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Using Sacherer's integral equation, Robinson's stability conditions are re-derived by considering the
coupling between the upper and lower synchrotron sidebands at the rf frequency. The equivalent
circuit model approach and the kinetic description provide almost the same results except for a factor
that depends on the equilibrium phase-space distribution of beam particles. The stability threshold
current derived from the Vlasov equation is shown to be higher than Robinson's stability limit. The
coupling between the longitudinal dipole and the quadrupole modes is also studied for a bunched
beam under the influence of a resonator impedance. In the small cavity-detuning region, Robinson's
stability limit is substantially modified by the coupling between dipole and quadrupole modes.

1. INTRODUCTION

The stability of a beam-cavity interaction system has been of interest in both
accelerator design and the academic study of beam dynamics since the initial
work by K. W. Robinson in the middle 1950s.1

,2 For a synchrotron or a storage
ring operated below transition, Robinson showed that the stability conditions are

0< sin (2q,y), (1)
and

L 2Vmcos 1/Js
(2)b< ,

~ sin (2q,y)
where

<p t -1 2Q(WR - WRF)
(3)= any (J)R

is the rf detuning angle, Q is the quality factor of the cavity, (J)R is the resonant
frequency of the cavity, (J)RF is the frequency of the applied rf power, I b is
approximately equal to the Fourier component of the beam current at the rf
frequency, Vmis the maximum voltage on the cavity,. 1/Js is the synchronous angle
between the beam current and the voltage on the cavity, and rJi is the shunt
resistance of the cavity. For machines operated above transition, the inequality
sign in Inequality (1) needs to be reversed. Inequality (1), to be referred to as
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Robinson's first criterion in the following, defines the stability range that the
frequency of the rf power can be detuned from the resonant frequency of the
cavity. Inequality (2), hereinafter called Robinson's second criterion, shows the
relation among the synchronous angle, the cavity detuning, and the stable beam
current that can be stored or accelerated. For narrow-band cavities, short beam
bunches, and large detuning angles, Robinson's criteria provide simple-to-use
relations and results accurate enough for estimation purposes (see the discussions
below). We notice that the first criterion is independent of the beam current and
the second criterion indicates that the maximum stable beam current approaches
infinity when the detuning angle approaches zero.

Robinson's stability conditions were originally derived by using an equivalent
circuit model for the beam-cavity system before the more elaborate theory of
bunched-beam stability was formulated based on the Vlasov equation of the
kinetic description.3--6 After Robinson's work, the same or similar problems were
examined by using approaches and formalisms other than the equivalent circuit
model, including the use of the Vlasov equation. 3

,7-24 One of the advantages of
using the Vlasov equation over the equivalent circuit model is that higher
synchrotron harmonics are included in the formalism in a natural way, while the
equivalent circuit approach has to include these harmonics in an ad hoc manner.
In general, there is no unique procedure or formalism for applying the Vlasov
equation to derive the stability information, but a widely used formalism was
developed by Lebedev and Sacherer.3,4 In Sacherer's formalism, an integral
equation is deduced from the linearized Vlasov equation to describe the behavior
of small longitudinal perturbations in a bunched beam, and the perturbations of
the beam-particle distribution in phase space are categorized according to the
harmonics of the synchrotron frequency. Because the synchrotron frequency is
usually much lower than the fundamental frequency of an rf cavity, synchrotron
harmonics may appear in the beam signal as sidebands around the rf frequency.
For narrow-band resonators, only those synchrotron sidebands near the resonant
frequencies of the cavity contribute significantly to the beam-cavity interaction.
For a beam with more than one bunch, the content of Robinson's stability covers
only the coherent motions of dipole. modes among bunches. The coupled bunch
modes that are caused by the relative motions among bunches are not included.
Yet, even within the category of coherent motion, more than just the dipole
mode is important. The term "Robinson-Type Instability" is used in this paper to
mean the instability of the coherent bunch mode that may include any possible
coupling among synchrotron harmonics.

The equivalent circuit analysis has shown that the Robinson instability is due to
the coupling of the upper and lower synchrotron sidebands next to the rf
frequency and the effect of the frequency dependence of the cavity impedance.
All these factors causing the instability can be included in any formalism based on
the Vlasov equation. Nevertheless, among the publications using the Vlasov
equation, only Robinson's first criterion has been reproduced explicitly, while a
re-derivation of the second criterion by this technique still has not been seen in
the literature. Even very recently, the consistency between the use of the
equivalent circuit model and the use of Sacherer's integral equation for examining
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the stability of the beam-cavity system is still being questioned.23 In fact, a
dispersion relation, similar to the fourth-order algebraic equation originally
derived by Robinson, was obtained by Gumoski by using the Vlasov equation in
a formalism different from Sacherer's.11 However, instead of re-examining the
Robinson instability, the author 'was interested in the numerical solutions of the
more general dispersion relation for the relatively wide-band resonator
impedance.

