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The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is
derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical
cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared
with numerical ones.

1. INTRODUCTION

The wake-field produced by a bunch of relativistic charged particles in an elliptical
pillbox cavity is important not only for future high gradient electron accelerators 1,

but also for a use as an electric wiggler for some proposed free electron laser schemes2
.

The suitability is based on the estimation that the acceleration gradient will exceed
100 MeVjm per IlC of driving bunch charge, and on wavelengths of the order of a
few centimeters.

The principle of acceleration by the wake-field generated in a metallic cavity has
been experimentally verified 3

. Also, other wake-field acceleration schemes using a
plasma medium4 or a dielectric-loaded cavity5 have been experimentally investigated.
However, these wake-field schemes have not been demonstrated to have significantly
larger acceleration gradient than that in a metallic cavity. Elliptical cavities have
been investigated by several authors 1 ,2,6,9. It was shown6 ,9 that in elliptical cavities
the transformer ratios are rather limited, and that a strong transverse wake-field,
which might lead to beam instabilities, is also excited. However, we can overcome
the low transformer ratio and the transverse deflection problem by using multi-stage
schemes. Although the transformer ratio would not be as high, a wake-field acceler­
ator not based on the impedance transformation principle could be achieved by using
multi-stage schemes with short stages; the driving beam is replaced with a new one
or replenished in energy after each stage. By rotating subsequent groups of cavities,
the overall transverse deflection of the accelerated beam can be minimized.

The wake potential in an elliptical cavity can be obtained either by modal analysis
or by numerically solving Maxwell's equations in the time domain. In the previous
modal analysis7,8, the wake-field is expressed in a Fourier series based on the vector
eigenfunctions of the unit pillbox. For infinitely repeating structures, the problem for
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the entire acceleration cavity is reduced to that in a pillbox cavity by using Floquet's
theorem on the periodicity. The modal analysis can be generalized to a cavity of
arbitrary shape when we can calculate the resonant modes. For a cavity with finite
apertures we should use numerical methods to find resonant modes accurately.
Previously the wake-fields in an elliptic pillbox cavity with finite aperture were
calculated using the numerical code WELL9

, which directly solves Maxwell's equa­
tions in the time domain.

In this article, we do not take into account the aperture effect. The analytic solution
which will be formulated in this article exists and is of interest, even though it is an
approximation for the cavity with beam holes, since we can readily estimate the
maximum energy gain of the accelerated particle. In view of these considerations, we
try to obtain an analytic expression for the resonant modes in an elliptical pillbox
cavity in the limit of vanishing aperture. Using the mode analysis, the longitudinal
and transverse wake potentials are derived in terms of Mathieu functions. It is also
shown that we can derive exactly the same expressions for the wake potentials in a
circular cavity as in Ref. 7 when the ellipse tends to a circle.

2. ELLIPTIC PILLBOX CAVITY

2.1. Solution of Homogeneous Helmholtz Equation in an Elliptic Cavity

Consider an elliptic pillbox cavity as shown in Fig. 1. For a cavity of elliptic cross
section, the eigenfunctions can be found in terms of known functions by transforming
the Cartesian coordinates to the confocal elliptic coordinates as shown in Fig. 2. In
these coordinates, boundary conditions on the elliptic cavity are readily satisfied. The
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FIGURE 1 Elliptic pillbox cavity.
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FIGURE 2 Confocal elliptical coordinates.

elliptic coordinate variables (~, 1], z) are defined bylo

X = h cosh ~ cos 1],

Y = h sinh ~ sin 1],

Z=z,
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(1)

(2)

where h is the semi-interfocal distance.
The Helmholtz equation is then transformed to

1 (02\{J 02\{J) 02\{J
V2 \{J + K

2\{J = - + - + - + K
2\{J = 0.

h2(sinh2 ~ + sin2 1]) 0~2 01]2 OZ2

Following the method of separation of variables, we seek to find solutions of the form

\{J(~, 1], z) = f(~)g(1])w(z). (3)

Substituting Eq. (3) into (2) and dividing by \{J, Eq. (2) is split into three ordinary
differential equations:

f"(~) - (a - 2q cosh 2~)f(~) = 0,

g"(1]) + (a - 2q cos 21])g(1]) = 0,

w"(z) + [32W(Z) = 0,

(4)

