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The effect of a passive resonant cavity on longitudinal stability of a coasting beam is studied. The model vacuum
chamber has resistive walls throughout, and consists of a round tube with discontinuities in radius forming a
cylindrical cavity. An improved method of computing the longitudinal coupling impedance is described, which
overcomes restrictions on geometrical parameters encountered in earlier studies. A closed expression for the
impedance is obtained that is exact for a deep cavity and surprisingly accurate for a cavity of moderate depth.
Corrections to deep-cavity results are obtained by a convenient perturbation procedure, which allows one to
compute the impedance for a wide range of parameters, without solving large systems of equations. Stability limits
and rise times of instabilities are studied by means of linearized Maxwell-Vlasov equations with a Laplace transform
in time. Special features of the resonant situation at high current are discussed, and a case of anomalous stability
is explored. Part I is concerned with derivation of self-consistent equations for field mode amplitudes. The equations
entail a slowly convergent series, which is transformed by the Watson-Sommerfeld method to improve the rate of
convergence. Part II gives numerical and analytical results for the impedance, examples of rise-time calculations
for high-current non-relativistic heavy-ion beams, and physical interpretations of the formalism.

1.1 INTRODUCTION

A beam in an accelerator or storage ring may be
strongly affected by variations in the vacuum
chamber cross section. Regions of substantial
widening can function as high-Q resonant cavi-
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ties. As was shown by Laslett, Neil and Sessler l

in 1961, longitudinal instability of a coasting
beam may occur when an harmonic of the particle
revolution frequency is nearly equal to the res
onant frequency of such a cavity, If a longitudinal
perturbation of charge density has a Fourier com
ponent with frequency near the cavity resonance
W r , then there will be a charge-density wave with
wave number k = nlR (R = ring radius) having
phase velocity wrlk close to the average particle
velocity J3c. The cavity sees this wave as a source
oscillating near its resonant frequency, which
excites a large resonant field that can act on the
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beam with the proper phase to cause a longitu
dinal instability. The latter may be manifested as
spontaneous modulation of charge density in an
initially uniform beam. For minimum rise time
of the instability, wr / k is equal to ~c plus a small
shift that depends on the plasma frequency, the
propagation characteristics of the beam tube, and
the unperturbed velocity distribution. Because
of periodicity, the mode number n is an integer,
and the condition wr / k :::::: ~c is the statement that
W r be near the n-th harmonic of the revolution
frequency: W r = nO = n~c/R. For a cylindrical
cavity of radius d, the fundamental resonance is
at W r = jOl c/d where jOl = 2.4 is the first zero of
the Bessel function Jo. In typical cases the har
monic n is quite high, perhaps n = jOlR/d~ ,...,
103

, and the resonant frequency 'wr /27r is 108 

109 Hz.
Unstable behavior is favored by a high Q factor

of the cavities, as well as by high current density
and small velocity spread. In addition, the rise
time of an instability depends on the transit-time
factor, which is a sensitive function of geometric
parameters. Because the unstable mode number
n is so high, a small change in average velocity
~c can change the mode number by one unit;
namely, ~~/~ = 1/(2n). If the cavity resonances
are very narrow, as is the case for metallic cavity
walls, one might expect a rapid variation of the
rise time of an instability as ~c is varied by that
amount. Such a variation does occur in the ideal
ized model studied in the following.

An important problem in accelerator design is

a

I

to delineate the range of parameters for which
the growth time of such instabilities will be long
enough to be acceptable. The set of parameters
includes geometric dimensions, wall conductiv
ity, beam current, the momentum distribution,
and the machine parameter 'Yl relating changes in
momentum to changes in revolution frequency.
The problem was studied carefully by Keil and
Zotter2

,3 for the particular model of the vacuum
chamber shown in Fig. 1, namely, a straight, in
finite, cylindrical pipe of radius b, which widens
abruptly to a cylinder of radius d and length 2g
(length g in the notation of Ref. 2). The widenings
appear with period 27rR in the longitudinal dis
tance z, so that the picture can be viewed as an
approximation to a circular accelerator ring with
large ring radius R, having just one widened seg
ment of mean arc length 2g. The model has re
sistive cylindrical walls, but perfectly conducting
cavity end walls. Keil and Zotter computed the
longitudinal coupling impedance, which sum
marizes the effect of the conductors surrounding
the beam, and is the quantity required for com
putation of the rise time of an unstable pertur
bation, or parameter limits for stability, through
solution of the plasma dispersion relation.

For the case of a resonant cavity (not the only
case treated in Ref. 2), the computations of Keil
and Zotter depend on the solution of an infinite
system of linear algebraic equations which is
truncated to a finite system and solved numeri
cally [Eq. (3.4) of Ref. 2]. The unknowns of the
system are certain quantities Xs ' (s = 0, 1, 2,

ill (Cavity)

1:=29--1 211"R--------~~1
FIGURE 1 Cross section of model vacuum chamber. The quantities (It, (Ie, (Ie are conductivities of various portions of the
walls.
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...) that are closely related to the Fourier coef
ficients of the electric field in the cavity region
III of Fig. 1, due to a charge-current perturbation
in a particular Fourier mode of the beam region
I. A solution vector X' determines the coupling
impedance and also the resonant frequency and
Q factor of the tube with cavity. Numerical val
ues of those quantities are given for a range of
machine parameters.

Although the method of Keil and Zotter is
straightforward and seemingly tractable, it has
the following features that limit its usefulness.
(i) The simple physics of the resonant cavity is
invisible in the formalism. Since the Fourier
modes of the cavity become the normal modes
of the system in the limit of small tube radius b
(at constant cavity radius d), one would expect
the equations to separate and' simplify in that
limit. Surprisingly, the form of the equations is
such that the limit is hard to extract, and that
prevents the derivation of explicit analytic for
mulas that could be useful at small but non-zero
b. (ii) The matrix of coefficients of the infinite set
of equations, the "kernel" M st ' is itself given by
an infinite sum in Bessel functions. The summand
has a maximum as a function of the summation
index m, which occurs at a large m. Furthermore,
the maximum moves to larger m as the ring radius
R or the mode numbers (s, t) increase. Since one
must sum far beyound the maximum to get an
accurate value of the kernel, the number of terms
required becomes unmanageable at large R or
large (s, t). Accordingly, the calculations of Ref.
2 are restricted to values of R that are usually
unrealistic (0.4 < R < 4 meters). (iii) The justi
fication for the truncation to a small finite system
of equations is obscure, even though some testing
of accuracy was done by increasing the number
of modes retained.

In this and following papers, we give methods
to overcome these technical difficulties, and ob
tain numerical and analytical results for imped
ances, resonant frequencies, and Q values in pa
rameter ranges of interest. Our model of the
vacuum chamber is the same as that of Keil and
Zotter, but extended to allow resistive cavity end
walls. The equations we employ are literally
equations for the cavity-region III Fourier am
plitudes (the iJs of Ref. 2), and are somewhat
simpler and more directly interpretable than
those for the auxiliary amplitudes Xs '. There are
also equations for the beam-region I amplitudes
(the An of Ref. 2), which are appropriate in treat
ing very shallow cavities; for the present we

deemphasize that case. In addition to studying
the purely electromagnetic questions, we treat
the beam dynamics by linearized Maxwell-Vla
sov equations with a Laplace transform in time.
We look carefully at the derivation of dispersion
relations, stability criteria, and rise times, under
resonant conditions with high beam current. We
find a case of anomalous stability at high current,
in which two different tube modes participate.
The Laplace transform gives an initial-value for
malism, which could be used to follow the de
tailed time evolution of an unstable beam.

It turns out that a solution to problem (ii) above
is a key to dealing with the other problems . We
apply a so-called Watson-Sommerfeld transfor
mation to the series for the kernel, to improve
its convergence. The sum is written as a contour
integral around the poles of an auxiliary analytic
function, the residues of the poles being the terms
of the original sum. Expansion of the contour to
infinity then gives a new expression for the ker
nel, which consists of a series with monotonically
decreasing summand plus a large term occurring
only on the diagonal of the kernel. The new series
is easy to compute numerically, and it makes
a relatively small contribution when b is small.
In fact, only the diagonal piece, given in closed
form as a ratio of Bessel functions, survives in
the limit of vanishing b. The expected diagonal
ization of the cavity mode equations for small b
is thus made explicit through the Watson-Som
merfeld transformation. By retaining only the
diagonal term, we get an analytic expression for
the impedance which is exact for b ~ 0, but
which contains a factor accounting for effects of
the tube at non-zero b. Comparison with exact
calculations shows that the expression is accu
rate for moderately large values of bId.

Another good result of the Watson-Sommer
feld transformation is that it prepares the way for
treatment of the equations by Fredholm theory.
As will be shown in a paper published elsewhere,
the cavity mode equation is equivalent to a cer
tain Fredholm equation in a Banach space of se
quences. That result provides a theoretical jus
tification for truncating the infinite system, and
also gives information on the behavior of the so
lution at large mode number.

Having transformed the kernel, we propose a
further rearrangement of the equations in which
the resonant mode is eliminated in favor of all
the other modes. The resulting equations are bet
ter suited to numerical solution. Except in the
case of a very shallow cavity, they may be solved
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by a rapidly convergent perturbation series which
avoids costly direct solution of linear equations
and gives control of error in the reduction to a
finite number of dimensions. The series may be
described as a way to generate corrections to the
deep-cavity results (small bid), for larger bid; it
accounts for the presence of the tube and the
attendant coupling of cavity modes.

