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� m eson production is studied by the NA49 Collaboration in centralPb+ Pb collisions at 20A,

30A,40A,80A,and 158A G eV beam energy.The data are com pared with m easurem entsatlower

and higher energies and with m icroscopic and therm alm odels. The energy dependence ofyields

and spectraldistributions is com patible with the assum ption thatpartonic degrees offreedom set

in atlow SPS energies.

I. IN T R O D U C T IO N

Theproduction ofstrangeparticlesisconsidered oneofthekey observablesforunderstanding thereaction m echa-

nism sin ultrarelativistic heavy-ion collisions. Enhanced strangenessproduction with respectto proton-proton colli-

sionswasoriginallyproposedasasignatureofthetransitiontoadecon�ned stateofquarksand gluonsduringtheinitial

�D eceased.
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stage ofthe reactions[1]. The enhancem ent waspredicted to arise from gluon fragm entation into quark-antiquark

pairswhich isbelieved to havea signi�cantly lowerthreshold than strange-antistrangehadron pairproduction chan-

nels.Indeed,ithasbeen observed [2,3]thatthe ratio ofthe num berofproduced kaonsto thatofpionsishigherby

a factorofabout2 in centralS + S and Pb + Pb reactionsthan thatin p+ p collisionsatthe top energy available

atthe CERN SuperProton Synchroton (SPS).

Statisticalhadron gasm odelshave been successfully em ployed to describe the m easured particle yieldsatvarious

collision energies [4,5,6,7,8]. The fact that the hadronic �nalstate ofthe collision resem bles a hadron gas in

chem icalequilibrium hasbeen interpreted asa consequence ofthe hadronization process[9]orasa resultofa fast

hadronicequilibration processinvolving m ultiparticlecollisions[10].In thishadron gaspicture,enhanced production

ofstrange particles in collisions oflarge nucleiarises as a consequence ofthe increased reaction volum e,relaxing

the in
uence ofstrangeness conservation [11]. Technically,this requires the application ofthe canonicalensem ble

to sm allcollision system s,while forlargervolum essuch asthose encountered in centralcollisionsofheavy ions,the

grand-canonicalapproxim ation isvalid.Ithasbeen shown thatthis\canonicalstrangenesssuppression" also applies

to a partonicsystem [12].

In addition to this volum e e�ect,the strange particle phase space appears to be undersaturated in elem entary

interactions.Thedeviation ofthestrangeparticleyieldsfrom a hadron gasin fullequilibrium wasparam etrized by a

strangenessundersaturationfactor
S [8,13].Theadditionalsuppression becom esm uch weakerin heavy-ioncollisions.

However,�tsto thehadron m ultiplicitiesin fullphasespacearestillunsatisfactory when nottaking into account
S
[8]. A possible interpretation isthatthe totalam ountofstrangenessavailable forhadronization isdeterm ined in a

prehadronic stage ofthe collision.A change in 
S between p+ p and A + A would then re
ectthe di�erence in the

initialconditionsofthe respective�reballs.

The hadron gas m odelwas extended to describe the energy dependence ofproduced hadron m ultiplicities by a

sm ooth param etrization ofthe �t param eters T and �B ,determ ined at energies available at the BNL Alternating

G radient Synchroton (AG S),SPS,and BNL Relativistic Heavy Ion Collider (RHIC),as a function ofcollision en-

ergy [14].However,thisextended m odelfailed to reproducethedetailed featuresoftheenergy dependenceofrelative

strangenessproduction m easured by NA49 in itsenergy scan program .In particular,the sharp m axim um ataround

30A G eV beam energy [15,16]could notbe described.The sam eholdstrue form icroscopicreaction m odelssuch as

UrQ M D [17].O n the otherhand,thisfeature waspredicted asa consequenceofthe onsetofa phase transition to a

decon�ned state atthe respectivebeam energy [18].

In this context,it is certainly interesting to investigate speci�c strangeness-carrying hadrons. Am ong these,the

� m eson is ofparticularinterest because ofits ss valence quark com position. In a purely hadronic scenario,being

strangeness-neutral,itshould notbe sensitive to hadrochem icale�ectsrelated to strangeness.Ifon the otherhand,

the am ountofavailable strange quarksisdeterm ined in a partonic stage ofthe collision,the � isexpected to react

m ore sensitively than singly strange particles. In particular,one would expect the � m eson yield to be suppressed

by 
2s with respectto equilibrium .Analogously,thecanonicalsuppression m echanism in sm allsystem sshould havea

strongere�ecton the�,leading to a largerrelativeenhancem entin Pb + Pb collisionswith respectto p+ p reactions

than observed forkaons.

In theevolution ofthe�reballafterhadronization,� m esonscan beboth form ed by kaon coalescenceand destroyed

by rescattering.In addition,when decaying inside the �reball,the daughterparticlescan rescatter,leading to a loss

ofsignalin theinvariantm asspeak oftherespectivedecay channel.Thisism orelikely to happen forslow � m esons,

which spend m ore tim e in the �reball. Thus the e�ect could lead to a depletion ofthe � m eson yield atlow pt in

centralnucleus-nucleuscollisions[19].

Theoreticalinvestigationshavesuggested thatthepropertiesofthe� m eson m ightbem odi�ed in a densehadronic

m edium . In particular,a decrease ofitsm assofthe orderof10 M eV 1 [20]and an increase ofitswidth by a factor

of2{3 [21]were predicted. So far,there is only one experim entalclaim for a broadening ofthe width in p + Cu

collisions[22].

In an earlierpublication [23],we reported on � production attop SPS energy,where we found the � enhanced by

a factorofabout3,com pared to m inim um biasp+ p collisionsatthe sam e beam energy. M eanwhile,the � m eson

wasm easured atthe sam e energy by the NA50 [24],NA45 [25],and NA60 [26]experim ents. Atthe AG S,data on

� production were obtained by the E917 Collaboration in Au + Au collisionsatpbeam = 11:7A G eV (
p
sN N = 4:88

G eV) in a restricted rapidity range [yc:m :� 0:4;yc:m :][27]. At the RHIC,the STAR Collaboration m easured the �

m eson at
p
sN N = 130 and

p
sN N = 200 G eV atm idrapidity [28,29]. Forthe latterenergy,data are also available

from the PHENIX experim ent[30].

In this article,we report on � production in centralPb+ Pb collisions at �ve di�erent beam energies from 20A

1 Forbetter readability,we use naturalunits,i.e.,c= 1,throughout thisarticle.
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TABLE I:Characteristics ofthe data sets em ployed in the analysis. The m ean num bers of wounded nucleons hN w i were

obtained by G lauberm odelcalculations.