Because of practical importance and mathematical simplicity, the stability of
the dipole modes has been extensively studied. As will be shown later, for a
tightly bunched beam interacting with a highly or moderately detuned narrow­
band resonator, the neglect of higher synchrotron harmonics is a good ap­
proximation. However, for long beam bunches or small cavity, detuning, higher
synchrotron harmonics may affect the stability appreciably; therefore, at least a
few of the higher synchrotron harmonics should be considered. When more
synchrotron harmonics are included, the mathematics involved in solving the
Vlasov equation becomes difficult except for a few special equilibrium phase­
space distributions. 19 The customary stability study for a multimode problem is
either to use computer simulation or to apply the Vlasov equation and then use
numerical calcul~tion to examine the roots of the dispersion relation for specific
cases.2G-22,24 These kinds of approaches seem to be the only practical ones if
wide-band impedances are considered. Nonetheless, mathematical experiments
have shown that if only a few modes are coupled, the analytical calculation may
still be manageable and some general but simple stability conditions can be
derived. The results might not be completely accurate but can still show how the
single-mode conclusions are modified qualitatively.

The purposes of this paper are twofold. The first purpose is to show that if the
dipole mode is the only mode under consideration, the result obtained from the
equivalent circuit model approach agrees very well with the result derived from
the kinetic description except for a factor that depends on the phase-space
distribution of beam particles. The second purpose is to study the effects of the
coupling between the dipole and the quadrupole modes for a narrow-band
resonator impedance. In the next section, we shall present the details of the
derivation of Robinson's stability conditions by using Sacherer's integral equa­
tion. The coupling between dipole and quadrupole modes will be studied in
Section 3. For simplicity, we limit our study here to the Robinson-type instability
of a multibunch system, i.e., the coupled-bunch modes are not considered here.
We shall concentrate on the case below transition. Above transition, the analysis
is similar. For comparison, the derivation of Robinson's stability conditions from
the equivalent circuit formalism is included as Appendix A.

2. ROBINSON'S STABILITY CRITERIA RE-DERIVED

Consider the case of M equally spaced particle bunches circulating with angular
revolution-frequency Q o in a circular accelerator or a storage ring. We choose a
coordinate system such that the z-axis is along the direction of particle
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(4)

propagation. For the purpose of our discussion, we can neglect the repulsive
Coulomb force between particles in the equilibrium state, although we consider
the Coulomb force resulting from the density perturbations. Thus, the bunch
equilibrium is maintained by balancing the kinetic pressure and the rf focusing.
We assume that the rf focusing experienced by a beam particle can be
approximated by a linear function of the distance extended from the center of
each bunch, i.e., -lO;Z, with the synchrotron frequency £Os defined according to

2qT/hVmcos 1J's
£Os = 21rrnoyR2'

where q and rno are the charge and the rest mass of a beam particle, respectively;
h is the rf harmonic number; y is the ratio between the relativistic mass and the
rest mass of a beam particle; R is the effective machine radius; and

1 1
T/ =--- (5)

y; y2

is the momentum slip factor for a machine with transition energy moc2Yt. The
single-particle orbit then is given by

Z = r cos (lOst + 0), (6)

and

(7)

where V z is the velocity of the particle relative to the reference particle at the
bunch center, 0 is the phase angle depending on the initial condition, and

r=Vz2+(Vz /lOs )2 (8)

is the ampliutde of the synchrotron oscillation of the particle. We assume that all
bunches have the same equilibrium particle distribution described by a distribu­
tion function lo(z, vz ) in the phase space. Neglecting the relative motion among
bunches, the following Sacherer's integral equation for the coherent modes of
longitudinal perturbations can be derived from the linearized Vlasov equation:6

