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The effect of a passive resonant cavity on longitudinal stability of a coasting beam is studied. The model vacuum
chamber has resistive walls throughout, and consists of a round tube with discontinuities in radius forming a
cylindrical cavity. An improved method of computing the longitudinal coupling impedance is described, which
overcomes restrictions on geometrical parameters encountered in earlier studies. A closed expression for the
impedance is obtained that is exact for a deep cavity and surprisingly accurate for a cavity of moderate depth.
Corrections to deep-cavity results are obtained by a convenient perturbation procedure, which allows one to
compute the impedance for a wide range of parameters, without solving large systems of equations. Stability limits
and rise times of instabilities are studied by means of linearized Maxwell-Vlasov equations with a Laplace transform
in time. Special features of the resonant situation at high current are discussed, and a case of anomalous stability
is explored. Part L is concerned with derivation of self-consistent equations for field mode amplitudes. The equations
entail a slowly convergent series, which is transformed by the Watson-Sommerfeld method to improve the rate of
convergence. Part II gives numerical and analytical results for the impedance, examples of rise-time calculations

for high-current non-relativistic heavy-ion beams, and physical interpretations of the formalism.

1.1 INTRODUCTION

A beam in an accelerator or storage ring may be
strongly affected by variations in the vacuum-
chamber cross section. Regions of substantial
widening can function as high-Q resonant cavi-
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ties. As was shown by Laslett, Neil and Sessler!
in 1961, longitudinal instability of a coasting
beam may occur when an harmonic of the particle
revolution frequency is nearly equal to the res-
onant frequency of such a cavity. If a longitudinal
perturbation of charge density has a Fourier com-
ponent with frequency near the cavity resonance
w,, then there will be a charge-density wave with
wave number kK = n/R (R = ring radius) having
phase velocity w,/k close to the average particle
velocity Bc. The cavity sees this wave as a source
oscillating near its resonant frequency, which
excites a large resonant field that can act on the
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beam with the proper phase to cause a longitu-
dinal instability. The latter may be manifested as
spontaneous modulation of charge density in an
initially uniform beam. For minimum rise time
of the instability, w,/k is equal to Bc plus a small
shift that depends on the plasma frequency, the
propagation characteristics of the beam tube, and
the unperturbed velocity distribution. Because
of periodicity, the mode number » is an integer,
and the condition w,/k = Bc is the statement that
o, be near the n-th harmonic of the revolution
frequency: o, = nQ) = nfc/R. For a cylindrical
cavity of radius d, the fundamental resonance is
at w, = jo,c/d where jo; = 2.4 is the first zero of
the Bessel function J,. In typical cases the har-
monic n is quite high, perhaps n = jo,R/dB ~
10%, and the resonant frequency ‘w,/27 is 108 —
10° Hz.

Unstable behavior is favored by a high Q factor
of the cavities, as well as by high current density
and small velocity spread. In addition, the rise
time of an instability depends on the transit-time
factor, which is a sensitive function of geometric
parameters. Because the unstable mode number
n is so high, a small change in average velocity
Bc can change the mode number by one unit;
namely, AB/B = 1/(2n). If the cavity resonances
are very narrow, as is the case for metallic cavity
walls, one might expect a rapid variation of the
rise time of an instability as B¢ is varied by that
amount. Such a variation does occur in the ideal-
ized model studied in the following.

An important problem in accelerator design is

to delineate the range of parameters for which
the growth time of such instabilities will be long
enough to be acceptable. The set of parameters
includes geometric dimensions, wall conductiv-
ity, beam current, the momentum distribution,
and the machine parameter m relating changes in
momentum to changes in revolution frequency.
The problem was studied carefully by Keil and
Zotter>? for the particular model of the vacuum
chamber shown in Fig. 1, namely, a straight, in-
finite, cylindrical pipe of radius b, which widens
abruptly to a cylinder of radius d and length 2g
(length g in the notation of Ref. 2). The widenings
appear with period 2R in the longitudinal dis-
tance z, so that the picture can be viewed as an
approximation to a circular accelerator ring with
large ring radius R, having just one widened seg-
ment of mean arc length 2g. The model has re-
sistive cylindrical walls, but perfectly conducting
cavity end walls. Keil and Zotter computed the
longitudinal coupling impedance, which sum-
marizes the effect of the conductors surrounding
the beam, and is the quantity required for com-
putation of the rise time of an unstable pertur-
bation, or parameter limits for stability, through
solution of the plasma dispersion relation.

For the case of a resonant cavity (not the only
case treated in Ref. 2), the computations of Keil
and Zotter depend on the solution of an infinite
system of linear algebraic equations which is
truncated to a finite system and solved numeri-
cally [Eq. (3.4) of Ref. 2]. The unknowns of the
system are certain quantities X' (s = 0, 1, 2,
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FIGURE 1 Cross section of model vacuum chamber. The quantities o,, 0., . are conductivities of various portions of the

walls.
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. . .) that are closely related to the Fourier coef-
ficients of the electric field in the cavity region
III of Fig. 1, due to a charge-current perturbation
in a particular Fourier mode of the beam region
I. A solution vector X' determines the coupling
impedance and also the resonant frequency and
Q factor of the tube with cavity. Numerical val-
ues of those quantities are given for a range of
machine parameters.

Although the method of Keil and Zotter is
straightforward and seemingly tractable, it has
the following features that limit its usefulness.
(i) The simple physics of the resonant cavity is
invisible in the formalism. Since the Fourier
modes of the cavity become the normal modes
of the system in the limit of small tube radius b
(at constant cavity radius d), one would expect
the equations to separate and simplify in that
limit. Surprisingly, the form of the equations is
such that the limit is hard to extract, and that
prevents the derivation of explicit analytic for-
mulas that could be useful at small but non-zero
b. (ii)) The matrix of coefficients of the infinite set
of equations, the ‘‘kernel’” M,,, is itself given by
an infinite sum in Bessel functions. The summand
has a maximum as a function of the summation
index m, which occurs at a large m. Furthermore,
the maximum moves to larger m as the ring radius
R or the mode numbers (s, ¢) increase. Since one
must sum far beyound the maximum to get an
accurate value of the kernel, the number of terms
required becomes unmanageable at large R or
large (s, t). Accordingly, the calculations of Ref.
2 are restricted to values of R that are usually
unrealistic (0.4 < R < 4 meters). (iii) The justi-
fication for the truncation to a small finite system
of equations is obscure, even though some testing
of accuracy was done by increasing the number
of modes retained.

