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Abstract The effects of transverse resistive-wall instability on the operation

of a free-electron laser (FEL) are analyzed. The equation of motion for a

bunched beam was previously solved analytically and a steady-state solu­

tion shown to exist. The possibility that the transient state could dominate

this steady state is now considered. The maximum transient amplitude is

obtained for the case where the focusing force dominates the resistive-wall

force. An analytic expression for this amplitude when the bunches come in

with random initial displacements is also derived. Results are compared with

numerical simulations and are applied to various FEL's to determine if the

transverse resistive-wall instability could pose a problem in their operation.

INTRODUCTION

When an electron bunch travels through a pipe of small radius in the wiggler of

a free-electron laser (FEL), it generates a wakefield behind it if the pipe is not

perfectly conducting. This wakefield affects the transverse motion of the bunches

that follow and can lead to beam loss. This possibility was considered in our

earlier papers!,2. Transverse displacement of the bunches was shown to attain

a steady-state value. Criteria were established to determine when this steady­

state displacement could grow exponentially with the length of the wiggler leading

to instability. However, only a heuristic treatment of the transient state (that

precedes the steady state) was given. Since the transient state could have a large

displacement leading to beam loss even if the steady state is well behaved, it is

important to analyze the transient state in a more careful fashion. This is the goal

of this paper.

The analysis is restricted to the case where the dominant effect is from the

first mode in an expansion of the wakefield. This single-mode solution is a good

approximation to the complete solution when the beam-pipe thickness is small.

First, an integral representation of the solution is obtained. Second, this integral
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representation is used to derive analytic formulae characterizing the transient state

for two different cases - the case where only the first bunch has an initial displace­

ment (called the "single pulse" case henceforth) and the case where bunches come

in with random initial displacements. Results are compared with numerical simu­

lations and are also applied to various proposed FEL's to determine whether the

transient state could lead to beam breakup. Because of space limitations, proofs

of equations are not given. These details can be found in Ref. 3.

INTEGRAL REPRESENTATION OF SINGLE MODE SOLUTION

The beam is considered to be a series of bunches traveling with speed v (in the

z direction) in a pipe of inner radius b, outer radius d, thickness T( == d - b), and

conductivitya. Each bunch carries a charge q and there is a fixed time interval ~

between any two bunches. The transverse displacement from the axis of the ]{th

bunch is denoted by ~(z == ct, ]{). Thus t == 0 denotes the time when the bunch

enters pipe (z == 0).

The equation of motion for ~(t, ]{) has been derived earlier2 . If the first

mode dominates, it is given as

where

d2~(t ]{) K-l
dt; + w6e(t, K) = G L exp(-(K -l)tJ./T)e(t, I)

1=0

G _ eqv
- m/1raTb3 '

T == 21rabT.
c2

(1)

(2)

(3)

Here, the factor G incorporates resistive-wall effects and T is the characteristic

time of diffusion of the magnetic field through the wall of the beam pipe. The

quantity Wo in the above expressions is the frequency of the slow betatron motion

in the wiggler and / is the usual relativistic factor. The sum over I in Eq. (1)

represents a sum of the interactions between the ]{th bunch and the wakefields of

all bunches ahead of it.

Equation (1) has been solved exactly3. For the sake of simplicity, we give

below only the solution for the case when all the bunches are assumed to have

zero initial velocity:

e(t,K) = ~ exp(-ktJ./T)~ (1rwot)1/2 (Gt)n ~ (k -1)
L...J L...J 2 2wo n! k-n
k=O n=O
X In_l(WOt)~(O,]{ - k). (4)
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(5)

(6)

To obtain a transient state solution, it is convenient to transform the above

result into an integral representation (see Ref. 3 for the derivation):

K

~(t, !{) == L (_I)k exp(-k~/T)R1(t, k) ~(O,!{ - k)
k=O

where

1 f 1 [( 2 Gu
2

)1/2 ]R 1(t, k) == -. du 2k+1 cos Wo + --2 t.
21rl U 1 + u

The contour in Eq. (6) encloses the origin and Iu 1< 1 everywhere on the contour.

Equation (5) is now in a form that can be used to derive the transient state

solution.

TRANSIENT STATE FOR SINGLE PULSE

In this Section, the transient state is derived for a beam where the first bunch is

displaced off-axis by an amount d and the subsequent bunches follow on-axis. This

case will be referred to as the "single pulse" case. It is assumed that w5 ~ G, an

assumption valid in most practical situations. The results obtained are compared

with numerical simulation.

