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We have developed an emittance compensation scheme for the space-charge-induced emittance growth in high-
brightness electron beams. This technique has been incorporated in 1.3 GHz photoinjector experiments at Los
Alamos National Laboratory by introducing solenoidal focusing near the photocathode. Other laboratories are using
or contemplating using the scheme for photoinjectors ranging from 108 MHz to 2.856 GHz. In our experiments, this
scheme has consistently reduced the normalized rms emittance by up to an order of magnitude over what it would
be without compensation. In this paper, we explain how this scheme works and discuss the physics leading to the
residual emittance after compensation. We additionally present a numerical model of the technique which leads to
universal scaling curves for predicting the residual emittance as a function of beam current, accelerating gradient
and other conditions, and show that experimental data from the Los Alamos Advanced Prototype EXperiment
(APEX) free-electron laser facility is consistent with these results. These scaling curves can be used to determine
optimum photoinjector conditions for desired electron bunch parameters.

KEY WORDS: Beam transport, electron beam devices, injectors, particle dynamics

1 INTRODUCTION

A simple scheme has been developed! that decreases the rms emittance of low-emittance,
high-charge electron bunches by up to an order of magnitude. This technique is especially
suited for reducing the space-charge-induced emittance growth in photoinjectors. This
emittance compensation scheme has two important features: (1) use of this scheme
minimizes the final normalized rms emittance at the end of the beam line and (2) the
normalized rms emittance actually monotonically decreases for a while as the beam travels
down the beam line after the initial large emittance growth near the photocathode and
before the beam becomes relativistic. By proper design, an emittance minimum can be
placed at any arbitrary high energy. This decrease in the normalized rms emittance as the
beam travels in the accelerator does not violate Liouville’s theorem and is accomplished
simply by exploiting the correlations in the beam’s six-dimensional phase space. In general,

*Work supported by the Los Alamos Laboratory Directed Research and Development program, under the auspices
of the US Department of Energy.

27



28 B.E. CARLSTEN

this technique can be used to modify an undesirable phase-space distribution of dimension
less than n with large correlations caused by a nonlinear force in a Hamiltonian system
of dimension n. (Once the distribution thermalizes and the correlations disappear, this
technique will no longer work.) The advantage of this technique is that it is simple to
apply because it only requires a linear force that is not a function of time. In the case of a
photoinjector, this linear force is supplied by a simple solenoid. Crucial issues associated
with the use of this scheme are (1) what is the residual emittance after compensation
and (2) how can the compensation be improved. Unfortunately, these questions cannot
be adequately answered by detailed numerical simulations of the particles’ motion in the
photoinjector because the residual emittance is a complex function of several independent
photoinjector parameters and is often masked by the rf-induced emittance. The full potential
of the compensation scheme can only be realized if there is a simple model presenting clear
scalings for the residual emittance. The purpose of this paper is to describe the compensation
technique, discuss the physics associated with the residual emittance after compensation,
and present normalized scaling curves showing the residual emittance as a function of
the compensation parameters and the accelerating gradient for short-pulse (high-current)
photoinjectors. We predict that the compensation is better for conditions maximizing the
beam laminarity and that the residual emittance is minimized by operating at a specific
cathode current density which is given as a function of the gradient. Finally, we show that
the compensation model is consistent with the most complete published set of photoinjector
rms emittance measurements to date.

Many effects can create transverse emittance growth in bright, relativistic electron beams.
The emittance growth contributions from the space-charge and rf fields are inherent in
an accelerated electron bunch and do not arise from misalignments and other errors. In
addition, there are other effects which are not fundamental limitations and appear as a
result of construction tolerances or error and operation error. These effects include rotated
quadrupole magnets, beam transverse offsets leading to transverse wakefields, and non-
achromatic bends.? Because these effects are typically uncorrelated, we expect that the
emittance contributions from each source add in quadrature. Carefully designing the rf
cavities, all space harmonics above the fundamental vanish, and the rf field is radially
linear.3 For this case, Kim* has explicitly calculated the emittance growth from the time-
dependent, radially linear rf fields in a photoinjector by directly integrating the transverse
force equation from the rf fields. We can define the transverse emittance to be

ex,n = By (X2 (x2) — (xx')?, 6]

where B is the axial velocity divided by the speed of light, y is the relativistic mass
factor, x’ = dx/dz, and the angled brackets refer to ensemble averages over the particle
distribution. The emittance is the rms area that the beam occupies in the x — x’ phase space
divided by 7. Using common convention, however, we will quote emittance numbers with
the units 7 mm mrad, which is the area in phase space. Kim has shown that the rf-induced
transverse emittance growth for an electron bunch of negligible charge with a Gaussian
distribution, with rms transverse bunch length o and rms longitudinal bunch length o, in
a photoinjector with an rf field amplitude E, and wave number k, can be written as
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where e and m,, are the electronic charge and mass respectively. We see that the emittance
contribution decreases as the longitudinal bunch length decreases but increases with both
increasing frequency or gradient. The instantaneous emittance growth contribution depends
on the square of the transverse beam size at that moment. Thus, the transverse emittance
growth from the 1f fields must also depend on the bunch’s radial expansion from the space-
charge forces, which is not included in Eq. (2). However, Eq. (2) is still valid in the low-
current regime and demonstrates the scaling of the emittance to the beam size.
Determining the emittance growth from the space-charge forces is not as straightforward
as that from the rf forces. Scaling arguments, confirmed by particle-in-cell simulations,
show that the transverse emittance growth for a drifting slug of length L and radius a with
peak current I obeys’
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as long as the slug does not appreciably deform over the drift distance s. The geometric factor
G depends on the beam’s aspect ratio in its own frame of reference and the longitudinal
distribution. G can be calculated for distributions in the long-bunch limit by using Gauss’
law to find the radial electric field. For beams with uniform radial distributions in this limit,
G is 0.556 if the longitudinal distribution is Gaussian, 0.236 if it is triangular, and 0.214
if it is parabolic. Because the rf-induced emittance growth depends on the beam current
it is hard to differentiate between the rf-induced and the space-charge-induced emittance
growths, both in experiments and numerical simulations.

The inverse scaling with beam energy in Eq. (3) indicates that it is desirable to accelerate
an electron bunch quickly. Photocathodes within rf cavities, known as photoinjectors, have
been developed that provide immediate acceleration when the electrons are drawn off the
cathode in MV/m-type axial electric fields.®~® Kim has additionally integrated Eq. (3) to
determine the emittance growth from the photoinjector’s space-charge forces.* His results
agree relatively well with some experiments.* In principle, Kim’s equations for the emittance
growth from 1f and space-charge fields can be used to determine the bunch length and
radius that minimize the emittance for a given charge. However, in practice this is not
done because peak current is often more important than bunch charge. The space-charge-
induced emittance growth (Eq. (3)) is often much larger than the rf-induced emittance
growth (Eq. (2)), especially for bunch charges greater than 1 nC in relatively low frequency
(and thus low gradient) photoinjectors.

Significantly smaller transverse beam emittances have been measured for L-band photo-
injectors than predicted by Kim’s formulae’-810 (by factors up to ten). Los Alamos National
Laboratory developed a novel emittance compensation technique to do this. The technique
uses an external solenoid around the photoinjector and is described in this paper in detail. In
particular, we will present simplified models of how this compensation works, discuss the
physics associated with the residual emittance after compensation, and actually calculate
normalized universal scaling curves for the residual emittance that can be used for photo-
injector design. This is an important issue because slight variations in either the beam or
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compensation parameters can increase the residual emittance by factors of two or more.
We first present two simplified analytic models for this phenomena. These models crudely
demonstrate the essential physics of the compensation in both the short-beam and long-
beam regimes. The model in the long-beam regime leads to a picture of how the residual
emittance forms. We find that the residual emittance results from the nonlinear terms in the
axial Taylor expansion of the radial space-charge force. Unfortunately, this model cannot
be conveniently extended to estimate the residual emittance for actual photoinjectors, so we
build a numerical model from the essential elements found in the analytic models to study
this effect under conditions of acceleration in a photoinjector, and then calculate the residual
emittance from the space-charge forces. We assume that the beam is long enough that the
electric field is primarily radial. The errors associated with this assumption are discussed.
Qualitative agreement is found between the crude long-beam model and the numerical
results. We present scaling arguments, which lead to universal curves showing both this
compensation and also the residual emittance from the space-charge forces as a function of
the accelerating gradient and the cathode current density. Contrary to Eq. (3), we find that a
higher accelerating gradient does not always lead to a lower emittance. In both the analytic
model and the numerical simulations, we find that the residual emittance is minimized if the
beam laminarity is maintained. In addition, we examine experimental emittance results from
a compensated photoinjector. The measured emittances include the rf-induced component,
which brings in additional complexity and makes a direct measurement of the residual
space-charge-induced emittance difficult. However, we are able to derive from physical
arguments a form for the emittance which includes both the rf-induced and space-charge-
induced emittances. After fitting the unknown constants in the part of the formula for the
rf-induced emittance growth, we show that the quantitative results for the residual emittance
are consistent with the measurements.