In this and following papers, we give methods
to overcome these technical difficulties, and ob-
tain numerical and analytical results for imped-
ances, resonant frequencies, and Q values in pa-
rameter ranges of interest. Our model of the
vacuum chamber is the same as that of Keil and
Zotter, but extended to allow resistive cavity end
walls. The equations we employ are literally
equations for the cavity-region III Fourier am-
plitudes (the D, of Ref. 2), and are somewhat
simpler and more directly interpretable than
those for the auxiliary amplitudes X,'. There are
also equations for the beam-region I amplitudes
(the A, of Ref. 2), which are appropriate in treat-
ing very shallow cavities; for the present we

deemphasize that case. In addition to studying
the purely electromagnetic questions, we treat
the beam dynamics by linearized Maxwell-Vla-
sov equations with a Laplace transform in time.
We look carefully at the derivation of dispersion
relations, stability criteria, and rise times, under
resonant conditions with high beam current. We
find a case of anomalous stability at high current,
in which two different tube modes participate.
The Laplace transform gives an initial-value for-
malism, which could be used to follow the de-
tailed time evolution of an unstable beam.

It turns out that a solution to problem (ii) above
is a key to dealing with the other problems. We
apply a so-called Watson-Sommerfeld transfor-
mation to the series for the kernel, to improve
its convergence. The sum is written as a contour
integral around the poles of an auxiliary analytic
function, the residues of the poles being the terms
of the original sum. Expansion of the contour to
infinity then gives a new expression for the ker-
nel, which consists of a series with monotonically
decreasing summand plus a large term occurring
only on the diagonal of the kernel. The new series
is easy to compute numerically, and it makes
a relatively small contribution when b is small.
In fact, only the diagonal piece, given in closed
form as a ratio of Bessel functions, survives in
the limit of vanishing b. The expected diagonal-
ization of the cavity mode equations for small b
is thus made explicit through the Watson-Som-
merfeld transformation. By retaining only the
diagonal term, we get an analytic expression for
the impedance which is exact for b — 0, but
which contains a factor accounting for effects of
the tube at non-zero b. Comparison with exact
calculations shows that the expression is accu-
rate for moderately large values of b/d.

Another good result of the Watson-Sommer-
feld transformation is that it prepares the way for
treatment of the equations by Fredholm theory.
As will be shown in a paper published elsewhere,
the cavity mode equation is equivalent to a cer-
tain Fredholm equation in a Banach space of se-
quences. That result provides a theoretical jus-
tification for truncating the infinite system, and
also gives information on the behavior of the so-
lution at large mode number.

Having transformed the kernel, we propose a
further rearrangement of the equations in which
the resonant mode is eliminated in favor of all
the other modes. The resulting equations are bet-
ter suited to numerical solution. Except in the
case of a very shallow cavity, they may be solved
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by arapidly convergent perturbation series which
avoids costly direct solution of linear equations
and gives control of error in the reduction to a
finite number of dimensions. The series may be
described as a way to generate corrections to the
deep-cavity results (small b/d), for larger b/d; it
accounts for the presence of the tube and the
attendant coupling of cavity modes.

Computation of the perturbation series amounts
to computing powers of an infinite matrix. We
do not throw away the tails of the infinite sums
involved, but instead approximate sums without
truncation through a mapping and spline inter-
polation technique. Each infinite sum is effec-
tively reduced to a short finite sum, by taking
advantage of the smooth variation of summands.
We use a similar method for non-perturbative
solution of the cavity mode equations (with res-
onant mode eliminated). The known smooth de-
pendence of the solution at large s is used in a
spline interpolation to approximate the infinite
system by a small finite system. The D, at large
s are all represented by a few values of D, at non-
integer spline knots s = s;, which are taken as
unknowns. By this method we gain substantial
control over truncation error.

In order to allow resistivity on the cavity end
walls, we use a non-harmonic Fourier series in
the cavity region I11. This gives the extra freedom
needed to meet the resistive wall boundary con-
dition, with little cost in computational effort.
The added resistivity has an important quanti-
tative effect, larger than that indicated by a pro-
posed rule-of-thumb (3rd paragraph of Ref. 2).

Our discussion is based on the Maxwell-Vlasov
equations linearized about the non-stationary
state corresponding to a uniform beam subject
to the full boundary conditions for the tube with
cavity. In complete analogy to Landau’s original
theory of plasma oscillations,* we make a La-
place transform in time, rather than the Fourier
transform which is often used (actually without
justification) in stability studies. This clarifies the
derivation of the dispersion relation and allows
us to prove that the rise time of a sufficiently
small unstable perturbation is independent of its
initial form. We hope to consider practical ap-
plications of the Laplace initial-value formalism
in later work, one possibility being to study beam
evolution in an induction linac.

The Maxwell-Vlasov equations lead to ‘‘self-
consistent’” equations for the perturbed field
coefficients, with the unperturbed momentum

distribution appearing parametrically. We derive
self-consistent equations for the D, as well as for
the A,. The former are presumably novel for
treating longitudinal stability, and we find them
to be very convenient. They give a full account
of stability without explicit reference to axial
fields or coupling impedance. The general form
of the plasma dispersion relation governing sta-
bility is that the determinant of a self-consistent
system of equations be zero: det (1 — K) = 0,
where K is the kernel of either the A,, or the D,
equation. Because of the coupling of tube modes
induced by the cavity (in a complementary view,
the coupling of cavity modes induced by the
tube), all modes appear in the exact dispersion
relation. Nevertheless, the usual dispersion re-
lation involving only one tube mode is normally
an excellent approximation to the full determi-
nantal equation, as we show in a detailed dis-
cussion. There is one exception, in which two
tube modes participate. The anomaly occurs only
for a limited range of parameters (for instance,
if the current is sufficiently high and within cer-
tain narrow intervals) but it enhances stability.
We treat the anomalous stability at length in the
tractable case of a deep cavity.

The dispersion relation is normally used to es-
tablish sufficient conditions for stability, which
are not influenced by the frequency dependence
of the coupling impedance. Whatever the varia-
tion with , it is sufficient (but actually not quite
necessary) for stability that the impedance eval-
uated on the real w-axis stay within a certain
region of the complex plane which depends on
the current, the unperturbed momentum distri-
bution, etc. On the other hand, when the disper-
sion relation is used to find rise times, the fre-
quency variation of the impedance must be
accounted for, especially in the resonant case.
We compute the rise time under resonant con-
ditions by a method which uses the solutions of
the smooth-tube dispersion relation as a starting
point. Given those solutions, it is a trivial matter
to find the rise time, and to explore its variation
with changing parameters.

Our quantitive examples of stability limits and
rise times will be for high-current nonrelativistic
heavy-ion beams such as are contemplated in
designs for ion-beam fusion drivers. Our imped-
ance calculations are of course more general,
being relativistic and independent of particle dy-
namics.

We believe that some of the methods employed



LONGITUDINAL STABILITY THEORY 183

will be useful in a variety of problems in accel-
erator theory, and for that reason give fairly com-
plete details. A reader more interested in results
than derivations should begin with Part II.

A short summary of our formalism and a nu-
merical example are given in Ref. 5.