Computation of the perturbation series amounts
to computing powers of an infinite matrix. We
do not throwaway the tails of the infinite sums
involved, but instead approximate sums without
truncation through a mapping and spline inter
polation technique. Each infinite sum is effec
tively reduced to a short finite sum, by taking
advantage of the smooth variation of summands.
We use a similar method for non-perturbative
solution of the cavity mode equations (with res
onant mode eliminated). The known smooth de
pendence of the solution at large s is used in a
spline interpolation to approximate the infinite
system by a small finite system. The Ds at large
s are all represented by a few values ofDs at non
integer spline knots s = Si, which are taken as
unknowns. By this method we gain substantial
control over truncation error.

In order to allow resistivity on the cavity end
walls, we use a non-harmonic Fourier series in
the cavity region III. This gives the extra freedom
needed to meet the resistive wall boundary con
dition, with little cost in computational effort.
The added resistivity has an important quanti
tative effect, larger than that indicated by a pro
posed rule-of-thumb (3rd paragraph of Ref. 2).

Our discussion is based on the Maxwell-Vlasov
equations linearized about the non-stationary
state corresponding to a uniform beam subject
to the full boundary conditions for the tube with
cavity. In complete analogy to Landau's original
theory of plasma oscillations,4 we make a La
place transform in time, rather than the Fourier
transform which is often used (actually without
justification) in stability studies. This clarifies the
derivation of the dispersion relation and allows
us to prove that the rise time of a sufficiently
small unstable perturbation is independent of its
initial form. We hope to consider practical ap
plications of the Laplace initial-value formalism
in later work, one possibility being to study beam
evolution in an induction linac.

The Maxwell-Vlasov equations lead to "self
consistent' , equations for the perturbed field
coefficients, with the unperturbed momentum

distribution appearing parametrically. We derive
self-consistent equations for the Ds as well as for
the An. The former are presumably novel for
treating longitudinal stability, and we find them
to be very convenient. They give a full account
of stability without explicit reference to axial
fields or coupling impedance. The general form
of the plasma dispersion relation governing sta
bility is that the determinant of a self-consistent
system of equations be zero: det (1 - K) = 0,
where K is the kernel of either the An or the Ds
equation. Because of the coupling of tube modes
induced by the cavity (in a complementary view,
the coupling of cavity modes induced by the
tube), all modes appear in the exact dispersion
relation. Nevertheless, the usual dispersion re
lation involving only one tube mode is normally
an excellent approximation to the full determi
nantal equation, as we show in a detailed dis
cussion. There is one exception, in which two
tube modes participate. The anomaly occurs only
for a limited range of parameters (for instance,
if the current is sufficiently high and within cer
tain narrow intervals) but it enhances stability.
We treat the anomalous stability at length in the
tractable case of a deep cavity.

The dispersion relation is normally used to es
tablish sufficient conditions for stability, which
are not influenced by the frequency dependence
of the coupling impedance. Whatever the varia
tion with w, it is sufficient (but actually not quite
necessary) for stability that the impedance eval
uated on the real w-axis stay within a certain
region of the complex plane which depends on
the current, the unperturbed momentum distri
bution, etc. On the other hand, when the disper
sion relation is used to find rise times, the fre
quency variation of the impedance must be
accounted for, especially in the resonant case.
We compute the rise time under resonant con
ditions by a method which uses the solutions of
the smooth-tube dispersion relation as a starting
point. Given those solutions, it is a trivial matter
to find the rise time, and to explore its variation
with changing parameters.

Our quantitive examples of stability limits and
rise times will be for high-current nonrelativistic
heavy-ion beams such as are contemplated in
designs for ion-beam fusion drivers. Our imped
ance calculations are of course more general,
being relativistic and independent of particle dy
namics.

We believe that some of the methods employed
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will be useful in a variety of problems in accel
erator theory, and for that reason give fairly com
plete details. A reader more interested in results
than derivations should begin with Part II.

A short summary of our formalism and a nu
merical example are given in Ref. 5.

1.2 RELATED WORK

Month and Peierls6 also reexamined the equa
tions of Keil and Zotter, using a Watson-Som
merfeld transformation. Their use of the trans
formation is completely different from ours,
however, in that they transform the solution of
the equations for field coefficients, rather than
the kernel. Consequently, they have to assume
analyticity properties of an unknown function,
and that makes the results difficult to evaluate.
In our case the function is known and the trans
formation is rigorously justified.

In an interesting paper Keil and Messer
schmid7 studied nonlinear effects in the longitu
dinal stability of a coasting beam by means of
numerical simulation. They find that the linear
theory gives a good first approximation, but find
interesting behavior of the velocity spread in the
nonlinear saturation of instability.

Measurements on destabilizing effects of vac
uum chamber cross-section variations have been
performed at the ISR.8,9 A special experimental
cavity placed around the ISR beam was used to
study longitudinal stability of a coasting beam;9
theoretical estimates of thresholds for instability
were found to be valid. Stability of bunched
beams has been the topic of many experimental
and theoretical investigations. For a recent re
view emphasizing design considerations see Hof
mann. IO

Calculations of coupling impedance for models
different from that of Ref. 2 have been done by
several authors. Hahn and ZatzII treat single and
double step discontinuities of cross section in a
circular tube, without periodicity. HerewardI2

considered a single step in a rectangular tube.
Kriegler, Mills, and van Bladel,I3 and also Trick
ett,14 studied a reentrant cavity (annulus coupled
to the main tube through a slot). Chatard-Moulin
and PapiernikI5 treated an arbitrary small peri
odic modulation of tube radius. Their method was
applied by Krinsky I6 and by Cooper and Mor
ton,I7 and was reformulated by Krinsky and

Gluckstern. I8 SesslerI9 gave a general review of
the effects of beam surroundings on stability, list
ing further references. Related problems of wave
propagation in corrugated wave guides have re
ceived much attention in the engineering litera
ture. 20

1.3 CONTENTS OF PART I

Section 2 is concerned with linearization of the
Vlasov equation, and Laplace and Fourier trans
forms of the linear Maxwell-Vlasov system. We
advise some care in the interpretation of the
linearized system, because one must linearize
about a state that is not the stationary solution
of the nonlinear system. The variables of our
Vlasov equation are the position and relativistic
momentum of rectilinear motion, rather than the
angle-action variables that are often employed.
For a coasting beam, the latter are superfluous
as long as one computes the coupling impedance
for a straight vacuum chamber with a centered
beam.

Section 3 contains the derivation of equations
for Laplace-Fourier coefficients of field pertur
bations due to a prescribed charge-current per
turbation. The discussion parallels that of Ref.
2, and uses a similar notation, but has been gen
eralized to allow arbitrary charge-current per
turbations, resistive cavity end walls, and initial
value terms. Most of the details on initial-value
terms are in two appendices. We first find cou
pled equations for the tube modes A and cavity
modes D, Eqs. (3.66) and (3.67), which corre
spond to (1.23) of Ref. 2. We then elminate A to
get Eq. (3.68) for D alone. There is no corre
sponding equation in Ref. 2., but (3.4) of that
paper has a similar kernel and is applied in a
similar way. Equations (3.67) and (3.74) give A
in terms of fJ and vice versa.

In Section 4, the Vlasov equation is combined
with the electromagnetic equations of Section 3
to give "self-consistent" equations in which the
perturbed charge-current does not appear, namely
Eqs. (4.12) for tube modes and (4.29) for cavity
modes. The usual dispersion relation governing
stability, Eq. (4.18), is derived as an approxi
mation to (4.12). The quantitative justification of
the approximation is treated in Part II. Exact
expressions for the impedance are given by Eqs.
(4.23) and (4.24) or (4.26). Instead of direct nu-
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merical evaluation of these formulas, we rec
ommend the methods developed in Part II.

Section 5 explains the Watson-Sommerfeld
transformation of the kernel of the D equation
(3.68). The final form of the kernel, which will
be applied in numerical work of Part II, is given
in (5.18). The result (5.18) has a very simple struc
ture, which the reader may better appreciate by
putting the small resistivity parameters (K, T)/)

equal to zero.
Topics mentioned in the Introduction but not

treated in Part I will be covered in Part II, except
for the Fredholm theory of the D equation, which
is to appear in a third paper.

2. LAPLACE AND FOURIER
TRANSFORMS OF MAXWELL-VLASOV
EQUATIONS

We take the axis of the tube to be the z-axis with
the origin at a cavity centroid; the ends of the
cavities then lie in the planes z = 21TnR ± g,
where n is an integer. The particle distribution
function, u(r, p, t), is presumed to obey the rel
ativistic Vlasov equation,

au au au
- + v . - + q (E + v x B) · - = ° (2.1)at ar ap ~

where p = M'Yv is the momentum. We suppose
that u has the form2l

u(r, p, t) = 6(a - r)8(px)8(py)[fo(pz)

+ fl (z, Pz, t)], (2.2)

where eis the unit step function, and 8 is under
stood as a smooth but sharply peaked even func
tion approximating the Dirac delta function.
Thus, charge and current are spatially uniform
over a cross section of the beam, within the beam
radius a. On the average, particles move only in
the z direction. If we substitute (2.2) in (2.1) and
evaluate the equation at r = (0, 0, z), v = (0, 0,
v), the result is

(:t + v :z) fl(Z, Pz, t) + q Ez(z, t)

a
x -a [fo(pz) + ft (z, Pz, t)] = 0. (2.3)

IfJz

We wish to linearize (2.3) about the configu
ration corresponding to fo. Accordingly we write

the electric field as

E(r, t) = Eo(r) + E t (r, t), (2.4)

where Eo and E l correspond to charge-current
densities (Po, Jo) and (Pt, J t ) defined as

po(r) + PI (r, t) = e(a - r)q

X J-~~ [fo(pz) + fl(Z, Pz, t)]dpz (2.5)

Jo(r) + J t (r, t) = 6(a - r)q

X J-~~ vUo(pz) + fl(Z, Pz, t)]dpz (2.6)

We emphasize that both Eo and E t correspond
to the same boundary conditions, those for the
corrugated tube with resistive walls.