In Section 2, we present the analytic models describing the compensation technique.
In Section 3, we discuss the numerical model for a long beam in a constant accelerating
field. Universal compensation curves are given in Section 4, along with estimates for the
uncompensated bunch emittance. In Section 5, we compare the compensation measured
experimentally to Kim’s formulae and to the universal curves.

2 ANALYTIC MODELS OF COMPENSATION

The purpose of this section is to present the necessary physics to understand both the
compensation technique and the cause of the residual emittance after compensation. In
particular, the conclusions from this section will be used to justify the use of the numerical
model of the residual emittance presented in Section 3. This will be done by understanding
what physics must be included to calculate the residual emittance. A second purpose of
this section is to qualitatively predict some features to compare with the results from
the numerical model. First, we present two simplified models for the compensation that
demonstrate the important physics. The essential features that these models must show
include (1) an emittance growth before the lens, (2) a monotonic reduction in the emittance
after the lens up to the location of an emittance minimum, and (3) some mechanism
for describing the residual emittance, if any. We next discuss the bunch dynamics in
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a photoinjector and see that for typical short-pulse photoinjectors the beam, in its own
relativistic frame of reference, is initially short (relative to its radius) and becomes long as it
is accelerated. We see that there is space-charge-induced emittance growth in both the short-
and long-bunch regimes and see that the beam physics in each regime is represented by
one of the models previously presented. The first model predicts that the residual emittance
generated while the beam is short vanishes. The second model predicts that the residual
emittance from the long-bunch regime is due to beam nonlaminarities and in general does
not vanish. We also present a detailed numerical simulation of the compensation for an
accelerated bunch in an actual L-band photoinjector and show that the residual emittance
is primarily due to forces in the long-beam regime by direct inspection of the phase-space
plots. Using this analysis, we see that the residual emittance can be estimated by simulating
only the-long-bunch physics, which we will numerically do in Section 3.

The radial space-charge force in a bunch is a function of position within the bunch. We
can define an internal cylindrical coordinate system p and ¢ to indicate different points in a
slug beam. Let p = 1 define the radial edge and { = +1 define the axial ends. No emittance
growth would result from the space-charge forces if the space-charge force is linear in p
and independent of ¢:

eE (p, ¢, 1)

A(p,{,t)= W =pA0(t) ’ (4)
where A is the force conveniently normalized and E, is the radial electric field in the
laboratory frame. This is not true in general, however, and the emittance grows as the beam
either drifts or accelerates in an rf cavity. The emittance that develops has no chance to
thermalize in a photoinjector; as a result the beam’s phase space has a relatively large
surface area but a small volume. Consider a bunch with a smooth longitudinal charge
distribution that is zero at the ends of the bunch and is peaked at the bunch’s center and a
uniform radial distribution. If the bunch is long enough that the electric field is essentially
radial, the transverse emittance scribed out by the beam’s transverse phase space looks
like a rotated bow tie, Fig. 1. In any axial slice of the beam, the emittance vanishes but
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FIGURE 1: Typical phase-space bow tie formed by drifting beam.
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it can be quite large when integrated axially over the bunch. In fact, the phase-space line
corresponding to an axial slice of the beam rotates in phase space, first towards the x’ axis
and then back to the'x axis as we move from one end of the bunch to another. We will refer
to the axially integrated emittance as the rms emittance. For certain applications (e.g., free-
electron laser®), the emittance of a single slice is more important than the rms emittance,
while for other applications (e.g., minimizing beam interception) the rms emittance is more
important. Additionally, if the bunch is magnetically compressed, the slices mix and the
slice emittance approaches the rms emittance.

The emittance will vanish if we differentially rotate the phase-space lines corresponding
to the different axial beam slices so that they all lie at the same angle. Note that this
does not violate Liouville’s theorem, which requires that only the 6-D phase-space density
remains constant. The x emittance is simply a 2-D projection of this 6-D distribution, and
no general conservation law applies. It would be easy to make the emittance vanish if
we had a lens with which we could vary the focal length on the time scale of the bunch
length. A cavity’s rf fields could generate a lens which operates on a short time scale.!!-12
However, since the bunch is much shorter than the rf period, we would not expect to
reduce the emittance significantly by using this type of technique. On the other hand, the
compensation scheme using the external solenoid does exactly that, as we will see in the
next subsections.

2.1 Simplified Analytic Model of Compensation Using Constant Force
Approximation

In this subsection we introduce a crude model of a drifting beam under the influence of
transverse space-charge forces and a linear focusing lens. The purpose of this model is
to demonstrate that under certain conditions we can expect the emittance growth to totally
vanish by using this compensation scheme. In the following subsection we introduce another
model in which we show that only the emittance growth from the part of the nonlinear
force which can be written as a first-order axial Taylor expansion vanishes. The emittance
compensation scheme we discuss here and in the next subsection uses the nonlinear space-
charge forces after a time-independent lens to remove phase-space correlations which were
introduced by the nonlinear space-charge forces before the lens. The purpose of the lens is to
rotate the entire phase-space distribution so that this compensation will happen. Consider the
phase-space plots in Fig. 2 where we explicitly track the orbits for a particle at (o, ¢) = (1, 0)
(at the axial center of the bunch) and one at (1,1) (at an axial end of the bunch). The curved
lines with the arrows in the plots represent the phase-space orbits. of the particles and the
straight lines define the phase-space region occupied by the beam. The bow tie is formed
from axial nonlinearities as the beam is drifted. An external lens rotates the distribution.
Then as the beam drifts further, the slices rotate differently in phase space. If the lens
conditions are correct, all slices rotate to exactly the same angle at some drift distance, and
the initial emittance growth has been compensated.

To see how this is possible let us consider a drifting slug beam. Let us assume for this
model that the space-charge force does not vary with time (the next model will be less
restrictive). Then, with an initial nondivergent beam of radius r,, a point in the slug given
by (p, ¢) will obey non relativistic transverse motion:
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FIGURE 2: Phase-space orbits for particles along the beam’s radial edge (one at the axial center of the bunch
and one at an end), and the resulting bow ties defined by these trajectories.

(a) Particle orbits as the initially nondivergent beam drifts to the lens.

(b) Particle orbits within the lens.

(c) Particle orbits as the beam drifts after the lens. Note that the bow tie collapses as the orbits progress.
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2
r(p,£) = pro + Alp, ;)% )

and

r'(p,§) = Alp, §)z Q)

at a distance z downstream. Note as the beam drifts that the ratio of the beam divergence
to the radius becomes a function of p and ¢, the position within the bunch. The bunch
emittance grows as a result of this spread in the ratio. Let us assume that there is a lens at a
position z = z; with a focal length of

_ %
2z +za)

Then, at a position z4 further downstream from the lens, the ratio of the beam divergence
to the radius is

)

r'(p, %) _ 2@+za)
r(p,$)  za(za +2z1)

which is independent of the particle’s position within the bunch. Thus the effect of the lens
has been to rotate the lines in phase space corresponding to different axial slices onto each
other, therefore eliminating the emittance growth.

For this model, the normalized emittance can be rewritten as a function of the axial
position and lens focal length as

®

f

which explicitly shows that the emittance can vanish for arbitrary lens positions and drift
distances, with the proper choice of lens focal length. The quadratic cancellation leads to
good compensation over a broad minimum as the beam drifts followed by a rapid nonlinear
increase in the emittance.

It is worth noting that the cancellation occurs both with radial or axial nonlinearities.
Also note that after compensation the ratio of 7’ to r is the same for all slices but 7’ and r
are not.

The physics in a photoinjector is much more complicated than in this model, but much
of the same happens in the next subsection as we include an axial variation in the force.