1.2 RELATED WORK

Month and Peierls® also reexamined the equa-
tions of Keil and Zotter, using a Watson-Som-
merfeld transformation. Their use of the trans-
formation is completely different from ours,
however, in that they transform the solution of
the equations for field coefficients, rather than
the kernel. Consequently, they have to assume
analyticity properties of an unknown function,
and that makes the results difficult to evaluate.
In our case the function is known and the trans-
formation is rigorously justified.

In an interesting paper Keil and Messer-
schmid’ studied nonlinear effects in the longitu-
dinal stability of a coasting beam by means of
numerical simulation. They find that the linear
theory gives a good first approximation, but find
interesting behavior of the velocity spread in the
nonlinear saturation of instability.

Measurements on destabilizing effects of vac-
uum chamber cross-section variations have been
performed at the ISR.3° A special experimental
cavity placed around the ISR beam was used to
study longitudinal stability of a coasting beam;®
theoretical estimates of thresholds for instability
were found to be valid. Stability of bunched
beams has been the topic of many experimental
and theoretical investigations. For a recent re-
view emphasizing design considerations see Hof-
mann.!°

Calculations of coupling impedance for models
different from that of Ref. 2 have been done by
several authors. Hahn and Zatz!! treat single and
double step discontinuities of cross section in a
circular tube, without periodicity. Hereward!?
considered a single step in a rectangular tube.
Kriegler, Mills, and van Bladel,'* and also Trick-
ett,' studied a reentrant cavity (annulus coupled
to the main tube through a slot). Chatard-Moulin
and Papiernik'® treated an arbitrary small peri-
odic modulation of tube radius. Their method was
applied by Krinsky'® and by Cooper and Mor-
ton,'” and was reformulated by Krinsky and

Gluckstern.'® Sessler!® gave a general review of
the effects of beam surroundings on stability, list-
ing further references. Related problems of wave
propagation in corrugated wave guides have re-
ceived much attention in the engineering litera-
ture.?°

1.3 CONTENTS OF PART I

Section 2 is concerned with linearization of the
Vlasov equation, and Laplace and Fourier trans-
forms of the linear Maxwell-Vlasov system. We
advise some care in the interpretation of the
linearized system, because one must linearize
about a state that is not the stationary solution
of the nonlinear system. The variables of our
Vlasov equation are the position and relativistic
momentum of rectilinear motion, rather than the
angle-action variables that are often employed.
For a coasting beam, the latter are superfluous
as long as one computes the coupling impedance
for a straight vacuum chamber with a centered
beam.

Section 3 contains the derivation of equations
for Laplace-Fourier coefficients of field pertur-
bations due to a prescribed charge-current per-
turbation. The discussion parallels that of Ref.
2, and uses a similar notation, but has been gen-
eralized to allow arbitrary charge-current per-
turbations, resistive cavity end walls, and initial-
value terms. Most of the details on initial-value
terms are in two appendices. We first find cou-
pled equations for the tube modes A and cavity
modes D, Eqgs. (3.66) and (3.67), which corre-
spond to (1.23) of Ref. 2. We then elminate A to
get Eq. (3.68) for D alone. There is no corre-
sponding equation in Ref. 2., but (3.4) of that
paper has a similar kernel and is applied in a
similar way. Equations (3.67) and (3.74) give A
in terms of D and vice versa.

In Section 4, the Vlasov equation is combined
with the electromagnetic equations of Section 3
to give ‘‘self-consistent’’ equations in which the
perturbed charge-current does not appear, namely
Egs. (4.12) for tube modes and (4.29) for cavity
modes. The usual dispersion relation governing
stability, Eq. (4.18), is derived as an approxi-
mation to (4.12). The quantitative justification of
the approximation is treated in Part II. Exact
expressions for the impedance are given by Eqgs.
(4.23) and (4.24) or (4.26). Instead of direct nu-
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merical evaluation of these formulas, we rec-
ommend the methods developed in Part II.

Section 5 explains the Watson-Sommerfeld
transformation of the kernel of the D equation
(3.68). The final form of the kernel, which will
be applied in numerical work of Part II, is given
in (5.18). The result (5.18) has a very simple struc-
ture, which the reader may better appreciate by
putting the small resistivity parameters (k, m,)
equal to zero.

Topics mentioned in the Introduction but not
treated in Part I will be covered in Part II, except
for the Fredholm theory of the D equation, which
is to appear in a third paper.

2. LAPLACE AND FOURIER
TRANSFORMS OF MAXWELL-VLASOV
EQUATIONS

We take the axis of the tube to be the z-axis with
the origin at a cavity centroid; the ends of the
cavities then lie in the planes z = 2wnR =+ g,
where n is an integer. The particle distribution
function, u(r, p, t), is presumed to obey the rel-
ativistic Vlasov equation,

d 9
—u+v-—u+q(E+va)-

ot ar =0, @D

Q)IQ)
TR

where p = M+vyv is the momentum. We suppose
that u has the form?!

u(r,p, t) = 6(a — Nd(p)d(py)folp2)
+ fl(z’ Pz; t)]! (22)

where 0 is the unit step function, and 3 is under-
stood as a smooth but sharply peaked even func-
tion approximating the Dirac delta function.
Thus, charge and current are spatially uniform
over a cross section of the beam, within the beam
radius a. On the average, particles move only in
the z direction. If we substitute (2.2) in (2.1) and
evaluate the equation atr = (0, 0, 2), v = (0, 0,
v), the result is

F) 9
<5 + Ua_z> f1@z,p:, ) + qE(z, 1)

x 5—"— [fo(po) + fi(z, pey D1 = 0. (2.3)
Dz

We wish to linearize (2.3) about the configu-
ration corresponding to f,. Accordingly we write

the electric field as
E(r, t) = Eo(r) + E(r, 1), 2.4

where E, and E, correspond to charge-current
densities (po, Jo) and (p;, J;) defined as

po(r) + py(r, t) = 6(a — rgq

x [ Lol + £z, pe Oldp. (25)

Jo(r) + Jy(r, t) = 6(a — g

x [ ulfo(pe) + fi(z per Ddp. (26)

We emphasize that both E, and E; correspond
to the same boundary conditions, those for the
corrugated tube with resistive walls.

