to notice that there is already a serious problem at lower order. That is due to the fact that
the power energy growth of the total cross-section (90) violates the Froissart unitarity bound [69] which
put a limit on the growth rate of total cross-sections with energy s at asymptotically high energies

σ ≤ const ln2 s . (91)

This indicates that the BFKL kernel should be modified in order to restore the unitarity at high energy.

11 The GLR–MQ evolution equation and saturation
In the previous section we pointed out that, based on the BFKL formalism, the number of gluons rises
sharply at small x or high energy. At the same time, the transverse sizes of the gluons rT ∼ 1/pT ,
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can be similar, see Eq. (83). This means that at high energy, a hadron produces many gluons with a
similar size. As the energy increases, more gluons are produced and eventually they start overlapping
in the transverse plane. The crucial assumption behind both DGLAP and BFKL evolution equations is
that parton densities inside a hadron are small enough, so that the only important partonic sub-process
is splitting. However, at very low values of x, the gluon density may become so large that gluons start
overlapping and the gluon recombination process becomes important. This phenomenon is generally
known as parton saturation, and it should limit the growth of the gluon density generated by splitting.

Gribov, Levin and Ryskin (GLR) [70] proposed that at high density of gluon fields when nonlinear
effects become important, there should be an energy region where the gluon recombination becomes
important. In the GLR scheme this recombination is described through a modification of the linear
BFKL equation with a quadratic correction which gives rise to effective ladder merger vertices which are
the triple pomeron ones,

∂φ(x, k2
T )

∂ ln(1/x)
=
Ncαs
π2

∫
dp2

T

(kT − pT )2

(
φ(x, p2

T )− k2
Tφ(x, k2

T )
p2
T + (kT − pT )2

)
− α2

sπ

ST
[φ(x, k2

T )]2 , (92)

where ST = πR2 defined the geometrical cross-sectional area of a hadron or a nucleus along the beam
axis. In comparison with the BFKL equation (85), only the last term is new.

Later, it was proved by Mueller and Qiu [71] that the ansatz Eq. (92) can be derived in the double
leading logarithmic approximation (DLLA) with a resummation of the type

(
αs ln(Q2/Λ2) ln(1/x)

)n.
Muller and Qiu [71] showed that in the DLLA approximation, including diagrams with two fusing
DGLAP ladders, one arrives at the following nonlinear equation for gluon density:

∂2xg(x,Q2)
∂ ln(1/x)∂ lnQ2/Λ2

=
Ncαs
π

xg(x,Q2)− α2
sπ

ST
[xg(x,Q2)]2 . (93)

The above equation can be converted into Eq. (92) via the definition of an unintegrated gluon density
Eq. (84). Equation (93) is known as the GLR–MQ equation.

Notice that in the DLLA approximation both the BFKL and DGLAP equations are identical, since
the resummations are the same. This can already be seen in Eq. (75), where the merging ladders were
ignored. That equation is identical to the first term of Eq. (93).

One of the remarkable properties of the GLR–MQ equation (93) is that it introduces a scale Q2
s

at which the non-linear effects become relevant. This may occur when the linear and quadratic terms in
Eq. (93) become equal:

Q2
s ∼

αsπ
2xg(x,Q2

s)
STNc

. (94)

A quantitative condition for gluon saturation can be obtained by comparing the gluon recombination
cross-section σ ∼ αs/Q2 with the surface density of gluons ρ ∼ xg(x,Q2)/πR2. Saturation takes place
when σρ ∼ 1 which leads to Eq. (94).

The saturation scale Q2
s separates the linear (governed by DGLAP or BFKL equations) and non-

linear evolution of QCD. The DGLAP, the BFKL, and saturated regimes are sketched in Fig. 31. At
low energy, colour screening is due to confinement with typical colour screening distance Λ−1

QCD, and
thus non-perturbative. At high energy (or small x), partons are much more densely packed, and colour
neutralization occurs in fact over distances of the order Qs � Λ−1. This means that small-x physics
seems to be universal, and all hadrons and nuclei should behave in the same way at very high energy.

The basic physics of saturation is to introduce higher twist terms [70, 71] in the factorization
formula like Eq. (70). This is difficult to implement. During the last decade there has been some progress
along these lines and some models have been proposed [68]. For example, the description of this non-
linear evolution has been given in the so-called Colour Glass Condensate [72] scheme in terms of a
classical field theory of dynamical gluon fields coupled to static stochastic sources. The evolution of

29

APPLIED QCD

79



ln 1/x

DGLAP

SATURATION

Q(x)
s

PARTON GAS

BFKL

ln Q2ln Λ 2
QCD

Fig. 31: Saturation region in the x,Q2 plane

multi-parton correlators with energy is described by the JIMWLK renormalization group equations [73].
At large Nc and large nuclei, one recovers the Balitsky–Kovchegov (BK) equation [74] for forward
colour dipole cross-section. The recombination effect is taken into account by the non-linear term of the
BK equation.

12 The colour dipole approach and low-x DIS
The parton model description is not Lorentz invariant, only observables have to be Lorentz invariant.
One cannot even say from where a sea parton has originated, who is the owner, the beam or the target,
see Fig. 32. In the domain of small x, sea quarks and gluons dominate, and the rest frame of the proton is
more convenient. In this frame, the photon can convert into a quark–antiquark pair which then develops a
parton cloud, see Fig. 32. Photons can also hit a quark inside the target without being split into a qq̄ pair.
However, in the target rest frame this process is strongly suppressed. Therefore the former contribution
is the dominant one. The lifetime tc of such qq̄-pair fluctuation can be estimated via the uncertainty
relation tc ≈ 1

2mNx
, where mN = 1 GeV is the mass of a nucleon. The smaller the Bjorken x, the larger

the coherence time. For the lowest value of x accessible at HERA the coherence time in the proton rest
frame is about 105 fm. Therefore the coherence time or lifetime of such a pair creation tc can be larger
than the nuclear radius at low x and pairs can experience multiple scattering within the coherence length.
This is a very important point for understanding the phenomenon of nuclear shadowing. The total γ ?−p
cross-section, or the forward amplitude, is described as the interaction of a qq̄ fluctuation of the photon
with the target, as shown in Fig. 32.

The cross-section for the transverse and longitudinal photons is given by the factorized formula,
[25, 75],

σγ
∗p
T,L =

∫ 1

0
dα

∫
d2rT

∣∣∣ΨT,L
qq̄ (α, rT )

∣∣∣2 σqq̄(rT ), (95)

where rT is the distance between the quark and antiquark in the transverse plane and α is the fraction of
the photon energy carried by the quark, see Figs. 32 and 33. The cross-section for scattering a qq̄ dipole
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Fig. 32: Photon virtual dissociation to a q̄q pair with transverse separation rT and fractional light-cone momenta
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Fig. 33: The virtual photon interacts via its hadronic fluctuations which are q̄q dipoles and more complicated Fock
states. The pomeron exchange is illustrated as a perturbative ladder.

off the proton is denoted by σqq̄(rT ). The light-cone (LC) distribution functions ΨT,L
qq̄ (α, rT ) for the

transition γ∗ → qq̄ can be calculated in perturbation theory and read to first order in the QED coupling
constant αem [76]:

∣∣ΨT
qq̄(α, rT )