1 iro
xn = 387 (A2 (02) — (Ap)2 (2ro(zz +20) — 4 ) , ©

2.2 Analytic Model Using Linear Expansion of Fields

In this section, we will no longer assume that the force is independent of the position along
the beam line, z. However, we will assume that the forces are radially linear for the time
being. The physics discussed in this section will represent the dominant physics if the beam
is long and we will see that the compensation scheme only leads to cancellation of the
emittance growth which originates from the constant and linear terms in an axial Taylor
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series expansion of the radial space-charge forces. In general we can write the radial position
and divergence for a particle as

r(p {a Z) // @, Z”)dZ”dZ” (10)
and
, z
1(_’);7;’_1) _ /A(;,z')dz' (11
0

before the lens where the forces are given at the radial beam edges and A(C ,2) =
A(p, ¢, 2)/p-. The particle positions and divergences are

u+za 7
r(p, ¢, 21+ 24) =r (1__@)_*_ / /f\({,z”)dz”dz/—z—d// @, z//)dz//dZ
p f f
0 0
(12)
and
, 21+24 |
r'(p, ¢, 21+ za) _ / f\(;,z”)dz”dz’ _ ____// (¢, 7"d7"d7 T (13)
P / f J f

after a drift z4 past the lens at z = z;. In order to find something useful out of Egs. (12) and
(13), lets expand the force about some axial location ¢,

A, 2) = Ao, D) + X Ao D) + X2A" G0y D) + ... (14)

where we have defined x = ¢ — ¢, and the derivatives are with respect to ¢.
If we just keep the first order expansion terms, the particle’s radius and divergence are
given by

r(p,¢)
P

=x (a1 - blzf) + (o +10) — (7o + bo)%" as)

and

r'(p,¢)

P =X(Cl“bl%)+co_(ro+bo)% (16)
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where the coefficients a;, b;, and ¢; are given by

2424 7 ,
a; = f / AD(,,7")d7"dd’ 17)
0 0
7 7
bi:/[j\(i)(fo,z/’)dz”dz’ 18)
00
and
z21+24
o = / RO, )dz (19)
0

The normalized force can be redefined to include axial acceleration, if required, without
requiring modification of the form of these equations.!? Requiring the ratio r’/r to be
independent of x is equivalent to requiring

dr dr’
— =r—. 20
r dx r dx (20)
Using Egs. (15) and (16) to solve Eq. (20) we find that the terms with x and the terms
quadratic in 1/f each cancel exactly, and we are left with

1
0= alco_cl(ao_ro)+? (—cob1z4 — a1(bo +1,) + b1(ao +15) + c124(ro + bp)) (21)

which can be used to solve for the focal length in terms of the integrals of the normalized
force for the reference axial position. Thus, if a beam’s space-charge force can be represented
by just the constant and the linear expansion terms in Eq. (14) we expect complete emittance
compensation if a positive solution exists for the lens’ focal length (Eq. (21)) (a negative
solution will defocus the beam).

There are some interesting consequences to this model. First, there is not always a physical
solution for the focal length. Note that the constant term in Eq. (21) does not vanish as z4
does, but the linear (in 1/f) terms does (note the definitions of the coefficients in Egs. (17)—
(19) — the g; ’s approach the b;’s as z4 becomes zero). Thus the solution for the focal length
diverges as z4 vanishes and after some sufficiently short z; compensation is impractical.
Next, note that any nonlinear axial or radial contribution to the force will not cancel. Thus
we can only expect to make this compensation work over an axial section of the beam
where the radial space-charge force is represented well by a linear axial expansion. If the
beam becomes non laminar the higher-order terms in Eq. (14) are no longer small and the
maximum axial length that can be compensated over can become very short. We can use
the nature of Eq. (14) to predict what we would expect the compensated beam’s phase
space to look like. Over the region that the higher order contributions are small we expect
to see all the particles line up in phase space. As we move away from the axial location
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of compensation, ¢,, x becomes bigger and the quadratic term (or higher order terms) will
become important, and we expect that the particles from these locations will fan further and
further away from the dominant line, until the end of the bunch is reached. This is similar
to what we see in Fig. 1.

Now consider the case when the beam is being focused to a beam-radius minimum. If the
space-charge forces are sufficiently weak, all particles will cross through the beam’s center;
e.g. a particle starting at a negative x position will end up with a positive x value. We can
describe this focusing behavior as a beam crossover. On the other hand, if the space-charge
forces are very strong, the particles will be reflected away from the beam center and the
horizontal and vertical positions of a particle will not change sign. This behavior can be
described as a beam waist. As a beam is focused, the part of the bunch with current above
some critical value will create a waist and the part with current below that value will form
a crossover. Most electron bunch current profiles have a high current center surrounded
by low current tails. Often, the particles at the ends of the bunch will crossover while the
particles at the center of the bunch will form a waist. Under this condition the beam’s phase
space will bifurcate; there exists particles that were initially infinitesimally close in phase
space that end up a finite distance apart. This phenomena has also been seen for intense DC
electron beams (although the bifurcation appears radially instead of along the longitudinal
position within the bunch).!# Virtually all beams have at least partial bifurcation during
focusing. One of the most important design criteria for photoinjectors is to minimize the
amount of the beam actually crossing over. In practical designs, less than one per-cent of the
total bunch charge crosses over, and the bifurcation can be ignored. If a substantial amount
of the bunch crosses over, the linear axial space-charge field approximation is useless for
the bifurcated part of the beam, and only the non bifurcated part can be compensated. Note
also that if the whole beam crosses through the beam’s center, the crossover will occur
at different axial positions along the beam line for different longitudinal slices along the
bunch, preventing any significant amount of compensation. _

In principle, we could explicitly calculate the emittance for an actual photoinjector by
including the nonlinear terms in Eq. (14) in an analysis and by numerically calculating
the coefficients a;, b; and c¢;. Unfortunately, this is not practical because of the required
complexity. Instead, we will use a simpler numerical model, which we will present in
Section 3 to generate quantitative results. The main conclusions from this section is that
(1) the residual emittance is minimized if the beam laminarity is maximized and (2) there
is only cancellation of the linear expansion over a limited range of lens locations.

For the rest of this section, we describe qualitatively the real physics. We show that the
physics in the short-beam regime can be represented by the first model and the physics in the
long-beam regime can be represented by the second model. Thus, the essential physics for
determining the residual space-charge induced emittance after compensation is contained in
the long-beam limit for typical bunch charges (because the emittance growth due to the first
model will vanish). In Section 3 we give normalized quantitative results in the long-beam
limit, which then lead to universal compensation curves.

2.3 Actual Photoinjector Physics

In this subsection we relate the actual physics in a photoinjector to the models in the previous
subsections. We argue that the residual emittance is dominated by the nonlinear terms in the
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axial Taylor expansion while the beam is in the long-bunch regime and that the contribution
while the beam is short is negligible. We also present a numerical simulation using an
accelerator design code and verify our argument by examining the predicted phase-space
plots. Once we have established that, we are confident that we are able to numerically
calculate the residual emittances using the model in Section 3.

Thermionic injectors can produce extremely low-emittance electron bunches, although
with low charge and current.!> Photoinjectors are used for applications requiring the
combination of high-peak current and low emittance. There are two ways to achieve high
current in a photoinjector.! First, the electron bunch can be initiated very long and then
bunched with dispersive magnetic elements. Alternatively, the bunch can be made as small
as possible from the beginning with later magnetic bunching if required. Although the
emittance compensation scheme works similarly in both situations, the first case has larger
emittance growth from the rf fields (check Eq. (2)), and the shortest possible initial bunch
is usually chosen. For bunch charges (1-10nC) and gradients (10-100MV/m) of typical
interest, a short bunch initially looks like a thin pancake as it leaves the cathode but
transforms into a long cylinder in its own frame of reference as it is accelerated. Assume the
bunch has uniform radial-charge density. In the first regime, the radial space-charge force is
radially nonlinear but the same for all axial positions. In the latter regime, the space-charge
force is radially linear but varies in magnitude with the axial position within the bunch. This
is true independent of the axial-charge distribution as long as the rms bunch length (at the
moment the bunch leaves the cathode) is short in comparison to the rms radius. Using non
relativistic kinematics, we find for example that a 1 ps long bunch in a 100 MV/m field has
< 10 um physical length as it leaves the cathode. For a uniform density slug, this force can
be empirically represented by!>

Alp,0) = p—A"— 1+2.25p%e A /085 _ £ (1 - e—Ar/O'%) , (22)
)/2,32C2 2

where the normalized force is

Ay = cQ 23)

- 2moeomror/ (Betp)? + 4r2 ’

7p is the bunch length in time, Q is the bunch charge, and A, is the beam’s aspect ratio
(Iength divided by radius) in its own frame of reference,

A = VW 24)

To

The nonlinear behavior in the short-beam (pancake) limit is counter intuitive. First, the
radial force has no axial dependence, if the beam is sufficiently short. Also, the radial
space-charge force diverges at the beam edge for short beams (Fig. 3). This can be seen by
explicit calculation of the radial electric field from a slug beam of radius a and length L.’

L
E,(r,z) = 4\/5/ PolK (X)(1/X — X/2) — E(X)/X1dZ’ (25)
0
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FIGURE 3: Radial electric field versus radius in the short beam limit (aspect ratio 0.1) for both the center and an
edge slice.

where the radial and azimuthal integration has already been done, p, is the charge density,
K and FE are the complete elliptical integrals of the first and second kind, respectively, and

X — 4ar 26
V@) +(@+r)? (26)

Note that the (z — z’)? term is small compared to the second term in the denominator in
this regime and that the elliptical integrals diverge as the bunch length vanishes and X
approaches one, resulting in the nonlinear radial forces.

This effect can be physically understood by comparing the pancake-of-charge to a
homogeneously filled ellipsoid. There is no emittance growth if the bunch is purely
ellipsoidal. The potential for a homogeneous ellipsoid-of-charge defined by

—+5=1 @7

is given after direct integration (see for example!?) by
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V(r,z) =k {(z —tan~! ¢ ) ( 2 + 2 - r? )
' 2 V-2 )\@=c2) " @-c)2 (aZ -2

272 + cr?
(@ —c?c = (% —c?)a?