At points on the axis sufficiently far from the
cavity ends the field lines of E, leave the axis
almost exactly in the radial direction, so that E,,
on the axis is negligible. At points nearly adjacent
to the cavity ends, E, on the axis will be nonzero
but small; the field lines must bend around to
meet the cavity ends at nearly normal incidence.
For the linearization, we treat E,, on axis as a
first-order quantity, even though it is formally
of order zero. The accuracy of this procedure
could be judged by solving the boundary-value
problem that determines E,,, using methods like
those developed in the following. When second-
order quantities are dropped, Eq. (2.3) takes the
form

(% + v%) fiz,v, 1) + qE.(z, t) fo'(p2)

= — qE0@fo (pz).
2.7

This equation is to be solved together with the
Maxwell equations and boundary conditions for
E, and B,, with sources (p;, J;) given by (2.5)
and (2.6). Thus we have a linear system to de-
termine (f,, E;, B,) in terms of f,, E,o, and the
initial values (f;, E;, B,),—o. To calculate the rise
time of an unstable perturbation we need not ac-
tually specify E,, and the initial values, since the
rise time turns out not to involve those time-in-
dependent quantities. Of course, we ignore com-
pletely the implications of the Vlasov equation
(2.1) at points off the z-axis, as befits the ap-
proximation of one-dimensional motion.
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Before proceeding to the Maxwell equations,
some comments are in order. Generalizing the
theory of Landau damping,* we begin at t = 0
with an arbitrary small perturbation, (f,, E,,
B,).—o, of the uniform beam configuration, (f,,
Eo), and ask how that perturbation evolves in
time. We can never expect that the perturbation
will decay to zero, even if parameters are such
that the beam is actually stable, because (fy, Eo)
is not an exact steady-state solution of the non-
linear Maxwell-Vlasov system. Indeed, if f, =
0 and E; = 0, then (2.3) reduces to the false
equation E, (z) fo'(p,) = 0. Clearly, a steady-
state solution must have some variation of charge
density in the z-direction to account for the pres-
ence of the cavities. A rigorous discussion of sta-
bility would have to proceed by first finding an
exact steady-state solution of the nonlinear sys-
tem. Linearization about that solution would then
decide the question of stability.

As time passes, the perturbed field E,, as com-
puted from the linearized equations above, will
either (i) increase in magnitude indefinitely or
(ii) tend to a constant. (There is also the math-
ematical possibility that E; could oscillate indef-
initely without approaching a limit, but that
would not seem to make sense physically.) We
interpret case (i) as instability and (ii) as stability,
while emphasizing that the interpretation is plau-
sible but not rigorously justified. Since the con-
figuration (f,, Ey) about which we linearize is
already a perturbation of the true stationary con-
figuration (f©@, E©) (supposed to exist), the true
initial perturbation of the stationary state is

(fo+ f1i — fO,Eo + E; — E9 Bi),—o. (2.8)

Our interpretation of an increasing E; as insta-
bility could be wrong if the beam were actually
stable to a sufficiently small perturbation, but not
to one as large as the ‘‘minimum’’ perturbation
that we are able to treat theoretically, the latter
being

(fo — £, Eo — E,0). 2.9

The distribution function is to be normalized
so that

20+ 2wR ©
mﬁ' af dp.f(z, pey 1) = N,
z —

(2.10)

where N is the average number of particles in the

interval zo < z < zo + 2wR. We shall impose
periodicity of f in z through a Fourier develop-
ment, so that N will be independent of zo. To
maintain (2.10) in the linearized formalism, we
first take fo(p,) to satisfy (2.10) by itself:

(ma@nR) [ dpefolp) = N. @11

Next, we choose the initial value of f;, which is
arbitrary, so that

zo+2m™R ©
[ @ dpefiepn0 =0 @12)

0

For instance, condition (2.12) is satisfied if there
is no constant term in the Fourier series for f;
at time O:

fl(z, Dz, O) = 2 f]n(pz’ 0) eXp(in Z/R)

n#=0

(2.13)

Now f = fo, + f, satisfies (2.10) at time 0, and
the linearized equation (2.7) then implies that f
satisfies (2.10) for all time. In addition, the lin-
earized equation implies that the continuity
equation holds for all z and ¢,

ap oJ
P,
at 0z

2.14)

We next state the Maxwell equations for per-
turbed fields E; and B; = poH; with sources p;,
J1 given by (2.5) and (2.6). We take cylindrical
coordinates (z, r, ¢), and look only for solutions
independent of ¢. Higher modes depending on
& are believed to have relatively little effect on
stability, but perhaps should be investigated at
a later stage. Henceforth we suppress the sub-
script 1 denoting perturbations, and write the
axially symmetric equations for perturbed fields
of the transverse magnetic (TM) mode as

86_“? _ 3§z _ _Ma_gg (2.16)
% - e af;’ 2.17)
%(—%(er,) =J+ e a;iz. (2.18)
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The corresponding equations for the transverse
electric (TE) mode are obtained from (2.15)-(2.18)
by dropping p and J and making the replacements
E & H, py © —¢y. The boundary conditions at
the resistive walls do not mix the TM fields (E,,
E,., Hy) with the TE fields (H,, H,, E,), at least
in the standard approximate treatment of bound-
ary conditions (Ref. 22 and Appendix B). Since
only the TM fields affect the longitudinal particle
distribution through the Vlasov equation (2.7),
we may then ignore the TE fields entirely; [under
assumption (2.2) the TE fields have no sources,
and ir]1 fact vanish at all times if they vanish at
t = 0].

Following Landau,* we perform a Fourier
transformation of the equations with respect to
z and a Laplace transform with respect to .
(Some authors use a Fourier transform in ¢ for
stabilty studies, but are thereby led to logical
inconsistencies that were already noted by Lan-
dau. In proving that the resulting prescriptions
for computing growth times are correct, one is
in fact led back to the Laplace transform.) We
first treat the ‘‘tube region,”’ r < b, in which the
series in z will have period 2wR. Later we use a
nonharmonic series in the ‘‘cavity region,” b <
r < d. In the tube region, the Fourier-Laplace
transform of a function ¢(z, t) is

—g+2nmR

5 1 ® .
_-—_ -pt iknz
bn(p) = 52 fo e~r'ds f_g e (z, 1)dz,

(2.19)

kn=n/R, n=0,x1,+=2,....

(2.20)

The Fourier transform (without Laplace trans-
formation), evaluated at ¢+ = 0, is denoted by
$,(0). Through integration by parts,

<%> = pbu(p) — 6u0).  (21)

A reader committed to thinking in terms of fre-
quencies may put p = —iow in in the following
equations.