∣∣2 =
2Ncαem
(2π)2

Nf∑
f=1

Z2
f

{
[1− 2α(1 − α)] ε2K2

1(εrT ) +m2
fK2

0(εrT )
}
, (96)

∣∣ΨL
qq̄(α, rT )

∣∣2 =
8Ncαem
(2π)2

Nf∑
f=1

Z2
fQ

2α2(1− α)2K2
0(εrT ), (97)

where K0,1 are the modified Bessel functions of the second kind. Note that the above distribution func-
tions are not normalized and can even be divergent. That is why we avoided calling them wave functions.
Although the transverse part of the distribution function is divergent at rT → 0, the dipole cross-section
vanishes in this limit as σqq̄(rT ) ∝ r2

T , so the result of Eq. (95) remains finite. We have also introduced
a parameter

ε2 = α(1− α)Q2 +m2
f , (98)

where the parameter mf is the quark mass. The mean transverse qq̄ separation for a virtual photon is
controlled by the Bessel functions,

〈r2
T 〉 ∼

1
ε2

=
1

α(1− α)Q2 +m2
f

. (99)

Thus the separation is about as small as 1/Q2 except at the end points α → 0, 1. This implies that even
a highly virtual photon can create a large qq̄ fluctuation although with a small probability. This is an
important point for the aligned jet model [77]. Notice that mf ∼ ΛQCD plays here the role of an infra-red
cutoff.

The incoming photon (or hadron) is not an eigenstate of the interaction, since it can be diffractively
excited. Therefore one should switch to the eigenstate representation. The choice of the eigenstate basis
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depends on the underlying theory. It was first realized in Ref. [25] that the eigenstates of interaction
in QCD are colourless dipoles. Such dipoles cannot be excited during the interaction time and can
experience only elastic scattering. Indeed, high-energy dipoles have no definite mass, but only separation
~rT which cannot be altered during soft interaction. The eigenvalues of the total cross-section σqq̄(rT )
depend on rT , but may also depend on energy.

At the level of two-gluon exchange (Born approximation), the dipole cross-section is independent
of energy and related to the two-quark form factor of the proton via [25]

σqq̄(rT ) =
16α2

s

3

∫
d2pT

[1− 〈p| exp(i~pT · (~r1 − ~r2))|p〉] [1− exp(i~pT · ~rT )]
p4
T

. (100)

Notice the colour screening factor [1− exp(i~pT ·~rT )] in Eq. (100), which makes the dipole cross-section
vanish as r2

T at rT → 0. This is an important property of the dipole cross-section which is the cornerstone
of the colour transparency phenomenon.

The energy dependence of the dipole cross-section is generated by higher order QCD corrections.
For small distances rT → 0, one can relate σqq̄(rT ) to the phenomenological gluon density [78]

σqq̄(x, rT ) =
π2

3
r2
Tαs(Q

2 ∼ 1/r2
T )xg(x,Q2 ∼ 1/r2

T ) . (101)

When the dipole cross-section is proportional to the gluon density of the target, only quarks generated
from gluon splittings are taken into account in the cross-section Eq. (95). In other words, the valence
quark contribution (or the reggeons in the Regge phenomenology) are neglected and therefore Eq. (95)
is only applicable when sea quarks dominate, i.e., at low x. Having said that, the master Eq. (95) is quite
general and does not rely on the applicability of the pQCD.

The dipole cross-section is theoretically difficult to predict, but several parametrizations have been
proposed in the literature. For our purposes, here we consider two parametrizations, the saturation
model of Golec-Biernat and Wüsthoff (GBW) [79] and the modified GBW coupled to DGLAP evolution
(GBW–DGLAP) [80].

12.1 GBW model
In the GBW model [79] the dipole cross-section is parametrized as

σqq̄(x, r) = σ0

(
1− e− 1

4
r2Q2

s(x)
)
, (102)

where the parameters, fitted to DIS HERA data at small x, are given by σ0 = 23.03 mb, Qs(x) =
1 GeV× (x/x0)−λ/2, where x0 = 3.04× 10−4 and λ = 0.288. This parametrization gives quite a good
description of DIS data at x < 0.01. One of the interesting features of the HERA data is a geometrical
scaling [81]; namely all available data for the inclusive virtual photon–proton cross-section for ≤ 0.01
and various Q2 seem to scale as a function of τ = Q2/Q2

s , see Fig. 34. This might indicate that the
semi-hard scale Q2

s, which is also present in the saturation region (see Section 11), plays a role already at
the kinematics of HERA. However, one should be aware that the DGLAP evolution describes the same
data. So far it is not clear how much saturation is relevant to available DIS data.

A salient feature of the model is that, for decreasing x, the dipole cross-section saturates for smaller
dipole sizes, and that at small r, as perturbative QCD implies, the colour transparency phenomenon
σ ∼ r2 is at work.

One of the shortcomings of the GBW model is that it does not match QCD evolution (DGLAP)
at large values of Q2. This failure can be seen in the energy dependence of σγ

?p
tot for Q2 > 20 GeV2,

where the model predictions are below the data [79, 80]. Apparently, the simple r2
T behaviour at small

rT should be corrected.
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Fig. 34: Photon–proton total cross-section measured at HERA as a function of τ = Q2/Q2
s

12.2 GBW coupled to the DGLAP equation and dipole evolution
A modification of the GWB dipole parametrization model, Eq. (102), was proposed in Ref. [80]:

σqq̄(x,~r) = σ0

(
1− exp

(
−π

2r2αs(µ2)xg(x, µ2)
3σ0

))
, (103)

where the scale µ2 is related to the dipole size by

µ2 =
C

r2
+ µ2

0 . (104)

Here the gluon density g(x, µ2) is evolved to the scale µ2 with the leading order (LO) DGLAP equation
(74). Moreover, the quark contribution to the gluon density is neglected in the small-x limit, and therefore

∂xg(x, µ2)
∂ lnµ2

=
αs(µ2)

2π2

∫ 1

x
dzPgg(z)

x

z
g(
x

z
, µ2). (105)

The initial gluon density is taken at the scale Q2
0 = 1 GeV2 in the form

xg(x, µ2) = Agx
−λg(1− x)5.6, (106)

where the parameters C = 0.26, µ2
0 = 0.52GeV2, Ag = 1.20, and λg = 0.28 are fixed from a fit to

DIS data for x < 0.01 and in a range of Q2 between 0.1 and 500 GeV2 [80]. We use the LO formula
for the running coupling αs, with three flavours and for ΛQCD = 0.2 GeV. The dipole size determines
the evolution scale µ2 through Eq. (104). The evolution of the gluon density is performed numerically
for every dipole size r. Therefore the DGLAP equation is now coupled to the master equation (95). It is
important to stress that the GBW–DGLAP model preserves the successes of the GBW model at low Q2

and its saturation property for large dipole sizes, while incorporating the evolution of the gluon density
by modifying the small-r behaviour of the dipole size, Fig. 35.

To highlight the failure of GBW parametrization, in Fig. 35 we show the effective slope λ(Q2)
from the parameterization F2 ∼ x−λ(Q2) as a function of Q2. It is seen that the GBW–DGLAP
parametrization is essential in order to describe the data.
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Fig. 35: Right: The dipole cross-section for x = 10−2, 10−3, ...10−7 from left to right. The solid and dotted lines
show results from the model with the DGLAP evolution (103) and the saturation model (102), respectively. Left:
The effective slope λ(Q2) from the parametrization F2 ∼ x−λ(Q2) as a function of Q2. The lines are the same as
the right panel. The figure is taken from Ref. [80].

