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RF DEFLECTOR-CHOPPER FOR SSC INJECTOR*

FW.GUY and T.S. BHATIA
Los Alamos National Laboratory, MS H817, Los Alamos, NM 87545
USA

Abstract In aproposed SSC linac injector, the Low-Energy Booster
lattice painting scheme requires a 50-MHz microbunch structure with
transverse and longitudinal normalized rms emittances of less than
0.45 n-mm-mrad and 1.7X10-5 n-eV's, respectively, at 600 MeV.

A 50-MHz RFQ design does not meet the longitudinal emittance
requirements; a 150-MHz RFQ can do so, but requires a chopping
scheme that produces a clean 50-MHz beam structure without
degrading emittance. We present an RF deflector-chopper conceptual
design that converts a 150-MHz RFQ beam into a 50-MHz microbunch
beam structure while matching transversely and longitudinally to a
following 450-MHz DTL. Multiparticle simulation with 3-D space
charge shows negligible emittance growth. Output beam emittances
are factors of 3 below requirements; further acceleration to 600 MeV
should produce only small additional growth. The chopper is 54 cm
long, comprising an RF deflector, two rebunchers, five small
permanent magnet quadrupoles, and a beam dump. Similar schemes
could use a 200- or 250-MHz RFQ for even smaller longitudinal
emittance.

INTRODUCTION

A proposed lattice painting scheme!* for the Superconducting Super
Collider (SSC) Low-Energy Booster (LEB) uses a 3-mA H~ beam (3.8 X
108 H- per bunch) with a 50-MHz microbunch structure. Transverse and
longitudinal emittance requirements are, respectively, 0.45 n-mm-mrad
and 1.7 X 105 n-eV-s (rms normalized). A 50-MHz, 2.5-MeV radio-
frequency quadrupole (RFQ) beam dynamics design has been completed?,
but simulations of this RFQ predict transverse and longitudinal emittances
0f 0.18 n-mm-mrad and 2.6 X 10° n-eV-s, respectively; longitudinal
emittance is too large. However, a 150-MHz RFQ design easily satisfies
emittance requirements with transverse and longitudinal emittances of
0.14 n-mm-mrad and 0.44X 10° n-eV's. Higher-frequency RFQs can
have even smaller emittances.

We present a conceptual design of an RF deflector-chopper in which a
high-frequency beam is converted to a lower-frequency beam structure with

*Work su]}ported by Los Alamos National Laboratory Program Development, under the
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little emittance growth. This system selects every third bunch from the
150-MHz, 9-mA, 2.5-MeV RFQ output beam for transmission, converting
the beam to a 50-MHz, 3-mA structure. The system also matches the beam
from the RFQ into the following 450-MHz DTL.

CHOPPER DESIGN

Funneling, using an RF deflector, has been proposed as a method of
increasing brightness in high-current beams by interlacing the bunches of
two converging bunched beams to form a single beam of twice the frequency
and current.* Such a funnel is the subject of an experimental program at
Los Alamos.’ The RF deflector-chopper is a modification of the funnel
concept. The direction of travel is opposite to that of a funnel, and the beam
is split into separate beams of lower frequency. In this design, the frequency
is reduced by a factor of 3 as shown in Figure 1.

- - - - - & <+— 150 MHz Beam
' }

<— Keep These
<+— Discard These

- - <+— 50 MHz Beam
FIGURE 1 Beam structure modification by a 200-MHz deflector.

For beams with appreciable space charge in which emittance growth is
of concern, transport-line design should minimize charge-redistribution
emittance growth® by keeping constant (or changing only slowly) both
transverse and longitudinal focusing strength and by proper matching
between different accelerator structures. These considerations were kept in
mind in the present design (Figure 2). However, because space-charge
effects are not of major importance here, the line can be shorter and the
changes more abrupt than if a high-current beam were being transported.

The transport line at 2.5 MeV consists of three FODO focusing periods
of different lengths. Permanent-magnet quadrupoles provide increasing
transverse focusing strength, matching transverse beam parameters to the
following DTL. The first and third periods contain 150-MHz rebunchers
that match the longitudinal beam parameters into the DTL. The second
focusing period contains the RF deflector. Table I lists the beam elements
and their dimensions and field gradients or voltages. Beam apertures are
not critical but have been set at 1.6-cm diameters in the quadrupoles Q1,
Q2,and Q4, 3 cm in Q3, and 1.2 ¢m in the deflector.

The bend-plane (x-z plane) cross section of the RF deflector is shown in
Figure 2. The two oval electrodes extend in the y-direction (perpendicular to
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FIGURE 2. The RF deflector-chopper for the SSC injector.

TableI Beamline elements.