Tranformation of the linearized Vlasov equa-
tion (2.8) yields

(P + ikn0)fu(pz, P) + q Ezn(r, p) |r=ofo'(p2)

1
= fn(pzy t) |t=0 - qEzonl_)fOI(pz)- (222)

In stating the transformed Maxwell equations,
we simplify notation by suppressing arguments
r, p, n; thus E_,(r, p) = E,, and for initial values
we write E,,(r, 0) = E,(0). Then transformation
of (2.15)-(2.18) yields

12 0By + ikE =25, (2.23)
ror €0
. A aE 2
ik E, — a_rz = —pop Hy + poHy(0),
(2.24)
ik IA1¢ = —€op Er + EOEr(O),
(2.25)
1i( Hy) = J + eop E, — €E,(0)
rar r o) = €0P z €0 Z( .
(2.26)

In the cavity region, b <r<d, —g<z<g,
we employ generalized Fourier developments,

E(r,2) = 3 [EL(sin auz + EX(P) cos ayz],
s=0

E(r,2) = 3 [EL() cos a,z + E2,(P) sin az],
s=0

£

Hy(r,2) = > [HL(r) cos a,z + H3(P) sin a,z].
s=0

(2.27)

Here and in most of the equations to follow we
suppress the variable p. One must keep in mind
that almost all quantities, in particular the La-
place-Fourier coefficients of fields, are functions
of p. The nonharmonic wave numbers o, are cer-
tain nonlinear functions of s and p, determined
by boundary conditions on the planar end walls
of the cavity. It turns out that the functions sin
o,z and cos a,z are mutually orthogonal, so that
there is a set of equations for the cavity field
coefficients analogous to (2.23)-(2.26). Again
suppressing arguments r, p, s, we find that for i

’ ’
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19 .. oA
-—(ES) + (=) ok =0, (2.28)
ror

. . aEZi a .
(_)1+1 G.Erl —_ ar = —p,op Hd,l + p«()Hd)l(O)’
(2.29)
(_)i+1 qu)i = €op Eri - €0Eri(0)7

(2.30)

10 . L )
-—(rHy) = eop E — €0 E(0).
ror

(2.31)

The Eqgs. (2.23)-(2.26) and (2.28)—(2.31) are to
be solved subject to continuity conditions at the
tube-cavity interface (r = b, — g < z < g) and
boundary conditions relating tangential electric
and magnetic fields at the walls. The solution is
in terms of charge-current densities and initial
values of fields. Expressing charge and current
in terms of the distribution function, and evalu-
ating the latter by (2.22), one finally obtains the
field coefficients in terms of initial values of the
fields and distribution function. For instance, one
can obtain the electric-field perturbation on the
axis, Ezn(r P) |0, in terms of the initial pertur-
bation of the distribution function, f(z, p,, 0), and
two independent initial field perturbations, say
E.(r, z, 0) and H,(r, z, 0). By an inverse Laplace
transformation, one may then calculate the rise
time 7 of an unstable perturbation as T = 1/Rep.,
where p., is the right-most singularity of E_,(0, p)
in the complex p-plane. This method of solution
is quite analogous to that of Landau’s theory, but
more complicated because of the boundary con-
ditions and the initial-value problem.

In analogy to Landau’s case, we are able to
prove that the particular initial values of fields
and the distribution function do not affect the rise
time. We work out the role of arbitrary initial-
value terms in detail, under the restriction that
the end walls of the cavity have infinite conduc-
tivity; (there are technical difficulties in allowing
finite conductivity with initial-value terms). We
report the calculations in Appendix A, and drop
the initial-value terms in most of the main text.

The resistive-wall boundary condition is usu-
ally stated under the assumption of exponential

time dependence of the fields,?? which is equiv-
alent to stating it for the Fourier transform of the
fields in time. We need a statement for the La-
place transform of the fields, which is derived in
Appendix B.

3. EQUATIONS FOR LAPLACE-FOURIER
COEFFICIENTS OF FIELDS

In this section, we find equations for the Laplace-
Fourier coefficients of fields which satisfy
(2.23)-(2.26), (2.28)—(2.31), and the required con-
tinuity and boundary conditions. We define three
regions of the vacuum chamber:

I: 0<r<a
II. a<r<b
I: b<r<d, —g<z<g.

In Regions I and II, the relevant Maxwell equa-
tions are (2.23)-(2.26), whereas (2.28)-(2.31)
apply to Region III. To solve (2.23)-(2.26) we
first find a second-order equation for E, alone.
The system degenerates when k = 0, so that it
is important to eliminate E, and H, in such a way
that the resulting equation holds even at k = 0.
We take E, from (2. 25) and substitute in (2.24);
then solve (2.24) for H¢, and substitute the latter
in (2.26) to obtain

19 ( OF, -
-2 — v2E, =
rar<r ar> X e

_12 {r[uohﬂb(ﬂ) - %Er(O)]}, G3.1)

x> s
== (J — eE;(0)
€op

r or
where
2 = k% + (plc). 3.2)

One of the three initial fields may be eliminated
from (3.1). We make use of the continuity equa-
tion

ikl + pp = p(0), (3.3)

and the Poisson equation (2.15), after Fourier
transformation but before Laplace transforma-
tion, evaluated at ¢ = 0:

19 ) 1
oy T EAQ) + ik Ex(0) = . p(0). (3.4)
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From (3.1)-(3.4), one finds the necessary con-
dition on E_,

14 [ oE, - . ik,
—_— — = + —
ror <r 6r> X°E: hop J eop

E ) - —~(r Hy(0)). (3.5)

The linear combination of J and p that appears
in (3.5) is in some sense the natural analog of the
charge density p that appears in Landau’s elec-
trostatic problem, and will occur repeatedly in
the following.?* We select [(0), E.(0), H,(0)] as
the set of independent initial values to be chosen
arbitrarily (within the restriction that they be
small). We notice that the remaining initial value
E,(0) may be expressed in terms of the others by
integrating (3.4) and applying the requirement
that E,(r, 0) be finite at » = 0. Thus

1 r
E.(r,0) = ;fo udul — ikE.(u, 0)

+Lo@-w [ dp.fpe, 00 GO
€0 — o

In the remainder of this section we put all three
of the initial values [f(0), E.(0), H,(0)] equal to
zero; hence E.(0) = 0 as well. Then the only
inhomogeneity in the system of linear equations
is provided by the term from E,, in the Vlasov
equation (2.22). In other words, we are beginning
with a charge and field configuration which dif-
fers from a stationary-state solution (f©@, E©)
of the nonlinear Maxwell-Vlasov system by the
amount (2.9). The field E,, due to wall corruga-
tions may drive an initially uniform beam to in-
stability.

With initial fields absent, the general solution
of (3.5) is given in terms of modified Bessel func-
tions as

E, = cilo(xp) + c2Ko(xr) + 0(a — PF, (3.7)

where
a [~ ik
F=- —2] dpf(p:)| wopv + —|.  (3.8)
X ad €0

The irregular Bessel function Kj is disallowed in
Region I because of its singularity at » = 0. Thus,
the Fourier developments of E, in Regions I and

II must have the forms

o

EXr,2) = 3 [AmIo(Xm?) + Frle™, (3.9)
Ez"(ra Z)
= 3 [Bu Io(XmP) + CuKo(Xmn)le™ . (3.10)

m= — oo

We next find corresponding expressions for H,
by a method that is compatible with the discus-
sion of Appendix A, i.e., that brings in only E,(0)
and H,(0) when initial- value terms are included.
The method is to solve (2.26) for H¢, with E
given by (3.9), (3.10). The general solution of the
corresponding homogeneous equation is H, =
~v/r, where v is a constant. Since I; = Iy’ and K|
= —K,', a particular solution of the inhomo-
geneous equation is

lr ulJ(w) + 6(a — u)eopF) du
rJo

r<a,

€op | A Io(xr) ,
r>a.

x |BL(xr) — CKi(xr),

(3.11)

The first term of (3.11) may be expressed in terms
of the initial value of the distribution function,

as is seen by applying the continuity equation
(3.3):

Jw) + 0(a — u)eop F = lxii‘ p(0)

- _x_ike(“ B “)qf_w dp.f(pz,0). (3.12)

For the present discussion this quantity is zero.
Furthermore, one can rule out a term vy/r in H,
by demanding that both (2.23) and (2.24) be sat-
isfied; consequently,

Hl(r,2) = ep X Xm 'Amlo(XmPe™ ",

(3.13)
H2(r,2) = €p 2 Xm '[Bulo(XmP)
" . (3.14)
— CmKo(xmr)]e* m=.