13 The Drell–Yan process and direct photons
13.1 The partonic description
As we already mentioned, the PDFs are universal. Therefore one can use the DIS data to extract PDFs
and then make prediction for other hard processes. The most prominent example of hadron–hadron
collisions is the so-called Drell–Yan (DY) process [82], where lepton pairs are produced:

h1 + h2 → µ+ + µ− +X, (107)

where X can be any undetected particles. In the parton model, this process looks like a quark and an
antiquark from two hadrons annihilating into a lepton pair, see Fig. 36.

1
X

q

P
X

q
_

γ* l
+

l
-

P

2

Fig. 36: Partonic picture of the DY process in the leading order. Two hadrons collide and a quark from one hadron
annihilates with an antiquark from the other hadron into a timelike photon, which decays into a lepton pair.

The kinematics of the DY process can be conveniently defined via light-cone momentum fractions
of the projectile (target) parton: x1 (x2),

x1 =
2P2 · q
s

, x2 =
2P1 · q
s

, (108)
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where P1 and P2 are the four momenta of hadron 1 and hadron 2, respectively, and s denotes the square
of the centre-of-mass energy of the colliding hadrons, s = (P1 + P2)2. The Feynman variable xF is
related to other kinematics variables as

xF =
2pcmL√
s
≈ x1 − x2, (109)

where pcmL is the longitudinal momentum of the dilepton in the hadron–hadron centre-of-mass frame.
Another relation is

τ = x1x2 =
M2

s
, (110)

where M 2 = q2 > 0 denotes the mass of the spacelike photon, and the transverse momentum of the
virtual photon has been neglected. The partonic annihilation cross-section for Fig. 36 reads

dσ̂

dM2
=

4πα2
emZ

2
f

3NcM2
δ(x1x2s−M2). (111)

The hadronic cross-section can then be written as the convolution of PDFs with the partonic cross-
section, like in DIS,

dσ

dM2
=
∫ 1

0
dx1dx2

∑
f

{qf (x1)q̄f (x2) + (1↔ 2)} dσ̂

dM2
, (112)

where qf (x1) is the probability to find a quark of flavour f with light-cone momentum fraction x1 in
hadron a, and q̄f is the analog for antiquarks. In the second line, we have plugged the partonic cross-
section (111) and performed one of the integrals. It is interesting to note that the right-hand side of
(112) depends only on τ and not separately on M 2 and s. This scaling property has been confirmed
experimentally [83].

Some features of dilepton production cannot be understood in the lowest order picture. The cross-
section given by Eq. (112) is 2–3 times smaller than the measured value. This discrepancy is usually
treated by introducing an ad hoc normalization factor, the so-called K factor. The K factor is approxi-
mately independent of M 2. Another obvious problem is that the transverse momentum spectrum in the
naive parton model cannot describe data. Phenomenologically, one can introduce a primordial momen-
tum distribution of the quarks, but what is observed in experiments about 1–2 GeV is much larger than
what one would expect from Fermi motion.

These problems can be partially resolved by taking into account the next-order QCD corrections,
shown in Fig. 37. Owing to the radiation of the gluon (the second row diagrams), the quark acquires
a transverse momentum. In this way, the pQCD correction provides the missing mechanism for the
production of lepton pairs with large transverse momentum pT . However, the transverse momentum
spectrum is not described well in this order, and obviously somethings is still missing. In particular, at
low pT the pQCD result diverges. There have been attempts to overcome this problem by a resummation
of soft gluons radiated from the quark and antiquark [85]. The last row in Fig. 37 displays the diagrams
for the QCD Compton process, where a quark in one hadron picks up a gluon from the other hadron and
radiates a photon. This mechanism is dominant at large pT [86].

13.2 The colour dipole description
Similar to DIS, the DY process can be viewed in the target rest frame where it looks like bremsstrahlung
rather than parton annihilation, see Fig. 38. A quark or an antiquark from a projectile hadron radiates a
virtual photon while hitting the target. This radiation can occur before and after the quark scatters off the
target. The impact parameter representation of the cross-section for such a process can be written in the
factorized form similar to DIS [87–89]:

dσ(qp→ qγ∗p)
d lnα

=
∫
d2rT |ΨT,L

γ∗q (α, rT )|2σqq̄(x, αrT ), (113)
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Fig. 37: Higher order QCD correc-
tions to the DY process. The dia-
grams for virtual corrections, the an-
nihilation process, and the Compton
process are depicted in the upper,
middle, and last row, respectively.
These higher order corrections ac-
count for most of the K factor and
explain data at large transverse mo-
menta. The figure is taken from Ref.
[84].

where α is the light-cone momentum fraction of the quark, carried away by the photon, and rT the
transverse separation between γ? and q. The dipole cross-section σqq̄(x, αrT ) with transverse separation
αrT is a universal quantity like PDFs and has already been introduced in the DIS section.

α

1−α

rT q

g

γ

l

l−

+l

l−

+

Fig. 38: In the target rest frame, the DY pro-
cess looks like bremsstrahlung. A projectile
quark (or antiquark) scatters off the target and
radiates a massive photon which subsequently
decays into the lepton pair. The photon can
also be radiated before the quark hits the tar-
get. Both diagrams are important.

Where does the dipole cross-section come from if there is no dipole in diagrams given in Fig. 38,
and why is the transverse dipole size αrT ? The dipole cross-section appears because the quark is dis-
placed in the impact parameter plane after radiation of the photon. The antiquark enters after taking the
complex conjugate of the amplitude. Therefore the dipole in equation (113) is not a real qq̄ dipole. As
in the real dipole in DIS where colour screening is provided by interactions with either the quark or the
antiquark, in the case of radiation the two amplitudes for radiation prior or after the interaction screen
each other, leading to cancellation of the infra-red divergences. Now, back to the second question, if rT
is the transverse separation between the quark and the photon, and α is the fractional momentum of a
radiated photon, then the transverse separation between the photon and centre of gravity is (1 − α)rT
and the distance between the quark and the centre of gravity will be αrT . Before radiation, the centre of
gravity of the quark coincides with the incident quark, after radiation the relative distance between the
quark and the centre of gravity is shifted to αrT . Taking the complex conjugate of the amplitude, it looks
as if the transverse size between q and q̄ is αrT which is the argument of the dipole cross-section.
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The wave function of the γ∗q fluctuation in Eq. (113) for transversely and longitudinally polarized
photons reads

ΨT,L
γ∗q (α,~rT ) =

√
αem
2π

χf Ô
T,L χiK0(ηrT ). (114)

Here χi,f are the spinors of the initial and final quarks and K0(x) is the modified Bessel function. The
operators ÔT,L have the form

ÔT = imfα
2 ~e∗ · (~n× ~σ) + α ~e∗ · (~σ × ~∇)− i(2− α) ~e∗ · ~∇ , (115)

ÔL = 2M(1− α) , (116)

where ~e is the polarization vector of the photon, ~n is a unit vector along the projectile momentum, and
~∇ acts on ~rT . For radiation of prompt photons M = 0. A parameter