E beam

p
sN N ybeam Year Centrality hN w i N events M om entum range

(A G eV) (G eV) (G eV)

20 6.3 1.88 2002 7.2% 349� 1� 5 352 309 2.0{23.0

30 7.6 2.08 2002 7.2% 349� 1� 5 368 662 2.0{27.0

40 8.8 2.22 1999 7.2% 349� 1� 5 586 768 2.0{27.0

80 12.3 2.57 2000 7.2% 349� 1� 5 300 992 2.0{32.0

158 17.3 2.91 1996 5.0% 362� 1� 5 345 543 3.5{35.0

to 158A G eV.Togetherwith the data obtained atthe AG S and the RHIC,our�ndingsenable the study ofenergy

dependence of� production overa largerangeofcollision energies.

II. EX P ER IM EN T

TheNA49experim entatCERN isbased on a�xed-targethadron spectrom eterusingheavy-ion beam sfrom theSPS

accelerator.Itsm ain com ponentsare fourlarge-volum etim e projection cham bersforcharged-particletracking,two

ofwhich operate inside the m agnetic �eld oftwo superconducting m agnets,thusproviding an excellentm om entum

m easurem ent. Two larger m ain tim e projection cham bers (M TPCs) are placed downstream ,outside ofthe �eld,

and enable particle identi�cation by the m easurem ent ofthe speci�c energy loss in the detector gas. The particle

identi�cation capabilitiesare enhanced by a tim e-of-
ight(TO F)scintillatorsystem behind the M TPCs,albeitin a

restricted geom etricalacceptance.

A thin lead foilwith 1% interaction probability for Pb nucleiwas used as a target. For the di�erent runs,the

m agnetic�eld wasscaled proportionally to thebeam energiesin orderto havesim ilaracceptancein thec.m .system .

Thecentrality ofthereactionswasdeterm ined from theenergy deposited by thebeam spectatorsin thezero-degree

calorim eter,placed 20m downstream ofthetarget.By setting an upperlim iton thisenergy,theonlinecentraltrigger

selected the 7.2% m ost centralcollisions at 20A{80A G eV and the 10% m ost centralcollisions at 158A G eV.The

latterdata setwasrestricted to 5% centrality in the o�ine analysis. The corresponding m ean num bersofwounded

nucleonswere obtained by G lauber m odelcalculations(see Table I). Detailsofthe experim entalapparatuscan be

found in Ref.[31].

III. D A TA A N A LY SIS

A . Event and track selection

O �ine quality criteria were applied to the events selected by the online centrality trigger to suppress nontarget

interactions, pileup, and incorrectly reconstructed events. The cut variables include the position and �2 of the

reconstructed vertex and the track m ultiplicity. Forthe centraldata setsused in thisanalysis,however,the im pact

ofthesequality cutsism arginal;only about1% ofalleventswererejected.TableIshowstheeventstatisticsused in

the analysisforthe �vedata sets.

The analysiswasrestricted to tracksreconstructed in the M TPCswhich could be assigned to the prim ary vertex.

A m inim altrack length of2 m outofthe m axim al4 m in the M TPCswasrequired to suppressghostorsplittracks

and to ensure a good resolution in dE =dx. Detailed studies including reconstruction ofsim ulated tracksem bedded

into realraw data eventsshowed thatforsuch a selection oftracks,lossesdueto track reconstruction and high track

density arenegligible.

B . Selection ofkaon candidates

NA49 observesthe � m eson through its hadronic decay into charged kaons. To reduce the large contribution of

pionsand protonsto thecom binatorialbackground,kaon candidateswereselected based on theirspeci�cenergy loss

dE =dx in the M TPCs. The m ean dE =dx ofpions,kaons,and (anti-)protons was determ ined from TO F-identi�ed
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FIG .1:(Coloronline)dE =dx param etrization forthe data setat80A G eV.(a)M ean dE =dx asfunction of�
 determ ined for

TO F-identi�ed pions,kaons,and protons;(b)dE =dx resolution asfunction ofm om entum ,obtained from the deconvolution of

the energy lossspectra into the contributionsof�
+
,K

+
,and p.

particlesin theacceptanceofthetim e-of-
ightdetectorsand param etrized asa function of�
 asshown in Fig.1(a).

Thisallowed oneto extend them om entum rangefortheidenti�cation from theTO F acceptanceto higherm om enta.

The lowerm om entum lim itwasgiven by eitherthe M TPC acceptance orthe crossing ofthe Bethe-Bloch curvesof

pionsand kaons.Them om entum lim itsforthe di�erentdata setsaresum m arized in Table I.

Fixing them ean dE =dx ofkaonsand protonsto thisparam etrization,theresolution wasobtained by unfolding the

energy-lossspectra in m om entum binsinto the G aussian contributionsofthe particle species(p,K ,�,and e). The

resolution isabout4% and hasa slightm om entum dependence which wasagain param etrized [Fig.1(b)].

K aon candidateswereselected by a m om entum -dependentdE =dx window around theexpectation value,thesizeof

which waschosen to optim izethe� signalquality.In addition,thewindow had to besym m etricand largeenough to

m inim izethesensitivity to theerrorsin thedeterm ination ofthedE =dx expectation valueand resolution.A window

of� 1:5� wasfound to be the bestchoice. Thisselection contains87% ofallkaons,giving an e�ciency of75% for

the pair.The fraction oftrue kaonswithin the selected candidate track sam plevariesbetween 40% and 60% .

C . Extraction ofraw yields

The � signalwas obtained by calculating the invariant m ass ofallcom binations ofpositive and negative kaon

candidatesin oneevent.To reconstructthecom binatorialbackground ofuncorrelated pairs,candidatesfrom di�erent

eventswerecom bined.Them ixed-eventspectrum wassubtracted from thesam e-eventspectrum afternorm alization

to the sam e num ber ofpairs [32]. Figure 2 shows the background-subtracted invariant-m ass spectra in the total

forward acceptancefordi�erentcollision energies.In allcases,clearsignalsareobserved atthe expected position.