Corresponding expressions for E, are obtained
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from (2.24), (2.25), given the results for EZ and
H,. One can then verify that the fields satisfy all
four Maxwell equations. If the E, and H,, fields
for Region I are matched to those for Region II
at r = a, then E, will automatically be matched
as well, by (2.25).

In Region III the non-harmonic Fourier de-
velopments (2.27) and the Maxwell equations
(2.28)—(2.31) imply an equation analogous to (3.5)

1 i .
14 ( £> gy
ror or

=P — @i i
= C2Ez(0) p ar(l‘H<,,(())), (3.15)

I'? = a? + (plc). (3.16)

It is convenient to state solutions in Region III
in terms of certain linear combinations of I,(I'r)
and Ky(I'r) that have simple expressions on the
cylindrical cavity wall, r = d. Accordingly we
define, forj = 0, 1,

Ri(x,y) = Ko(WIi(x) + (=) "' Io(y)K;(x),

. 3.17)
Si(x, y) = —KiWL(x) + (=Y L())K;(x).
(3.18)
We notice that

Rl = 6R0/6x, S] = aS()/ax, (3.19)

and, by a standard Wronskian identity,
Ro(x,x) =0, Si(x,x) =0, (3.20)
Ri(x, x) = 1/x, So(x,x) = —1/x. (3.21)

With initial value terms neglected, the general
solution of equations (2.28)—(2.31) in Region III
may be written

E/ = D'Ro(T'r,Td) 4 D''So(Tr,Td), (3.22)
Ay = % [D'R,(T'r, Td)

+ D'iSy(Tr, Td)], (3.23)
Ef=(-)*! % (D'R\(Tr, Td)

+ D''S,(Tr, Td)]. (3.24)

We are now in a position to apply continuity
and boundary conditions. Continuity in r at r
= g determines the coefficients B,, and C,, of
the Region II expansions in terms of the coeffi-
cients A,, of Region I. Using the Wronskian iden-
tity (3.21) and the definition (3.18), we can then
write the Region II expansions as

o

Ezll(r ,2) = E

m= —o

[AmIO(er)

— Xm@ So(Xm?'s Xm@)Fmle® =,
(3.29)

A (r,2) =€p 2 [Xm ™ "Amdi(XmP)

—a Sl(er, Xma)Fm]eika-
(3.26)

The boundary condition (B.12) applied at the cy-
lindrical cavity wall determines the primed coef-
ficients of (3.22)—(3.24) in terms of the unprimed
ones. After Fourier transformation in z the
boundary condition at r = d is

1/2
Eid) = -(%—T’Z) Hi(d).  (3.27)

The subscript ¢ (for ‘‘cavity’’) indicates that pa-
rameters w, o are those for the cylindrical cavity
wall; we also write subscripts e and ¢ (‘‘ends”
and ‘‘tube’’) for the cavity end walls and the
cylindrical tube surface (r = b), respectively. By
(3.22), (3.23) and identities (3.20), (3.21), we find

D= - 1D,

Th (3.28)

where the dimensionless parameter 7. is defined
as in Ref. 2

12
Ne = — (u_p) €opb.
Y c

According to (3.28), the combination of Bessel
functions that now appears in Region III fields
is

(3.29)

®/(r) = R(Tr, Td) — ;‘—2 SiTr,Td), (3.30)
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and the field expansions take the form
EM(r,2) = T (D' cos a2
s=0

+ D2 sin asz],
(3.31)
H(r, 2) = eop > T,7'®,1(N[D;' cos a,z
s=0
+ D2 sin az],

(3.32)

o

EM(r,2) = Y, o, '@, (PD, sin o,z

s=0
— D% cos asz7].
(3.33)

The boundary condition at the cavity end walls
(z = ¥ g, b <r < d), before Fourier transfor-
mation in z, is

12
E(,7g) =+ (%) Hy(r, 7 g). (3.34)

By choosing the non-harmonic wave numbers o
appropriately, we may satisfy (3.34) term-by-
term in the expansions (3.32), (3.33). It is suffi-
cient that

[ sin a8 + (M./b) cos a,g]1D;!

+ [a; cOs a8 — (./b) sin a,g]D* = 0, (3.35)
[ sin a,g + (M./b) cos a,glD;!
— [ cos a,8 — (M/b) sin a,g]lD = 0. (3.36)

There are two ways for these equations to be
satisfied:

xssinx; + kcos x, = 0, D2 = 0, D,! arbitrary,
(3.37)
xscos x; — ksinx, = 0, D,! =0, D, arbitary,

(3.38)

where

K = n.g/b
Mp 1/2
- (;‘) epg. (3.39)

To find solutions of the nonlinear equations
(3.37), (3.38), we take advantage of the circum-
stance that the dimensionless parameter « is typ-
ically small compared with 1 for the values of p
of interest. The values of p of interest, those in-
volved in computing the rise times of unstable
perturbations, are close to the points p = F iw,,
where w, = jo;c/d is the fundamental frequency
of a cylindrical cavity of radius d; (see the heu-
ristic argument of the introduction, or the cal-
cullatic')ns of Part II). Then the order of magnitude
of [k |is

1/2
Mowr
(2 e
o

e

Xs = Qsg,

= j3t(oedZo) " (gld), (3.40)
where Z, = (wo/€0)"? = (1207 ohm) is the imped-
ance of free space. For the conductivity of stain-
less steel, o, = 10° (ohm-meter)™!, and d = g
~ 1 meter, we then have | k | ~ 2 x 107* The
parameters T, M., M. are typically of a similar
order. In the following, we shall expand various
quantities in powers of k or the n’s and retain
only the lowest powers, keeping in mind that the
resulting approximations are not good at large
| p |. Large values of | p | enter the problem only
if one wishes to compute the full time dependence
of the fields, not just the asymptotic time depend-
ence that is the sole concern of stability studies.