η2 = m2
fα

2 +M2 (1− α) (117)

is the analog of the parameter ε Eq. (98) in DIS.
In order to obtain the hadronic cross-section from the elementary partonic one, Eq. (113), one

should sum up the contributions from quarks and antiquarks weighted with the corresponding parton
distribution functions (PDFs) in the projectile hadron. The hadronic cross-section then reads [87, 89]

dσ

dM2dxF
=

αem
3πM2

x1

x1 + x2

∫ 1

x1

dα

α2

∑
f

Z2
f

{
qf

(x1

α
,Q2

)
+ qf̄

(x1

α
,Q2

)} dσ(qp→ qγ∗p)
d lnα

(118)

=
αem

3πM2

1
x1 + x2

∫ 1

x1

dα

α
F p2

(x1

α
,Q2

) dσ(qp→ qγ∗p)
d lnα

. (119)

The PDFs of the projectile enter in a combination which can be written in terms of the proton structure
function F p2 . Notice that with our definitions the fractional quark charge Zf is not included in the LC
wave function of Eq. (114), and that the factor αem

3πM2 in Eq. (119) accounts for the decay of the photon
into the lepton pair. We use the standard notation for the kinematical variables x1 and x2 defined in
Eq. (108).

The transverse momentum pT distribution of photon bremsstrahlung in quark–nucleon interac-
tions, integrated over the final quark transverse momentum, was derived in Ref. [89] in terms of the
dipole formalism

dσqN (q → qγ)
d(lnα)d2~pT

=
1

(2π)2

∑
in,f

∑
L,T

∫
d2~r1d

2~r2e
i~pT .(~r1−~r2)ΨT,L

γ∗q(α,~r1)ΨT,L
γ∗q (α,~r2)Σγ(x,~r1, ~r2, α) ,

(120)
where

Σγ(x,~r1, ~r2, α) =
1
2
{σqq̄(x, αr1) + σqq̄(x, αr2)− σqq̄(x, α(~r1 − ~r2))} ,

and ~r1 and ~r2 are the quark–photon transverse separations in the two radiation amplitudes contributing
to the cross-section, Eq. (120), which correspondingly contains double-Fourier transformations. The
parameter α is the relative fraction of the quark momentum carried by the photon, and is the same in both
amplitudes, since the interaction does not change the sharing of longitudinal momentum. The transverse
displacement between the initial and final quarks is αr1 and αr2, respectively. After integrating the
above equation (120) over pT , one recovers Eq. (113), as one should.

The hadronic cross-section can then be obtained in the same fashion as given in Eq. (119) by
convolution with the proton structure function. Next we calculate the inclusive direct photon spectrum
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within the same framework. For direct photons we have M = 0; the transverse momentum distribution
of direct photon production from hadron–hadron collision reads

dσγ(pp→ γX)
dxFd2~pT

=
1

x1 + x2

∫ 1

x1

dα

α
F p2 (

x1

α
,Q)

dσqN (q → qγ)
d(lnα)d2~pT

. (121)

We also need to identify the scale Q entering in the proton structure function in Eqs. (119) and
(121), and relate the variable x of the dipole cross-section entered in Eqs. (113) and (120) to measurable
variables. From our previous definition, and following previous work [90, 91], we have x = x2. At zero
transverse momentum, the dominant term in the LC wavefunction Eq. (114) is the one that contains the
modified Bessel function K1(ηr). This function decays exponentially at large values of the argument, so
that the mean distances which numerically contribute are of order 1/η. On the other hand, the minimal
value of α is x1, and therefore the virtuality Q2 which enters into the problem at zero transverse momen-
tum is ∼ (1− x1)M2. Thus the hard scale at which the projectile parton distribution is probed turns out
to be Q2 = p2

T + (1− x1)M2. Notice that in the previous studies, M 2 [90] and (1 − x1)M2 [91] were
used for the scale Q2. Nevertheless, these different choices for Q2 account for less than a 20% effect at
small x2 values.
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Fig. 39: Right panel: The dilepton spectrum in 800-GeV pp collisions. We show the result of the GBW dipole
model (dashed line) and the GBW–DGLAP model (dotted line). We also show the result when a constant pri-
mordial momentum 〈k2

0〉 = 0.4 GeV2 is incorporated within the GBW–DGLAP dipole model (solid line). Left
panel: Inclusive direct photon spectra obtained from the GBW-DGLAP dipole models at CDF and CERN energies.
Experimental data are from Refs. [92, 93]. The figures are taken from Refs. [94, 95].

As an example, in Fig. 39 we show the dilepton and inclusive direct photon spectra for different
experiments. For the dipole cross-section, we use two parametrizations introduced in Section 12. It
is remarkable that both direct photon production and DY dilepton pair production processes can be
described within the same colour dipole approach without any free parameters. From this study, it is
seen that the colour dipole formulation coupled to the DGLAP evolution provides a better description of
data at large transverse momentum compared to the GBW dipole model.

The colour dipole predictions for the direct photons at the LHC is given in Ref. [95]. In the
same framework the azimuthal asymmetry of the prompt photons was computed in Ref. [96], for the
predictions of other approaches at the LHC see Ref. [97].
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14 Diffraction
Diffraction is associated with the optical analogy, which is elastic scattering of light caused by absorption.
A new feature of diffraction in quantum mechanics is the possibility of inelastic diffraction, which is
nearly elastic scattering with the excitation of one or both colliding hadrons to effective masses which
are much smaller that the c.m. energy of the collision. The main bulk of diffractive events originate
from soft interactions. Therefore it is still a challenge to describe these processes starting from the first
principles of QCD. Unavoidably, one faces the problem of confinement which is still a challenge for the
theory. Nevertheless, the ideas of QCD help to develop quite an effective phenomenology for diffractive
reactions, i.e., to establish relations between different observables.

14.1 Diffraction in non-Abelian theories
Elastic and inelastic diffraction are large rapidity gap (LRG) processes. Since they emerge as a shadow
of inelastic interactions, their amplitudes are nearly imaginary. This observation is direct evidence for
the underlying theory to be non-Abelian.

Indeed, the elastic amplitude can be mediated only by a neutral exchange in the t channel, therefore
the Born graphs in the Abelian and non-Abelian cases look as shown in Fig. 40.

γ

elIm f   = 0el Re f   = 0

g g

Fig. 40: Born approximation for elastic scattering in Abelian (left) and non-Abelian (right) theories

The striking difference between these two amplitudes is in their phases. In the Abelian case (e.g.,
in QED) the Born amplitude is real, while in the non-Abelian theory (QCD) the amplitude is imaginary.

Data for elastic hadron scattering show that the real part of the elastic amplitude is small, and this
is direct evidence for the non-Abelian underlying dynamics. This is a remarkable observation, since we
have so far very few manifestations of non-Abelian features in the data.

The Born amplitude depicted in Fig. 40 is independent of energy. Gluon radiation gives rise to the
energy dependence of the total cross-section through the unitarity relation illustrated in Fig. 41.

g

2

2 Im fel gg

Fig. 41: The unitarity relation for the pomeron amplitude in terms of perturbative QCD

Elastic scattering reaches maximal strength at the unitarity limit of the black disc, Im fel(b) = 1,

σel = σin = πR2, (122)
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where R is the radius of interaction. The unitarity relation tells us that the imaginary part of the partial
amplitude Im fel(b) cannot rise for ever. After the unitarity bound is reached, the total cross-section can
rise only due to an energy dependence of the interaction radius R(s). The Froissart theorem imposes a
restriction on this, the interaction radius cannot rise with energy faster than R ∝ ln(s). Then, the total
and elastic cross-section rise with energy as ∝ ln2(s) in the Froissart regime of unitarity saturation.