(28)

for thin (¢ < a) distributions, where k is a constant related to the ellipsoid charge density.
Both the radial and axial forces are linear and independent of the other variable, leading to
no emittance growth. Thus, this ellipsoid will expand to another ellipsoid (however, since
the ratio of radial to axial forces is

— (1 —tan~1 c ) (aZ _ C2)—1/2 + <
2 [2—c2 a?
=r S , (29
Z _ - 2
Y (T P
the ellipsoid will not expand to a self-similar shape). An infinitesimally thin ellipsoid-of-
charge (which has linear radial-space-charge forces) has an axially integrated radial charge

density of
r2
p(r)=,00 l—a_z'v (30)

which is not the same as a uniformly filled pancake-of-charge. The drive laser could be
designed to form this radial charge density, which would eliminate the emittance growth
near the cathode. However, such a design would increase the emittance growth in the long-
bunch regime, which we will see is the dominate emittance growth mechanism, and in
general is not advisable.

Thus we expect that the emittance growth in a photoinjector is dominated by radial
nonlinearities in the short-bunch regime and axial nonlinearities in the long-bunch regime.
If we use an external solenoid around the photoinjector for the linear force required for the
compensation, it can be argued that this emittance compensation can be tailored to work for
both the radial and axial nonlinearities (originally in Reference 13, but reproduced in the
Appendix for convenience), even though they occur at different times within the bunch’s
existence. This is because various accelerator parameters (like phasing, average gradient, rf
cavity design, etc.) will effect how quickly the radial nonlinearities are replaced by the axial
nonlinearities and because the focusing force is axially distributed. If we have complete
flexibility in defining the field profile from the external soleniod, we then have the ability
to provide different effective thin-lens strengths and effective thin-lens placements for the
compensation of the radially nonlinear forces and of the axially nonlinear forces. A 10 ps
long, 4 mm radius bunch has an aspect ratio of unity after only 250 KeV of acceleration. After
this point the beam can be considered in the long-bunch regime. In typical photoinjectors,
there is little radial expansion over this short distance, and the crude model in subsection A
can be expected to demonstrate the essential physics in the short-bunch regime. Recall in that

1|
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model the compensation left no residual emittance growth, independent of the lens position;
thus we expect negligible residual emittance growth from the forces within the short-bunch
regime even if the effective thin-lens placement is optimized for the axially nonlinear forces
(since we have independent control of the effective thin-lens strengths for the two regimes).
Let us then assume that the design has maximum compensation for emittance growth in both
the short- and long-bunch regimes. We expect that the residual emittance is dominated by
the nonlinear forces from the long-bunch regime and we can estimate the residual emittance
by only considering the effects from the long-bunch regime. In order to verify this argument
we can examine plots of the particles’ phase-space distribution after compensation.

The design studies for a 5 nC, 26 MV/m photoinjector using the particle-pushing code
PARMELA!® have shown that a 10 ps initial pulse length leads to the minimum final bunch
length.!® As the bunch becomes shorter, the axial space-charge force increases, resulting in
a longer final bunch length. Using a Gaussian longitudinal distribution with a 10 ps FWHM
and an external solenoid for compensation we achieved the final phase-space distribution
shown in Fig. 4(a), at 20 MeV. The normalized slice emittance is only 1 7 mm mrad, and the
axially integrated rms emittance is 5 7 mm mrad. The normalized rms horizontal emittance is
shown in Fig. 4(b) as a function of position along the beam line. In this figure, the monotonic
reduction of the normalized emittance is clear, and the final normalized emittance is roughly
1/5 of the maximum normalized emittance, occurring near the cathode. A solenoid around
the first few accelerating cells.provides the focusing for the compensation. While the beam
is in the axial magnetic field from this solenoid, the conservation of the canonical angular
momentum results in an emittance growth which then vanishes as the beam exits this field.
In order to show the compensation clearly (and to prevent speculation that the emittance
growth and reduction might simply be the result of the beam entering and leaving a region
with axial magnetic field) the effect of the canonical angular momentum introduced by the
focusing magnetic field has been subtracted out from the normalized emittance shown in
Fig. 4(b). Any residual emittance from the short-bunch regime would be manifested as a
curvature in the phase-space distribution. The final phase-space distribution is dominated
by a bow tie shape, with only some small curvature along the bow tie’s edges; thus the
final emittance is not influenced significantly by the initial emittance growth in the radially
nonlinear regime. This conclusion can also be made by noting that the slice emittance is
just one fifth of the rms emittance. We see that for this class of high-charge photoinjectors
we would only need to estimate the residual emittance resulting from the emittance growth
in the long-bunch regime. The bow-tie thickness is dominated by particles at the axial
edges of the beam. These particles strongly influence the final emittance even though they
often carry little charge. The bow-tie shape is caused by the failure of the linear axial-field
approximation (Eq. (14)). The further away a particle is from the nominal compensation
location ¢,, the larger the nonlinear forces are (which cannot be compensated). The large
nonlinear forces lead to a scatter in the particles’ phase-space distribution, generating the
bow-tie shape and the residual emittance. Particles which bifurcate in phase-space will not
appear in the main bow-tie, but will show up as a spur to the main distribution often with
their own bow-tie figure. There is some slight indication of this effect in Fig. 4(a) near the
x" = 0 axis. Unfortunately, the amount of bifurcation and the spread in the bow-tie is hard
to predict analytically. It is these effects we plan to numerically investigate in the next two
sections.
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FIGURE4: (a)Final phase-space distribution for an actual photoinjector at 20 MeV. (b) Normalized rms emittance
as a function of position along the beam line. The photocathode is located at the origin and the accelerator tank is

roughly 1.2 m long.
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Finally, consider a photoinjector with the lens too far from the cathode to provide any
compensation in the short-bunch regime. (This can result from having too high a gradient.)
In this special case we would expect that the residual emittance to be dominated by radial
nonlinearities, and that the slice emittance to be equal to the axially integrated rms emittance.
The emittance in this case might be improved by using a transverse laser-intensity profile
of the form given in Eq. (30). There would be no short-bunch-regime emittance growth at
all in this case (because the radial space-charge fields would be linear), but we would again
expect alarger emittance growth in the long-bunch regime from the new radial nonlinearities.
Although we do not expect good compensation for these radial nonlinearities (from the linear
expansion model), the final emittance may still be smaller, depending on bunch aspect ratio
and gradient.

Now that we are confident that we can estimate the residual emittance by only including
the physics found in the long-bunch regime, we will introduce a simple numerical model for
the long-bunch regime in Section 3. We will use this numerical model to generate universal
curves for the residual emittance from the long-bunch nonlinearities. Note first that (1) a
bucking coil must be placed behind the cathode to eliminate the axial magnetic field at the
cathode (which will contribute to the emittance); (2) because the external solenoid takes
up physical space outside the accelerator cells and the presence of the bucking coil, the
effective lens center cannot be arbitrarily close to the cathode; (3) rf focusing (deformation
of the cavity back wall to introduce radial electric rf fields (Fig. 5)) can be used to move the

EXTERNAL SOLENOID

BUCKING COLL

L rf CAVITY

PHOTO SENSITIVE CATHODE — f—-

FIGURE §5: Detail of the first cavity in the APEX photoinjector, showing geometry introducing rf focusing.
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effective lens position upstream but at the cost of large rf-induced emittance growth (both
slice and rms);20 and (4) the longitudinal beam shape tends to become parabolic even if
it starts from a Gaussian distribution.!®?0 A good approximation to use in the long-bunch
limit is a triangular current distribution along the bunch with a uniform radial distribution.
Recall that the emittance growth from a triangular distribution is only 10% larger than that
from a parabolic distribution and about one-half that from a Gaussian distribution from
Eq. (3).

3 NUMERICAL MODEL IN LONG-BEAM REGIME

In this section we present the numerical model to calculate normalized emittance curves
(before and after compensation) in Section 4. The purpose of this section is to establish a tool
that we are confident will predict the residual emittance and which we can use to determine
scaling behavior. The numerical model must include the long-bunch-regime physics and
the effect from a focusing lens. We also show that the model is consistent with the space-
charge model used in previous uncompensated emittance estimates. This model will just
investigate the emittances induced from the space-charge forces and thus the accelerating
field gradient is important but the actual rf frequency is not. In order to predict the complete
emittance growth for a given photoinjector design, the rf emittance (Eq. (2)) should be
added in quadrature to the residual emittance calculated from this model.
We start with the radial and axial force equations,

d eE,

il = L 31
2’ = (€29
and
d .
Eymoz =eE, . (32)

We will make the following assumptions:
(1) The radial force is from the space charge only (including the self-magnetic field).
(2) The axial force is from a uniform, DC field E; only.