Setting ~(O, 0) == d, ~(O, k) == 0 for all k > 1 in Eq. (5), the integral represen­

tation of ~(t, !{) for a single pulse is given as follows

~(t,K)=d(-l)K eXP(-Kb./T)2~i f dUu2~+1 cos[(w~+1~U~2r/\l (7)

A saddle point evaluation of the integral gives3 :

d (2!{Gt) 1/4 [!{~ (!{Gt) 1/2]
~(t,!{) ~ -- exp -- + --

!{ vI8i Wo T Wo

{ [ Gt (}'?"Gt) 1/2] }
x Re exp iwot - ii + i 4wo - i ~o . (8)

At a given location z == vt along the wiggler, ~(t, !{) reaches a maximum when

1/2 [ ] 1/2
!{1/2 ~ (Gt) ~ + (Gt) _3~ ~

m 4wo 2~ 4wo T 2~
(9)

The normalized (setting d == 1) maximum transient displacement for a single pulse

is found to be

c ( zr ) ~ 1 (2!{mGt) 1/4 [_ !{m~ (!<mGt) 1/2]
':,m t, .1'\m - r ro= exp T + .

!1.. m y81r Wo Wo
(10)
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FIGURE 1 Variation of the logarithm of normalized maximum transverse
displacement ~m in the hypothetical FEL as a function of the betatron fre­
q~ency Wo for the case of a single pulse. The results obtained using the
analytical formula (Eq. (10)) are compared with those obtained using nu­
merical simulations.

Five proposed FEL's were studied in Ref. 3. In all these cases, the steady state

was found to dominate the transient state. And since the steady state is well

behaved in all these cases, resistive wall instability should not be a problem.

To verify the validity of Eq. (10) when the transient state is dominant, a

hypothetical FEL with extreme values of parameters is considered. This FEL has

I == 4.6A, pipelength == 600m, b == 0.18cm, d == 0.198cm, T == 0.46JLs, and G ==

1.4 X 1013s-2 . Figure 1 gives the comparison between numerical simulations and

Eq. (10) for different values of the focusing strength (i.e. wo). The two results are

seen to be in good agreement for large wo's. However they start to diverge slightly

for small wo's. This is to be expected since Eq. (10) is valid only for focusing

forces large compared to the resistive-wall forces. As an additional check, the above

results were compared with those obtained earlier. When the nonexponential terms

in Eq. (8) are ignored, our results3 agree with the less general results derived by

Neil and Whittum4
• We include the nonexponential terms in our analysis since

they can contribute significant corrections to the maximum amplitude.
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TRANSIENT STATE FOR A RANDOM INITIAL DISPLACEMENT
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In this Section, we consider the case where the bunches come in with random

initial displacements. An expression for the root-mean-squared displacement is

derived and is compared with numerical simulations.

First, we rewrite the solution for a single pulse in the following form:

where

~(t, ]{) ~ ~o [j(t, ]{) + j*(t, ]{)]

1 (2]{Gt) 1/4 []{~ (]{Gt) 1/2]j(t, ]{) ~ -- exp -- + --
]{ V327r Wo T Wo

[
..7r .Gt . (]{Gt) 1/2]x exp zwo t - z- + z- - z -- .

8 4wo Wo

(11)

(12)

and j*(t, ]{) is the complex conjugate of j(t, ]{). When bunches come in with

random initial displacements, ~(t, ]{) can be written as a linear superposition of

solutions of the above form5 • Thus,

K

~(t, !{) ~ L[j(t, k) + j*(t, k)] ~(O,]{ - k).
k=O

(13)

(14)

After considerable manipulations including use ?f the facts that initial dis­

placements of two successive bunches is uncorrelated and that f(t, k) oscillates

only very slowly with k, the final result is obtained as3 :

< ~2(t, (0) > ~ 2 1/2 (wo ) 1/4 lor3 / 4 I ~ (t lor ) 12
~2 - 7r G '\.m ~m, '\.m .

< ~O > t

where < ~2(t, (0) > is the rms value of ~(t, !{) as !{ ---7 00, < ~5 > is the rms

initial displacement, and !{m and ~m(t, !{m) are given by Eqs. (9) and (10).

This result has been compared with numerical simulations for our hypothet­

ical FEL. Figure 2 shows the results of numerical simulation for Wo == 9 X 108s-1

with < ~5 >1/2== Imm. It gives a value of rv 1.2cm for < ~2(t, (0) >1/2. From Eq.

(14) and Figure 1 we obtain a theoretical value of rv 1.3cm for < ~2(t, (0) >1/2.

Thus we get a good agreement between theory and simulation.

SUMMARY

The transient state of a bunched electron beam in a wiggler was analysed in detail

using the integral representation of the complete solution. Analytic expressions for
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FIGURE 2 Numerical simulation of the transverse displacement of the
beam in the hypothetical FEL when the bunches come in with random initial
displacements. The rms value of the initial displacements was taken to be
Imm. The betatron frequency has the value 9 X 108s-1 .

the maximum transient amplitude were derived for the case where only the first

bunch is displaced off-axis and for the case where bunches come in with random

initial displacements. This led to the conclusion that transient state could lead

to beam loss if the normalized maximum amplitudes given in Eqs. (10) and (14)

exceed unity. However, no such instability was found in the five proposed FEL's

that were studied.
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