,21

(w -lws)R1(r) =q
2
M'f/Qol (dlo) 2: Zn(w + nQo) im- 1- 1

21rmoyr dr n,m n

x J1(';) f' Rm(r')Jm(~')r' dr', (9)

where r has been defined in Eq. (8), OJ is the frequency to be solved, I is an
integer designating the azimuthal harmonics of the perturbation in the phase
space of an individual bunch, R[(r) is the Fourier content of the lth harmonic of
the perturbation in the phase space, n is the azimuthal harmonic number around
the ring, Zn( OJ + nQo) is the longitudinal impedance at the frequency OJ + nQo,
and Jk(x) is the kth order Bessel function of the first kind' with argument x. In
arriving at Eq. (9), we have assumed that the equilibrium distribution function
depends on r only, and we have neglected the time-of-flight effect.25
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For a narrow-band resonator impedance, we need only to consider those
frequencies very close to the resonant frequency. Thus, we need only to consider
the cases of n = ±h, 1= ±1, and m = ±1; Eq. (9) is then reduced to

(w - ws )R1(r) = _i: (d';)J1(;)[Zh(W + hQo) - Z-h(W - hQO)](r1 - r -1), (10)

and

where

and

A = q
2
MTJ Q o

21'thmoy'
(12)

(13)

Multiplying both sides of Eq. (10) by rJt(hr/R) and integrating over r, we have

(00 - oos)rt = -ift1~-(oo)(r1 - r -1), (14)
where

ft = A 100 [J (hr)J2 dfo d
mom R dr r,

and

Similarly, we can derive from Eq. (11) that

(00 + oos)r-1 = -ift1~-(oo)(r1 - r -t)·

For nontrivial solutions of r 1 and r -1, we must have that

1

00- oos + ift1~-((0) -ift1~-( (0) I= 0
ift1~-((0) 00 + oos - iftt~_( (0) ,

which is

(15)

(16)

(17)

(18)

(19)

To make it easy to examine the roots of the dispersion relation and to compare
the derivation here with the Laplace transformation approach used in the
equivalent circuit model formalism, we make a change of variable

in Eq. (19) to obtain

s = -ioo (20)

S2 + 00; - 2ift1oos~-( (0) = O. (21)

For a given impedance, if the real parts of all the roots of Eq. (21) are equal to or
less than zero, then the system is stable; otherwise, there is an instability.

/
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Now consider the narrow-band resonator impedance

=!jl/[1 + 2iQ(WR - :;F - is)],

= ~/[1 + i(WR - :RF - is)],

= ~/ (1+~+ i tan epy),

where

(22)

(23)
WR

a'= 2Q'

<Py is the detuning angle defined in Eq. (3), and the relation W ::::::: W s «hQo= WRF

has been used. Similarly, we have

(24)

(25)

Therefore,
~_(w) = Zh(W + hQo) - Z-h(W - hQo),

-2iPA tan <Py
:::::::-----~-

2 •(1 +~) +tan
2 epy

Substituting Eqs. (12) and (15) together with the above expression into Eq.
(21) yields

K~w;IhPA tan <p
(S2 + ( 2)[(a' + S)2 + a'2 tan2 <p ]_. y = 0, (26)

s y Vm cos 1JJs

where

(27)

and Ih ::::::: Ib is the Fourier component of the beam current at W = WRF = hQo.
Note that Eq. (26) is the same as Eq. (A.24) derived from the equivalent circuit
approach in Appendix A except for the factor K in the last term. Also note that
only the imaginary part of the resonator impedance was used in Eq. (21).

To proceed further, we rewrite Eq. (26) as

where
__ 2 2( 2 Klh?A tan lfJy)ao - a-ws sec cpy - ,

Vmcos CPs
at = 2a'w;,

(28)

(29)

(30)
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(31)

(32)

(33)

The conditions for stability, by Routh's criterion,26 ·are (i) ao> 0 and a3 > 0, (ii)
a2a3 - al > 0, and (iii) ala2a3 - ai - aoa~ > O. Condition (i) is satisfied if

2 Klh~ tan 4>y
sec q>y> ,

Vmcos 1/Js
that is

. (2 ) 2Vmcos 1/Js
sin 4>y < PJi·

Klh

Condition (ii) is always satisfied for obvious reasons. Under condition (i), one
finds that condition (iii) is equivalent to

tan q>y > o. (34)

Combining Eqs. (33) and (34), we have, for 'Y < 'Yo the stability conditions as

0< sin (2</Jy) < 2Vmcos 1JJs • (35)
Klh~

Except for the factor K, the stability conditions derived here are the same as the
conditions in Inequalities (1) and (2). In terms of the averaged beam current I,
the above conditions can be rewritten as

F. =m

O . (2 ) 2Vmcos 1/Js< sin q>y < ,
FiI~

where the reduced form factor* Fm is defined as

4L
OO

~ [Jm(~)rdr

h2100
2 !o(r)rdr
R 0

Next, consider the quantity K and the reduced form factor
harmonic of the beam current is given by

MQCf3l2TCR foo. .
Ih =-2- [e,hzIR + e-lhzIRl!o(z, vz) dvz dz,

n 0 -00

=Mqcf3ws Loo L2

'" fo(r)[eihr cos <f>IR + e-ihr cos <f>IR] d</Jr dr,
2nR 0 0

=2Mqcf3ws100

.f () (hr) dR 10 r Jo r r,
o R

* The term form factor was used in Ref. 5 for a different quantity.