W hile thesubtracted spectrum is
aton therightsideofthe signal,a depletion isobserved between the peak and

the threshold. As a possible source ofthis undershoot,the correlation ofkaons stem m ing from di�erent � m esons

hasbeen discussed in Ref.[32]. In ourcase,itwasshown by sim ulation thatthise�ectissm allthanksto the large

acceptance ofthe NA49 M TPCs. Another possible source ofthe distortion is the re
ection ofother resonances,

e.g., � 0 ! �� p, into the K + K � spectrum by m isidenti�cation of pions and protons, as discussed in detailin

Ref.[33]. This e�ect was shown to be present in our previous analysis ofanother data set [23],where the dE =dx

resolution wassigni�cantly worse.However,allsuch resonanceswould distortthespectrum overa broad rangeabove

threshold,which can be excluded by the observed 
atnessathigherm asses.Thisconclusion isfurtherstrengthened

by the observation thatthe depletion doesnotvanish when applying a stricterdE =dx cuton the kaons.Hence,the

undershoot is likely to originate from a true correlation ofkaon pairs. Sim ulations show that it can be explained

by �nalstate strong interaction ofkaons [34]. This is dem onstrated in Fig.3 by showing the K + K � correlation
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FIG .2:(Coloronline)K
+
K

�
invariant-m assspectra aftersubtraction ofthecom binatorialbackground in theforward rapidity

hem isphere for the �ve di�erent beam m om enta. The fulllines show the Breit-W igner �ts to the signals as described in the

text.The bin size is4 M eV for20A and 30A G eV and 2 M eV forthe otherbeam energies.

function in qinv =
p
(~p1 � ~p2)

2 � (E 1 � E 2)
2 [Fig.3(a)]and in m inv [Fig.3(b)].W hiletherepulsiveinteraction causes

a depletion in m inv,the stronger attractive Coulom b e�ect is squeezed into 0.8 M eV above threshold and is thus

hardly seen.In com bination with the steeply rising unsubtracted m inv distribution,thisdepletion can easily account

forthe de�citobserved in the subtracted spectrum .

To correct this e�ect quantitatively by sim ulation is di�cult and would m oreover be m odeldependent. As the

narrow signaliseasily distinguished from the broad residualbackground,we accounted forthe depletion by �tting

a straight line in the vicinity ofthe peak. For the description ofthe signalitself, we used a relativistic p-wave

Breit-W ignerdistribution [35]ofthe form

dN

dm
/

m �(m )

(m 2 � m 2
0)
2 + m 2

0�
2(m )

(1)

with the m ass-dependentwidth

�(m )= 2� 0

�
q

q0

� 3
q20

q2 + q20
; (2)

where q :=

q
1

4
m 2 � m 2

K
and q0 :=

q
1

4
m 2

0 � m 2
K
. This distribution was folded with a G aussian representing the

invariant-m assresolution �m ofthe spectrom eter.Sincein general,m assresolution and width cannotbe determ ined

separately,we �xed the width to its book value �0 = 4:26M eV [36], leaving m 0, �m , a norm alization and two

param eters for the linear background as free param eters for the �t,which was perform ed in the m ass range 994{

1050 M eV.Itwaschecked by sim ulationsthatthisproceduregivesthecorrectvaluesforposition,width and integral

ofthedistribution.AsFig.2 dem onstrates,the�tgivesa good description ofthesignal.Thenum ericalvaluesofthe

�tted param etersarelisted in Table II.

To obtain longitudinaland transversespectra,the signalwasextracted in rapidity and in pt bins,respectively,in

the sam eway asin the totalacceptance.G enerally,the lim ited statisticsprevented a sim ultaneousdivision into y-pt
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FIG .3:K +
K

� correlation function close to threshold in (a)qinv and (b)m inv [34].

bins.Thus,transversem om entum spectra could only bederived averaged overrapidity.To reducethenum beroffree

�tparam eters,m 0 and �m were �xed forthe �tsin the phase space binsto the valuesobtained from the signalin

thetotalacceptance.Forthe158A G eV data set,wherethestatisticsin thesignalallowed to do so,wechecked that

leaving theseparam etersfreedid notsigni�cantly alterthe results.In particular,no signi�cantdependence ofm 0 or

�m on rapidity orpt wasobserved.

Since the straight-line background is only an approxim ation for the residualbackground in the vicinity ofthe

signal,thestability ofthe�tagainstthevariation ofthe�tregion waschecked.Theparam etersm 0 and �m show no

signi�cantdependence. The variation ofthe norm alization constants,which determ ine the �tintegral,isin allbins

farbelow the statisticalerrorreturned by the �tprocedure.W e concludethatthe latterproperly takesinto account

the possiblevariationsofthe baseline.

Theraw yieldsin thephase-spacebinswereobtained byintegratingthe�tfunction from threshold up tom 0+ 30�0 �

1:148 M eV.Thism asscuto� issom ehow arbitrary;the corresponding integralvariesby about3% forcuto� values

from m 0 + 10�0 to in�nity. W e take thisasa system atic uncertainty due to the m asscuto�. Using alternatively a

(analytically integrable)nonrelativisticLorentzdistribution forthe�tdoesnotchangetheintegralby m orethan 1% .

D . G eom etricalacceptance

Thegeom etricalacceptanceoftheNA49 detectorforthedecay � ! K + K � wasobtained double-di�erentially in y

and pt (integrated overazim uth)by geant sim ulationsofthe� decay including in-
ightdecay ofthekaon daughters,

assum ing an azim uthally 
at� em ission and isotropicdecay.Theresulting acceptanceisshown in Fig.4 for20A and

158A G eV.W hiletheupperm om entum lim itforthedaughtercandidatesrestrictstheacceptanceatforward rapidity

for the top SPS energy,at lower beam energies there is lack ofacceptance near m idrapidity because ofthe lower

m om entum lim itforthe daughtertracksand the increased lossesdue to in-
ightdecay forlow-m om entum kaons.

As the acceptance is a function ofy and pt,the proper correction factor for a given extended phase-space bin

(integrated eitherovery orpt)asused in theanalysisisthe m ean acceptance

aS =

R

S

dydpta(y;pt)f(y;pt)

R

S

dydptf(y;pt)
; (3)

whereS denotestheregion in they;pT plane,a(y;pt)the acceptanceprobability averaged overtheazim uthalangle,

and f(y;pt)thedi�erential� m eson yield.Fortherapidity distributions,thedi�erentialyieldshavein addition to be

extrapolated to thefullpt range.Theextrapolation factor,however,issm all(< 5% )dueto thelargept rangecovered

by the experim ent.
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FIG .4:G eom etricalacceptanceprobability for� ! K
+
K

� including kaon decay in 
ightfor(a)20A G eV and (b)158A G eV.

Both the acceptance correction and the extrapolation to fullpt require the knowledge ofthe y and pt dependence

of� m eson yields,which leadsto an iterativeprocedure(seeSec.IIIE).

E. Spectra and yields

Apartfrom thedi�erentialacceptancecorrection,theraw yieldsobtained from the�tto theinvariant-m assspectra

were corrected forthe branching ratio � ! K + K � (49.1% )and the e�ciency ofkaon dE =dx selection (75% forthe

pair),and norm alized to the num berofcollisions. These globalcorrection factorsare com m on forallbinsin phase

spaceand forallbeam energies.