14.2 Quantum mechanics of diffraction
Diffractive excitation is a nontrivial consequence of the presence of quantum fluctuations in hadrons. In
classical mechanics only elastic scattering is possible. An example is diffractive scattering of electro-
magnetic waves.

One can understand the origin of diffractive excitation in terms of elastic diffraction [98, 99].
Since a hadron has a composite structure, different hadronic constituents interact differently causing a
modification of the projectile coherent superposition of states. Such a modified wave packet is no longer
orthogonal to other hadrons different from the incoming one. This makes possible the production of new
hadrons, i.e., diffractive excitations.

To simplify the picture, one can switch to the basis of eigenstates of interaction. Since a hadron
can be excited, it cannot be an eigenstate of interaction, and can be expanded over the complete set of
eigen states |α〉 [100–102]:

|h〉 =
∑
α=1

Chα |α〉 , (123)

which satisfy the condition, f̂el|α〉 = fα |α〉, where f̂el is the elastic amplitude operator.
Owing to completeness and orthogonality of each set of states, the coefficient C h

α in (123) satisfies
the relations

〈h′|h〉 =
∑
α=1

(Ch
′

α )∗Chα = δhh′ ,

〈β|α〉 =
∑
h′

(Ch
′

β )∗Ch
′

α = δαβ . (124)

The elastic and single diffraction amplitudes can be thus expressed via the eigenamplitudes as

fh→hel =
∑
α=1

|Chα|2 fα ,

fh→h
′

sd =
∑
α=1

(Ch
′

α )∗Chα fα . (125)

Using these expressions and the completeness relations, Eqs. (124), one can calculate the forward single
diffraction cross-section without knowledge of the properties of |h′〉,

∑
h′ 6=h

dσh→h′sd
dt

∣∣∣∣∣∣
t=0

=
1

4π

[∑
h′
|fhh′sd |2 − |fhhel |2

]
,

=
1

4π

∑
α

|Chα|2 |fα|2 −
(∑

α

|Chα|fα
)2
 , (126)

=
〈f2
α〉 − 〈fα〉2

4π
.

Thus the forward diffractive cross-section is given by the dispersion of the eigenvalues distribution. For
some specific distributions the dispersion may be zero. For instance if all the eigenamplitudes are equal,
or one of them is much larger than others.
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According to Eqs. (125) and (126) one can calculate the total and diffractive cross-sections on the
same footing, provided that the eigenstates |α〉, their weights |Ch

α|2 and the eigenvalues fα are known.
Notice that the eigenamplitudes fα are the same for different hadronic species |h〉. This remarkable
property of eigenamplitudes is employed later on.

In the Froissart regime all the partial eigenamplitudes reach the unitarity limit, Im fα = 1. Then,
according to the completeness conditions,

fhhel ⇒
∑
α=1

|Chα|2 = 1,

fhh
′

sd ⇒
∑
α=1

(Ch
′

α )∗Chα = 0. (127)

Diffraction is impossible within a black disc, but only on its periphery, b ∼ R. Since in the
Froissart regime R ∝ ln(s),

σtot ∝ σel ∝ ln2(s),
σsd ∝ ln(s) , (128)

i.e., σsd/σtot ∝ 1/ ln(s).
The total and single diffractive cross-sections in terms of the colour-dipole cross-section read

σhptot =
∑
α=1

|Chα|2 σα =
∫
d2rT |Ψh(rT )|2 σ(rT ) = 〈σ(rT )〉 , (129)

∑
h′

dσh→h′sd
dt

∣∣∣∣∣
t=0

=
∑
α=1

|Chα|2
σ2
α

16π
=
∫
d2rT |Ψh(rT )|2 σ

2(rT )
16π

=
〈σ2(rT )〉

16π
, (130)

where the eigenvalue of the cross-section for a simplest q̄q dipole σ q̄q(rT ) was already introduced in
Section 12.

14.3 Diffractive DIS
The contribution of diffractive quasielastic production of vector mesons is a tiny fraction, vanishing as
1/Q2, of the total inclusive DIS cross-section. However, the fraction of all diffractive events associated
with large rapidity gaps in DIS is large, about 10%, and is nearly independent of Q2. This turns out
to be the result of a contribution of rare soft fluctuations in the hard photon. According to Eq. (99) a
longitudinally asymmetric q̄q pair with α or 1 − α ∼ 1/Q2 has a large hadronic size and experiences
soft diffractive interactions like hadrons. Although the admixture of such soft fluctuations in the virtual
photon is tiny, that may be compensated by a large interaction cross-section. This interplay between
the fluctuation probability and the cross-section is illustrated for inclusive and diffractive DIS in Table 1
[103].

Hard fluctuations of the photon have large weight, but vanishing as 1/Q2 in the cross-section,
while soft fluctuations have a small, m2

q/Q
2, weight, but interact strongly, σ ∼ 1/m2

q . The latter factor
compensates the smallness of the probability in the case of DIS, and over-compensates it for diffraction.

Thus we conclude that inclusive DIS is semi-hard and semi-soft, and the soft component is present
at any high Q2. On the other hand, diffractive DIS (sometimes called hard diffraction) is predominantly
a soft process. This is why its fraction in the total DIS cross-section is nearly Q2 independent. One can
test this picture studying the Q2 dependence of the diffractive DIS [104].
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Table 1: Interplay between the probabilities of hard and soft fluctuations in a highly virtual photon and the cross-
section of interaction of these fluctuations

|Cα|2 σα σtot =
hard∑
α=soft

|Cα|2σα σsd =
hard∑
α=soft

|Cα|2σ2
α

Hard ∼ 1 ∼ 1
Q2

∼ 1
Q2

∼ 1
Q4

Soft ∼ m2
q

Q2
∼ 1
m2
q

∼ 1
Q2

∼ 1
m2
qQ

2

Since diffraction is a source of nuclear shadowing [105], that also should scale in x. Indeed,
most experiments have not found any variation with Q2 of shadowing in DIS on nuclei. Only the NMC
experiment managed to find a weak scaling violation which agrees with theoretical expectations [106].

Notice that in spite of the independence of Q2, both diffraction and shadowing are higher twist
effects. This is easy to check considering photoproduction of heavy flavours. In this case the hard
scale is imposed by the heavy quark mass, and diffraction becomes a hard process with the cross-section
vanishing as 1/m4

Q. Nuclear shadowing also vanishes as 1/m2
Q.

The true leading twist diffraction and shadowing are associated with gluon radiation considered
below.

14.4 Diffractive Drell–Yan reaction
The dipole description of the Drell–Yan reaction in many respects is similar to DIS, see Sections 12 and
14. This is not a surprise, since the two processes are related by QCD factorization.