An expansion of the solution x, of (3.37) or
(3.38) in powers of k gives

stl2 — 2x/sm — 8k2(sm)> + ... .,
s=12,.... (3.41)

Xs

where x; is a solution of (3.37) for even s and of
(3.38) for odd s. There is also a solution of (3.37)
close to zero, which may be expanded in powers
of k"2 as

Xo= — ik + /6 +...). (342

The negative of each of the solutions (3.41), (3.42)
is also a solution, but by a redefinition of coef-
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ficients D,’ one sees that it would be redundant
to include a corresponding term in the expansions
(3.31)-(3.33). There is also the extraneous solu-
tion x, = 0 of (3.38), but it makes no contribution
to the field expansions. The implicit-function
theorem for analytic functions®* may be invoked
to show that the series (3.41) and (3.42) converge
for sufficiently small | k |. In addition, the solu-
tions we have found are unique if | k | < ©?/16,
as may be seen by applying Rouché’s theorem;?’
all the solutions are close to those of sin 2x =
0.

The functions cos a,z and sin a,z form an or-
thogonal set on the interval [—g, g]. Accord-
ingly, we define the orthonormal functions

fs@ =1 — k/(x® + KZ)]—I/z

% {(—)”2 COS 052, seven,

(=) 2 sina,z, sodd. 4

The peculiar sign factors are introduced so that
f, takes the convenient form (1 + 8,5)~ "2 cos
as(z + g) at k = 0, a form that is used in Ap-
pendix A. The f are orthonormal in the sense

1 g
2 f _gfs(Z)ft(Z)dz = dy. (3.44)

The result (3.44) follows from the definition of
Xs = o,g as a solution of (3.37) (s even) or (3.38)
(s odd).

The set {f,(z)} is complete as well as orthog-
onal. For | k | < w?/16 the wave numbers o, give
rise to a Riesz basis for the space L?*[—g, g] of
square-integrable functions, and the f, form a
complete set in that space.?® Completeness in the
space of continuous functions C(—g, g) may be
established by considering, for u, ve(—g, g), the
integral

J’ ax \ sin (Au/g) sin (Av/g)
¥ sin A(A cos A — k sin \)

k cos (\u/g) cos (Av/g)
sin A (A sin A + K COS \)

] =0. (3.45

Here v is any closed contour such that the zeros
of the denominators all lie outside y. By deform-
ing the contour to infinity and noting that the
integrand vanishes exponentially as Im A —
+ oo, we deduce from the residue theorem that

i fs)fs(v) = % + i [cos (smulg) cos (smu/g)
s=0

s=1

+ sin (swu/g) sin (smu/g)] = gd(u —v). (3.46)

Of course, this formal statement of completeness
is to be interpreted through term-by-term inte-
gration of the product of (3.46) with a continuous
function.

The use of nonharmonic Fourier series has a
long history.?6-?° The functions f,(z) are well-
known in the theory of heat conduction.?”-28

Redefining the Fourier coefficients, we write
(3.31), (3.32) as

EM(r,2) = i D;®,°(r)f s(2), (3.47)
s=0

1, 2) = eop S, Ty D@ (Dfs(2).  (3.48)

5s=0

The remaining continuity and boundary con-
ditions to be satisfied are at r = b:

EM(b,7) = EM(b,7), -g<z<g,

(3.49)

12
Ez”(b, )= — <%_p> H¢”(b’ 2),

t

g<z<2mR - g, (3.50)

H (b, 2) = H"(b,2), —g<z<g.

(3.51)

To state these conditions in terms of Fourier
coefficients, we use the orthogonality (3.44), as
well as the additional overlap integrals,

1 —g+2wR
R exp litkn — km)zldz = 8,m
-
(3.52)
1 g
-Z?IEJ‘ exp [— ian]fs(Z)dZ = afs(g)an,
-8

(3.53)

1

—g+2mR
mR fg exp li(k, — km)zldz

aVum. (3.54)

=8nm—
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The quantities appearing here are

) (kg + i)

1
Nps = AL N2 2
2i (kng)? — xs

X exp (ikng) — (=)’ (kng — ix) exp (—ikng)],
(3.55)

g Vo = sin (k. — km)g
’ITR’ " (kn - km)g

o =

(3.56)

By (3.37), (3.38) it is possible to write fi(g) as
fs(8) = (= )xs(x2 — x + k¥)~V2. (3.57)

Now we multiply (3.50) and (3.51) by exp
(—ik,z) and integrate over[— g, — g + 2wR] and
multiply (3.49) by f.(z) and integrate over [—g,
gl. Noting the expansions (3.25), (3.26), (3.47),
(3.48) and the overlap integrals (3.44), (3.52),
(3.53), (3.54), we obtain two sets of linear equa-
tions for the A,, and D,. Adopting a notation
similar to that of Ref. 2, we state the equations
in terms of the functions

An = AnIO(an)a Ds = Dsq)so(b)fs(g),

(3.58)
B, = ~XnaSo(Xnb, Xn@F,
C, = —(a/b)S:(xnb, xn@)F,, (3.59)
R, = 2f*(g)®,°(b)Tb/D,' (b),
I, = Ii(Xxb)/XnbIo(xb). (3.60)

The equations, analogous to Eqgs. (1.23) of Ref.
2, are

Z (amn -

n=—o

oV, )1LA, + C,) (3.61)

DS = RS 2 N—ms(ImAm + Cm)-

m= —o

(3.62)

To solve (3.61), (3.62), a convenient first step
is to eliminate A, in favor of D;, or vice versa.
To that end we use matrix notation, and define
a matrix N with elements

Ny = N_,. (3.63)

If the cav1ty end walls have infinite conductivity
(x = 0), N is equal to N, the Hermitian adjoint
of N. We shall prove that V = {V,,,} has the
representation

V = NuN,
v = {Ust} = {2fsz(g)851}
Defining diagonal matrices R = {R,d,}, I =

{I,,5,..}, we may then write Egs. (3.61), (3.62) in
matrix notation as

(3.64)
(3.65)

A= -B + oaND + n(1 — aNuN)(IA + C),
(3.66)

(3.67)

D

RN(IA + C).
The unit matrix is always written as a numeral
1.

To eliminate A, we first rearrange (3.66): we
bring the term m,JA to the left side, and then
multlply the equation on the left by NI(1 -
M) ~*. The equation then involves A only in the
product NIA, which may be expressed in terms

of D by (3.67). The resulting equation for D alone
takes the form

D = RED + RN(1 — wI)~'Y, (3.68)
where the kernel matrix E is
E = oNI(1 — nJ)"'N(1 — nvR™"). (3.69)

The source term of (3.68), linear in the charge-
current vector F = {F,}, entails the vector

Y=C-IB. (3.70)

By (3.18), (3.21), (3.59), and (3.60), the compo-
nents of Y may be written as

7 = 1 all(xna)F

n 3.71
" Xnb b Io(xnb) .71

Elimination of D in favor of A leads from (3.66),
(3.67) to the equation
= GIA + GC - B, (3.72)
with kernel matrix
G=m +oaNR - nuN.  (3.73)

Another useful equation is that which ex-
presses A in terms of D. In (3.66) we take m,/A
to the left side, and then multiply on the left by
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(1 — m)~'. We express NIA in terms of D by
(3.67), and then eliminate C in favor of Y by
(3.70). The result is

A=a( - D) 'N(1 - noR™Y)D
+ (1 -~ 'Y - B. (3.74)

The companion equation giving D in terms of A
is (3.67).