(36)

(37)

Fl. The hth

(38)
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where
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ep = tan-1 (-Vz / wsz),

is the phase of the synchrotron motion. Therefore,

2r d: [Jl(~)rdr F1r lo(r)r dr
K= =------

~:rfo(r)Jo(~)r dr 2fO 10(r)Jo(~)r d;

3. DIPOLE-QUADRUPOLE MODE COUPLING

(39)

and

We now study the effect of the coupling between the dipole and quadrupole
modes. To examine the dipole-quadrupole coupling effects, we have to include
the modes of 1= ±2, and m = ±2, also. In this case, we can derive the following
four equations from Eq. (9):

(w - 2ws)r2= -2i112[~-(r2 + r -2) - i~+(rl - r -1)], (40)

(w - ws)r1= -i111[i~+(r2 + r -2) + ~-(rl - r -1)], (41)

(w + ws)r-1 = -i111[i~+(r2 + r -2) + ~-(r1 - r -1)], (42)

(w + 2ws)r-2 = -2i'02[-~-(r2 + r -2) + i~+(rl - r -1)], (43)

where r m and 11m are defined in Eqs. (13) and (15), respectively, ~_ has been
given in Eq. (16) and

~+ = ~+(w) = Zh(w + hQo) + Z-h(w - hQo). (44)

Equating the determinant of the coefficients of r 2, r 1, r -1, and r -2 to zero and
making a change of variable from w to s yields the dispersion relation

S6 + bsss + b4s4 + b3s3 + b2s2 + b 1s + bo= 0, (45)
where

bo= 4a2w;[w; sec2 epy + 16@l2111112- 4@lws(111+ 112) tan c/>y], (46)

b1 = 8aw;, (47)

b2= 4w; + 5w;a2sec2 c/>y - 4@lws a2(111 + 41?2) tan c/>y, (48)

b3 = 10aw;, (49)

b4 = 5w; + £1'2 sec2 c/>y, (50)
and

bs = 2£1'. (51)

In arriving at Eq. (45), we have used the approximations for the resonator
impedance in Eqs. (22) and (24).

By Routh's criterion, the conditions for stability are (i) bs>O, (ii) b4 bs -b3 >0,
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(iii) Vt > 0, (iv) Wt > 0, (V) V2 - boVt > 0, and (vi) bo> 0, where
WI

113

(bsb2 - bt ) (52)Vt = b3 - bs b
4
b

s
- b

3
'

( bob; ) (53)V2 = bt - b
4
bs - b

3
'

and

W =b _ b t _ (V2)(b _ b 3
) (54)

1 2 b 4 b .
5 VI 5

It is straightforward to prove that Conditions (i) and (ii) are always satisfied.
Condition (iii) can be simplified to the requirement of

tan <Py > O. (55)

Under Condition (iii), one can show that Condition (iv) can be satisfied if

16~01O2 + Ws ( 0 1 + 1602) tan <Py - 4~(0 1 + 402)2 sin2 <Py > o. (56)

Assuming Condition (iv) is satisfied, then Condition (v) is equivalent to

4a2w:[16~01O2 + W s ( 0 1 + 1602) tan l/>y - 4~(0 1 + 402)2 sin2 l/>y]

>bo[ws ( 01 + 1602) tan l/>y + 16~01O2]cos2 l/>y, (57)

which can be simplified to

(
16~D2)( 4~f}1)tan </>y -~ tan </>y + 3w

s
> 0,

or

(58)

Thus, Inequalities (57) and (58) describe the same condition. If Condition (vi) is
satisfied, one will find that Inequalities (57) and (58) are more restrictive than
Inequalities (55) and (56); that is, if bo> 0 and the condition in Inequality (57) or
(58) is satisfied, then Inequalities (55) and (56) are also satisfied. Condition (vi)
can be shown to be the same as the inequality

(59)

Combining Inequalities (58) and (59), we can infer the following stability
conditions: (for Y< Yt)
[1] If sin <py :5 [2~/(1+ ;)], then

(60)
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where I is the averaged beam current,