Assumptions (1) and (2) are critical to the numerical model used in the next section.
This model fails for cases in which the emittance growth from the time-varying rf field is
larger than the uncompensated space-charge induced emittance growth (because of the large
transverse focusing shear across the beam). If it is not, though, the effect of the radial rf
forces is to modify slightly the effective lens position and strength.! This is not an important
limitation because the actual focusing in a photoinjector is not done by an infinitely thin
lens anyway and the normalized data we present in the next section are meant to indicate
residual emittances possible for given gradients and beam parameters as opposed to give
precise design information for the focusing. The effect of having a sinusoidal axial field
instead of a DC field again just slightly modifies the lens positions and strength because of
the fields’ influence on the beam’s proper time (see!? or the Appendix).
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(3) The radial force is linear with the radius, so we need only to calculate the equation of
motion at the radial edge of a bunch slice. This requires a uniform transverse charge
density.

(4) The current profile is triangular in time. We calculate the emittance by using the rms
radius and divergence values for several slices along this current profile.

(5) The radial motion is non relativistic; thus we can write

eE,
2

z+1. (33)

~<
I

mycC

(6) We can define a normalized radial electric field parameter 7 to be

rE,

= —, 34
roE; 34

n
where as before 7, is the initial beam radius. Note that the edge peak radial electric field
using Gauss’ law in the long-bunch approximation is

I peak

_— 3
2me,Ber’ (33)

Er,peak =
so the peak n along the triangular current profile is proportional to the peak current. Thus
the peak 7 can be thought of as a normalized peak current, and we will use it in this manner
later. Note that r Ej, peak is inversely proportional to 8 and diverges as the beam velocity
vanishes (such as near the cathode). However, for the numerical integration we will assume
for any given slice of the beam that 7 is a constant for the numerical integration, defined
with 8 = 1 in Egs. (34) and (35). This brings up the question of this model’s validity near
the cathode. In fact, direct integration of Eq. (31) yields a divergence in the beam emittance
using Eq. (35) if the beam is initially at rest. We can justify the approximation in Eq. (34) by
physical reasons because (a) the beam is not experiencing the long-bunch nonlinearities we
wish to study while 8 is significantly less than 1, (b) the Gauss’ law approximation is invalid
for a short bunch length, and (c) the cathode is on a metal surface that shorts out the radial
electric field initially. This approximation is also made in other analytic treatments (e.g.,
Eq. (40) in Reference 4). Note that the radial electric field at a point r < r, is from a higher
average charge density than the field at the edge because the beam is being accelerated. This
introduces an additional nonlinearity in the short-bunch regime that somewhat compensates
for the effect seen in Fig. 3.

(7) Although we can directly integrate Eq. (31) to find the radial velocity as a function of
radius, we lose the axial dependence on these variables that is needed for an emittance
calculation at a given point. As a result we numerically integrate Egs. (31) and (32)
using

2 ..
AF = (‘"’63 o “ﬂ) At (36)
v’ro
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and
2
At =2 A 37)
Y
where a is the normalized axial acceleration
E
a=—%, (38)
myC

and the time step At is kept constant in the bunch’s frame of reference. Note that 7 is not a
function of the beam slice radius and that this model allows the beam to expand and contract
arbitrarily.

(8) We will use an initial cathode area of 1 cm? and a constant accelerating gradient of
10 MV/m and scale the results with the formulae provided in Section 4. A beam current
of 531 A corresponds to n = 1. We will calculate the emittance after acceleration to
a sufficiently high energy (100 MeV) so that it will remain constant thereafter unless
there are extremely long drifts (see Eq. (3)). We will use a time step of 10 fs.

(9) We assume that an infinitesimally thin linear lens exists at the axial position z;, with
focal length f, that modifies a particle’s divergence by

Arf=—. 39

7 (39)
As the lens focuses the bunch slice, the radial force increases (Eq. (35)). If the slice is
focused too small, the divergence in the radial force introduces noise in the calculation.
The noise could be addressed by decreasing the time-step size further, or, more simply, by
introducing a small slice emittance, which allows the slice edge to cross the axis (from a
positive x to a negative x) rather than reflect back to positive x. This is done by making the
radial force linear within a radius defined by

. 2 _1
Fomit = Eslice log V + VY ,
an v+ v 7/12 -1

where r; is the slice size at the lens and y is the slice’s relativistic factor at the lens. We use
a slice emittance < 17r mm mrad for the simulations in Section 4.

(40)

4 SIMULATIONS OF RESIDUAL EMITTANCE AFTER COMPENSATION

In this section, we present the results of the residual emittance calculations. The goal of
this section is to be able to predict the residual emittance for any short-pulse photoinjector
design. This means we wish to be able to predict the residual emittance as a function of
cathode radius, peak current, and accelerating gradient, but not necessarily as a function
of precise lens position and strength (as was discussed earlier). In fact, most photoinjector
designs using this compensation technique are meant to be operated over some range of
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beam parameters (charge, current, and so on) and as a result the focusing scheme is designed
to be flexible’-® so precise lens information is not essential.

Providing the residual emittance data as a function of all three variables would be
overwhelming. However, we can easily reduce the amount of required data by presenting
normalized residual emittance calculations and a set of scaling laws that allows us to
map the provided curves to any combination of cathode radius, current and accelerating
gradient. Each simulation then becomes a family of simulations corresponding to different
currents, accelerating gradients, and emittances. This section is the major thrust of this
paper. From the results we expect to be able to predict compensation performance and
the residual emittance for any short-pulse photoinjector design and determine scalings
which lead to better compensation and lower residual emittances. Comparison with actual
emittance measurements will be made in the next section.

We calculate the emittance for an uncompensated bunch with a triangular current profile
as a function of the peak normalized current, n for a DC accelerating gradient. We find
counter intuitive physics around a peak n of 1 and plot the emittance versus lens position
(optimizing lens strength) for that value. We learn that there are two distinct focusing
methods to use for compensation. We plot the residual emittance versus peak n for a
fixed lens position, and finally we plot the residual emittance versus the accelerating
gradient for a typical cathode-to-lens spacing. If physical constraints are present on the
effective lens position, a minimum emittance exists at moderate gradients. Qualitative
agreement with the model in subsection 2.2 will be noted whenever possible as a check on
this method.

4.1 Normalization Rules

In this section, we find normalization rules which allow us to scale the residual emittance
calculations from normalized simulations to any accelerating gradient, cathode radius and
current. There are many sets of normalization rules possible. We will pick the simplest one
that is consistent with the approximations in the previous section.

First, let’s assume we know the emittance growth for a specific case. Because the radial
space-charge force is linear, the ratio of dr/dz to r is the same for any radial position in a
single slice at any given axial position. If we take any radial core of this beam, the emittance
will be the original beam’s emittance times the ratio of the radii squared. Likewise, the
current in the core is the total current times the same ratio squared. Thus, the emittance
and the current scale with the cathode area for a given accelerating gradient, axial current
density distribution and a set of focusing parameters.

Next, we need to find a scaling law that lets us transform the accelerating gradient. We
will find this scaling by examination of Maxwell’s equations. Consider a charge Q passing
through an rf cavity of characteristic frequency f. We can assume the energy gain of the
charge from the cavity fields and space charge are independent of f. Because the length
scales inversely with f, the rf electric field must scale proportionally with the frequency
and time must scale inversely with frequency. From the Maxwell equation,

. . JE
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we additionally see that the magnetic field scales proportionally with the frequency and
that the current density scales as the frequency squared. The current is independent of the
frequency, and Q scales as the inverse of the frequency. Note that the beam emittance
(normalized as well as unnormalized) scales as the inverse of the frequency.

Now, let’s assume that the characteristic frequency f is extremely low and looks
essentially DC to the beam. Say we now consider a second case with twice the gradient (by
doubling f). The emittance for this case is 1/2 the emittance of the original case and the
current density is 4 times larger.

With these rules, we can scale the residual emittance £ and the peak cathode current
density from a simulation with a gradient of 10 MV/m, a cathode area of 1 cm?, and a
peak current of 1 to any arbitrary gradient and cathode area. Note that we have to retain the
normalized peak current as an independent parameter. The current density scaled to a new
gradient E; is

A E 2
J(E) =531.—n| —2— 42
(E2) cm2 ! (10 MV/m) “2)
and the cathode area scaled is
10 M 2
5= (——V—/ﬁ) cm? 43)
E,

The normalized horizontal residual emittance for this area s and gradient E, is

{10 MV/m
exn(Ez, 8) =8¢ (———) ) (44)
E,
For a cathode area of S, the beam current is
I(E,, S) =531 A S E: i (45)
o) =202\ 10 MV/m
and the emittance is
S E . S
Exn(Ez, S) = &x n(E;, S); = mec—ng . (46)

The plan is to provide figures showing the normalized residual emittance & as a function
of normalized current 7 for a gradient of 10 MV/m and a cathode area of 1 cm?. The
emittance for any arbitrary accelerating gradient, cathode area and current can be found by
this procedure: first, the appropriate normalized current n is found using Eq. (42). Then the
normalized residual emittance £ is found from the figures using this . Then Eq. (46) is
used to find the residual emittance for the case with those particular parameters.

We can also define a lens position, £, normalized to the gradient by

eE,
myc?