At points on the axis sufficiently far from the
cavity ends the field lines of Eo leave the axis
almost exactly in the radial direction, so that Eoz
on the axis is negligible. At points nearly adjacent
to the cavity ends, Eoz on the axis will be nonzero
but small; the' field lines must bend around to
meet the cavity ends at nearly normal incidence.
For the linearization, we treat Eoz on axis as a
first-order quantity, even though it is formally
of order zero. The accuracy of this procedure
could be judged by solving the boundary-value
problem that determines Eoz , using methods like
those developed in the following. When second
order quantities are dropped, Eq. (2.3) takes the
form

(:t + v :J fl(Z, v, t) + q Ezl(z, t) fo'(pz)

= - qEzo(z)fo'(pz).
(2.7)

This equation is to be solved together with the
Maxwell equations and boundary conditions for
E l and B t , with sources (PI, J t ) given by (2.5)
and (2.6). Thus we have a linear system to de
termine (ft, E l , Bt) in terms of fo, Ezo , and the
initial values (ft, E l , Bl)/=o. To calculate the rise
time of an unstable perturbation we need not ac
tually specify Ezo and the initial values, since the
rise time turns out not to involve those time-in
dependent quantities. Of course, we ignore com
pletely the implications of the Vlasov equation
(2.1) at points off the z-axis, as befits the ap
proximation of one-dimensional motion.
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fl(Z, Pz, 0) = L !In(Pz, 0) exp(in z/R). (2.13)
n~O

Next, we choose the initial value of f 1, which is
arbitrary, so that

For instance, condition (2.12) is satisfied if there
is no constant term in the Fourier series for f 1

at time 0:

interval Zo < z < Zo + 27TR. We shall impose
periodicity of f in z through a Fourier develop
ment, so that N will be independent of Z00 To
maintain (2.10) in the linearized formalism, we
first take f o(pz) to satisfy (2.10) by itself:

('ITa 2 )(2'ITR) f_coco dpzfo(pz) = N. (2.11)

(2.14)

(2.12)j ZO+27rR foo
zo dz -co dpz!l(Z, Pz, 0) = o.

Now f = fo + fl satisfies (2.10) at time 0, and
the. linearized equation (2.7) then implies that f
satisfies (2.10) for all time. In addition, the lin
earized equation implies that the continuity
equation holds for all z and t,

ap + aJ = o.
at az

We next state the Maxwell equations for per
turbed fields E 1 and HI = fJ-OH I with sources PI,
J 1 given by (2.5) and (2.6). We take cylindrical
coordinates (z, r, 4», and look only for solutions
independent of 4>. Higher modes depending on
4> are believed to have relatively little effect on
stability, but perhaps should be investigated at
a later stage. Henceforth we suppress the sub
script 1 denoting perturbations, and write the
axially symmetric equations for perturbed fields
of the transverse magnetic (TM) mode as

Our interpretation of an increasing E 1 as insta
bility could be wrong if the beam were actually
stable to a sufficiently small perturbation, but not
to one as large as the "minimum" perturbation
that we are able to treat theoretically, the latter
being

Before proceeding to the Maxwell equations,
some comments are in order. Generalizing the
theory of Landau damping,4 we begin at t = 0
with an arbitrary small perturbation, (f 1, E1 ,

B1)t=0, of the uniform beam configuration, (fo,
Eo), and ask how that perturbation evolves in
time. We can never expect that the perturbation
will decay to zero, even if parameters are such
that the beam is actually stable, because (fo, Eo)
is not an exact steady-state solution of the non..
linear Maxwell-Vlasov system. Indeed, if f 1 =
o and E1 = 0, then (2.3) reduces to the false
equation Ezo (z) f 0' (pz) = o. Clearly, a steady
state solution must have some variation of charge
density in the z-direction to account for the pres
ence of the cavities. A rigorous discussion of sta
bility would have to proceed by first finding an
exact steady-state solution of the nonlinear sys
tem. Linearization about that solution would then
decide the question of stability.

As time passes, the perturbed field E1 , as com
puted from the linearized equations above, will
either (i) increase in magnitude indefinitely or
(ii) tend to a constant. (There is also the math
ematical possibility that E1 could oscillate indef
initely without approaching a limit, but that
would not seem to make sense physically.) We
interpret case (i) as instability and (ii) as stability,
while emphasizing that the interpretation is plau
sible but not rigorously justified. Since the con
figuration (f0, Eo) about which we linearize is
already a perturbation of the true stationary con
figuration (f(O), E(O)) (supposed to exist), the true
initial perturbation of the stationary state is

(io + fl - f(O), Eo + E 1 - E(O), B 1)t=0. (2.8)

(2.9) (2.15)

The distribution function is to be normalized
so that

J
ZO+27rR Joo

'ITa
2

zo dz -co dpz!(z, Pz, t) = N,

aEr aEz----
az ar

aHq, =

az

aHq,
-f.10at

aEr
-Eoat

(2.16)

(2.17)

(2.10)

where N is the average number of particles in the

1 a aEz-- (rHq,) = J + Eo-'.
r ar at

(2.18)
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(2.25)

(2.24)

(2.26)

(2.23)

In stating the transformed Maxwell equations,
we simplify notation by suppressing arguments
r, P, n; thus Ezn(r, p) = Ez, and for initial values
we write Ezn(r, 0) = Ez(O). Then transformation
of (2.15)-(2.18) yields

1 a A A 1
- - (rE y ) + ik Ez = - p,
r ar Eo

In the cavity region, b < r < d, - g < z < g,
we employ generalized Fourier developments,

00

Ey(r, z) = L [E!s(r) sin usz + £;s(r) cos usz],
s=O

1 a A A A

- - (r Hq,) = J + EoP E z - EoEz(O).
r ar

The corresponding equations for the transverse
electric (TE) mode are obtained from (2.15)-(2.18)
by dropping p and J and making the replacements
E ~ H, J..Lo ~ - Eo. The boundary conditions at
the resistive walls do not mix the TM fields (Ey ,

Ez , Hq,) with the TE fields (Hy, Hz, Eq,), at least
in the standard approximate treatment of bound
ary conditions (Ref. 22 and Appendix B). Since
only the TM fields affect the longitudinal particle
distribution through the Vlasov equation (2.7),
we may then ignore the TE fields entirely; [under
assumption (2.2) the TE fields have no sources,
and in fact vanish at all times if they vanish at
t = 0].

Following Landau,4 we perform a Fourier
transformation of the equations with respect to
z and a Laplace transform with respect to t.
(Some authors use a Fourier transform in t for
stabilty studies, but are thereby led to logical
inconsistencies that were already noted by Lan
dau. In proving that the resulting prescriptions
for computing growth times are correct, one is
in fact led back to the Laplace transform.) We
first treat the "tube region," r < b, in which the
series in z will have period 2'TrR. Later we use a
nonharmonic series in the "cavity region," b <
r < d. In the tube region, the Fourier-Laplace
transform of a function <p(z, t) is

" 1 100 J- g
+

27TR
.<Pn(P) = - e -ptdt e'knZ<p(Z, t)dz,

2'TrR 0 -g

(2.19)
00

Ez(r, z) = L [E~s(r) cos usz + £;s(r) sin usz] ,
s=O

The Fourier transform (without Laplace trans
formation), evaluated at t = 0, is denoted by
<Pn(O). Through integration by parts,

kn = n/R, n = 0, ± 1, ± 2, .... (2.20) 00

Hq,(r, z) = L [H~s(r) cos usz + iI~s(r) sin usz].
s=O

(2.27)

(2.21)

A reader committed to thinking in terms of fre
quencies may put p = - iw in in the following
equations.

Tranformation of the linearized Vlasov equa
tion (2.8) yields

(p + iknv)]n(Pz,P) + qEzn(r,p) Iy=oio'(pz)

= fn(Pz, t) It=o - q Ezon 1. fo'(pz). (2.22)
p

Here and in most of the equations to follow we
suppress the variable p. One must keep in mind
that almost all quantities, in particular the La
place-Fourier coefficients of fields, are functions
ofp. The nonharmonic wave numbers Us are cer
tain nonlinear functions of sand p, determined
by boundary conditions on the planar end walls
of the cavity. It turns out that the functions. sin
usz and cos u~z are mutually orthogonal, so that
there is a set of equations for the cavity field
coefficients analogous to (2.23)-(2.26). Again
suppressing arguments r, p, s, we find that for i
= 1,2,
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1 a A. • A.

- -a (rEr') + (_)' nEz' = 0,
r r

(2.28)
time dependence of the fields,22 which is equiv
alent to stating it for the Fourier transform of the
fields in time. We need a statement for the La
place transform of the fields, which is derived in
Appendix B.