2Vmcos 1JJs
Id = (ThO ( )'. Fi. tJL SIn 2lj>y

(61)

is the maximum stable current for the dipole mode for no coupling with the
quadrupole mode,

and

(62)

(63)

Note that in this region,
3

0:5 13:5 (1 + sf ·

[2] For [2~/(1 + ;)]::; sin lj>y::; [4\1';/(3 + 12;)], there are two subcases:
(a) for 1/2::; ;:

where

and (b) for ;::; 1/2, there are two stable regions:

I < IdTt,
and

(64)

(65)

(66)

where

and

In this subcase

and

11 = ein;seJ>y)[1+ S- \1'(1- sl- 4s roe eJ>y]'

12 = ei~seJ>Y)[1+ S+ \1'(1- S)2 - 4s coe eJ>yJ.

4 2
3:5 11 :5 1+ s'
2 4

--<T:<-­
1 + ~ - 2 - 1 + 4~ ,

(67)

(68)
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Note that when ; = 1/2,

2 4 3 4
-1+-;=-1+-4-;= (1 + ;)Z 3·

[3] If [4V;/(3 + 12;)] :5 sin <Py , then

I < I d l1,
where

115

(69)

1
for;:5 -,

2
and

4 1
1 :5 T1 :5--, for ; ~ - .

1 +4; 2

In most practical situations, ; < (1/2) and [2~/(1+ ;)] < sin <Py , so the
condition described in Inequalities (65) and (69) corresponds to the limit of the
beam current in the majority of practical cases. It can be shown that when
; cotZ <Py is very small, the stability condition in Inequalities (65) and (69) reduces
to

I < Id (l + ; cotZ <Py ). (70)

~'hen ttz = 0 or ; = 0, the above condition and Inequality (58) are the same as
Inequality (36).

4. NUMERICAL RESULTS AND DISCUSSIONS

Examples of the reduced form factors Pi- and F2 as well as the quantities K and ;
are given in Appendix B as functions of g for several equilibrium distribution
functions, where the parameter g is related to the full bunch length L and the
bunching factor B by

hL
g=-=:rcB2R . (71)

The reduced form factors Pi- and F2 as functions of g are plotted in Figs. 1 and 2,
respectively, for the distribution functions treated in Appendix B. Numerical
results for the quantities K and; are shown in Figs. 3 and 4, respectively. For our
discussions, it is sufficient to show the values of these quantities from g = 0 up to
g = 1.5. Beyond g.= 1.5, the linear approximation for the longitudinal focusing
force may be inadequate. All the curves in these figures show a common
property: in each figure, curves corresponding to different equilibrium distribu­
tion functions all converge when the value of g approaches zero. When g is equal
to zero, Pi. has a value of 2, F2 is equal to zero, K is equal to one, and Sis equal
to zero. The behavior of the quantity K is similar to that of the reduced form
factor Fi. When g or the bunch length increases, the values of Fi and K decrease,
thereby suggesting that the dipole mode is more stable in a long bunch than in a
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ri
0 1.5
r-
()
<I:
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(a) f0 (r) oc 8(2r - L)

(b) f 0 (r) oc 8(L - 2r)

(c) f 0 (r) oc exp [- 2(2r/L)2]

(d) f0 (r) oc VL2 - 4r2

(e) f0 (r) oc (L2 - 4r2)

(e)
(d)

(c)
(b)

(a)

1.4 1.61.20.4 0.6 0.8 1.0

9

0.0 L.....-"""--~-""'----'---"-_L.....-"""---'----"-----O"----'----'"_"---~"'O""---'

0.0 0.2

FIGURE 1 The reduced form factor F; as a function of the parameter g for the equilibrium
distribution functions considered in Appendix B.

short bunch. Because K has the maximal value of 1, Eq. (35) indicates that the
threshold current of the dipole mode, derived from the Vlasov equation, could be
higher than Robinson's limit in Eq. (2). The decreased separations ~mong the
curves in Figure 1 and 3 as the g value decreased implies that for short bunches,
the difference between phase-space distributions has little effect on the stability of
the dipole mode. Fig. 4 shows that the value of ; is normally much smaller than
one, except for very long bunches or beams with delta-function distribution in the
amplitude of synchrotron oscillation.