The transversespectra are�tted by the therm alansatz

dn

dpt
/ pte

�m t=T ; (4)

wherethe transversem assm t =
p
m 2

0
+ p2t.Thedistributionsin rapidity wereparam etrized by a singleG aussian

dn

dy
/ e

� y
2

2� 2
y : (5)

Astheparam etersT and �y m ustbeobtained by theanalysisitself,an iterativeprocedurewasem ployed.Starting

from som e reasonable param eter values,the acceptance correction was calculated according to Eq.(3),assum ing

factorization ofthe em ission function f(y;pt) into the transverse and longitudinaldistributions (4) and (5), i.e.,

independence ofT on rapidity. The corrected yieldsin the pt and y binswere then �tted with the distributions(4)

and (5),respectively,obtaining new valuesforT and �y which serveasinputforthe nextiteration.Convergenceof

them ethod wasreached afterthreeto �vesteps.Itwaschecked thatthe�nalresultsdo notdepend on thechoiceof

startvaluesforthe param eters.

After the �nalstep ofthe iteration,the yields in fullphase space were obtained by sum m ing up the m easured

yieldsin the rapidity distributionsand num erically extrapolating Eq.(5)to the fullrapidity range.In a sim ilarway,

the quantitieshpti,hm ti,and �y were determ ined. The m idrapidity yield dn=dy wasobtained directly from the �t

function.

As dem onstrated later in Fig.7, the G aussian param etrization gives a satisfactory description of the rapidity

distribution foralldata sets.However,becauseofthelack ofm idrapidity data pointsatthelowerbeam energies,an

am biguity fortheextrapolation to fullphasespacearises.To check thesensitivity oftheresultsto theassum ed shape
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ofthe rapidity distribution,wealternatively param etrized the latterby the sum oftwo G aussian functionsdisplaced

sym m etrically around m idrapidity by a shifta:

dn

dy
/ e

�
(y� a)

2

2� 2
y + e

�
(y+ a)

2

2� 2
y : (6)

Thewidth ofthisdistribution willbecharacterized by itsrm svalue.Totalyield h�i,m idrapidity yield dn�=dy and

rm sy werecalculated forboth param etrizations(5)and (6).The�nalvalueslisted in TablesV and VIwerecalculated

asthe m ean ofthe resultsofthe two m ethods;theirdi�erencesenterthe system aticerrors.

F. Statisticaland system atic errors

Statisticalerrorsin theraw di�erential� m eson yieldsoriginatefrom the statisticalbin-by-bin errorsin thesam e-

event and m ixed-event invariant m ass spectra,which were found to be in good approxim ation Poissonian and un-

correlated between m assbins. Then,the statisticalerrorsin the event-m ix subtracted invariant-m assspectrum was

calculated as[32]

�
2
i = n0;i+ k

2
nem ;i; (7)

where n0;i isthe num berofentriesin m assbin iin the sam e-eventspectrum ,nem ;i the sam e num berin the m ixed-

eventspectrum ,and k the norm alization constantforthe eventm ix. These errorswere propagated toward the raw

di�erentialyieldsby the least-squares�tofthe Breit-W ignerdistribution to the signalpeak.

The acceptance calculation was perform ed with su�ciently high statistics such that the relative statisticalerror

ofthe di�erentialacceptance isbelow 1% and thusfarbelow the uncertainty in the raw yieldsoverthe entire y,pt
region used fortheanalysis.Finally,theerrorsin theacceptance-corrected di�erentialyieldsarepropagated through

theleast-square�tsto thespectra to obtain thestatisticaluncertaintiesin thespectralparam etersand theintegrated

quantities.

System atic uncertaintiesin the uncorrected yieldsarisefrom the approxim ation ofthe residualbackground in the

invariant-m assspectra asa straightline.Thisapproxim ation isonly valid in a lim ited m assrangearound the signal

peak. Thus,the stability ofthe results ofthe Breit-W igner �t against the variation ofthe �t range was checked.

W e found no signi�cant dependence ofthe param eters m 0 and �m ; the variation ofthe norm alization constant,

determ ining the �tintegral,wasin ally and pt binsfound to be sm allerthan the statisticalerror.

Another source of system atic error arises from the dE =dx selection of kaon candidates. Uncertainties in the

param etrization ofthe m ean kaon dE =dx and the resolution result in system atic deviations ofthe e�ciency cor-

rection from its true value. To estim ate this error,the analysis was repeated for di�erent widths ofthe dE =dx

selection window around the kaon expectation value,applying the respective e�ciency correction. This error was

found to be the dom inating one;form ostraw yields,itiscom parableto orslightly largerthan the statisticalone.

Im perfectdetectordescription in thesim ulation leadsto system aticuncertaintiesin the acceptancecorrection.To

reduce possible errors,the analysis was restricted to phase-space regions where the acceptance is above 1% . The

rem aining errorwasestim ated by repeating the analysiswith varying acceptance conditions (m inim altrack length

in the M TPCs). Itwasin allcasesfound to be m uch sm allerthan the errororiginating from the kaon selection by

dE =dx.

Asthespectralparam etersentertheacceptancecorrectionthrough Eq.(3),theiruncertaintiesadd tothesystem atic

errorsofthe corrected yields. Thiswasaccounted forby determ ining the range ofacceptance valuesallowed by the

errorsin T and �y.In addition,fortherapidity binsclosetobeam rapidity,apossibledeviation oftheslopeparam eter

by 50 M eV from itsaveraged valuewastaken into accountin theacceptancecorrection.Theresulting error,however,

issm allthanksto the largeand approxim ately uniform pt acceptance.

Thesystem aticerrorsin thecorrected di�erentialyieldswereassum ed to beindependentand added in quadrature.

They were propagated to the respective errorsin the spectralparam etersby repeating the �t ofEqs.(4){(6) with

statisticaland system aticerrorsadded and com paringtheresultingerrorstothoseobtained from the�twith statistical

errorsonly.

Forthe determ ination ofthe averaged quantitiesh�i,hpri,hm ti,and rm sy,the sum m ation ofthe m easured di�er-

entialyieldsaswellasextrapolation to fullphasespacearerequired.Thesystem aticerrorsoftheseobservableswere

determ ined from the errorsofthe di�erentialyieldsand the uncertaintiesin the spectralshapes.