(2.29)

(- )i+ 1 nHq/ = EoP E/ - Eo E/(O) ,

(2.30)

3. EQUATIONS FOR LAPLACE-FOURIER
COEFFICIENTS OF FIELDS

In this section, we find equations for the Laplace
Fourier coefficients of fields which satisfy
(2.23)-(2.26), (2.28)-(2.31), and the required con
tinuity and boundary conditions. We define three
regions of the vacuum chamber:

(2.31) I: O<r<a

where

II: a < r < b

(
A) 21 a aEz 2 A X A

-- r- - X Ez = - (J - EoEz(O))
r ar ar EoP

(3.3)

(3.2)

ikJ + pp = p(O) ,

One of the three initial fields may be eliminated
from (3.1). We make use of the continuity equa
tion

and the Poisson equation (2.15), after Fourier
transformation but before Laplace transforma
tion, evaluated at t = 0:

1 a 1
- -a (r Er(O)) + ik Ez(O) = - p(O). (3.4)
r r Eo

III: b < r < d, - g < z < g.

In Regions I and II, the relevant Maxwell equa
tions are (2.23)-(2.26), whereas (2.28)-(2.31)
apply to Region III. To solve (2.23)-(2.26) we
first find a second-order equation for Ez alone.
The system degenerates when k = 0, so that it
is important to eliminate Er and H<t> in such a way
that the resulting equation holds even at k = o.
We take Er from (2.25) and substitute in (2.24);
then solve (2.24) for H<t>, and substitute the latter
in (2.26) to obtain

The Eqs. (2.23)-(2.26) and (2.28)-(2.31) are to
be solved subject to continuity conditions at the
tube-cavity interface (r = b, - g < z < g) and
boundary conditions relating tangential electric
and magnetic fields at the walls. The solution is
in terms of charge-current densities and initial
values of fields. Expressing charge and current
in terms of the distribution function, and evalu
ating the latter by (2.22), one finally obtains the
field coefficients in terms of initial values of the
fields and distribution function. For instance, one
can obtain the electric-field perturbation on the
axis, Ezn(r, p) Ir=o, in terms of the initial pertur
bation of the distribution function, f(z, Pz' 0), and
two independent initial field perturbations, say
Ez(r, z, 0) and H<t>(r, z, 0). By an inverse Laplace
transformation, one may then calculate the rise
time,. of an unstable perturbation as ,. = l/Rep*,
where P* is the right-most singularity of Ezn(O, p)
in the complex p-plane. This method of solution
is quite analogous to that of Landau's theory, but
more complicated because of the boundary con
ditions and the initial-value problem.

In analogy to Landau's case, we are able to
prove that the particular initial values of fields
and the distribution function do not affect the rise
time. We work out the role of arbitrary initial
value terms in detail, under the restriction that
the end walls of the cavity have infinite conduc
tivity; (there are technical difficulties in allowing
finite conductivity with initial-value terms). We
report the calculations in Appendix A, and drop
the initial-value terms in most of the main text.

The resistive-wall boundary condition is usu
ally stated under the assumption of exponential
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From (3.1)-(3.4), one finds the necessary con
dition on Ez ,

II must have the forms

P f.10 a
- - Ez(O) - - - (r H<f>(O». (3.5)

c2 r ar

m=-OO

m=-oo

- ik foo
= -2 8(a - u) q dpzf(pz, 0). (3.12)

X -00

For the present discussion this quantity is zer"o.
Furthermore, one can rule out a term ~/r in H<f>
by demanding that both (2.23) and (2.24) be sat
isfied; consequently,

(3.11)

The first term of (3.11) may be expressed in terms
of the initial value of the distribution function,
as is seen by applying the continuity equation
(3.3):

" -ik
J(u) + 8(a - u) EoP F = -2 p(O)

X

We next find corresponding expressions for Hq,
by a method that is compatible with the discus
sion of Appendix A, i.e., that brings in only Ez(O)
and H<f>(O) when initial-value terms are includeg.
The method is to solve (2.26) for H<f>' with Ez
given by (3.9), (3.10). The general solution 9f the
corresponding homogeneous equation is H<f> =
~/r, where ~ is a constant. Since II = 10 ' and K 1

= - K o', a particular solution of the inhomo
geneous equation is

r < a,
r> a-.

1ir

- u[J(u) + 8(a - u)EopF] du
r 0

EoP {A Io(Xr) ,+-X B II (xr) - CK I (Xr ),q foo+ - 8(a - u) dpzf(pz, 0)]. (3.6)
Eo - 00

In the remainder of this section we put all three
of the initial values [f(O), Ez(O), H<f>(O)] equal to
zero; hence Er(O) = 0 as well. Then the only
inhomogeneity in the system of linear equations
is provided by the term from Ezo in the Vlasov
equation (2.22). In other words, we are beginning
with a charge and field configuration which dif
fers from a stationary-state solution (f(O), E(O)

of the nonlinear Maxwell-Vlasov system by the
amount (2.9). The field Ezo due to wall corruga
tions may drive an initially uniform beam to in
stability.

With initial fields absent, the general solution
of (3.5) is given in terms of modified Bessel func
tions as

Il r

Er(r, 0) = - udu[ - ikEz(u, 0)
r 0

The linear combination of J and p that appears
in (3.5) is in some sense the natural analog of the
charge density p that appears in Landau's elec
trostatic problem, and will occur repeatedly in
the following. 23 We select [f(O), Ez(O), H<f>(O)] as
the set of independent initial values to be chosen
arbitrarily (within the restriction that they be
small). We notice that the remaining initial value
Er(O) may be expressed in terms of the others by
integrating (3.4) and applying the requirement
that Er(r, 0) be finite at r = o. Thus

Ez = clIo(xr) + c2Ko(Xr) + 8(a - r)F, (3.7) " I ""H<f> (r, z) = EoP £..J
m=-OO

where (3.13)

The irregular Bessel function K o is disallowed in
Region I because of its singularity at r = O. Thus,
the Fourier developments of Ez in Regions I and

q Joo [ ikJF = - 2 dpJ(pz) f.1opv + - .
X - 00 Eo

(3.8)
m=-OO

(3.14)
- CmKO(Xmr)]eikmz.

Corresponding expressions for Er are obtained
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from (2.24), (2.25), given the results for Ez and
Bet>. One can then verify that theAfields s~tisfy all
four Maxwell equations. If the Ez and Het> fields
for Region I are matched to those for Region II
at r = a, then Er will automatically be matched
as well, by (2.25).

In Region III the non-harmonic Fourier de
velopments (2.27) and the Maxwell equations
(2.28)-(2.31) imply an equation analogous to (3.5)

! ~ (r aEz
i

) _ f2£/
r ar ar

p. 1-10 a .
- c2 EZ'(O) - -;: ar (r Het>'(O)), (3.15)

We are now in a position to apply continuity
and boundary conditions. Continuity in r at r
= a determines the coefficients Bm and em of
the Region II expansions in terms of the coeffi
cients Am of Region I. Using the Wronskian iden
tity (3.21) and the definition (3.18), we can then
write the Region II expansions as

m=-oo

(3.25)

(3.16)
m=-oo

It is convenient to state solutions in Region III
in terms of certain linear combinations of /o(fr)
and Ko(fr) that have simple expressions on the
cylindrical cavity wall, r = d. Accordingly we
define, for j = 0, 1,

Rj(x,Y) = KO(Y)/j(x) + (-)j+1/0(y)Kj (x),

(3.17)
Sj(x,y) = -K1(Y)/j(x) + (_)j+1/1(y)Kj (x).

(3.26)

The boundary condition (B.12) applied at the cy
lindrical cavity wall determines the primed coef
ficients of (3.22)-(3.24) in terms of the unprimed
ones. After Fourier transformation in z the
boundary condition at r = d is

The subscript c (for "cavity") indicates that pa
rameters 1-1, (T are those for the cylindrical cavity
wall; we also write subscripts e and t ("ends"
and "tube") for the cavity end walls and the
cylindrical tube surface (r = b), respectively. By
(3.22), (3.23) and identities (3.20), (3.21), we find

(3.18)

We notice that

R 1 = aRo/ax, S1 = aso/ax, (3.19)

and, by a standard Wronskian identity,

Ro(x,x) = 0, S1(X,X) = 0, (3.20)

R 1(x, x) = l/x, So(x, x) = -1/x. (3.21)

( )

1/2
A. I-1P A •

E~Ad) = - -; c H~s(d). (3.27)

With initial value terms neglected, the general
solution of equations (2.28)-(2.31) in Region III
may be written

£/ = DiRo(fr, fd) .+ D'iSo(fr, fd), (3.22)

D'i = - TIc Di (3.28)
fb '

where the dimensionless parameter TIc is defined
as in Ref. 2

. TIc
<l>J(r) = Rj(fr, fd) - fb Sj(fr, fd), (3.30)

According to (3.28), the combination of Bessel
functions that now appears in Region III fields
IS

H.pi = E~ [DiR1(rr, rd)

+ D'iS1(fr, fd)],

E/ = (- )i+1 f [DiR1(rr, rd)

+ D'iS1(fr, fd)].

(3.23)

(3.24)

( )

1/2

1]c = - ~ c Eopb · (3.29)
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and the field expansions take the form where

00

Ez111(r, Z) = L <l>sO(r)[Ds
l cos asZ

s=O

( )

1/2

~ e EoP g. (3.39)

(3.31)

00

H<f>lll(r, z) = eop L r s-l<l>sl(r)[Ds
l cos asz

s=O

+ D s2 sin asZ],

(3.32)

Erlll(r, z) = L asrs-l<l>sl(r)[Ds
l sin asz

s=O

To find solutions of the nonlinear equations
(3.37), (3.38), we take advantage of the circum
stance that the dimensionless parameter K is typ
ically small compared with 1 for the values of p
of interest. The values of p of interest, those in,
volved in computing the rise times of unstable
perturbations, are close to the points p = =+= iwr ,

where W r = jOl cld is the fundamental frequency
of a cylindrical cavity of radius d; (see the heu
ristic argument of the introduction, or the cal
culations of Part II). Then the order of magnitude
of / K I is

- Ds2 cos asZ].