(a) fo (r) oc 8(2r - L)

(b) f0 (r) oc 8(L - 2r)

(c) f0 (r) oc exp [- 2(2r/L)2]

(d) fo (r) oc VL2 -4r 2

(e) fo (r) oc(L2 -4r 2 )

C\lu..
cr
00.3r-
()
<I:u..
~

~ 0.2
u..
Cl
w
()

~ 0.1
W
a:

0.4 0.6 0.8
9

1.0 1.2 1.4

(a)

(b
(c)
(d)
(e)

1.6

FIGURE 2 The reduced form factor F2 as a function of the parameter g for the equilibrium
distribution functions considered in Appendix B.
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(e)
(d)

(c)

(b)
(a) f0 (r) oc 8(2r - L)

(b) fo (r) oc 8(L - 2r)

(c) f 0 (r) oc exp [- 2(2r/L)2]

(d) fo (r) oc VL2 - 4r 2

(e) fo (r) oc (L2 -4r 2)

0.9

0.6

0.4 r...-.....L....---L----....---L_L...--......L.---L..----L.......---L..---I_..I.--l..---l.---L..----L(..:......a..:....J)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

9

0.5

0.8

K0.7

FIGURE 3 The values of the factor K as a function of g for the equilibrium distribution functions
considered in Appendix B.

The quantities 11, 12, and 13 represent the ratios between the maximum stable
beam current with quadrupole-dipole mode coupling and the maximum stable
beam current for dipole mode perturbation only; hence, their numerical values
are interesting to us. The discussions in the last section have shown that only 13
can have values less than one, and it happens only when 3 sin2 c/>y < 4;. Thus, if
one can manage to have 3 sin2 c/>y > 4;, then the maximum stable current can be
higher than that predicted by Robinson's critiera. We note that the maximal
values of 12 and 13 can be as large as four. The numerical values of 11, 12, and 13

1.61.41.0 1.20.8

9
0.60.40.2

(a) f 0 (r) oc 8(2r - L)

(b) fo (r) oc 8(L - 2r)

(c) f 0 (r) oc exp [- 2(2r/L)2]

(d) f0 (r) oc VL2 - 4r 2

(e) f0 (r) oc (L2 - 4r 2)

0.2 (b
(c)
(d)

L----'--b_.-;;I~~~~~==~=:::~---"-:(eJ)0.0
0.0

0.6

~ 0.4

FIGURE 4 The quantity; as a function of g for the equilibrium distribution functions considered in
Appendix B.
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1.8r:-
6
~ 1.6
a:
J­z
W 1.4
a:
a:
::::>
()

1.2

0.1 0.2 0.3 0.4

~

0.5 0.6 0.7 0.8

FIGURE 5 The current ratio ~ as a function of ; for various values of the detuning angle l/Jy. Thick
curves correspond to the extreme values of ~ discussed in the text.

are shown in Figs. 5 to 7 as functions of ; for various values of the detuning angle
</>y . .As can be seen in the figures, the highest current ratios are all in the regions
of small ; and small cavity detuning. It may be worthwhile to recall here that
cavity detuning is necessary because finite rf power is used for acceleration or
bunching, and also that the required phase between the total voltage on the cavity
and beam current is maintained by compensating the beam-load with rf power.
Therefore, in most cases, smaller cavity detuning implies higher cavity voltage so
that the power consumption is higher than minimally required. As shown in the
figures, the value of the parameter; increases with bunch length and, therefore,

FIGURE 6 The current ratio T2 as a function of ; for various values of the detuning angle l/Jy- Thick
curves correspond to the extreme values of T2 considered in the text.
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1.00.80.60.40.2
oL----L_.l-~L:::::t:==::r::==±=::::I:==~=::::I:::::==J
0.0

FIGURE 7 The current ratio 1; as a function of ; for various values of the detuning angle <Py. Thick
curves correspond to the extreme values of 1; considered in the text.

the values of 12 and 13 decrease with bunch length. This means that in the
small detuning region, the coupling between dipole and quadrupole modes makes
long bunches more unstable than short bunches. Figure 8 shows the ratio between
the threshold current with dipole-quadrupole coupling Idq and the threshold
current of the dipole mode Id as a function of the cavity detuning angle epy for
various values of ;. The small stable regions of 1; < (IIId ) < 13 have been
neglected in the figure. The ratio Idqlld has a maximal value of 3/(1 + ;)2 at
sin epy =2~/(1 + ;). The values of Idqlld on the left-hand side and the