(5)

(6)

where 2q = y2h2/2, y2 = K
2 - [32, and a is an arbitrary separation constant. The above

Eqs. (4) and (5) are called the Mathieu equations. The solutions of these equations
are the Mathieu functions 1o.
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2.2. Resonant Modes of a Cavity

For a closed elliptic pillbox cavity, we consider the solutions of

(Vi + y2)t/J(~, 11) = 0 (7)

in the region 0 ~ ~ ~ ~o and 0 ~ 11 :::; 2n, where t/J = Ez for a TM wave and Hz for
a TE wave. Any combination of the product of the solution of Eqs. (4) and (5) is also
the solution of Eq. (7). In addition to the boundary conditions, the following
conditions must be satisfied:

(i) continuity of t/J on the interfocal line,

(ii) continuity of gradient of t/J on the interfocal line,

a a
a~ (t/J(~, tJ))~-->o = - a~ (t/J(~, -tJ))~-->o'

(8)

(9)

Among the possible combinations, the only permissible form of the solution which
satisfies above two conditions is

00 00

t/J = L CmCem(~' q)Cem(11, q) + L SmSem(~' q)Sem(11, q), (10)
m=O m=1

with the factor exp(j(wt - [3z)) being omitted. Here, Cm and Sm are arbitrary
constants. The functions Cem(11, q) and sem(11, q) are respectively the even and odd type
Mathieu functions of the first kinds of integral order, and Cem(~' q) and Sem(~' q) are
the modified Mathieu functions of the first kinds of integral order. These functions are
given by10

00

ce2n(11, q) = L A~~n) cos 2r11,
r=O

00

ce2n +1(11, q) = L A~~+11) cos (2r + 1)11,
r=O

00

se2n + 2(11, q) = L B~~n + 2) sin (2r + 2)11,
r=O

00

se2n+ 1(11, q) = L B~~n++11) sin (2r + 1)11,
r=O

(11)

(12)

(13)

(14)

for n = 0, 1, 2, ... , and the coefficients A and B are function of q. Modified Mathieu
functions Cem(~, q) and Sem(~, q) have the same forms as in Eqs. (11H14) except 11,
sin, and cos are replaced by ~, sinh, and cosh respectively.

We first notice that symmetry of t/J(~, 11) is determined by Cem(11, q) and Sem(11, q).
From Eqs. (11)-(14) we see that the first term in Eq. (10) is an even function and the
second term is an odd function with respect to 11. Therefore, the second term in Eq.
(10) is always zero on the median plane (y = 0 plane) where wake potentials are to
be evaluated, and does not contribute to the calculation of the longitudinal wake
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potential. For this reason, we only consider the even-type modes of a TM wave,
t/Jm = Cem(~' q)Cem(11, q), for the wake potential calculation.

The boundary conditions are:

(15)

(16)p = 0,1,2, ...

There remains the condition that no tangential component of electric field exists at
the end-plate walls at z = 0 and d, which is satisfied if we choose

pn
P=d'

where d is the gap distance of the pillbox cavity shown in Fig. 1. From Eq. (15) we have

(17)

Let qmn be the nth root of Eq. (17) for mode m. Then we can calculate the resonant
frequencies from the root qmn' Combining 2q = y2h2/2 and y2 = K

2
- p2

, the resonant
frequencies are given by

W:np = t~;n + (p:Yf/2.

The wavelength of the dominant mode is then given by

nh nXbec
A010 =--=--,

~~

(18)

(19)

where ec and X b are, respectively, the eccentricity and semi-major axis of the boundary
ellipse. The ratio Ao1o/xb is plotted against ec in Fig. 3. In this figure, we see that as
ec -+ 0, i.e., as an ellipse tends to a circle, the ratio approaches 2.61, which is the ratio
of wavelength to the radius, A/ro = 2n/X01' for the TM010 mode of a circular pillbox
cavity of radius ro, where XOl is the first zero of Bessel function Jo.

The field components are given by

(20)

(21)

(22)

(23)

(24)

H =0Zmnp , (25)
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FIGURE 3 Plot of A010/Xb as a function of eccentricity.

where

(26)
= 4qmn {COSh 2~ - cos 2'1}1/2

Dmn h 2 .