There is an important difference between DIS and DY reaction. In the inclusive DIS cross-section
one integrates over 0 < α < 1, this is why this cross-section is always a mixture of soft and hard
contributions (see Table 1). In the case of DY reaction there is a new variable, x1, which is the fraction
of the proton momentum carried by the dilepton. Since α > x1, one can enhance the soft part of the
DY cross-section selecting events with x1 → 1. This soft part of the DY process is subject to unitarity
corrections [107] which are more important than in DIS [108].

Another distinction between DIS and DY is the suppression of the DY diffractive cross-section.
Namely, the forward cross-section of diffractive radiation qp→ l̄lqp is zero [109]. Indeed, according to
Eq. (126) the forward diffractive cross-section is given by the dispersion of the eigenamplitude distribu-
tion. However, in both eigenstates |q〉 and |qγ∗〉 only the quarks interact. So the two eigenamplitudes are
equal, and the dispersion is zero.

Nevertheless, in the case of hadronic collisions the diffractive DY cross-section does not vanish in
the forward direction. In this case the two eigen states are |q̄q〉 and |q̄qγ ∗〉 (for the sake of simplicity we
take a pion). The interacting component of these Fock states is the q̄q dipole, however, it gets a different
size after the q or q̄ radiate the photon. Then the two Fock states interact differently, and this leads to a
nonvanishing forward diffraction. Notice that the diffractive cross-section is proportional to the dipole
size [110].

14.5 Diffractive Higgs production
Detection of the Higgs particle is the main challenge of the forthcoming experiments of the LHC at
CERN. The most difficult problem here is to single out a weak signal from high backgrounds. One
possible process to study is a double diffractive production of Higgs, p + p → p + H + p, with two
large rapidity gaps, as illustrated in Fig. 42. Like other diffractive processes, this reaction is strongly
suppressed by the small survival probability of the gaps. Namely, initial- and final-state inelastic inter-

42

B.Z. KOPELIOVICH AND A.H. REZAEIAN

92



actions of the colliding protons can easily cause multiparticle production which will fill the gaps. The
probability of no-interaction is usually called absorptive corrections, which are illustrated in Fig. 42 by
the shaded strip. Recent calculations of the cross-section of this reaction [111] led to a rather small
cross-section, which, nevertheless, may be observed due to smallness of the background which is also
suppressed by the absorptive corrections.

Another possible mechanism for Higgs production could be a direct diffractive higgsstrahlung
similar to diffractive DY. In both cases the radiated particle does not take part in the interaction [110].
However, the Higgs coupling to a quark is proportional to the quark mass, therefore the cross-section of
higgsstrahlung by light hadrons is vanishingly small.

A larger cross-section may emerge due to the admixture of heavy flavours in light hadrons. A
corresponding mechanism of exclusive Higgs production, pp → Hpp, due to direct coalescence of
heavy quarks, Q̄Q → H was proposed in Ref. [112]. In this case the Higgs is produced not at the
mid rapidities, but in the fragmentation region of the proton, at large Feynman xF where backgrounds
are very small. The cross-section of Higgs production was evaluated assuming 1% of intrinsic charm
(IC) [113] and that heavier flavours scale as 1/m2

Q [114]. The results are shown in Fig. 43 as a function
of the Higgs mass for different intrinsic heavy flavours. The cross-section is small, but can be detected
by dedicated measurements.

Fig. 42: Double diffractive Higgs production
pp→ Hpp

Fig. 43: Cross-section of exclusive diffractive Higgs produc-
tion, pp → Hpp, from intrinsic charm (IC), bottom (IB) and
top (IT) [112]

15 Quark and gluon shadowing
One may naively expect that the cross-section for scattering a lepton off a nucleus with mass number
A must be A times bigger than the cross-section for the lepton–proton collision. However, several
experiments show that the nuclear DIS cross-section at small x� 1 is smaller,

σγ
?A

tot < Aσγ
?N

tot . (131)

This phenomenon is called shadowing. Shadowing has been investigated by various experiments in
different kinematic ranges. For a review of the experimental and theoretical results, see Ref. [115].

A particle thrown on a nuclear target has many possibilities of interaction with different bound
nucleons. However, the total probability of interactions should not exceed 1. Therefore a probability of
each interaction must be reduced which can be viewed as a result of shadows produced by the preceding
collisions.
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Both the Colour Glass Condensate [72] and shadowing have the same origin: longitudinal overlap
of gluon clouds originating from different bound nucleons. This is illustrated in Fig. 44. Bound nucleons
in the nucleus do not overlap much, either in the rest frame, or in the infinite momentum frame, since both
the nucleon size and internucleon spacing are subject to Lorentz contraction. However, gluons carrying
a small fraction x of the proton momentum have a smaller gammafactor and are less compressed in the
longitudinal direction. Then, the longitudinal propagation of small-x partons is large. They overlap and
do talk to each other, i.e., they fuse and reduce parton density at small x. The cross-section decreases
and this is shadowing. Figure 44 shows how gluonic clouds overlap at small x.

x

Fig. 44: Even when nucleons are well separated in the longitudinal direction in the infinite momentum frame,
gluon fluctuations at small x overlap

At small x, nuclear scattering is governed by coherence effects which are better understood in the
target rest frame. As described above, a virtual photon with virtuality Q2 and energy ν splits into a qq̄
pair with a coherence length

lc =
2ν

Q2 +M2
qq̄

=
P

xMN
, (132)

where M 2
qq̄ is the effective mass of the fluctuation, and the factor P −1 = (1 + M2

qq̄/Q
2). The usual

prescription is that M 2
qq̄ ∼ Q2 since Q2 is the only scale available which leads to P = 1/2. Then, the

coherence length can be bigger than the nuclear radius at low x. This means that a qq̄ pair can experience
multiple scatterings off different nucleons within the coherence length. In the infinite momentum frame
this corresponds to the overlap of parton clouds of different nucleons which leads to diffusion of gluons
and consequently a reduction of the gluonic density in nuclei. A more careful analysis, however, shows
that P even for quarks depends on the polarization of the photon [116]. The factor P for gluons is even
about one order of magnitude smaller, see Fig. 45. Therefore gluons need much smaller x in order to
overlap in the longitudinal direction. This simple observation leads to a remarkable prediction that the
onset of gluon shadowing occurs at smaller x compared to quark shadowing.

The quark and gluon shadowing can be estimated within a simple model at high energy. At high
energies, the dipoles qq̄ are frozen by Lorentz time dilation during propagation through the nucleus.
Therefore at very small x, it is possible to write the entire multiple rescattering which occurs during
propagation of the qq̄ pair with fixed transverse size r in a eikonal form [117],

qA(x)
AqN (x)

=
2

〈σqq̄(r)〉
∫
d2b
(

1− 〈e− 1
2
σqq̄(r)TA(b)〉

)
, (133)

where the nuclear thickness function is defined as an integral of the nuclear density along the projectile
trajectory, TA(b) =

∫∞
−∞ dzρ(z). Similar calculations can be carried out for gluons [118],

gA(x)
AgN (x)

=
2

〈σgg(r)〉
∫
d2b
(

1− 〈e− 1
2
σgg(r)TA(b)〉

)
, (134)
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Fig. 45: Bjorken x dependence of P defined in Eq. (132), corresponding to the coherence length for shadowing of
transverse and longitudinal photons and gluon shadowing, respectively [116]. Solid and dashed curves correspond
to Q2 = 4 and 40 GeV2. The bottom curve represents P for gluons.