(a) ~ = 0.005
(b) ~ = 0.01

(c) ~ = 0.02
(d) ~ = 0.04

(e) ~ = 0.08

2.0

2.5

0.5

0.0 ~----''------''----''----'----L._~_---J.._---J.._-..J

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

<t>y

3.0 r----:-T----,.---r----,----.--r----,..----r--......,

FIGURE 8 The ratio between the threshold current with dipole-quadrupole coupling Idq and the
dipole mode threshold current Id is shown as a function of the detuning angle <Py for some values of ;.
In the figure, we have neglected the small stable regions of T2 < (1/ Id ) < T3 •
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right-hand side of the peak are given by the values of 13 and Tt, respectively. The
peak has small width and large height at small values of ;. When the value of ;
increases, the height drops, but the width increases. For sin epy > 2~/(1 + ;), Idq

decreases to Id as a limit when the detuning angle approaches 90°. For
sin <Py< 2~/(1 + ;), Idq falls off like tan l/>y/;, as described in Eq. (60). Thus, in
the small cavity detuning region, Robinson's criterion is significantly modified by
the coupling with the quadrupole mode. To conclude our results here, we
emphasize that the stability limits shown in Fig. 8 are qualitatively in agreement
with recent computer simulations27 that include synchrotron harmonics higher
than the quadrupole mode.

5. CONCLUSION

We have shown that the stability criteria that Robinson derived previously using
an equivalent circuit model agrees very well with that obtained from the Vlasov
equation in the kinetic description. We found that the stability threshold current
of the dipole mode derived from the Vlasov equation is higher than Robinson's
limit, particularly in a long bunch. We have also studied the coupling between the
dipole and quadrupole modes under the influence of a resonator impedance. For
small cavity detuning. Robinson's stability limit is substantially modified by the
coupling between the dipole mode and the quadrupole mode.
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APPENDIX A

Equivalent Circuit Derivation

The equivalent circuit model was originally adopted by K. W. Robinson. 1
,2 In this

approach, the linearization of the circuit equations is usually performed
geometrically by using phasor diagrams.28 The following derivation uses an
algebraic linearization procedure that will give us the same results. We will
concentrate on the case of Y< Yt. The case of Y> Yt can be treated by the same
procedures.

In the equivalent circuit model, a cavity is envisioned as a parallel RLC circuit;
the applied rf power source and the circulating beam current are envisioned as
currents ig and ib , respectively. The schematic is shown in Fig. A-I.

Using Kirchhoff's law, one can derive that the total voltage on the cavity
satisfies the differential equation

d2v dv 2 dit
-d2 + 2a'-d + lORV =2a'@l-,(A.I)

t t dt
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FIGURE A-I The equivalent circuit model of the beam-cavity interaction system.

where v is the total voltage, a' has been defined in Eq. (23), and

Making the substitutions of

and

v = V(t)e- iWgt,

i =1(t)e-iWgt
g g ,

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.8)

in Eq. (A.I) yields
2- - -

d V . dV 2 2 . - (dI.-)dt2 + 2(a' - lWg) -;ji + (W R - Wg- 2ll¥Wg)V = 2l¥fll dt - lwgI ,

where wg = WRF =hQo is the frequency of the driving rf power and

i=4- ib. (A.7)

For high-Q and high-frequency resonators, l¥« wg, and d2V /dt2 « wgdV /dt.
If we also assume that di/dt« wgi, which is true in general, Eq. (A.6) can be
approximated by

dV [ _ i(wi- W~)] -_ rJh-

d
+ l¥ 2 V - l¥;:JLI.

t wg

The relations among these phasors are shown in Fig. A-2, where we have chosen
a rotating polar coordinate system such that the steady state ib is on the real axis.

For the system under consideration, the phasors will oscillate with respect to
their steady state. We shall use l/Jv and l/Jb to denote the angular deviations of V
and i b from their steady states, respectively.

Using the notations defined above, we can write the phasors in polar form as:

ib = Ib(t)e-iepb(t), (A.9)

4= Ig (t)e- i1J1g , (A.I0)
and v = V(t)e-i1J1tJ-ieptJ(t). (A.II)

Substituting the above polar representations into Eq. (A.8) and equating the real
and imaginary parts on both sides of the equality, we have

dV
-;ji + l¥V = l¥fll[-Ib cos (l/Jb -l/Jv -1/Jv) + Ig cos (l/Jv -1/Jg + 1/Jv)], (A.12)
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FIGURE A-2 Phasor diagram showing the relations among the beam current, ib , the generator
current, ~, and the total cavity voltage, \/, for (a) Y< Yt and (b) y> Yt; 1/Js represents the synchronous
angle and the dashed lines designate steady-state angles.

and

where use has been made of the approximation W + WR = 2w.
One can prove that when 1/Jg = 1/Jv, the system will be in tune, that is, the rf

source will see a real impedance. In this case, Eqs. (A.12) and (A.13) are
simplified to

(A.14)

and

(A.15)

The subsequent analysis will always assume that the system is in tune. Notice that
the total voltage in the steady state v: is given by

WR-W
-----=g = -tan eJ>y.

a'

v: = ~(Ig - Ib cos 1JJv).