=2z “7)
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4.2  Uncompensated Emittance

In Fig. 6 we plot the uncompensated emittance for a triangular longitudinal distribution as
a function of peak current n using the numerical model from the last section. We see two
distinct regions, one above and one below a peak n = 1. For small current (peak n < 0.1),
the effect of the space charge is to change the radial divergence but not the radius, leading to
an emittance growth linear with current (which we see). For large current (peak n > 100),
the initial beam size looks like a line source, and both the radius and radial divergences are
changed. From Egs. (31) and (35) we see that both the radius and divergence scale with the
square root of the current, and the emittance should again scale linearly with the current
(which we see). However, we see peculiar and counter intuitive behavior in the transition
between these regimes near a peak n = 1, where the emittance actually decreases as the
current increases. This appears to be in violation of Eq. (3). Recall, however, that Eq. (3) was
derived assuming no appreciable beam expansion. We believe that the transition behavior
results from some radial expansion that is similar to the original radial size, and which leads
to a better homogeneous ellipsoid distribution than is present with slightly lower current.

4.3  Residual Emittance Versus Lens Location

In Fig. 7, we plot the minimum normalized emittance for a triangular longitudinal
distribution with peak current n = 1 versus the normalized lens position while varying
the lens strength. Note that the residual emittance for large lens positions (Z > 4) is the
same as the uncompensated emittance. There are two distinct emittance minima, one at
Z = 0.85 and the other at Z < 0.2. Examination of the slice trajectories shows that for the
first minimum the beam is asymptotically focused to a waist as y — oo, and the nonlinear
space-charge forces after the lens compensate for the nonlinear space-charge forces before
the lens. The location of the lens for the first minimum corresponds to the point at which
the beam is about one fourth of the way to the end (corresponding to the retarded time in
the beam’s frame of reference). In the second minimum, the lens is very near the cathode
and focuses the beam to a much earlier waist. The nonlinear space-charge forces after
the waist compensate for the nonlinear space-charge forces before the waist. Significantly,
there is only compensation if the lens position is relatively close to the cathode, and the
best compensation is with the lens positions which lead to the most laminar beam flow, as
predicted by the linear expansion model. The two minima merge to a broader minimum
for either a peak n > 3 or a peak n < 1/3. In Fig. 8(a) we plot the ratio of dr/dz to r
for the first minimum (at Z near 0.85). Note that the particles with the same ratio of dr/dz
to » will form a line in the beam’s phase space. Particles from slices of the beam with
normalized current densities in the range 0.75 < n < 0.8 will pretty much lie along a
single straight line in phase space, and not contribute to the residual emittance. Particles
from nearby slices (0.6 < n < 0.75 and 0.8 < n < 1.0) will end up near that line in phase
space and particles from slices further away (n < 0.6) will scatter out further and further
from that line in phase space. Thus the curve in Fig. 8(a) indicates good compensation
around the peak of the current profile and that the residual emittance originates from the
low-current tail as predicted in the model in subsection 2.2. Good compensation (defined
by the minimum rms residual emittance) must have precisely these features. A scatter in
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the beam’s phase space originating from particles in the bunch’s low current tails influences
the rms emittance much less than if the scatter originates from particles at the center of
the bunch. Note also the absence of any bifurcation in Fig. 8(a) which would be seen
as a discontinuity in #’/r. This implies that the beam crossover occurred for current
densities n < 0.1 and will have little effect on the rms residual emittance. In Fig. 8(b)
we plot the normalized rms emittance as a function of position along the “accelerator”
beam line again for the first minimum. The effect of the emittance compensation is clearly
demonstrated in this plot, and it shows both the initial emittance increase and the monotonic
emittance decrease to an emittance minimum as required. Note that the emittance profile
is similar to the one in Fig. 4(b) calculated by a detailed particle numerical simulation.
The emittances in Fig. 8(b) are larger than those in Fig. 4(b) because the current is
roughly five times larger. The ratio of the residual emittance to the maximum emittance
in Fig. 8(b) is about half the size of the same ratio for Fig. 4(b) because the simulation
used to calculate the emittances in Fig. 4(b) included all rf fields and thus the rf-induced
emittance growth.

4.4  Residual Emittance Versus Peak n

In Fig. 9 we plot the residual emittance for a longitudinal distribution as a function of peak
current 7, optimizing both lens position and strength. As seen in the previous subsection,
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the optimal lens position for any peak 1 corresponds to about one fourth of the time a bunch
requires to travel down the beam line in its own frame of reference. We see that the emittance
is flat between peak ns of 1/3 and 3, as in Fig. 6. Fig. 9 is the universal curve we want. The
residual emittance for any arbitrary design can be found by using this curve and the scaling
procedure described after Eq. (46). Given a desired current and the operating gradient, the
curve in Fig. 9 implies that we want a cathode size that corresponds to a peak n of about
3 for the minimum emittance. We can rewrite the emittance as a function of gradient and
normalized current density (by using Eqs. (45) and (46)) as

10MV/m &(n) 1

A4 , 48
E, 1 531A “8)

Ex,n(Ez’ I, 77) =

where ¢ is found in Fig. 9 and 7 is the peak normalized current in the triangular-shaped
bunch. Thus, if we can place the lens anywhere, the scaling in Eq. (48) immediately tells us
that we want (a) to have as high a gradient as possible and (b) to operate near a peak n of 3.

44 Emittance Versus Gradient For Practical Lens Positions

Because of practical limitations (requirements from vacuum pumping and cooling), we are
often unable to have complete freedom to position the lens. In principle, we can either
use 1f focusing at the cathode or place a small lens in the webbing between the first two
rf cavities, but we introduce new problems. To eliminate rf emittance growth from radial
rf-field nonlinearities, the boundary of the rf focusing must match the lowest-order space
harmonic, satisfying this equation’

4d\? 74
2 __ .2 :
re=w <_71 ) log (sm 2d> , 49)

where d is one-half the rf wavelength and w is a free parameter. Note that the cathode must
be shaped like a horn which excludes the possibility of rf focusing. The field from a small
lens in the web between the first and second cells is very sensitive to misalignments?° and
is subject to significant additional emittance growth.

In Fig. 10 we plot the ratio of normalized emittance & to current versus gradient for a
minimum lens position z; of 4 cm. We see a dip in the normalized emittance at moderate
gradients, which is smaller than emittances at higher gradients until we reach nearly
100 MV/m. The emittance decreases as the inverse of the gradient for low gradients, as
predicted in Eq. (45). The rise in the emittance as the energy is increased starts at the point
where the minimum lens position exceeds the position of the lens corresponding to the first
minimum in Fig. 7. The first region (before the inflection) corresponds to a ratio of the
normalized emittance to the peak 7 (see Eq. (45)) of about 2.3. The last region (after the
inflection) corresponds to a ratio of the normalized emittance to the peak n of 14. The ratio
of the normalized emittance to 7 transitions from 2.3 to 14 in the central region around
the inflection. It must be emphasized that these are average accelerating gradients (with
respect to the beam’s frame of reference) with transit time factors and drifts included. High-
gradient photoinjectors can be used in conjunction with long drifts to lower the average
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FIGURE 10: Compensated normalized emittance versus accelerating gradient for a cathode-to-lens spacing of
4 cm.

gradient enough to use the compensation scheme. However, we create a penalty in both
rf emittance growth (Eq. (2)) and rf power requirements if we lower the average gradient
significantly.

5 COMPARISON WITH EXPERIMENTAL EMITTANCE MEASUREMENTS

The compensation technique using an external solenoid around the first cell and a bucking
coil behind the cathode has been verified experimentally and measurements have agreed
well with particle simulations.”%10 However, the emittances in the experiment and the
simulations included effects from both the space-charge forces and the rf forces, which
added in quadrature and were impossible to separate. In this section, we will compare the
results from the previous section with the experimental results. Recall that the results from
Section 4 did not include any effects from the rf fields and that we are actually trying to
separate the two types of emittance growths. This is difficult to do, but a useful exercise
because the rf-induced emittance growth can be drastically affected by 1f cavity design,
whereas the space-charge-induced emittance growth is only sensitive to average accelerating
gradient and cathode size. The experimental results do not provide confirmation of the
residual space-charge-induced emittance to better than about a factor of two because of
the large rf-induced emittance growth in the experiment. However, the results in Section 4
are consistent with the measurements and this comparison provides some confidence in the
normalized curves in Figs. 7, 9, and 10.
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The 1.3 GHz photoinjector for the Los Alamos Advanced Prototype EXperiment (APEX)
was the first photoinjector designed using the emittance compensation scheme. In Fig. 11
we plot the experimentally measurement emittance?! and the uncompensated emittance
from Kim’s formula, for an average accelerating gradient of 10 MV/m. The experiment
typically used a Gaussian transverse distribution clipped at the 36% intensity point. The
experimentally measured emittance follows the empirical formula??