8



TABLE II:Approxim ate num berofdetected � m esonsS,background-to-signalratio B =S,signal-to-noise ratio SNR,position

ofthesignalpeak m 0,and invariant-m assresolution �m .Thelattertwo wereobtained by a Breit-W igner�tto thesignalpeak

(see text).Thewidth was�xed to itsliterature value4.26 M eV.S and B were calculated in a window of� 4 M eV around the

peak.The quoted errorsare statisticalonly.

pbeam S B =S SNR m 0 �m

(A G eV) (M eV) (M eV)

20 6 500 70 9.4 1018:8� 0:6 2:6� 0:9

30 16 500 104 12.5 1018:4� 0:5 2:5� 1:3

40 37 000 53 26.2 1018:9� 0:2 2:1� 0:3

80 55 000 30 42.5 1019:1� 0:1 1:1� 0:1

158 180 000 72 49.4 1019:0� 0:1 1:8� 0:1

IV . R ESU LT S

A . Line shape

Table IIsum m arizesthe param etersobtained from the invariant-m asssignalsin the totalacceptance. The signal

quality decreases when going to lower beam energy because ofboth the reduced � m eson yield and the reduced

acceptance due to the increased in-
ight decay probability for the daughter kaons. At all�ve energies,the �tted

peak position isslightly below the literature value of1019.43 M eV [36].W e investigated the e�ectofan errorin the

norm alization ofthe m agnetic �eld used form om entum determ ination in the reconstruction chain and found thata

biasof1% in the m agnetic �eld isneeded to explain the observed shift. Thisisslightly above the m om entum scale

uncertainty deduced from a precision study ofthe K 0
s signal.W e thuscannotexclude thatthe deviation ofthepeak

position isdue to experim entale�ects.

Thewidthsofthem asspeaksobtained from the�tsareconsistentwith thoseobtained from afulldetectorsim ulation

and reconstruction.Theirslightincreasetoward lowerbeam energiescan beunderstood astheincreasing in
uenceof

m ultiplescatteringon lowerm om entum tracks.Forthesignalat158A G eV,we�tted sim ultaneously width and m ass

resolution and obtained �0 = (4:41� 0:61)M eV,�m = (1:81� 0:26)M eV,i.e.,no deviation from the free-particle

width.Thus,within experim entaluncertainties,wedo notobserveindicationsfora m assshiftora broadening ofthe

� m eson.

Theobservation thatthem assand width ofthe� m eson agreewith theParticleData G roup valuesisin linewith

theresultsofAG S and RHIC experim ents[27,28,29,30].Itshould benoted thatbecauseofthelong lifetim eofthe

� m eson (� = 46 fm ),only a fraction decaysinsidethe�reball.Thus,only a partofthe� m esonscan beexpected to

be in
uenced by the surrounding m edium .

B . Transverse m om entum spectra

Thetransversem om entum spectraobtained forthe�vebeam energiesareshown in Fig.5;num ericaldataaregiven

in Table III. In allcases,the therm aldistribution (4) gives a good description ofthe data;the �t param etersare

sum m arized in TableIV.Attop SPS energy with the bestsignalquality,a m odestdeviation from the �tfunction is

indicated by the�2=ndfof1.5.A slightcurvatureofthetransversem assspectrum atthisenergy,asexpected from a

hydrodynam icalexpansion scenario,isvisible forthisenergy in Fig.6(a).Forthe otherenergies,no deviationsfrom

pureexponentialbehaviorcan be seen within theexperim entaluncertainties.

Thetransversem om entum spectrum can bealso characterized by its�rstm om entorthe averagetransversem ass.

Theseparam eterswerecalculated from them easured data pointsand extrapolated to fullpt using theexponential�t

function.Asthe extrapolation contributesonly m arginally because ofthe large pt coverage,hptiand hm ti� m 0 are

largely independentofthe spectralshape.Theirvaluesarealso listed in TableIV.

The assum ption ofthe slope param eterbeing independent ofy could be checked for 158A G eV,where statistics

allowed usto extracttransversespectra in fourdi�erentrapidity bins. The resulting slope param etersare shown in

Fig.6(b).W ithin them easured rapidity range,weobserveno signi�cantchangeoftheslopeparam eterwith y.Using

the y-dependentslopeparam etersforcorrecting the rapidity distribution had no sizablee�ecton the results.

The spectrum obtained for158A G eV agreeswith thatfrom an earlierpublication [23]ofthe NA49 experim ent,

which was based on the analysis ofan older data set at the sam e beam energy. For com parison,the previously
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FIG .5:(Coloronline)� transverse m om entum spectra integrated overthe rapidity intervalsgiven in Table IV.The fulllines

show the�tsoftherm aldistributions(4).Thesquared sym bolsdenotepreviously published results[23].O nly statisticalerrors

are shown.
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FIG .6:(Coloronline)(a)� transverse m assspectra integrated overthe rapidity intervalsgiven in TableIV.The exponential

�ts indicated by the fulllines correspond to the �ts shown in Fig. 5. The spectra for di�erent beam energies are scaled for

bettervisibility. O nly statisticalerrors are shown. The data at158A G eV are com pared with previously published resultsof

NA49 [23]and CERES [25].(b)Slopeparam eterasfunction ofrapidity at158A G eV.Thevaluesagreewithin errorswith that

obtained from the y-integrated pt spectrum ,the latterindicated with itsstandard deviation by the shaded bar.
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TABLE III:D i�erential� m eson yieldsin the pt (left)and y (right)distributions.D ata in the pt binsare integrated overthe

rapidity rangesgiven in Table IV.The errorsare statistical.