(3.33)

The boundary condition at the cavity end walls
(z = += g, b < r < d), before Fourier transfor
mation in z, is

By choosing the non-harmonic wave numbers as
appropriately, we may satisfy (3.34) term-by
term in the expansions (3.32), (3.33). It is suffi
cient that

[as sin o.sg + ('Ylelb) cos o.sg]Ds
l

+ [o.scoso.sg - (Tlelb)sino.sg]Ds2 = 0, (3.35)

[as sin o.sg + ('Ylel b) cos o.sg ]Ds1

(3.41)

.... ,

S = 1,2, ....

=jb~2«TedZo)-1/2(gld), (3.40)

where Zo = (l-Lo/eo)1/2 = (12011" ohm) is the imped
ance of free space. For the conductivity of stain
less steel, (Te ~ 106 (ohm-meter)-l, and d ~ g
~ 1 meter, we then have I K I --- 2 X 10- 4

• The
parameters 'Ylt, TIc, 'Yle are typically of a similar
order. In the following, we shall expand various
quantities in powers of K or the 1')'S and retain
only the lowest powers, keeping in mind that the
resulting approximations are not good at large
/ p /. Large values of / p / enter the problem only
ifone wishes to compute the full time dependence
of the fields, not just the asymptotic time depend
ence that is the sole concern of stability studies.

An expansion of the solution X s of (3.37) or
(3.38) in powers of K gives

Xs = s11"/2 - 2K!s11" - 8K 2/(s11")3 +
(3.36)

(3.34)
( )

1/2

EAr, :;: g) =:;: ~ e Hq,(r,:+ g).

There are two ways for these equations to be
satisfied:

xssinxs + KCOSXs = 0, D s
2 = 0, Dslarbitrary,

where X s is a solution of (3.37) for even S and of
(3.38) for odd s. There is also a solution of (3.37)
close to zero, which may be expanded in powers
of K 1/2 as

(3.37)

xscosxs - Ksinxs = 0, Ds
l = 0, Ds2 arbitary,

(3.38)

Xo = - i Kl/
2 (I + K/6 + ...). (3.42)

The negative of each of the solutions (3.41), (3.42)
is also a solution, but by a redefinition of coef-
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ficients D/ one sees that it would be redundant
to include a corresponding term in the expansions
(3.31)-(3.33). There is also the extraneous solu
tion X s = 0 of (3.38), but it makes no contribution
to the _field expansions. The implicit-function
theorem for analytic functions24 may be invoked
to show that the series (3.41) and (3.42) converge
for sufficiently small I K I. In addition, the solu
tions we have found are unique if I K I < 1T

2/16,
as may be seen by applying Rouche's theorem;25
all the solutions are close to those of sin 2x =
O.

The functions cos asz and sin asz form an or
thogonal set on the interval [- g, g]. Accord
ingly, we define the orthonormal functions

00 1 00

s~o fs(u)fAv) ="2 + S~l [cos (S7TU/g) cos (S7TV/g)

+ sin (S1TU/g) sin (S1TV/g)] = g8(u - v). (3.46)

Of course, this formal statement of completeness
is to be interpreted through term-by-term inte
gration of the product of (3.46) with a continuous
function.

The use of nonharmonic Fourier series has a
long history. 26-29 The functions f s(z) are well
known in the theory of heat conduction. 27,28

Redefining the Fourier coefficients, we write
(3 .31), (3.32) as

fs(z) = [1 - K/(Xs2 + K 2)] -1/2

X {( - )s/2 cos asZ,
( - )(s + 1)/2 sin asZ,

seven,
s odd.

(3.43)

00

Ez111(r, z) = ~ Dscf>sO(r)fs(Z) ,
s=O

00

Hq,III(r, z) = EoP ~ r s -lDscf>sl(r)fs(Z)'
s=O

(3.47)

(3.48)

The peculiar sign factors are introduced so that
fs takes the convenient form (1 + 8so ) -1/2 cos
as(Z + g) at K = 0, a form that is used in Ap
pendix A. The f s are orthonormal in the sense

(3.44)

The result (3.44) follows from the definition of
Xs = asg as a solution of (3.37) (s even) or (3.38)
(s odd).

The set {fs(z)} is complete as well as orthog
onal. For I K I< 1T

2/16 the wave numbers as give
rise to a Riesz basis for the space L 2[ - g, g] of
square-integrable functions, and the fs form a
complete set in that space.26 Completeness in the
space of continuous functions C( - g, g) may be
established by considering, for u, VEe - g, g), the
integral

f dA [ A sin (AU/g) sin (AV/g)
~ sin A(A cos A - K sin A)

+ ~ cos (A~/g) cos (AV/g) ] 0
(

= . (3.45)
SIn A A SIn A + K cos A)

Here "y is any closed contour such that the zeros
of the denominators all lie outside "y. By deform
ing the contour to infinity and noting that the
integrand vanishes exponentially as 1m A ~
± 00, we deduce from the residue theorem that

The remaining continuity and boundary con
ditions to be satisfied are at r = b:

-g<z<g,

(3.49)

FJ/(b, z) = - (':X/2

H<j>//(b, z),

g < z < 21TR - g, (3.50)

Hq,II(b, z) = H<f>III(b, z), - g < z < g.

(3.51)

To state these conditions' in terms of Fourier
coefficients, we use the orthogonality (3.44), as
well as the additional overlap integrals,

1 J-g+2'TrR

27TR _ g exp [i(kn - km)zldz = 8nm

(3.52)

1 Jg
27TR _g exp [ - iknzlfAz)dz = afs(g)Nns ,

(3.53)

1 f -g+2'TrR

21TR g exp [i(kn - km)z]dz

= 8nm - aVnm • (3.54)
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The quantities appearing here are

1 ( - )S .
N ns = 2'(k . )2 _ 2 [(kng + IK)

I ng Xs

If the cavity end walls have infinite conductivity
(K = 0), N is equal to Nt, the Hermitian adjoint
of N. We shall prove that V = {Vmn} has the
representation

x exp (ikng) - (- )S(kng - iK) exp ( - ikng)] ,

(3.55)

V = NvN,

v = {vst} = {2fs2(g)8st}.

(3.64)

(3.65)

g
a = 'TrR' (3.56)

Defining diagonal matrices R = {Rs8st}, I =
{Im8mn }, we may then write Eqs. (3.61), (3.62) in
matrix notation as

By (3.37), (3.38) it is possible to write fs(g) as

fs(g) = (- )Sxs(xs2 - K + K 2)-l/2. (3.57)

Now we multiply (3.50) and (3.51) by exp
( - iknz) and integrate over [ - g, - g + 21TR] and
multiply (3.49) by fs(z) and integrate over [ - g,
g]. Noting the expansions (3.25), (3.26), (3.47),
(3.48) and the overlap integrals (3.44), (3.52),
(3.53), (3.54), we obtain two sets of linear equa
tions for the Am and D S' Adopting a notation
similar to that of Ref. 2, we state the equations
in terms of the functions

An = Anlo(Xnb ), Ds = D s4ls0(b)fs(g),

(3.58)

A = -B + aND + 'fIt(1 - aNvN)(IA + C),
(3.66)

D = RN(IA + C). (3.67)

The unit matrix is always written as a numeral
1.

To eliminate A, we first rearrange (3.66): we
bring the term 'fItlA to the left side, and then
multiply the equation on the left by NI(1 
'fItl ) -1. The equation then involves A only in the
product NIA, which may be expressed in terms
ofD by (3.67). The resulting equation for D alone
takes the form

D = RED + RN(1 - 'fItl)-l Y, (3.68)

where the kernel matrix E is

E = aNI(1 - 'fItl)-lN(1 - 'fItVR-1). (3.69)

The source term of (3.68), linear in the charge
current vector F = {Fn}, entails the vector

(3.71)

(3.70)Y = C - lB.

By (3.18), (3.21), (3.59), and (3.60), the compo
nents of Y may be written as

iT = - _1_ ~ 11(Xna) F
n Xnb b Io(Xnb) n'

Am = - Em + a ~ NmsDs
s=O

Cn = -(a/b)Sl(Xnb, Xna)Fn, (3.59)

R s = 2fs2(g)4ls0(b)fsb/4ls1(b),

In = 11 (Xn b )/Xnblo(Xnb). (3.60)

The equations, analogous to Eqs. (1.23) of Ref.
2, are

n= - 00

Elimination ofD in favor ofA leads from (3.66),
(3.67) to the equation

A = GIA + GC - B, (3.72)
m=-oo

To solve (3.61), (3.62), a convenient first step
is to eliminate An in favor of Ds, or vice versa.
To that end we use matrix notation, and define
a matrix N with elements

Nsn = N_ ns . (3.63)

with kernel matrix

G = 'fit + aN(R - 'fItv)N. (3.73)

Another useful equation is that which ex
presses A in terms of D. In (3.66) we take 'fItIA
to the left side, and then multiply on the left by



LONGITUDINAL STABILITY THEORY 193

(1 - 11tI) -1. We express !vIA in terms of D by
(3.67), and then eliminate t in favor of Y by
(3.70). The result is

A = a(1 - 11tI)-IN(1 - 11tvR-1)D

+ 11t(1 - 11tI) -1 Y - iJ. (3.74)

The companion equation giving D in terms of A
is (3.67).