1/140

exn=1+e 7 mm mrad (50)

where the peak current [ is in Amperes. The minimum emittance was found to be for a
cathode radius of 3 mm at 130 A, 4 mm for 200-290 A, and 5 mm above 300 A and ranged
from 3.5-12 7 mm mrad. Kim’s formula for the space-charge-induced emittance results in a
normalized emittance of about 150 7 mm mrad at 300 A, and his formula for the rf-induced
emittance gives a normalized emittance of 0.03 7 mm mrad. Kim’s formulae clearly do not
include the important physics associated with the APEX photoinjector.

After detailed analysis, we learned that the major emittance growth mechanisms were
from the rf fields. 0 First, the rf focusing employed in the first cavity introduced strong radial
electric fields. Also, the combination of the external solenoid and quadrupole symmetry
of the coupling slots between cavities introduced an effective rotating quadrupole field.
In Table 1 we summarize PARMELA simulations for 1 and 5 nC bunches. From Fig. 6
we see that the uncompensated emittance for a radially uniform 300 A bunch is about
70 7= mm mrad, about one half that predicted from Kim’s formula (which uses a Gaussian

150 Kim's formula
100
50 —
measured emittance
- compensated e ittance
0 - T T T 1
0 100 200 300 400

CURRENT (&)

FIGURE 11: APEX measured emittance, Kim’s emittance estimate, and compensated space-charge-induced
emittance versus current.
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radial profile). We see in Table 1 that there is only a small emittance variation (20%) between
the compensated Gaussian current-profile and flat-top current-profile cases. This verifies
the assertion that the precise axial current distribution is relatively unimportant.

The rf emittance growth from both the rf focusing and rotating quadrupole fields scales
as the radius squared, plus higher order terms (compare with Eq. (2)). We expect that the
overall emittance is the in-quadrature sum of the space-charge-induced emittance and the
rf-induced emittance. Using the paraxial assumptions (3) and (5) in Section 3, it is clear
that the radius at any axial point can be written as the cathode radius plus an axial function
f1(2) times the cathode radius times the cathode current density. Now the instantaneous rf-
induced emittance growth is another axial function f(z) times the radius squared. The first
axial function is essentially quadratic in z (because the radial acceleration is nearly constant)
over the first cell (which contributes nearly all of the rf-induced emittance growth) and the
second axial function typically is linear in z (from the lowest order expansion term from the
sinusoidal rf field). After direct integration, we find that we can write the overall emittance as

I 4
Exn =,/ +c1 (ro + czr—) 51
o

where we have ignored both the higher-order rf-induced emittance terms and the small
correlation between the axial functions, and where &, is the compensated space-charge-
induced emittance and c¢; and c; are constants introduced by the 1f focusing and the rotating
quadrupole field. The constant c; is given by the axial integral of f, and the constant
¢ is given by the square root of the axial integral of f12 f> divided by the square root
of c¢1. We can compare this form to the emittance fit in Eq. (50). Note that Eq. (50) is
purely empirical, but the functional form of Eq. (51) is physical in origin and correct as
long as the higher-order rf-induced emittance terms are small. We calculate ¢; by using
Eq. (51) at zero current, and find ¢; = 0.0123 m~2. We can calculate ¢, by using
Egs. (50) and (51) at 330 A, and find c; = 6.64 10* m?/A. Using these values, we
tabulate both the experimental emittances and the emittances from Eq. (51) for 130, 200,
250, and 290 A (corresponding to bunch charges of 1, 2, 3, and 4 nC) in Table 2. The
cathode radii in Table 2 were experimentally found to minimize the measured emittance.
The scaling procedure and Fig. 9 are used for the compensated space-charge-induced
emittances and &theory is found using Eq. (51). We see reasonable (on the order of 20%)
agreement. The main conclusion we can form is that the residual space-charge-induced
emittance is smaller than the rf-induced emittance, but not negligible. We also see that the
additional emittance growth from having a smaller cathode radius results from rf-induced
emittance from the growth to a larger beam radius and not from the space-charge-induced
emittance.

Because the emittance is dominated by the tf fields, we would have fairly good agreement
with some variation in the space-charge-induced emittances (perhaps up to a factor of 2),
but the agreement does indicate that the model presented in this paper is consistent with
both simulations and experimental data. Unfortunately the experimental data is complicated
by additional effects. At higher charges, there can be emittance blow up from transverse
wake fields in the accelerating cavities.?! This can be seen by comparing the 5 nC Gaussian
simulation to the 5 nC clipped-Gaussian measurement in Tables 1 and 2. Also, at lower
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charges, there is a greater difference between the axially integrated and slice emittances.'”
This difference affects the emittance measurement, and the instantaneous distribution at the
peak of the bunch is measured instead.??> Again comparing Tables 1 and 2, we see a smaller
measured emittance than predicted by the simulations at 1 nC. In addition, the experimental
uncertainty was about 2 7 mm mrad for the measurements.

We will not compare the results of the model for the compensated space-charge-induced
emittance and Eq. (51) to the results of either the second short-pulse photoinjector designed
to use this compensation scheme, the Advanced Free-Electron Laser at Los Alamos,8 or the
433 MHz long-pulse photoinjector at Boeing Aircraft Company.?’ The compensation in the
Advanced Free-Electron Laser was designed to minimize the slice emittance and not the rms
emittance which makes this analysis irrelevant. The Boeing photoinjector is a long-pulse
machine; the beam is roughly as long as its diameter as it leaves the cathode. Because
particles at different longitudinal positions along the bunch will experience difference
long- and short-bunch histories, there will be additional emittance growth mechanisms
not included in this model. Note that the residual emittance growth from the mechanism
described in this paper would probably be smaller for a long-pulse, low-current machine
and that it is quite possible the emittance growth from the additional mechanisms are also

TABLE 1: Summary of PARMELA simulations

Charge Current Cathode Radius Distribution Emittance Rotated Field
1.0 nC 130 A 3 mm Clipped Gaussian 5.5 7 mm mrad quadrupole
5.0 290 5 Flat-top 525 none
5.0 300 5 Gaussian 6.5 none
5.0 300 5 Gaussian 10.0 quadrupole
5.0 310 5 Clipped Gaussian 8.0 quadrupole
5.0 330 6 Gaussian 8.0 none
5.0 320 6 Flat-top 6.8 none

TABLE 2: Comparison of Eq. (48) and experimental fit. Units for emittances are 7 mm mrad.

Charge Cathode Radius Current n Esc Etheory Emeas
1.0 3 mm 130 A 0.86 22 44 35
2.0 4 200 0.75 4.0 72 52
3.0 4 250 0.94 4.0 8.4 7.0
4.0 4 290 1.08 4.0 9.5 8.9
5.0 5 330 0.79 6.4 11.6 11.6
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small enough to lead to a smaller overall emittance than from a short-pulse photoinjector
for the same bunch charge. However, bunch compression would be subsequently required
to regain the peak current and beam brightness of the short-pulse devices. Also note that
the rf frequency for a long-pulse photoinjector would have to be relatively long to avoid
excessive rf-induced emittance growth.

As a final check on Eq. (51) we can calculate the optimum cathode radius as a function
of current. By differentiating Eq. (51) we find that the optimum cathode radius satisfies

R n? I
0= 4r38(n) +4cy (r + cz;) (1 - czr—z) : (2)

The optimum radii for 1, 2, 3, 4, and 5 nC are 2.8, 3.4, 3.8, 4.1 and 4.4 mm respectively
(compare with Table 2). This is in fair agreement with the experimental findings, and
provides additional confidence in Eq. (51) and the results in Section 4.

6 CONCLUSION

We have analyzed an emittance reduction scheme which uses only a simple time-
independent lens. This technique can reduce the space-charge-induced emittance growth
in a photoinjector by up to an order of magnitude. Although this technique has been dis-
cussed previously and experimentally verified, there has been no mechanism to estimate the
residual emittance left over after the compensation. This paper included an analytic model
which demonstrated where the residual emittance originates from and a numerical model
which gave normalized quantitative results concerning the residual emittance. Use of the
normalized results and scaling laws can quickly indicate what are the optimal photoinjector
design parameters for the desired bunch parameters. Although this technique is used here
for electron beams in a photoinjector, it can be generalized to other Hamiltonian systems
where one wants to eliminate nonthermal correlations introduced by a nonlinear force.
The mechanism of the compensation technique can be understood with simple analytic
models. We examined phase-space plots from an actual photoinjector and determined that
the residual emittance left after compensation is dominated by the physics associated with
the long-beam regime. Using a numerical model of this regime, we calculated universal
residual emittance curves, which led to an emittance-versus-gradient plot for a typical
cathode-to-lens spacing. We learned that the residual emittance is small if the beam stays
laminar, and increases quickly if the beam’s phase space bifurcates. We also found that
the residual space-charge-induced emittance growth is minimized for a given current if
the current density off the cathode is about 15 E? A/cm? where E is the accelerating
gradient in MV/m. In addition, as predicted in the simple analytic model, compensation
only occurs if the linear focusing element lies sufficiently close to the cathode. As a result,
the minimum emittance does not occur for the maximum possible gradient until the gradient
is so high that the uncompensated emittance is lower than the compensated emittance at
the lower gradient. Assuming that the rf-induced and the residual space-charge-induced
emittance growths are uncorrelated, we predicted the overall rms emittance would have the
scaling used in Eq. (51). Eq. (51) was then shown to be consistent with both the APEX
simulations and the measured data. This agreement demonstrates that the model for the
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compensated space-charge-induced emittance is reasonably accurate. Using this model and
Kim’s equation for the rf-induced emittance, we suspect that it is possible to have rms
emittances roughly one-half those at APEX by eliminating the nonlinear rf fields. This
model also accurately predicted optimum experimental cathode radii.