pt (G eV) dn=(dydpt)(G eV
�1
) y dn=dy

E beam = 20A G eV

0.0{0.4 0:382� 0:074 0.2{0.6 1:043� 0:250

0.4{0.8 0:528� 0:097 0.6{1.0 0:536� 0:077

0.8{1.2 0:257� 0:054 1.0{1.4 0:159� 0:033

1.2{1.6 0:079� 0:030 1.4{1.8 0:032� 0:017

1.6{2.0 0:033� 0:015

E beam = 30A G eV

0.0{0.3 0:231� 0:051 0.3{0.6 0:735� 0:194

0.3{0.6 0:578� 0:079 0.6{0.9 0:651� 0:090

0.9{1.2 0:386� 0:079 0.9{1.2 0:456� 0:052

1.2{1.5 0:257� 0:050 1.2{1.5 0:193� 0:036

1.5{1.8 0:070� 0:019 1.5{1.8 0:097� 0:029

E beam = 40A G eV

0.0{0.2 0:185� 0:035 0.3{0.6 1:067� 0:108

0.2{0.4 0:668� 0:052 0.6{0.9 0:756� 0:059

0.4{0.6 0:780� 0:064 0.9{1.2 0:611� 0:038

0.6{0.8 0:625� 0:075 1.2{1.5 0:348� 0:028

0.8{1.0 0:569� 0:073 1.5{1.8 0:188� 0:023

1.0{1.2 0:413� 0:059

1.2{1.4 0:275� 0:040

1.4{1.6 0:081� 0:028

1.6{1.8 0:086� 0:019

1.8{2.0 0:057� 0:014

E beam = 80A G eV

0.0{0.2 0:337� 0:031 -0.3{0.0 1:591� 0:304

0.2{0.4 0:886� 0:051 0.0{0.3 1:474� 0:138

0.4{0.6 1:148� 0:057 0.3{0.6 1:258� 0:086

0.6{0.8 0:996� 0:056 0.6{0.9 1:351� 0:062

0.8{1.0 0:861� 0:052 0.9{1.2 1:041� 0:049

1.0{1.2 0:517� 0:048 1.2{1.5 0:718� 0:043

1.2{1.4 0:344� 0:045 1.5{1.8 0:408� 0:037

1.4{1.6 0:173� 0:040 1.8{2.1 0:197� 0:040

E beam = 158A G eV

0.0{0.2 0:582� 0:053 0.0{0.2 2:557� 0:166

0.2{0.4 1:275� 0:086 0.2{0.4 2:386� 0:121

0.4{0.6 1:924� 0:098 0.4{0.6 2:229� 0:098

0.6{0.8 2:016� 0:099 0.6{0.8 2:202� 0:089

0.8{1.0 1:778� 0:092 0.8{1.0 1:974� 0:090

1.0{1.2 1:339� 0:080 1.0{1.2 1:816� 0:094

1.2{1.4 0:956� 0:067 1.2{1.4 1:636� 0:105

1.4{1.6 0:567� 0:055 1.4{1.6 1:528� 0:126

1.6{1.8 0:370� 0:044 1.6{1.8 1:125� 0:171

1.8{2.0 0:200� 0:034

published data are shown by the square sym bolsin Figs.5(e)and 6(a). There isagreem entwith the resultsofthe

CERES experim entin both decay channels� ! K + K � and � ! e+ e� [25],asalso dem onstrated in Fig.6(a).The

data disagreewith the spectrum m easured by theNA50 experim entin thedi-m uon decay channel� ! �+ �� ,where

a signi�cantly sm allerslopewasobtained [24].

11



TABLE IV:Rapidity range (in c.m . system ),pt range,slope param eterT,�
2
perdegree offreedom ,average pt,and average

m t forthetransversem om entum spectra.T and �
2
areresultsfrom the�tofEq.(4)to thespectrum ;hptiand hm ti� m 0 were

obtained by sum m ation over the data points and extrapolation to fullpt using the �tfunction. The �rst error is statistical,

the second one system atic.

pbeam (A G eV) y range pt range (G eV) T (M eV) �
2
=ndf hpti(M eV) hm ti� m 0 [M eV]

20 0.0{1.8 0.0{2.0 196:8� 19:5� 20:2 1.06/3 650:9� 34:2� 40:2 229:5� 20:1� 23:6

30 0.0{1.8 0.0{1.8 237:4� 17:8� 22:9 2.03/4 738:9� 28:3� 46:3 284:6� 17:3� 28:4

40 0.0{1.5 0.0{2.0 244:6� 9:0� 5:8 12.42/8 763:4� 15:8� 14:3 297:8� 10:0� 9:2

80 0.0{1.7 0.0{1.6 239:8� 8:3� 10:9 3.48/6 756:4� 11:5� 22:5 292:6� 7:6� 15:3

158 0.0{1.0 0.0{2.0 298:7� 6:6� 10:6 12.06/8 883:5� 9:9� 21:3 378:3� 6:7� 15:2

TABLE V:Param eters ofthe single-G auss �t (5) and the double-G auss �t (6) to the rapidity distributions. The RM S was

calculated from thedata pointsand extrapolated to thefullrapidity range using theaverage ofthetwo param etrizations.The

�rsterrorisstatistical,the second one system atic.

pbeam �1 �
2

1=ndf �2 a �
2

2=ndf rm sy
(A G eV)

20 0:572� 0:037� 0:030 0.042/2 0:425� 0:026� 0:022 0.425 0.75/2 0:582� 0:031� 0:040

30 0:752� 0:047� 0:057 2.02/3 0:538� 0:028� 0:032 0.538 1.03/3 0:769� 0:030� 0:062

40 0:863� 0:033� 0:042 3.14/4 0:696� 0:118� 0:036 0:487� 0:149� 0:051 3.10/3 0:852� 0:015� 0:038

80 1:016� 0:028� 0:033 17.55/6 0:658� 0:035� 0:043 0:682� 0:029� 0:043 4.12/5 0:974� 0:024� 0:074

158 1:451� 0:086� 0:012 2.36/7 1:444� 0:021� 0:054

C . R apidity distributions and yields

Figure 7 showsthe rapidity distributions,which for all�ve energiesare in good agreem entwith both the single-

G aussian and thedouble-G aussian param etrization (seecurves).Num ericaldata aregiven in TableIII.Forthedata

setsat20A and 30A G eV,due to the low num berofdata points,the double-G aussian �twasconstrained to a = �y
assuggested by the data at40A and 80A G eV.

O nly at80A G eV is the com plete forward hem isphere covered. At 158A G eV,large rapidities are notm easured

because ofthe upper m om entum cut on the secondary kaons. Since kaons below 2 G eV laboratory m om entum

cannotbereliably identi�ed by dE =dx becauseofthecrossingoftheBethe-Bloch curves,no signalcould beextracted

at m idrapidity for the lower three beam energies. The uncertainties in the extrapolation toward m idrapidity is

dem onstrated by thedi�erenceofthetwo param etrizations.Itaddsto thesystem aticerrorofthe totalyield and,in

particular,tothatofdn=dyatm idrapidity.TableV liststheparam etersobtained bythetwo�tfunctions,respectively.

Alternatively,the rapidity distributions can be characterized by their second m om ents in a m odel-independent

fashion. The rootm ean square ofthe distributionswascalculated from the m easured data and extrapolated to the

fullrapidity rangeusing the param etrizations(5)and (6).The averageofthe two resultsislisted in Table V.

Totalyieldswere obtained by sum m ation ofthe data pointsin the rapidity spectra and extrapolation to the full

rapidity rangeby the averageofthe �tfunctions.The m idrapidity yield dn=dy wascalculated analytically from the

averageofthe �tfunctions.Forthedeterm ination ofstatisticaland system aticerrors,thecorrelation ofthe spectral

param eters were properly taken into account. The results for the m ean m ultiplicity of� m esons h�i and for the

m idrapidity yield dn�=dy arelisted in Table VI.