To demonstrate (3.64), we expand exp (iknz)
in the orthonormal set {ft(z)} or [ - g, g] to obtain

4. EQUATIONS FOR FIELD
COEFFICIENTS WITH VLASOV
SELF-CONSISTENCY

To compute rise times of unstable perturbations
the Vlasov equation (2.22) must be combined
with the electromagnetic equation, either (3.68)
or (3.72). The charge-current density, expressed
through Fn of (3.8), is to be eliminated in favor
of field coefficients. By (3.9) and (3.58),

A] IE zn (r) r=O = An + Fn

where v = [M2 + (pz/C)2]-1I2pz . The integral
may be cast into a form familiar in plasma theory.
For n -:1= 0 the definition (3.2) of Xn2 gives

(4.4)pV + iknc
2

= L _ C2Xn2 1
p + iknv ikn ikn p + iknv·

By the definition (3.8) of F n and (4.2) we can
integrate on pz to get

( )
_ 2 fOO d fo'(pz) pv + iknc

2
Fn p - q f.,Lo pz 2 + ·k

- 00 Xn P 1 nV

The latter way of writing the factor is also correct
for n = O. Recall that by (2.11),

f_oooo dpz!o(pz) = .N', (4.6)

Following the viewpoint of Section 3 we put the
initial-value term fn(Pz, 0) equal to zero, so that
(4.1) and (2.22) give

!n(Pz,P) = - qfo'(pz)(p + iknv)-1

x [An(p) + Fn(p) + Ezon/p].

(4.2)

The first term on the right integrates to zero
(since f o( ± 00) = 0), and the factor in front of the
bracket in (4.3) may be written as

_q2 1 foo dpzfo'(pz)

Eo ikn - 00 p + iknv

exp (iknz) = 2 L ft(g)N -ntft(z). (3.75)
t=O

With finite conductivity, the situation is essen
tially the same. The equation of X' has mathe
matical properties similar to that for iJ, but has
a more complicated form. We prefer the iJ equa
tion for its simplicity and its more direct physical
interpretation as the equation for cavity modes.

x = aRNtINX + aRNtINRNtY. (3.76)

tJ = aRNtIND + RNtY. (3.77)

Now we multiply by exp (- ikmz) and integrate
over [ - g, g]. The resulting equation is exactly
(3.64).

For a given charge-current distribution, spec
ified through the function Fn of (3.8), the elec
tromagnetic fields may be determined either by
solving (3.68) for D or by solving (3.72) for A.
For deep cavities, d ~ b, the Region III field
coefficients Ds are close to being the normal
mode amplitudes of the system, and (3.68) is the
appropriate equation. The kernel E is nearly di
agonal when d ~ b, so that the various cavity
modes almost decouple, and the equation is easy
to solve numerically. In the case of shallow cav
ities, b ~ d, the An are approximately normal
mode amplitudes, and Eq. (3.72) is the more
tractable one. In some cases of interest, the range
of d/b may be of the order 2 < d/b < 5; then
(3.68) is strongly preferred.

A remark on the relation of (3.68) to the equa
tion employed by Keil and Zotter2 may be help
ful. Their equation (3.4) is most easily compared
with our (3.68) in the case where all wall con
ductivities are infinite. The unknown of their
equation, X', is then simply related to iJ; in fact,
X' = iJ - RNt Y. The equations for X' and D
consequently have the same kernel, but different
source terms;
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n= - 00

(4.14)

det(1 + ~(p )W(p» = o. (4.16)

and the rise time is defined as ,. = l/u.
Since Wn(p) is analytic in the right half plane,

singularities of Ezn(p) as determined by (4.12)
could come only from ~nm(P) or from zeros of
the determinant of the system,

We shall argue that ~ is in fact analytic in the
right half plane, so that zeros of the determinant
fix the rise time; see the discussion of ~ following
(4.27) below.

The determinant simplifies greatly for p close
to a relevant zero, so that locating the zero is not
a difficult task. Following formula (4.19) below,
we write ~ = e + ~, where e = {enomn } is a
diagonal matrix. Then (4.16) is equivalent to

det(1 + ~(p)[W-I(p) + e(p)]-l) = O. (4.17)

+ e(u-iv)t res(Ezn)U-iV, t~ 00 (4.15)

side would be exactly the same; see Appendix
A.

The rise time T of an unstable perturbation is
to be read off from the inverse Laplace trans
form,

The integration contour in (4.14) may be moved
to the left by decreasing ~ until ~ = Rep*, where
P* is the location of the rightmost singularity of
Ezn(p) in the complex p-plane. Generically, two
complex-conjugate simple poles in the right half
p-plane are the rightmost singularities. If those
poles are at P* = u ± iv, then a translation of
the contour beyond the poles gives the asymp
totic form in terms of pole residues,

Ezn(t) --- e(u+iv)t res(EZn)u+iV

(4.7)

(4.8)

(4.10)

n ~ 0,

1 foo-2 dpzfo'(pz)v, n = O.
p .-00

Wn(p) = 00/ Joo dpzfo(pz)
X -00 (p + iknv)2~3(v)

1 foe dpzfo'(pz)

ikn - 00 p + iknv '

where X is the average particle density. Let us
define a plasma dispersion function,

F - Wn [An EzonJ
n = 1 + Wn Io(xnb) + P ·

According to (3.72), (3.59), and (4.1), the coef
ficients of the electric field on the axis, Ezm , are
homogeneous linear functions of the Fn , which
we write as

where wp
2 is the squared plasma frequency,

q 2 .N
W

2 -
p - EoM·

In view of (4.9) we then have an equation for the
Ezn alone,

Then (4.3) may be written as

Fn = - WnLEzn + Ezon/p], (4.9)

where Ezn represents the left side of (4.1). Equiv
alently,

n= - 00

(4.12)

where

~OJz(p) = L ~mn(p)Wn(p)Ezon. (4.13)
p n= - 00

If initial-value terms were included, the right side
of (4.12) would have additional terms depending
on initial values [f(O), Ez(O), H <t>(0)], but the left

As the work of Part II will show, the function
Wn - I + en has a pair of poles very close to the
imaginary axis in the p-plane. For typical accel
erator parameters, this function is extremely
small unless p is close to one of those poles;
consequently, the relevant zero of the determi
nant (4.17) is close to a pole of W n - I + en for
just one value of n. That value is approximately
given by W r = nO, in accordance with the heu
ristic argument of the Introduction. For locating
the zero, only the n-th column of the matrix
~[W- 1 + e] - 1 is appreciable. Thus, evaluation
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of the determinant is a trivial step, and to an
excellent approximation (4.17) becomes

Putting Fn = 1 we get the desired relation

(4.18)
2iR

Zn = --2 ~nn.
Eowa

(4.22)

Since W = J3ckn approximates the frequency de
termining stability, the value of Zn needed in the
dispersion relation may be written as

- 0'.(alb)2[N(1 - TltVR- 1) (1 - RE)-IRN]mn
I 1(Xn a)

x-------~-------
Io(Xmb )(1 - Tltlm)Xnalo(Xnb )(1 - Tlt1n) ,

(4.24)

where Zo = (J.10 /Eo)1I2 is the impedance of free
space.

There are two ways to compute ~mn' For shal
19w cavities, the proper way is to solve (3.72) for
Am with Fm = 8nm , and then obtain Ezm from
(4.1). For deep cavities, one should solve (3.68)
for Ds ' then get Am from (3.74) and Ezm from
(4.1). The latter approach is comparable to the
method of Ref. 2, and gives the expression for
~

(4.23)
2;Zo

(k
n

a)213 ~nn,

where

This is the familiar dispersion relation of plasma
theory, and ~nn is a dimensionless form of the
usual coupling impedance of accelerator theory.
A more quantitative discussion of the approxi
mation yielding (4.18) is given in Part II.

There is one anomalous case in which (4.18)
is not correct. For special values of accelerator
parameters, a pole of Wn -1 + en may coincide
with a pole of Wm- 1 + em, for some m close to
n, with the coinciding poles having residues
nearly equal in magnituge and opposite in sign.
Then two columns of ~[W - 1 + e] - 1 must be
taken into account for evaluation of (4.17). If this
situation holds (or holds approximately), the
beam has anomalous stability, as will be ex
plained in Part II.

For general p, the single impedance function
~nn(P) does not fully determine the response of
the axial field to an arbitrary charge-current per
turbation. Owing to coupling of the various tube
Fourier modes induced by the cavity, the entire
matrix {~mn} (equivalent to the response function
of plasma theory) is required to find the full effect
of a perturbation. Nevertheless, only the element
~nnhas quantitative importance in the stability
question, with the one exception noted above.

To derive the relation between ~nn and the cou
pling impedance Zn we recall the definition of the
latter,

(4.19)

Here in is the n-th Fourier coefficient of a per
turbation in beam current, and Ezn the coefficient
of the resulting axial field perturbation. The coef
ficients are for Fourier rather than Laplace trans
forms in time, so that we must put p = - iw and
drop initial-value terms to derive (4.19). By
(4.11), ~n~ may be calculated as the numerical
value of Ezn when Fm = 8mn (in some definite
system of units). Thus

Tit I 1(Xn a)

- TltIn XnaI0
2(x nb) .