The resonant mode patterns for some of the lower-order modes are shown in
Fig. 4.

3. WAKE POTENTIAL CALCULATION

3.1. Longitudinal Wake Potential

Consider the test charge which is traveling through the focus axis of an elliptic pillbox
cavity (~ = 0, '1 = n) and trailing the driving charge Q, which is traveling through
the other focus axis (~ = '1 = 0), by a fixed distance s in the z-direction. The delta
function longitudinal wake potential ~ is defined as the energy gained by unit test
charge. Bane et al. 7 obtained the wake potential as an infinite sum

(WAS)
~(s) = 2~ k;. cos -c-

= L V!(r')V;.(r) cos (WAS),
A 2UA C

for S > 0 (27)
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FIGURE 4 Configuration of resonant modes in an elliptic pillbox cavity. ((a) m = 0, (b) m = 1, (c) m = 2,
(d) m = 3).

where k). is the loss parameter and V). is the voltage induced by a point charge Q.
The stored energy u). is given by

8
0 f2 a).' a).1 dV = u).b).).I,

where a). is the vector eigenfunction. The vectors r' and r represent, respectively, the
transverse position of the path of the driving charge and that of the test charge. Using
the field components in Eqs. (20)-(22), the voltage V). becomes

fd (jOJz)
Vir') = 0 dz exp ~ a"z(O, 0, z)

= Cem(O, qmn)cem(O, qmn) f:dz exp C:z
) cos p; z, (29)

fd (jOJZ)
V;.(r) = 0 dz exp ~ a"J~, 1'/, z)

= Cem(~, qmn)cem(I'/, qmn) f: dz exp C:z
) cos p; z, (30)



90

and further

1. S. YANG AND K. W.CHEN

(31)

(WmnpY
€; yC~n fCe~(~, qmn)Ce~(I1, qmn) COS

2 (p;)z dV. (32)

h2

After integration using dV = - (cosh 2~ - cos 21]) d~ d1] dz, it is further reduced to
2

where

00

A (m)A(m) + "A(m)A(m) f' 0 2 4o 2 f...J 2r 2r + 2' lor m = , , , ...
r=O

00

t(Aim »)2 + LA~~~ 1A~~~3' for m = 1,3,5, ...
r=O

(33)

(34)

(35)

and A~m) are the coefficients for the series representation of the Mathieu function
cem(1], q) given in Eqs. (11) and (12).

Substituting Eq. (31) and (33) into (27), the delta function longitudinal wake
potential on the accelerated beam path (~ = 0, 1] = n) becomes

(
Wmnpd)e C 1 - (- 1)P cos--

2 00 00 00 p mn C (Wmn s)
~(s) = - L L L cos --p ,

eond m=O n=l p=o qmnNmn c

where ep = t for p = 0 and 1 for p # O. N mn and Cmn in Eq. (35) are given by

i
~O

N mn = 0 Ce~(~, qmn) x (cosh 2~ - em) d~, (36)
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(38)

(37)

Cmn = (Cem(O, qmn»2Cem(0, qmn)Cem(n, qmn)

(~oA~~)r for m = 0, 2,4, .

~(JoA~~~lr form = 1,3,5, .

F or a circular pillbox cavity, ~ is expressed analytically7
,8 in the form of

(
Wonpd)1-(-1)Pcos--

4 ~ ~ C (WonpS)~(S) = -- ~ ~ 8p 2 cos -- ,
80 nd n= 1 p=0 Xon J 1(Xon) c

where Xon is the nth zero of the Bessel function Jo.
When the boundary ellipse tends to a circle of radius ro, the confocal hyperbolae

in Fig. 2 become radii of the circle r, and the confocal ellipses become concentric
circles of that radius. In this case, Eq. (35) is reduced exactly to Eq. (38). We can
easily show this by using the limiting properties of Mathieu functions. The Mathieu
functions Cem(l1, q) and Cem(~' q) degenerate into the following forms 1o as h ~ 0
and ~ ~ 00, while keeping the product h cosh ~ ~ r:

q ~O as h ~O, (39)

(43)

{J! form = 0
Cem(l1, q) ~ 2' (41)

cos m¢, for m =1= 0

Cem(~, q) ~ PmJm(yr), (41)