Also note that in the steady state,

~Ib sin 1/Jv
v:

(A.16)

(A.I?)

The equations of beam motion are given by the equations of synchrotron
motion:

d~E a'wg • •

---;jf = 2:Jrh [V sIn (1/Js + eJ>v - eJ>b) - v: sIn 1/Js], (A.18)



124

and

TAl-SEN F. WANG

(A.19)dl/Jb = _ 1JWg (6.E)
dt p2 Eo'

where Eo is the total energy of the reference particle, 6.E is the energy deviation
from Eo, and 1J has been defined in Eq. (5). Assuming that Ib is constant and a
small perturbation V is introduced to the voltage, one can linearize Eqs. (A.14),
(A.15), (A.18), and (A.19) to yield

dV ~
dt + aV = -amlb(l/Jb - l/Jv) sin 1JJv, (A.20)

(A.2I)

and

(A.22)

Making the substitutions of V = Vest, 6.E = Best, l/Jv = 4>vest, and l/Jb = 4>best in
Eqs. (A.19) to (A.22), then using the relations sin 1JJv = -cos 1JJs, cos 1JJs = sin 1JJs,
and Eq. (A.17), we can derive that

s + a a~ tan l/Jy 0 - amlbcos 1JJs V-
a tan l/Jy

s + a 0
a~Ib sin 1JJs

~ ~
=0. (A.23)

qWg sin 1JJs qWg~ cos 1JJs -qwg~ cos 1JJs
21thEo 21thEo

-s
21thEo

0 0
flwg -s- p2

In order to have nontrivial solutions for V, 4>v, B, and 4>b' the determinant of
Eq. (A.23) must be zero. We therefore have

a2w;~Ib tan l/J
(S2 + w;)[(s + a)2 + a 2 tan2 l/Jy] - y= O. (A.24)

~ cos 1JJs

Equation (A.24) is the same as Eq. (26) derived from Sacherer's integral
equation except for the factor K in the last term in Eq. (26). By identifying ~ as
Vm , the maximum voltage on the rf cavity, and applying Routh's criterion, we
obtain the stability conditions in Eqs. (1) and (2).

APPENDIX B

Examples of F" F2, K and ;

In Appendix B, we shall present examples of the reduced form factors Pi and F2
as well as the quantities K and ; for some equilibrium distribution functions.
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These quantities will be given as functions of the parameter g defined according
to

hL
g=2R' (B.1)

where L is the bunch length, h is the rf harmonic number and R is the effective
machine radius.
[1] Io(r) ex: ~(2r - L):

1'1 =8J;g) [Jo(g) - Jl~)l

~=8J;g) [J1(g) _ 2J~(g)l

K = 4J1(g)[1_ J1(g) ]
g gJo(g) ,

and

[2] Io(r) ex: 8(L - 2r):

F, = 8J~(g)
12'g

F _ 8J~(g)
2- 2 ,

g

K = 2J1(g)
g ,

and

where 8(x) is the step function.
[3] h(r) ex: exp [-2(2r/L)2]:

16 (g2)1'1 =g211 "4 exp (-g2f4),

16 2 2Pi = 2 12(g /4) exp (-g /4),
g

8 (g2)K= g211 "4 exp(-g2f8),

and

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
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where It(x) and Iz(x) are the modified Bessel functions of the first kind. Note that
we have taken four standard deviations of the distribution as the bunch length.
[4] fo(r) rx VLz - 4rz:

(B.14)

(B.1S)

(B.16)

and

(B.17)

In obtaining the above results, we have expanded the Bessel functions Jt(r) and
Jz(r) in Eq. (37) and kept the four lowest order terms. For r ~ 1.5, the result
should be accurate to 10-3

•

[5] fo(r) rx (Lz - 4rZ
):

and

16 2F:t =z[Jt(g) -Jo(g)Jz(g)],
g

~ = ~~ [Ji(g) +J~(g) _ 4J1(g;J2(g)],

Ji(g)
K = J

2
(g) - Jo(g) ,

; = g[Ji(g) +J~(g)] - 4J1(g)J2(g)
g[Ji(g) - Jo(g )J2(g)] .

(B.18)

(B.19)

(B.20)

(B.21)