where the gluon–gluon dipole is related to the quark–antiquark dipole cross-section by the Casimir factor
σgg(r) = 9

4σqq̄(r). Assuming the gluon–gluon fluctuations of the projectile have the same distribution
function as for qq̄, one may conclude that the effective absorption cross-section providing shadowing is
9/4 times larger than for a qq̄ fluctuation of a photon. Such a simple result cannot be true because of
the strong gluon–gluon interaction which makes their distribution function quite different. Moreover, the
spin structure of the gluon–gluon distribution function is also different. It turned out that in fact gluon
shadowing is weaker [102]. That is because gluons in the proton are located within small spots [44],
so they have little chance to overlap in the transverse plane, even in heavy nuclei. If the mean value of
quark–gluon separation is r0, the mean number of other dipoles overlapping with this one is

〈ng〉 =
3
4
πr2

0〈TA〉 ∼ 0.3. (135)

This indicates that, even at very small x, gluon shadowing must be quite small, see Fig. 46. From
experimental data it is very difficult to extract gluon shadowing. For the only existing experimental data
NMC, a leading order analysis failed to extract the gluon distribution, and the NLO fit turned out to be
quite sensitive to gluons [119]. Nevertheless, the results indicates a very weak gluon shadowing.

16 Cronin effect and nuclear broadening
Back in 1973, Cronin’s group discovered that nuclei may not only suppress reactions, but also enhance
them [120]. A considerable enhancement was found for production of hadrons with large transverse
momentum. This effect is measured by the ratio R of the inclusive differential cross-sections for proton
scattering on two different targets normalized to the respective atomic numbers A and B,

R(pT ) =
BdσpA/d

2pT
AdσpB/d2pT

. (136)

If there were no nuclear effect, then we would have R(pT ) = 1; however, for A > B a suppression is
observed experimentally at small pT and an enhancement at intermediate pT , and eventually at very high
pT the ratio seems to approach R(pT ) = 1, see Fig. 47.

Recent data from RHIC [122] for high-pT hadrons in gold–gold collisions raised again the long-
standing problem of quantitative understanding of the Cronin effect. In nucleus–nucleus collisions this
effect has to be reliably calculated as a baseline for a signal of new physics in heavy-ion collisions. The
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Fig. 46: Gluon shadowing for carbon, copper and
lead at Q2 = 4 GeV2 (solid) and Q2 = 40 GeV2

(dashed) [102]

Fig. 47: Ratio of the charged pion production cross-sections
for tungsten and beryllium as a function of the transverse
momentum of the produced pions [121]

only possibility to test models is to make comparisons with available data for pA collisions, since in pA
collisions no hot and dense medium is created.

Soon after the discovery of the Cronin effect, it was understood that the nuclear enhancement is
the result of multiple interactions in the nucleus [120,123]. However, in the parton model based on QCD
factorization, this should be interpreted as a modification of PDFs in the nucleus. In the parton model,
inclusive particle production for pA collisions can be presented in a collinear factorized form,

dσhpA
d2pT

= K
∑
i,j,k,l

Fi/p ⊗ Fj/A ⊗
dσ̂

dt̂
(ij → kl) ⊗Dh

k , (137)

where dσ̂/dt̂(ij → kl) is the pQCD parton–parton cross-section and Dh
k (z,Q′2) are the fragmentation

functions of a parton k into a hadron hwith a fraction z of the parton momentum. TheK factor simulates
the NLO contributions. The proton and nucleus parton distribution functions were parametrized as

Fi/p = fi/p(xi, Q
2)
e−k2

iT /〈k2
T 〉p(b)

π〈k2
T 〉pA

and Fj/A = TA(b) fj/p(xj , Q
2)
e−k

2
jT /〈k2

T 〉Ap(b)

π〈k2
T 〉A

, (138)

where fi/p(A)(x,Q2) are the parton distribution functions of the proton (nucleus). Isospin imbalance was
taken into account and nuclear shadowing is included by the HIJING parametrization [124]. The results
of the calculations [125] are depicted in Fig. 48.

Partons were assumed to have an intrinsic transverse momentum with an average squared value
〈k2
T 〉pA(Ap) and a Gaussian distribution. At a soft scale one does not resolve the gluonic structure of a

hadron, but only the valence quarks. The mean transverse Fermi momentum of these quarks is small
〈k0〉 ∼ ΛQCD. At higher scales relevant to hard reactions one can resolve the structure of the valence
quarks, i.e., the presence of gluons and sea quarks. Since those are located at small separations, r0 [44],
from the valence quark, both have more intensive intrinsic Fermi motion,

〈k2
0〉 ∼ 1/r2

0 . (139)

This is obviously bigger than the scale associated with nucleon size due to confinement. In the
parton model it has been shown that even within the next-to-leading order (NLO) pQCD correction,
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Fig. 48: The photon and π0 production cross-sections from the E706 experiment at
√
s = 31.6 GeV, compared

to kT -corrected NLO calculations [125]. Bottom: the ratio (Data-Theory)/Theory for direct photon production.
Theory is the NLO calculations with primordial parton momentum 〈kT 〉.

experimental data of heavy-quark pair production [126], direct photon production [127], and DY lepton
pair production [128] can only be described if an average primordial momentum as large as 1 GeV is
included (see also Ref. [129]). For example, in Fig. 48 the NLO calculations and data for both direct
photons and neutral pion production are shown [125]. A primordial momentum 〈kT 〉 ∼ 1.2 GeV seems
to provide the best description of data.

A projectile parton propagating through a nucleus experiences multiple interactions increasing
its transverse momentum. Then the parton participating in a hard collision inside the nucleus has an
increased transverse momentum compared to Eq. (139), which corresponds to the interaction with a free
proton,

〈k2
T 〉pA(b,

√
s) = 〈k2

0〉+ ∆k2(b,
√
s) , (140)

where ∆k2(b,
√
s) is the nuclear broadening. The nuclear broadening is crucial for understanding the

Cronin effect. Apparently, the strength of the effect depends on the relative values of the two terms in
Eq. (140). In the limit of a weak primordial motion the effect should be strongest, while in the case of
〈k2

0〉 >> ∆k2 the effect will disappear. One may expect ∆k2(b,
√
s) to be a function of the number

of pp collisions, i.e., ∆k2(b,
√
s) ∝ σpp(

√
s)TA(b), where σpp denotes the nucleon–nucleon inelastic

cross-section. Different parametrizations exist for ∆k2(b,
√
s), though all seem to be rather ad hoc. Here

we present a prescription in the framework of the colour dipole approach which is free from any arbitrary
parameters.