A~m) ~ 0 (except A~) ~ 1 for m =1= 0, and AbO) ~ J!), (42)

where Pm is a constant multiplier, and Jm(x) is the Bessel function of the first kind.
Then, Eq. (37) becomes

Cmn = (Cem(O, qmn»2cem(O, qmn)cem(n, qmn)

~ (PmJm(O) cos m¢)2 = 0, for m =1= 0

~ (PoJ0(0»2/2 = p~/2, for m = o.
It is apparent from Eq. (43) that contributions from m i= 0 modes become zero
as expected as an ellipse tends to a circle. The denominator in Eq. (35) for m = 0
becomes

f
c;o 2 .. (Po y)2 fro 2

qon CeO(~' qon) cosh 2~ d~ ~-- Jo(yr)r dr
0 2 0

2
Po 2 J2( )

~ 4 Xon 1 Xon' (44)

where y = Xon/ro. Substituting Eqs. (43) and (44) into (35), we can get exactly the
same expression for the wake potential in the circular pillbox cavity as in Eq. (38).
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No closed expression is known for the infinite sum in Eqs. (35) and (38), and they
must be evaluated numerically.

If the driving bunch has a Gaussian charge distribution

A(Z) = ~ exp (-Z:), (45)
v 2na 2a

then the bunch wake potential Uz becomes

Uz(s) = rooA(Z)~(S - z) dz

(
Wmnpd)r;:;;:. 8p Cmn 1 - (-l)P cos--

V 21n 00 00 00 C
=-- L L L

80nda m=On=lp=0 qmnNmn

Is (-Z2) W (s-z)x exp --2 cos mnp dz.
- 00 2a c

When s ~ a, the bunch wake potential becomes

Uz(s) ~ _2_ f f f exp(_(Wmnp)2(12/2)
80 nd m = 0 n = 1 p = 0 c

(
Wmnpd)8p Cmn 1- (-1)Pcos--

C WmnpS
x -----------cos--.

qmnNmn C

(46)

(47)

(48)

From this equation, we can see that contributions from the modes whose resonant
wavelengths are much shorter than the bunch length 2a become negligible. For the
dominant mode, Eq. (47) can be conveniently written as

(1 - e.~)1/2 A.2C01 -1/2(21t(J/A)2( 2nd) 2ns
UZOIO ~ 2 2 e 1 - cos - cos -,

80 n decSNol A A

where S = nXbYb is the cross sectional area of the cavity, A is the wavelength of
dominant mode, and ec is the eccentricity of the boundary ellipse. From Eq. (48), we
see that the wake potential scales as w; 2 and S- 1.

3.2. Transverse Wake Potential

From the Panofsky-Wenzel theorem, the transverse wake potential is related to the
longitudinal wake potential by

(49)

From this relation we can write the transverse delta function wake potential as7

W "Vf(r')V.L Vir) . (WAS).L(S) = ~ C sin - . (50)
A 2uAWAC
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On the accelerating beam path (~ = 0, 1] = 1t), we have

V! (r')V .L V,t(r) = Cem(O, q,t)cem(O, q,t)cem(1t, q,t)V.L Cem(O, q,t)

( rd (jWZ) p1t)2
X J0 dz exp ~ cos d Z .

93

(51)

Since the driving charge and test charge are assumed to pass through each focus
axis, only ~-component of the transverse wake potential exists at the foci of the
elliptic cavity. Thus,

1 00

h L (2r)2A~),
= ~ r=O

1 ~ 2 (m)
- f...J (2r + 1) A 2r + l'
hr=o

for m = 0, 2, 4, ...

for m = 1, 2, 5, ...

(52)

for m = 0, 2, 4, ...

for m = 1, 3, 5, ...

Therefore, the transverse delta function wake potential is given by

- ( W,td)
Bp C,t 1 - ( - 1)P cos - ( )

2c c w,t
W.L(s) = --L sin -s ,

Bond ,t w,tq,tN,t c

where

C,t = Cem(O, qmn)cem(O, qmn)cem(n, qmn)V1- Cem(O, qmn)

~ (~o A~n:)Y(Jo(2r)2A~n:>)

~1 (Jo A~n:~lY(~o(2r + 1)2A~n:~1}

(53)

(54)

(55)

For the driving bunch of a Gaussian charge distribution, the transverse bunch
wake potential becomes

U.l(s) = fooA(Z)W.l(s - z) dz

- ( Wmnpd)MZ.. B C 1 - (- 1)P cos--
= Cy 21n f f f p mn . C

Bonda m==O n==l p=o wmnpqmnNmn

x fS exp (- Z22) sin wmnp
(8 - z) dz.