The rf-induced emittance growth in a photoinjector (Eq. (2)) increases linearly with
gradient and quadratically with frequency. The main reason to go to higher frequency and
gradient is to reduce the space-charge-induced emittance growth. Use of the compensation
technique allows operation of lower frequency and gradient photoinjectors with lower
overall emittance growth for a given peak current.
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APPENDIX

In this Appendix, we will show that under some circumstances the compensation can be
simultaneously made for both the nonlinearities resulting from the short-bunch regime and
the long-bunch regime with a single infinitely thin lens. Then we will examine what happens
if multiple thin lenses (or a thick lens) are used.

Although the beam is in general accelerating, it is possible to construct an instantaneous
inertial frame of reference comoving with the beam. If the acceleration is sufficiently small
compared to the beam length so retardation effects do not create relative beam motion and
variations in density, then the transverse motion obeys

2r

i Ap(p, 8) (A1)
%

where ¢, is the proper time in the instantaneous beam frame of reference and A, is the

force times the electronic charge over its mass in that frame. Note that A, differs from the

normalized force A, defined in Eq. (4) by the factor 1/y382%¢2. The laboratory frame is

related to the beam frame by

yBcdty =dz . (A2)
Using the relations
e
Ap=Epp—, (A3)
m
1 e
A= ﬁE”Z ) (A4)
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and

Erq=vEw, (AS5)

where the [ subscript refers to the laboratory frame, we see that the transverse equation of
motion becomes

d eE
yﬂc— (yﬂc—) =Ap = L. YA . (A6)
ym
We can integrate Eq. (A6)-once to yield
yBeg: = f Y 1+ rlvobac (A7)

where the o subscript refers to the variables’ values at z = 0. Integrating again gives

r—ro+royoﬂ0[dz /V,BC (A8)

Here the y’s, B’s, and A;’s are functions of the dummy integration variable z’ or Z that they
are associated with under the integral. Just before the lens at z = z; we have

S / = / e (A9)
and
2]
T = # ‘;ZCA +r ’y;ﬁ" , (A10)

using bl to mean before lens. We will assume a linear lens with a focal length of ;. Ata .
position z4 beyond the lens, we find

21+2d

d7
- l+ o)’oﬂo / W

21+
r =ro+r;Voﬂo [ yﬂc

2l

z1+24

2
dz , dz’
oot 4 v 224 )
vB ? ore 00 vB VIBC (A11)

2l
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and
21+24 ,
, 1 / dz ) YoBo
— —_— l + 0
yBc Bc vB
p zZ 47 zZ 47 7 &
YiPi , Z Z Z
—a— | ro + 1,708 /—-I—/ —Aa ], (A12)
vB ¢ "000 vB ) yBe) P

where y; and S; are the particles’ gamma and beta at the lens position.

At this point, we will make an approximation for the laboratory space-charge force A; that
is valid in both the short- and long-beam regimes. We will use a form slightly different than
Eq. (22) in order to manifest the linear axial force expansion, Eq. (14). The space-charge
force will be assumed to be of the form

Mo, ) = p;li (Aok(0)e™ /085 1 (Ag + MO = e™4/03))  (A13)

where A, is given by Eq. (23), x = ¢ — £, (as before), k is some radial function, and A/,
is a function of z only describing the linear dependence of the radial field on a particle’s
displacement from ¢,.

As before, no emittance at the beam location z; 4+ z4 means at that location

r! 7
il (A14)
¥y v
or
0 = rirj —ryr; (A15)

for all particles i and j. This in turn requires that the coefficients of the three terms in
Eq. (A15) with the factors k(o;) — k(p;), k(0j) xj — k(pj) xi, and x; — x; be zero.
We can define the following integrands to simplify the resulting expressions:

I = A, (1— e /03%) (A16)
I = Aje=4r/085 (A17)
and
B=A, (1 - e_A’/O‘36) : (A18)
The three equations that must be satisfied are given by
(BI -CH)—oaq(EI+BL—-CK—-FH)=0, (A19)

(BG—AH) —a(EG+BJ—-AK-DH)=0,

(A20)
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and
(CG—-AI) —aqy(FG+CJ—-AL-DL) =0, (A21)
where
z 47 2+24 a7 7 & zl+zdd ,
Zz Z Z Z
A= d — _— I ! _—, A22
r0+r0y0ﬂ0 le‘*‘ f yﬂc/yzﬂc 1+ 7,Y0Bo VB ( )
0 0 4]
21+Zd

- 0/ e / 1ol (A23)

uta 4

4 .
c= | & / ‘jz I, (A24)
vBe J y*Bc
0
z1+z,1d , zzd , Y 47 4 4
Z Z Z Z
D=yzﬂz/— r+r’yﬂf——+f / nl. (A25)
B\ ) B vBe J y2Bc
4] 0 0 0
zz+zad L 4 47 4 £
Z Zz Z
E=up [ & f Ll / nl. (A26)
vB yBc ) v*Bc
4] \0 0
zl+zdd L @ 47 4 &
Z Zz Z
F=np / il f / 5|, (A27)
vB yBe ) y2Bc
2 0 0
2U+z2d d , ﬂ
Z 1 YoPo
vB y2Bc °yB
1 21424 d ,
Z
H=— — I, (A29)
vB ¥2Bc
| 21+24 d ,
1=— [ Z o, (A30)
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2] Zl Zz
viBi , /dz’ /‘dz’/ dz
_ az , A31
yﬂ r0+roy0ﬁ0 yﬁ+ yﬂc 2,30 1 ( )
0 0 0
g (fdd [ &
B f b4 / Z
K=" — + L], (A32)
vB yBc y2Bc
0 0
and
g (a7 | a
vibi 4 Z
WA [dz / : (A33)
vB 0/ yBc 2ﬂ

Although Egs. (A19)-(A21) are nonlinear, they can be satisfied with sufficient number of
free variables. In particular, if the accelerating gradient can be tailored, the integrals can
be adjusted to give a solution. In that case, the beam is compensated in both the short- and
long-bunch regimes.

To show that a solution can exist, let’s consider for example a beam line with made up of
drifts and sections with accelerating fields so high that the acceleration can be considered
to take place over an infinitesimal distance. Say the beam line starts with a drift /; with a
beam energy of y;m,c? followed by a sudden acceleration to an energy of y,m,c?. The
beam drifts at this energy for a distance /; and then is suddenly accelerated to an energy of
ysmoc?, followed by a final drift of length I3. Let us assume that the focusing lens is in the
middle of the second drift, the integrands in Eqs. (A16)—(A18) are small (after integration
compared to the initial beam radius), and the lengths are adjusted such that

In
YnBn

in the units we are using. If we assume that the beam’s aspect ratio does not change
appreciably within the drifts, we can use the notation I, ,, = I, (ym) to specify the different
integrands along the drifts m. If y; is very close to one and y; is very large, then the integrands
I3,1 and I, 3 vanish and I, and I3 3 are unity if the current distribution is triangular and if

= 1 in our units. For this special case, only A, D, and J are first order and the rest are
higher order. The coefficient for k(0;) x; — k(0j) xi (Eq. (A19)) becomes second order and
vanishes and Egs. (A20) and (A21) lead to

=1 (A34)

2=3I3, — b2 (A35)

Y2
This equation has a solution because we have not specified y»; as y, becomes small I3 »
approaches, zero and I, ; approaches one and as y, becomes large 3 2 approaches one and
I > approaches zero. The inverse focal length o can then be found using either Eq. (A20) or
Eq. (A2 11% Eqgs. (A19)—(A21) have been numerically solved for other, realistic photoinjector
designs.
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An alternative method to simultaneously compensate in the long- and the short-bunch
regimes would be to introduce additional thin lenses. Three lenses would lead in general
to a quartic equation for the values of the lenses’ focal strengths; fortunately, all terms
quadratic and higher can be forced to drop out, leaving a simple linear system to solve.
The integrals depend on the lenses’ strengths because they modify the beam’s aspect
ratio through focusing, but typically the coupling is sufficiently weak and no problem
is introduced.

In real photoinjectors we don’t have complete flexibility to tailor the accelerating gradient
to some peculiar profile. However, we do have some amount of flexibility to modify the
thick lens used for the compensation. The combination of the design of the thick lens
and the gradient profile gives enough degrees of freedom to ensure the simultaneous
compensation.
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