As we already mentioned in the previous section, the coherence length lc is an important quantity
to understand the effect of multiple parton rescattering. Therefore the underlying mechanisms of the
Cronin enhancement should also depend on the coherence length. In the case of incoherent hard inter-
actions, the incoming projectile and outgoing partons experience multiple soft rescattering leading to a
high-pT enhancement. At very small x, or large coherence length lc >> RA. Such a coherent regime
is relevant for hadron production at medium-large pT at RHIC, and it dominates a large range of pT at
LHC energies. In addition, in the latter case the Cronin effect is substantially reduced by shadowing.
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In the short coherence length scheme lc � RA, one can rely on the factorized expression Eq. (137)
corrected for broadening Eq. (140). The latter can be computed within the dipole approach as propagation
of a qq̄ pair through the target nucleus. The final parton transverse-momentum distribution dN i/d

2kiT is
written as [117]

dNj=q

d2kiT
=
∫
d2r1d

2r2 e
i~kT (~r1−~r2)

[〈k2
0〉
π

e−
1
2

(r2
1+r2

2)〈k2
0〉
] [
e−

1
2
σq̄q(~r1−~r2,x)TA(b)

]
. (141)

The first bracket in the above equation represents the contribution of the proton intrinsic momentum,
while the second bracket takes into account the soft parton rescatterings on target nucleons. We use
the dipole cross-section σq̄q introduced in Section 12, fitted to DIS data. For a gluon when j = g in
Eqs. (137) and (141), we have σq̄q → σgg = 9

4σq̄q.
Notice that the simple exponential in Eq. (141) should not be confused with the Glauber eikonal

multiple scattering introduced in the previous section. Thus if one needs to establish a relation between
the expansion of the exponential in the second bracket of Eq. (141) and the multiple quark interaction, it
would be incorrect to think that the n-th order term of this expansion corresponds to the probability to
have n-fold quark multiple scattering (we recall the probability cannot be negative!). The appearance of
the dipole cross-section in Eq. (141) is the result of a product of the amplitude and the time-conjugated
one, which describe the quarks with different impact parameters. Clearly, the object participating in
the scattering is not a qq̄ dipole but rather a single coloured quark, see Fig. 49. The above prescription
describes fixed-target experiments rather well, see Fig. 47.

GG
qq

AA

Fig. 49: The probability of multiple interactions via one-gluon exchange for the quark in the nucleus. The dashed
line shows the unitarity cut.

In the case of a coherence length lc >> RA, a hard fluctuation in the incident proton containing
a high-pT parton propagates through the whole nucleus and may be freed by the interaction. Since
multiple interactions in the nucleus supply a larger momentum transfer than a nucleon target, they are
able to resolve harder fluctuations, i.e., the average transverse momentum of produced hadrons increases.
In this case broadening looks like colour filtering rather than Brownian motion. We employ the light-cone
dipole formulation in the target rest frame which leads to

σlc�RApA (pT ) = fg/p ⊗ σ(gA→ g1g2X)⊗Dh/g1
. (142)

We assume that high-pT hadrons originate mainly from radiated gluons at such small x. The cross-
section of gluon radiation reads [102, 109, 130]

dσ(gA→ g1g2X)
d2pT dy1

=
∫
d2b

∫
d2r1d

2r2 e
i~pT (~r1−~r2) Ψ∗gg(~r1, α)Ψgg(~r2, α)

×
[
1− e− 1

2
RgσN3g(r1,x)TA(b) − e− 1

2
RgσN3g(r2,x)TA(b) + e−

1
2
RgσN3g(~r1−~r2,x)TA(b)

]
, (143)

where α = p+(g1)/p+(g) is the momentum fraction of the radiated gluon. The function Rg incorporates
the shadowing effect which originates from the higher Fock components |3g〉, |4g〉, etc., missing in the
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naive eikonalization [102,121]. σN3g(r, α) is the dipole cross-section for a three-gluon colourless system,
where ~r is the transverse separation of the final gluons g1 and g2. It can be expressed in terms of the
usual q̄q dipole cross-sections,

σN3g(r) =
2
9

{
σq̄q(r) + σq̄q(αr) + σq̄q[(1 − α)r]

}
. (144)

The variable x in σN3g(r, α) and Rg is implicit. The light-cone wave function of the g1− g2 Fock compo-
nent of the incoming gluon including the nonperturbative interaction of the gluons reads [102],

Ψgg(~r, α) =
√

8αs
π r2

exp
[
− r2

2 r2
0

] [
α(~e ∗1 · ~e)(~e ∗2 · ~r)

+ (1− α)(~e ∗2 · ~e)(~e ∗1 · ~r)− α(1− α)(~e ∗1 · ~e ∗2 )(~e · ~r)
]
, (145)

where r0 = 0.3 fm is the parameter characterizing the strength of the nonperturbative interaction which
was fitted to data on diffractive pp scattering. The product of the wave functions is averaged in (143)
over the initial gluon polarization ~e and summed over the final ones, ~e1,2.
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Fig. 50: Upper panel: Ratio of pA to pp cross-sections as a function of transverse momentum of produced pions
at the energy of RHIC

√
s = 200. Lower panel: Predictions for LHC

√
s = 5.5 TeV calculated using Eq. (142).

The dashed and solid curves correspond to calculations without and with gluon shadowing, respectively. The
theoretical curves are taken from Ref. [121].

In the upper panel of Fig. 50 we show the results for RHIC energy
√
s = 200 GeV. In the lower

panel we show the prediction for the ratio of pion production rates in pA and pp collisions obtained
using Eqs. (142) and (143) for mid rapidity at the LHC energy

√
s = 5.5 TeV [121]. It is seen that the

inclusion of the shadowing effect (solid line) leads to a reduction of the Cronin effect. Note that this
curve approaches to unity from below at high pT . We stress that all phenomenological parameters in the
above prescription are fixed in reactions different from pA collisions. Therefore these results may be
considered as free-parameter predictions.
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17 Summary
During the last half a century, QCD survived through many experimental tests leading to a consensus
that this is a correct theory of strong interactions. In the asymptotically free region, perturbative QCD
has been quite successful and many QCD perturbative computational tools and techniques have been
developed. This is particularly useful in order to have a detailed understanding of backgrounds for the
search for signals of new physics at the LHC.

Unfortunately, we still have a rather poor understanding of soft nonperturbative physics which is
never avoidable. Nevertheless, QCD-based phenomenology is well developed. Nowadays we are able
to calculate many reactions without having to fit to the data that we want to explain. On the other hand,
the current phenomenology of strong interactions looks far more complicated and messy than the first
principles (QCD Lagrangian) we started with.

In these lectures we introduced two different approaches to high-energy QCD phenomenology:
the parton model and the colour dipole formalism. We discussed the relevance of both methods as an
efficient way to include the non-perturbative features of QCD via fitting to some experimental data and
predicting others. In the case of the parton model one fits the universal parton distributions, which then
allow one to predict other reactions by combining these PDFs with perturbative calculations. Next-to-
leading corrections and higher-twist effects make this programme more difficult. In the case of the dipole
approach, the universal phenomenological function is the dipole–proton cross-section, which is mainly
fitted to DIS data from HERA. This description by default includes the higher-order and higher-twist
corrections. However, this is expected to work only at very small Bjorken x and is not useful at large x
where valence quarks dominate the PDFs.

The LHC is expected to become a laboratory for gluo-dynamics, which should settle many of the
controversies in our understanding of small-x physics. LHC data should bring forth important infor-
mation on the gluonic structures in the proton. The currently observed steep rise of the gluon density
is expected to be slowed down by saturation. This is still debatable, since even in pp at the Tevatron
saturation is reached only for central collisions.

The forthcoming LHC data with nuclear beams will reveal the gluonic structure of nuclei. They
should resolve the controversy about the magnitude of gluon shadowing. The saturation scale in nuclei
is expected to reach values of a few GeV, leading to strong observable effects.
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