- 00 2a c
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4. NUMERICAL EXAMPLES AND DISCUSSIONS

The longitudinal and transverse wake potentials in an elliptic pillbox cavity are
calculated by using Eqs. (46) and (55). We choose the same cavity dimensions and
bunch length as in Ref. 9 to compare the results. The cavity dimensions and beam
parameter are:

major axis 2Xb = 10 cm,

minor axis 2Yb = 6 cm,

gap distance d = 2 cm,

(J = 5 mm.

The wavelength, Amnp , and the loss parameters of a Gaussian bunch, k;.(a), for
some of lower-order resonant modes are tabulated in Table I, while in Table II the

TABLE I

Wavelength Amnp and Loss Parameter kmnp(a) of an Elliptical Pillbox Cavity (Xb = 5 em, Yb = 3 em,
d = 2 em, a = 5 mm)

m qml Am10 Am11 Am12 km10(a) km11(a) kmI2(a)
(em) (em) (em) (VjpC) (VjpC) (VjpC)

0 1.7353 9.5394 3.6883 1.9574 3.2345 x 10- 2 1.6366 x 10- 3 6.8638 x 10- 5

1 3.3522 6.8634 3.4559 1.9201 1.2629 x 10- 1 1.2993 X 10- 2 5.7848 X 10- 4

2 5.6530 5.2853 3.1895 1.8705 2.2821 x 10- 1 4.3203 x 10- 2 2.0914 x 10- 3

3 8.6577 4.2708 2.9194 1.8112 2.5776 x 10- 1 8.4739 x 10- 2 4.5668 x 10- 3

4 12.3689 3.5731 2.6648 1.7452 2.0007 x 10- 1 1.1262 X 10- 1 6.9154 X 10- 3

5 16.7792 3.0678 2.4343 1.6754 1.1060 x 10- 1 1.0854 X 10- 1 7.7733 X 10- 3

m qm2 Am20 Am21 Am22 km20(a) km21(a) km22(a)
(em) (em) (em) (VjpC) (VjpC) (VjpC)

0 11.3563 3.7289 2.7276 1.7625 2.8997 x 10- 6 1.4188 X 10- 6 8.4089 x 10- 8

1 14.6278 3.2856 2.5389 1.7084 1.9755 x 10- 5 1.4828 x 10- 5 9.8517 X 10- 7

2 18.4878 2.9225 2.3598 1.6505 6.1309 x 10- 5 7.4392 x 10- 5 5.6547 X 10- 6

3 22.9665 2.6221 2.1930 1.5902 1.0984 x 10- 4 2.3849 X 10- 4 2.1224 x 10- 5

4 28.0957 2.3708 2.0395 1.5287 1.1261 x 10- 4 5.4398 X 10- 4 5.8271 x 10- 5

5 33.9196 2.1577 1.8990 1.4668 4.5322 x 10- 4 9.1853 X 10- 4 1.2279 x 10- 5

TABLE II

Wavelength Aonp and Loss Parameter konp(a) of a Circular Pillbox Cavity (ro = 3.873 em, d = 2 em, a = 5
mm)

n Xon Aono AOn1 AOn2 kono(a) kOn1(a) kOn2(a)
(em) (em) (em) (VjpC) (VjpC) (VjpC)

1 2.405 10.118 3.720 1.962 7.235 x 10- 1 3.212 X 10- 2 1.338 X 10- 3

2 5.520 4.408 2.962 1.821 6.031 x 10- 1 1.818 X 10- 1 9.614 x 10- 3

3 8.654 2.812 2.300 1.630 1.162 x 10- 1 1.700 X 10- 1 1.361 x 10- 2

4 11.792 2.064 1.834 1.436 4.419 x 10- 4 4.693 X 10- 2 7.128 X 10- 3

5 14.931 1.630 1.509 1.263 3.944 x 10- 3 2.710 X 10- 3 1.458 X 10- 3
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same information is given for the circular pillbox cavity that has the same cross

sectional area (r0 = JXbYb)·
Figures 5 and 6 are, respectively, the curves of the longitudinal wake potential on

the accelerated beam path and that on the driving beam path, in which different
number of modes are included (solid lines for 24 modes and broken lines for 12
modes). From these figures, we see that the mode summation converges rapidly,
indicating clearly that the wake potential is dominated by a few lower modes. It was
pointed out that the wake potential inside the bunch is difficult to calculate because
of the slow convergence of mode summation8

• However, it is not clear in these figures
whether the series converges rather slowly for positions inside the driving bunch.