Allresultsobtained at158A G eV are consistentwithin statisticalerrorswith NA49 resultspublished earlier[23],

which wereobtained from a data settaken in 1995 (squared sym bolsin Fig.7(e).Them ain di�erenceofthetwo data

setsisan im proved dE =dx resolution,resulting in a reduced pion contam ination ofthe kaon candidate sam ple.The

cleanerkaon identi�cation reducesthe distortionsin thebackground-subtracted invariant-m assspectrum induced by

resonanceswith a pion asdecay daughter[33],thusleading to a sm allersystem atic errorofthe Breit-W igner�tto

the spectrum .W e thuspreferto use the newly obtained resultsat158A G eV forthe discussion.
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FIG .7: (Color online) � rapidity distributions. The solid points refer to m easured data,the open points are re
ected at

m idrapidity. The fulllines show the param etrization by a single G aussian (5), the dashed lines that by the sum of two

G aussians (6). The data at 158A G eV are com pared with previously published results ofNA49 [23]and CERES [25]. O nly

statisticalerrorsare shown.

TABLE VI:Total� m ultiplicity h�i and m idrapidity yield dn�=dy calculated from the rapidity distributions ofFig.7. The

�rsterrorisstatistical,the second one system atic.

pbeam (A G eV) h�i dn�=dy(yc:m :)

20 1:89� 0:31� 0:22 1:17� 0:23� 0:38

30 1:84� 0:22� 0:29 0:94� 0:13� 0:30

40 2:55� 0:17� 0:19 1:16� 0:16� 0:14

80 4:04� 0:19� 0:31 1:52� 0:11� 0:22

158 8:46� 0:38� 0:33 2:44� 0:10� 0:08

V . D ISC U SSIO N

Theenhancem entofrelativestrangenessproduction in heavy-ion collisionswith respectto proton-proton reactions

isa well-known fact. In an earlierpublication [23],the enhancem entfactorforthe � m eson attop SPS energy was

found to be3:0� 0:7,thuslargerthan forkaonsand �,butsm allerthan form ultistrangehyperons.W ecalculatethe

� enhancem entby norm alizing the m easured � m eson yield in A + A by the num berofwounded nucleon pairsand

dividing by the corresponding yield in p+ p.Forthe lowerbeam energies,no reference m easurem entsin elem entary

collisionsareavailable.Here,weem ploy a param etrisation ofthe� excitation function in p+ p collisionsasdescribed

in Ref.[27]. Fortop SPS energy and RHIC,the � m eson yield m easured in p+ p [23,29]wasused.Figure 8 shows

the resulting enhancem entfactor

E � :=
2h�iA + A

N w h�ip+ p
(8)

asa function ofenergy pernucleon pair.Them easurem entoftheE917 Collaboration atAG S (pbeam = 11.7A G eV)

wasextrapolatedtofullphasespaceassum ingthesam erapiditydistribution asforK � assuggestedbytheauthors[27].
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FIG .8:(Coloronline)� enhancem entfactorE � [see Eq.(8)]asfunction ofenergy pernucleon pair.D ata from the AG S [27]

and the SPS refer to m ultiplicities in fullphase space,data from the RHIC [29,30]to m idrapidity yields. The shaded boxes

representthe system atic errors.

In the AG S/SPS energy region,the value ofE � liesbetween 3 and 4,and within ourexperim entaluncertaintieswe

�nd no system atic variation here. AtRHIC energies,the enhancem entappearsto be lower,signi�cantly so,should

the PHENIX resultbe validated.Itshould be noted,however,thatthe RHIC valueswere derived from m idrapidity

data while atlowerenergiesphase-spaceintegrated yieldswereused.

In thecontextofstatisticalm odels,theenhancem entofstrangenessproduction can beinterpreted asa resultofthe

releaseofsuppression dueto strangenessconservation when going from sm all(p+ p)to large(centralA + A)system s.

Technically,thisisre
ected in the application ofthe canonicalensem ble forsm allsystem s,while large system scan

be described by the grand-canonicalensem ble. In this picture,a sm aller enhancem ent at RHIC energies points to

the factthatatsuch high energies,strangenessisproduced with su�cientabundance forthe canonicalsuppression

to be relaxed even in p + p collisions. However,in a purely hadronic picture,canonicalsuppression does not act

on the � m eson because it is a strangeness-neutralhadron. Enhanced � production can thus be attributed either

to enhanced strangenessproduction in a partonic stage ofthe collision or to the coalescence ofkaons which su�er

canonicalsuppression also in a hadronicscenario.

Thehadrochem icalm odelshavebeen extended notonly to �thadron m ultiplicitiesfora given reaction butalso to

describe the energy dependence ofparticle yield ratiosby a sm ooth variation ofthe relevantparam etersT and �B
with collision energy [14,37]. Here,the energy dependence oftem perature and baryochem icalpotentialisobtained

by a param etrization ofthevaluesforT and �B obtained from �tsto particleyield ratiosatvariouscollision energies.

The m odelreproducesm any yield ratiosofthe bulk hadrons;however,thisdoesnothold forthe � m eson,asshown

in Fig.9(a),where the m easured excitation function ofthe h�i=h�iratio [h�i= 1:5(h�+ i+ h�� i)]iscom pared with

the m odelprediction.The relative� m eson yieldsatthe SPS are overpredicted by factorsofup to 2.The situation

rem ainsessentially unchanged when m idrapidity ratiosareconsidered instead ofintegrated yields[Fig.9(b)].Atthe

RHIC,there is a large experim entalam biguity as a result ofthe di�erent results on � production obtained by the

STAR and PHENIX experim ents[29,30].

A betterdescription ofthedata isobtained ifa strangenesssaturation param eter
s isallowed.Thecorresponding

m odelpredictions[8]forthe � m ultiplicity,resulting from a �tto the hadron abundancesat11.7A,30A,40A,80A,

and 158A G eV,are com pared with the data in Fig.10 (solid points). Note that this m odeldoes not provide a

continuousdescription oftheenergy dependence;thepointsareonly connected to guidetheeye.Theagreem entwith

the m easurem entsatthe higherSPS energiesis very good. The successfulapplication ofthe saturation param eter


s on the strangeness-neutral� m eson forpbeam � 40A G eV again suggeststhatthe strangenesscontentatchem ical

freeze-outisdeterm ined on a partoniclevelforthese energies.