The formula obtained by solving (3.72) is

~mn = &mn + L [1 - H];;,i
1= -a:;

(4.25)

(4.20)

The relation of in to Fnis obtained from the def
inition (3.8) and the continuity equation (2.14):

i ( " kn " ) 1"Fn = -2 J.1owJn - - pn =. 2 In. (4.21)
Xn Eo l7Ta WEO

x [IO(X1b) - Tl tI 1(X lb )IX1b]-1

X {8In[XnaSo(xnb, Xna) - Tllalb)SI(X nb, Xna)]

- O'.(alb)[N(R - TltV)N]lnSl(Xnb, Xna)},

(4.26)
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where the matrix H is defined by

H nm = a[lo(Xn b ) - Tttl ](Xn b )/Xnb ]-]

x [N(R - Tttv)N]nml](Xmb)/Xmb. (4.27)

As mentioned above, we wish to show that
~(p) has no singularity in the right half p-plane.
Since ~ involves the solution of an infinite-di
mensional equation, not known in explicit form,
it is not easy to make a direct analytical dem
onstration. We can give a persuasive physical
argument, however, on the basis of the definition
of ~ in (4.11). If the charge and current pertur
bations were given time-independent functions,
rather than being determined by Vlasov dynam
ics, then the field perturbation would. also have
to be time independent. Consequently the La
place transform of the field would have no sin
gularity in the right half p-plane, but would have
a singularity on the imaginary axis. The Laplace
transform of a constant function is proportional
to lip, so that by (3.8) the Fn(p) for a time-in
dependent charge-current distribution is analytic
except for poles at p = 0 and p = ± ickn (the
latter from the factor Xn -2). Since Ezn(p) must
have no singularity in the right half-plane for such
an Fn, we infer that ~nm(P) must also have none;
(take f n(Pz, p) = onmfm(Pz)/p, to see that each
element of ~ is free of singularities).

The above discussion emphasizes the electric
field on the tube axis, and represents the con
ventional viewpoint of accelerator theory. It is
more natural, however, to emphasize the field in
the cavity region, if the cavities are fairly deep
and resonant. The axial field and the distribution
function may be eliminated in favor of the cavity
mode coefficients D. The rise time of an insta
bility may be found directly from the inverse
Laplace transform of D(p ), and there is no need
to consider the axial field. The self-consistent
equation for D has an appealing form, and is eas
ier to analyze in a precise way than the scheme
described above.

To derive the equation, we take An from (3.74)·
and substitute in (4.10). We solve the resulting
equation for F n in terms of Ds to obtain

F
n

= - Wn [ a.
1 + en Wn (1 - 'rltln)IO(Xnb)

1 - EzonJx [N(l - TltvR - )Dl n + p . (4.28)

Now we introduce this result for F n in the source

term of (3.68), using (3.71), to obtain the desired
equation for D with Vlasov self-consistency,

(4.29)

The letters E and S denote "electromagnetic'"
and "self-consistency" parts of the kernel. That
is, E is the same kernel (3.69) that occurs in our
previous equation (3.68) with given source term"
and S is the new piece that arises from expressing
the source in terms of the field itself. We have

(4.30)

Under present assumptions, the inhomogeneous
term is

Ds(O) = .! (~)2 j: Nsm
p b m=-oo

More generally, D(O) contains various initial
value terms; see Appendix A.

Rise times of unstable perturbations could be
obtained from zeros of the determinant of (4.29):

det[l - R(p)(E(p) + S(p))] = O. (4.32)

By solving (4.32) one effectively solves the elec
tromagnetic problem and the dispersion relation
simultaneously, without the intermediate step of
computing an impedance. In Part II we shall find
it better not to work with (4.32) as it stands. We
eliminate the resonant mode from (4.29), and con
sider the determinant of the reduced equation.

5. WATSON-SOMMERFELD
TRANSFORMATION

A difficulty arises in the practical computation
of the sum in (4.30) that defines the kernel E. The
factor Nsm or N ms is maximum as a function of
m when its denominator is minimum, kmg = mgl
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where

Now <f>(±) has poles at the integers with residue

(5.8)

I j<±)(m) I ,;; I; 1
2

[1 + e±(2g/R)Im(m)], (5.6)

lim (m - n)<!>(±)(m) = ! J(n)j<±)(n), (5.9)
m~n ~

where c is a positive constant.
To convert the sum to an integral we employ

the functions

Except for the poles that occur when s = t, f< ±)

has no singularities in the finite m plane and for
large Im I has the bound

R ~ ± Xs • In typical cases of interest, this occurs
at a value of m = m* that is large from the view
point of practical computation, even for the first
few values of s. Values of m far beyond m* must
be included for an accurate summation of the
series, and the situation gets worse as s increases.

A Watson-Sommerfeld transformation29
,3o re

places the difference of squares in the denomi
nators by a sum of squares, and thereby circum
vents the difficulty. Furthermore, the
transformation eliminates the Bessel functions in
favor of easily computed Bessel-function zeros,
reveals the behavior of the sum for bid~ 0, and
facilitates the treatment of Eq. (4.29) by Fred
holm theory. There is no reason to make a cor
responding transformation of the sum defining
the self-consistency kernel S. As we show in Part
II, only one or two terms of this sum are impor
tant (those for which 1 + em Wm~ 0), and in any
case the sum converges exponentially.

Let us define

f(m, s, t) = NsmNmt = N-msNmt . (5.1)

The sum that occurs in the kernel E is

m=-oo

[(km g)2 + K2 + (_)s+l

X (kmg =+= iK)2 e+2ikmg] (5.4) (5.10)

and poles that arise from zeros of the denomi
nator of J. Since 'TIt is small compared to one, the
latter are close to the zeros of 10 (Xm b), which is
to say near the points at which Xm b = ± ijOi'
where iOi is the i-th zero of the ordinary Bessel
function Jo. With such points as the first approx
imation, Newton's method locates the poles of
J(m) at the points m = ± mi, where

(5.3)f = f(+) + f(-),

j<±) = ! 1 1
4 (kmg)2 - x s2 (kmg)2 - x?

For s - t odd, ~st vanishes: then f is odd in m,
while 1m as defined in (3.60) is even. Henceforth
taking s - t to be even we write

The numerator of (5.4) vanishes at kmg = ±x,
where x satisfies (3.37) for s even and (3.38) for
s odd. Thus f(±) is bounded at kmg = ±xs, ±Xt
provided that s ~ t. If s = t, there is a pole with
residue given by

lim [(m =+= xsRIg)f(+)(m, s, s)]
kmg~±xs

i = 1,2, ...

Inside the square root the exact expression has
been expanded to lowest order in 'TIt. The poles
at m = ± mi have residue

lim (m =+= mi)J(m)
m~±mi

-lim [(m =+= xsRIg)j(-)(m, s, s)]
kmg~±xs

iR x s
2

- K + K
2

g 8xs
2

(5.5) = ± 1(1 + 2.;t) (!i) 2, (5.11)
mi JOi b

to lowest order in 'TIt. Except for these poles,
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Then (5.4), (5.15), and (5.16) give

1
X. [COSh1TJ.1i+(-)s+1

Sinh 1TJ.1i

~ ~ 1m
o.I st = 0. £.J N sm 1 _ I N mt

m=-oo Tltm

(5.17)

(5.16)1 [ K(1 - K)]
2a 1 - x/ J(xsR/g)8st •

- 'ITa (~r i~1 f.1i(l + 2'TlrU~i)

1 1
x .. -----

(1T0.J.1i)2 + xs
2 (1T0.J.1i)2 + x?

Since the mi are near the imaginary axis for
the values of p of interest, it is convenient to
state the final form of I st in terms of nearly real
numbers J.1i defined by

Since f(+)(m) = f(-)( - m), the poles in the upper
and lower half-planes give equal contributions.
For s = t there is an additional term in I st from
the poles at m = ±xsR/g with residue (5.5).
These poles are close to the real axis, and give
the following addition to I st

1 <I>(±)(m) 1 ~ I ; 13 • (5.12)

M

= 2i L J(m)f(m) , (5.13)
m=-M

since the only singularities of the integrand inside
C are poles at integers. Taking a sequence of
paths C with increasing A we obtain the required
sum (5.2) as an integral,

In fact, each of the functions <f>(±) decreases cu
bically in one half-plane, and exponentially in the
other.

We shall integrate over a path C consisting of
a rectangle with corners - A ± iB, A ± iB,
where A lies between two positive integers, M
< A < M + 1. We first take s ¥- t, and choose
Band p so that J(m) has no poles inside C. Then
by (5.3) and (5.9),

i [<I>( + )(m) + <1>( - )(m)]dm

J(m) is analytic in the finite m-plane. The branch
point of Xm does not appear in J(m), because the
entire functions Io(z) and II (z)/z contain only even
powers of z.

In view of (5.6) and the fact that 10 and II have
the same asymptotic behavior, the functions <f>(±)

are bounded as follows at large Im I:

1 [J oo
-

iB
f-oo+iB]

Ist = --: +
21 - 00 ~ iB 00 + iB

x [<f>(+)(m) + <f>(-)(m)]dm. (5.14)

Now the integral on Im(m) = ±B may be re
placed by an integral over an infinite semi-circle
in the upper (lower) half-plane, plus a contribu
tion from the poles at the points ± mi' According
to (5.12) the integrals on the semi-circles vanish,
and the formula (5.11) for pole residues gives

(R) 2 00 1 ( 2T1 t )
I st = 1T -b ~ ~ 1 +~

1=1 m, JOI

x [. 1 [p+)(-mi) + p-)(-mi)]
sln( -1Tmi)

- _._1_ [f(+)(mi) + f(-)(m;)]] (5.15)
Sln1Tmi

We have chosen the branch of the square root
in (5.10) so that mi is in the upper half-plane.

x cosh[1TJ.1i(1 - 20.)]

x sinh[1TJ.1i(l - 20.)]] + ~s8st, (5.18)

~ _ 1 .II (fsb) (5.19)
s - 2fs2(g) fsblo(fsb) - Tl t l 1(fsb)

We have neglected K
2in comparison with (1T0.J.1;) 2

in the coefficients of the hyperbolic cosines. The
notation of (5.18) is defined in the following equa
tions: J.1i in (5.17), (5.10), X s in (3.41), (3.42), TIt
as in (3.29), K in (3.39), 0. in (3.56), f s in (3.16),
fs(g) in (3.57). Note that 0. in (3.16) stands for as
of (3.39).