Element Type Length Field
D1 Drift 3cm -
R1 150-MHz rebuncher 4cm 241 KV
Q1 Defocusing (in x) quad 3em 76.58 T/M
D2 Drift 6 cm -
Q2 Focusing quad 3cm 92.19 T/M
Def 200-MHz RF deflector 8cm 12.5 MV/M
Q3 Defocusing and deflecting quad 4cm 70.00 T/M
D3 Drift 8cm -
Q4 Focusing quad 4cm 99.37 T/M
R2 150-MHz rebuncher 4cm 314KV
Q5 Defocusing quad 4cm 131.81 T/M
D4 Drift 3cem -

the plane of the bend) near the beamline whereas the noses on the end walls
are cylindrically symmetric around the beamline. In a similar device being
constructed at Los Alamos, electrodes are mounted on half-wavelength rods,
and one nose contains a permanent-magnet quadrupole. The electrodes are
slightly less than fA/2 in length along the beamline. If the deflector could
produce a uniform transverse field of length BA/2 with a sin(wt) time
dependence, and if the synchronous particle with energy K were at the
center of the deflector at the time of maximum field strength E, then the
deflection of the synchronous particle from the electric field alone would be
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6 = (BA/2m)(eE/K). It can be shown that the force from the RF magnetic field
goes roughly as p?; this was neglected in our calculations.

A real deflector cannot produce a uniform transverse field, of course;
the electric field components from the deflector are shown in Figure 3. The
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FIGURE 3 The RF deflector electric fields.

nonuniformity of the transverse (Ey) field, the presence of the longitudinal
(E;) field coupled with the changing transverse coordinates of the particles,
and the phase spread of the bunch coupled with the time dependence of the
field, all contribute to emittance growth in the RF deflector. This emittance
growth can be reduced by shaping the deflector plates and noses for the best
field uniformity, making the bunch envelope small in the plane of the bend
to avoid regions of field nonuniformity, shortening the bunch to lessen the
effect of the time-dependent field, and keeping the angle of deflection small.
In the present design, all these techniques were used to some extent. There
are other emittance-growth-reducing techniques such as introducing a third
harmonic to flatten the field time-dependent wave-shape, using a second
deflector to bend the beam in the opposite direction thereby cancelling some
of the aberrations, and using a lower-frequency deflector; these were not
necessary in this design. The first quadrupole downstream from the
deflector is defocusing in x and gives further deflection to the beam because
the beam enters it off-axis. In this design, the RF deflector bends the beam
through 4.4° and the defocusing quadrupole provides 3.6° for a total bend
of 8°.

A modified version of the Los Alamos PARMILA particle-following
code was used for these beam dynamics calculations. Approximately 4000
macroparticles generated by the PARMTEQ calculation of the 150-MHz
RFQ were followed through the chopper line. Space-charge effects were
calculated using 3-D charge-cloud interactions. Particles were integrated
through the deflector in small steps using the electric field maps shown in
Figure 3.

RESULTS AND DISCUSSION
Beam rms-radius envelopes are shown along the beamline in Figure 4. The
90% beam radius is everywhere below 3 mm. In one simulation, the
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apertures were set at a 5-mm radius throughout the line and the resulting
transmission was 99.97%.
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FIGURE 4 RMS beam envelopes.

TableII Emittances, rms normalized

€ € €
( o-mm-mrad) ( r-mm°mrad) (reV's)
RFQ output 0.14 0.15 0.44 X 10-5
Chopper output 0.16 0.15 0.44 X 10-5

A transverse particle plot (Figure 5) at the position of the beam dump,
1 cm upstream from the fourth quad, shows a pattern at about x= +1.7cm
(the initial axis is at x=0). This is the bunch that enters the deflector at the
proper phase (0°) for maximum positive x-deflection. The other two bunches,
at phases of +120° and —120°, are deflected in the negative x-direction and
are smeared in the x-direction because of the time-dependence of the
deflector field. If the beam dump can accept a smaller separation of the
desired and undesired beams than that shown in Figure 5, the beam
deflection angle and thus the emittance growth of the desired beam can be
reduced.

This RF deflector-chopper design, combined with the 150-MHz RFQ
and the 450-MHz DTL designs, can produce a beam that satisfies
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FIGURE 5 Particle plots at beam dump.

requirements for the lattice-painting scheme proposed in Ref. 1. Similar
designs could provide beam-structure modifications for other frequency
ratios. If desired, bending magnets could be incorporated in drifts D2 and
D4 to align the input and output beams to the same beamline.

Chopper designs such as the present example will allow low-emittance
beams of high-frequency RFQs to be used when lower-frequency beam
structures are desired. Ongoing funneling tests will provide experience for
optimum design of such choppers.
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