Finalstate interactionsafterchem icalfreeze-outcould change the equilibrium � yield and spectra. In particular,

scatteringofthedaughterkaonswith otherproduced hadronswould lead toalossofthe� signalin theexperim entally
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FIG .9:(Coloronline)h�i=h�iratio (a)in fullphasespaceand (b)atm idrapidity asfunction ofenergy pernucleon pair[h�i=

1:5(h�
+
i+ h�

�
i)].TheCERES datapoint[25]wasdisplaced horizontally forvisibility.NotethattheCERES m easurem entisat

y � yc:m :� 0:5.Thefulllineshowsthepredictionsoftheextended hadron gasm odel(HG M )with strangenessequilibration [37],

the dashed curvesthose obtained with UrQ M D 1.3 [17].The shaded boxesrepresentthe system atic errors.
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FIG .10:(Coloronline)� m ultiplicity in centralA + A collisionsasfunction ofenergy pernucleon pair.Thesolid pointsdenote

the resultsofthe statisticalhadronization m odel(SHM )which allows a deviation from strangeness equilibrium [8]. They are

connected by thesolid lineto guide theeye.Thedotted curveshowsthe� yield predicted by theUrQ M D 1.3 m odel[17].The

shaded boxesrepresentthe system atic errors.

observed decay channel,predom inantly atsm allrapidities and low values ofpt. Such a lossis notexpected in the

leptonic decay m odes, since electrons or m uons willleave the �reballwithout interaction. A com parison of the

m easured m t spectrum via the K + K � and e+ e� decay channels[see Fig.6(a)]indicates that the e�ect cannotbe

large.To study thee�ecton the totalyield,weused thestring-hadronictransportm odelUrQ M D [17].Itwasfound

that only about 8% ofthe decayed � m esons are lost for detection due to rescattering oftheir daughter particles,

independent ofcollision energy. Sim ilar results have been obtained with the RQ M D m odel[19]. The e�ectis thus
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FIG .11: (Color online)(a)W idthsofthe rapidity distributionsof�� ,K + ,K � ,and � in centralPb + Pb collisions atSPS

energies as function ofbeam rapidity [38,39]. The dashed lines are to guide the eye. The open star denotes the � rapidity

width m easured in p+ p collisions[23].(b)W idthsofthe � rapidity distributionsin centralPb+ Pb collisions com pared with

the expectations in a kaon coalescence picture [Eq.(9)]. The shaded boxesrepresentthe system atic errors(shown only for�

m esons).

notsu�cientto accountforthe deviation ofthe relative� m ultiplicitiesfrom theirequilibrium values.

O n the other hand,� m esons can be produced by K K scattering. In fact,kaon coalescence is the dom inant(�

70% )production m echanism forthe� in UrQ M D,again forallinvestigated collision system s.Asshown by thedotted

curvein Fig.10,them odelgivesa reasonabledescription ofthe� m eson yieldsatlowerenergies,whereasitstartsto

deviate from the m easurem entsatinterm ediate SPS energies. The discrepancy with data ism ore pronounced when

studying the h�i=h�iratio (Fig.9)because UrQ M D overestim atesthe pion yieldsatSPS energiesby about30% .

The hypothesisthatthe � m eson isproduced predom inantly by kaon coalescence can be tested by com paring the

� and kaon distributionsin phasespace.Figure11(a)showsthewidth ofthe � rapidity distribution asa function of

beam rapidity atSPS energies,togetherwith thatm easured for�� ,K + ,and K � [38,39].The � m eson width does

not�tinto the system aticsobserved forthe otherparticle speciesbutincreasesm uch fasterwith energy. W hile at

20A G eV,the � rapidity distribution isnarrowerthan thatofK � ,we �nd itattop SPS energy com parable to the

pions.In addition,at158A G eV itism uch largerin centralPb + Pb collisionsthan m easured in p+ p collisionsat

the sam eenergy [23],a featurewhich isnotobserved forotherparticle species.

In thekaon coalescencepicture,therewould bea tendency forthe� rapidity distribution to benarrowerthan those

ofthe kaons.In an idealcase,neglecting correlations,

1

�2
�

=
1

�2
K +

+
1

�2
K �

; (9)

wherethedistributionswereapproxim ated by G aussians.Asshown in Fig.11(b),the� dataruleoutkaon coalescence

asdom inantform ation m echanism forbeam energiesabove30A G eV.O nly at20A G eV,theobserved rapidity widths

are consistentwith the coalescencepicture.Asm entioned before,thiswould also explain the � enhancem entatlow

energies,wherea transientdecon�ned stateisnotexpected.

The observation that m odels based on a purely hadronic reaction scenario have serious problem s in describing

relativestrangenessproduction in the upperSPS energy rangeisnotuniqueto the � m eson butholdsforkaonsand

otherstrange particles,too. Ithasbeen related to the onsetofdecon�nem entataround 30A G eV aspredicted by

thestatisticalm odeloftheearly stage[18].A striking experim entalevidenceisthenarrow m axim um in the K + =�+

ratio atthisenergy [38,39].A sim ilarstructureis,within experim entalerrors,notobserved forthe� m eson (Fig.9);

instead,theenergy dependenceoftherelative� m eson yield resem blesthatoftheK � .Thiscan beunderstood since

theK + yield isin good approxim ation proportionalto thetotalstrangenessproduction,which isnotthecaseforK �

and � becausea large,energy-dependentfraction ofs quarksiscarried by hyperons.
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FIG .12: (Color online) (a)Inverse slope param eter T and (b)average transverse m ass hm ti� m 0 ofthe � m eson in central

A + A collisions as function ofenergy per nucleon pair. The data from E917 [27]were averaged over the m easured rapidity

interval(see Table IV). Resultsfrom NA50 [24]and RHIC [28,29,30]were obtained atm idrapidity,the resultfrom CERES

aty = � 0:71. D ata from NA49 are integrated overrapidity. The PHENIX data pointwas slightly displaced horizontally for

visibility.Forthe NA49 data,hm tiwascalculated from the transverse m om entum spectra using an exponentialextrapolation

to fullpt. For the other data sets,it was derived analytically from the exponential�tfunction. The shaded boxesrepresent

the system atic errors.

Theenergydependencesofboth theinverseslopeparam eterand them ean transversem assofthe� m eson areshown

in Fig.12. The transverse m assspectra ofthe � are welldescribed by exponential�ts[see Fig.6(a)];consequently,

the two param etersshow a sim ilar behavior. O verthe energy range AG S{SPS{RHIC,there isan overalltendency

for both param eters to increase. However,a constancy ofthe values in the lower SPS energy range,as has been

observed for pions,kaons,and protons[39]| a factinterpreted asbeing consistentwith a m ixed partonic/hadronic

phase[40]| cannotbe excluded.

V I. SU M M A R Y

W e have presented new data on � production in centralPb+ Pb collisions obtained by the NA49 experim ent at

20A,30A,40A,80A,and 158A G eV beam energies. No indicationsofm edium m odi�cations ofthe � m eson m ass

or width were observed. The energy dependence ofthe production characteristicswas studied by com paring them

with m easurem entsatAG S and RHIC energies. W e �nd thatatlow SPS energy,the data can be understood in a

hadronicreaction scenario;whileathigherenergies,hadronicm odelsfailto reproducethedata.A statisticalhadron

gasm odelwith undersaturation ofstrangenessgivesa good description ofthe m easured yields.Thissuggeststhat�

production isruled by partonic degreesoffreedom ,consistentwith the previously found indicationsforthe onsetof

decon�nem entatlowerSPS energy.
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