Since J.1i and X s are approximately real for the
values otp of interest, the denominator (1T0.J.1i)2
+ X s

2 is nearly a sum of squares of real numbers,
rather than the troublesome difference of squares
that appeared in the original expression. The se
ries converges cubically, and is quite easy to
compute numerically.
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m=-oo

where

x Ezm(u, 0) +~ H<f>m(r, O)J (A.6)
EoC

(A.5)

In solving (2.31), one first has to allow an arbi
trary solution "{Ir of the homogeneous equation,
in Region II. The requirement that the fields sat
isfy all four Maxwell equations then determines
"{ to be zero. After an application of the continuity
condition at r = a the fields in Region II take the
form

EO [aGm km2 frLm(r) = - p - - - u du
Xm

2 ar r 0

The last term in (5.18), proportional to 8st , is
important in the analysis of the equations for the
case of fairly deep cavities, because it is the only
term that survives in the limit bid~ O. It is in
teresting that this limit is difficult to treat without
the Watson-SommeIfeld transformation. One
may draw an analogy to the use of that transfor
mation in Regge' s scattering theory.31 There the
transformation gives the asymptotic behavior,
for cos 8~ 00, of the sum of a series in Legendre
polynomials, Pi (cos 8). Here we get the asymp
totic behavior, for b ~ 0, of the sum of a series
in Bessel function ratios, Il(Xmb)/Xmblo(Xmb).
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APPENDIX A
INITIAL VALUE TERMS

(A.7)

We repeat the considerations of Section 3, allow
ing arbitrary initial values [f(O), Ez(O) , H<f>(O)] ,
but requiring infinite conductivity on the end
walls of the cavities. Solving (3.5) by the method
of variation of parameters, we find that (3.9) and
(3.10) must be modified by adding to their sum
mands the term exp(ikmz)Gm, where

Gm(r) = lr u dugm(u)Ro(Xmr, Xm U), (A. I)

with

A II ~ [EoP ()Hq, (r, Z) = m=---.. Xm AmI! Xm r

- EopaSl(Xmr, Xma)Fm

+ Lm(r) + Kma2/2r] eikmZ
• (A.8)

In Region III we now have K = 0 (infinite end
wall conductivity), and the functions fs of (3.43)
reduce to (1 + 8so ) -1/2 cos as(Z + g). We solve
(3.15) by variation of parameters and then solve
(2.31) to obtain

p
gm(r) = - 2. Ezm(r, 0)

C

f.10 a
- - - (rH<f>m(r, 0)). (A.2)

r ar

EZIII(r, z) ~ L [DsRo(rsr, rsd) (A.9)
s=O

Similarly, by solving (2.31) we find that (3.13)
acquires the new term

eikmZ(Lm(r) + K mrl2) (A.3)

while (3.14) is augmented by

H<f>III(r, z) = EoP L [rs -IDsR 1(rsr, rsd)
s=O

(A.4) (A. 10)
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where

(A. 11)

The continuity and boundary conditions at r =
b now lea~ to 0l!r previous equations (3.66),
(3.67) for A and D, specialized to K = 0 and
augmented with terms A (0) and RD(O) , respec-
tively, on their right hand sides. With the argu
ment P of all functions indicated explicitly, the
latter terms have the form

x Ezs(u, 0) +~ Het>s(r, O)J, (A.I3)
EoC

[

,.. 2
,.. Eo aGs as r

Ls(r) = - p - - _. r u du
f s

2 ar r Jo
(A.I2) Am(O)(p) = a L Nms[Js(p)So(fspb, fspd)

s=O

n= - 00

Here fs(Pz, 0) is the coefficient in a development
of f(z, Pz' 0) in the functions (1 + osO)-l/2 sin
as(Z + g). In deriving Het>III from (2.31), one again
has to allow a term 'Y/r, and this time 'Y is not
zero (for the choice of particular solution of the
inhomogeneous equation that we have found con
venient). The requirement that the two Maxwell
equations (2.29), (2.30) give the same Ers deter
mines 'Y. The field Er(r, 0) is eliminated through
Poisson's equation, as in (3.6).

Given the series (A.7)-(A.10), the remaining
calculations for continuity and boundary condi
tions can be done in precise analogy to Section
3. The general form of the boundary condition
is derived in Appendix B. On the cavity wall r
= d the boundary condition stated in terms of
Fourier components is

Rs(p)D/O)(p)

= Rs(p) [~b ~ N -ms [Lm(b, p)
EoP m= - 00

(A.21)

x [- (,:r /2

(Ln(b,P) + ;:Kn(P»)

+ }l.nt(p)] , (A. 19)

The initial-value term in the Vlasov equation
(2.22) must also be accounted for. Its effect is to
modify the expression (4.10) for F n by addition
of a term

(A.15)

(A.I4)

(A.16)

where the term A.sc arises from the initial-value
term of (B.12). Similarly, on the tube wall r =
b,

Ezm(b) = - (,:) :/2 H<j>m(b) + }l.mt.

In place of (3.28) the condition (A.15) gives

where

F (0)( ) = -q~o foo d f ( O)pv + ikn c
2

n p 2 pz n Pz, +·k·Xnp - 00 p l nV

(A.22)

Ds' = - (l1s/fsb)Ds + Js, (A.17)

Js = fsd { (,:) ~/2 [is(d) + ;:ks]

+ Gs(d) - }l.sc} . (A.I8)

To see the implications of initial values for the
rise time of instabilities, we must look at the p
plane analyticity properties of initial-value terms
in the"" self-consistent" equation [either equation
(4.12) for the axial field or (4.29) for the cavity
field]. The complete inhomogeneous term of
(4.29) is RsiJs(O), where
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(B.5)

B == [J.1«(f + ep)p]-1I2, (B.6)

at "
n x a~ = /l-P H - /l-H(O) , (B.l)

aD
o x - = - «(f + ep)t + eE(O). (B.2)

a~

Elimination of E gives

By variation of parameters, we find the general
solution of (B.3) having exponential decrease for
increasing ~. It has the form

a21I "ae - /l-p(cr + Ep)H = g, (B.3)

g = ! (n ·a2 H(O») 0
p a~2

- /l-(cr + Ep)H(O) - En x a~~o). (B.4)

where

" B 100

H(~) == ae - ~/8 - - e~/8 g(x)e -x/8 dx
2 ~

planar, obeys J == (fE, D == eE, B == J.1H, and is
substantially thicker than the skin depth for pen
etration of fields at the frequencies of interest.
The unit normal pointing away from the wall is
denoted by o. We analyze fields inside the wall,
supposing that they have relatively little variation
in directions parallel to the wall; this is the es
sential assumption. Then, if ~ is the distance from
the surface to a point inside the wall, the gradient
acting on any field may be written as \J == - oaf
a~. Laplace transformation of the Maxwell equa
tions involving curls yields1 (a)2+ ~ N_ ms 1

m=-oo - Tlt1m b

1
+ 2(1 - Tltlm)

(~)2 11 (Xm a) Wm ] [A (0)

x b Xm aI0
2 (xmb) 1 + em W m m

+ cxTlt(NvD(O))m]

x 11(Xm a) 1 [WmEzom

Xmalo(Xmb) 1 + em Wm p ]
- Fm(O) (A.23)

Despite the complicated appearance of (A.23) it
is not too difficult to be convinced that it is an
alytic in the right half p-plane and consequently
does not affect the rise time of an instability. It
does have singularities on the imaginary axis,
which appear to reflect the circumstance men
tioned in Section 2; namely, that one cannot ex
pect the field perturbations to vanish in the
course of time.

To check analyticity of (A.23) we note that the
required analyticity of the ingredients D s (0) ,

Am(0), and Fm(0) follows easily from their defini
tions. It then remains to show that 1 - Tlt1m and
1 + em Wm have no zeros in the right half plane.
A zero of the former would, by (4.24), imply a
pole of ~mn, which has already been ruled out.
Analysis of 1 + em Wm for particular choices of
f o(pz) (see Part II) suggests that its zeros are all
in Rep ~ 0, but a general proof may be difficult.
We needn't be concerned, however, since (1 +
em Wm) -1 also occurs in the kernel of (4.29). A
pole of (1 + em Wm) - 1 in (A.23) would be can
celled by a similar pole from the kernel, and
would not appear in the solution D. The same
argument applies to the factor R s in (4.29).
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iJ (0) = D (0) + i N [ 1m

sSm = _ 00 - ms 1 - Tlt1m

(B.7)

APPENDIX B
RESISTIVE WALL BOUNDARY

CONDITIONS FOR THE LAPLACE
TRANSFORM

We adapt the standard treatment22 of resistive
wall boundary conditions to accommodate the
Laplace transform. We suppose that the wall is

and a is an arbitrary constant vector. The branch
of the square root in (B.6) is such that ReB- 1

> 0 when Rep> O. Equation (B.5) implies that
H satisfies the relation

" 1 " roo
aH/a~ = - "8 H - e~/& J~ g(x)e- xl&dx.

Substitution of (B.7) in (B.2) and evaluation of
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where, through an integration by parts, All may
be cast in the form

the resulting equation at ~ = 0 yields the relation
between fI and E that must hold at the surface:
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