On the accelerated beam path, we obtained about 125 MeV/m/J.1C acceleration
gradient, while about 110 MeV/m/J.1C was obtained by Y. Chin9 (see Fig. 7). The
elliptical cavity in this example calculation does not represent the maximum accelera­
tion gradient that can be achieved. As discussed earlier, the longitudinal wake
potential is proportional to the number of particles in the driving bunch and inversely
proportional to the cross sectional area of the cavity. Also, it is dependent on the
distribution of charges within a bunch and the eccentricity of a cavity. By choosing
appropriate parameters, one can achieve an even-higher acceleration gradient.

The transverse wake potentials on the accelerated beam path and driving beam
path are shown in Figs. 8 and 9 by the broken lines. The corresponding longitudinal

3.5 .....---------------------------,
--24 modes
-----·12 modes

G
~
~ 0.0 -+---,.;;...~~-#--\-_;.-t__of__+_fo_+_..,..._+_f_t_Pl~_+_I_+_+__t__fo-t--__j~
~..........

-;

0.350.250.16

Delay s (meter)

0.06
-3.5 -+---...---.....--......--....----.....---".-.-~,.....- .......,......---i

-0.06

FIGURE 5 Plot of the longitudinal wake potential on the accelerated beam path (solid line: 24 modes
sum; broken line: 12 modes sum).
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3.5 .....-------------------------.......
--24 modes
----12 modes
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~
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-0.05 0.15
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FIGURE 6 Plot of the longitudinal wake potential on the driving beam path (solid line: 24 modes sum;
broken line: 12 modes sum).

Delay s (meter)

FIGURE 7 Plot of normalized wake potentials on the accelerated beam path (results of Ref. 9, solid
line: longitudinal wake potential/(2.54 MeV/jlC); broken line: transverse wake potential/(l.11 MeV/jlC)).



WAKE-FIELDS IN ELLIPTICAL PILLBOX CAVITY 97

0.350.250.15
Delay S (Meter)

1\, \

0.05

1.0

-1.0 --+----__--__----....-,...----r-----..,r----..,.---- ---......-----f
-0.05

]
.a
~
G
~a
t).

~

~ 0.0
~

!I:
"0
~

.~..
E
0z

FIGURE 8 Plot of normalized wake potentials on the accelerated beam path (solid line: longitudinal
wake potential (3.40 MeV/IlC); broken line: transverse wake potential (1.29 MeV/IlC)).
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FIGURE 9 Plot of normalized wake potentials on the driving beam path (solid line: longitudinal wake
potential (2.77 MeV/IlC); broken line: transverse wake potential (1.68 MeV/IlC)).
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Delay 5 (meter)

FIGURE 10 Plot of normalized wake potentials on the driving beam path (results of Ref. 9, solid line:
longitudinal wake potential/(1.92 MeV/,uC); broken line: transverse wake potential/(1.48 MeV/,uC)).

wake potentials are plotted together in order to see if we can find the positions, such
as the point A in Fig. 8, at which the accelerating potential is large while the transverse
potential is small. The charge to be accelerated should be positioned at such a point
in order to avoid large transverse deflection during acceleration. Figures 7 and 10
are, respectively, the curves for the longitudinal and transverse wake potentials on
the accelerated beam path and driving beam path calculated by the numerical code
WELL9

• In these calculations, the effect of beam apertures of 0.5 cm radius was
considered. Comparing these analytical results (Figures 8 and 9) with numerical
method (Figures 7 and 10), we found very good agreement in both magnitudes and
frequencies. However, magnitude of the longitudinal and transverse wake potentials
are higher for this analytical method which does not include the beam aperture effects.
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