To demonstrate (3.64), we expand exp (ik,z)
in the orthonormal set {f,(z)} or [— g, g] to obtain

exp (ik,2) = 2 2 fA@N - f(2). (3.79)
t=0

Now we multiply by exp (— ik,,z) and integrate
over [—g, g]. The resulting equation is exactly
(3.64).

For a given charge-current distribution, spec-
ified through the function F, of (3.8), the elec-
tromagnetic fields may be determined either by
solving (3.68) for D or by solving (3.72) for A.
For deep cavities, d > b, the Region III field
coefficients D, are close to being the normal
mode amplitudes of the system, and (3.68) is the
appropriate equation. The kernel E is nearly di-
agonal when d > b, so that the various cavity
modes almost decouple, and the equation is easy
to solve numerically. In the case of shallow cav-
ities, b = d, the A, are approximately normal-
mode amplitudes, and Eq. (3.72) is the more
tractable one. In some cases of interest, the range
of d/b may be of the order 2 < d/b < 5; then
(3.68) is strongly preferred. »

A remark on the relation of (3.68) to the equa-
tion employed by Keil and Zotter? may be help-
ful. Their equation (3.4) is most easily compared
with our (3.68) in the case where all wall con-
ductivities_are infinite. The unknown of their
equation, X', is then simply related to D; in fact,
X' = D — RNT'Y. The equations for X' and D
consequently have the same kernel, but different
source terms;

X = aRNTINX + aRNTINRNtY. (3.76)

D = aRNTIND + RN*YY. (3.77)

With finite conductivity, the situation is essen-
tially the same. The equation of X’ has mathe-
matical properties similar to that for D, but has
a more complicated form. We prefer the D equa-
tion for its simplicity and its more direct physical
interpretation as the equation for cavity modes.

4. EQUATIONS FOR FIELD
COEFFICIENTS WITH VLASOV
SELF-CONSISTENCY

To compute rise times of unstable perturbations
the Vlasov equation (2.22) must be combined
with the electromagnetic equation, either (3.68)
or (3.72). The charge-current density, expressed
through F, of (3.8), is to be eliminated in favor
of field coefficients. By (3.9) and (3.58),

EL (D) |r=0 = A, + F,
= Anllo(Xnb) + Fn. (4.1)

Following the viewpoint of Section 3 we put the
initial-value term f,(p., 0) equal to zero, so that
(4.1) and (2.22) give

Fpep) = — q Fo' (p)(p + iknv) ™!
X [An(p) + Fn(p) + E.onlp].
4.2)

By the definition (3.8) of F, and (4.2) we can
integrate on p, to get

= fo'(p) p + iknc?
Fap) = o [ d ,
(P) =4q°wo | _dp: or  p + ko

X [An(p) + Fu(p) + Ezonlp],  (4.3)

where v = [M? + (p,/c)*]1~"?p,. The integral
may be cast into a form familiar in plasma theory.
For n # 0 the definition (3.2) of x,.* gives

g 2 2,2
pribe b _cxe 1y
p + ik,v ikn, ik, p + ikyv

The first term on the right integrates to zero
(since fo(= ) = 0), and the factor in front of the
bracket in (4.3) may be written as

—q> 1 [~ dp:fo'(po)
€ iknJ-= p + ikyv

S A 5 1.8
oM J = (p + ik,v)*y3(v)

4.5)

The latter way of writing the factor is also correct
for n = 0. Recall that by (2.11),

[ dpesotpo) = . “.6)
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where N is the average particle density. Let us
define a plasma dispersion function,

wp” (* _ dpfo(p2)
N J-=(p + ik,v)*v3(v)

L * dp.fo'(p2)
prM lkn - D + ian ’
N

If

W.(p)

n#0,

I

4.7
where w,? is the squared plasma frequency,
2
2 _ 4N
= =, 4.8
@p E()M ( )

Then (4.3) may be written as

Fn = _Wn[Ezn + Ezon/p]’ (49)

n =

where Ez,, represents the left side of (4.1). Equiv-
- Wn [ An

alently,
EZOIL
+ . 4.10

According to (3.72), (3.59), and (4.1), the coef-
ficients of the electric field on the axis, E,,,, are
homogeneous linear functions of the F,,, which
we write as

Eoo= 3 UwFa (4.11)

n=—o

In view of (4.9) we then have an equation for the
E,, alone,

Em(P) + S Lo p)Walp)Eur(p) = ES (P)
4.12)

where

E‘g:r)t(p) = - - 2 Cmn(p)Wn(p)Ezon' (413)

n=—o

If initial-value terms were included, the right side
of (4.12) would have additional terms depending
on initial values [f(0), E,(0), H(0)], but the left

1 oc
p? f—w dp.fo'(p)v, n=0.

side would be exactly the same; see Appendix
A.

The rise time 7 of an unstable perturbation is
to be read off from the inverse Laplace trans-
form,

y+ioe

1 N
Ezn(l) = 2_11'1 . e”’Ezn(p) dp.

Y-

4.14)

The integration contour in (4.14) may be moved
to the left by decreasing vy until y = Rep., where
p. is the location of the rightmost singularity of

E.(p) in the complex p-plane. Generlcally, two
complex-conjugate simple poles in the right half
p-plane are the rightmost singularities. If those
poles are at p, = u = iv, then a translation of
the contour beyond the poles gives the asymp-
totic form in terms of pole residues,

E.n(t) ~ €“ ™ res(Eon)u+ i

_+_e(u—iv)tres(l::zn)u_iv’ t—> x (4.15)

and the rise time is defined as + = 1/u.

Since W,(p) is analytic in the right half plane,
singularities of Ezn(p) as determined by (4.12)
could come only from {,,.(p) or from zeros of
the determinant of the system,

det(1 + {(p)W(p)) = 0.

We shall argue that { is in fact analytic in the
right half plane, so that zeros of the determinant
fix the rise time; see the discussion of { following
(4.27) below.

The determinant simplifies greatly for p close
to a relevant zero, so that locating the zero is not
a difficult task. Following formula (4.19) below,
we write { = 0 + {, where 6 = {6,5,,.} is a
diagonal matrix. Then (4.16) is equivalent to

det(1 + {(p)W~'(p) + 6(p)1™") =0. (4.17)

As the work of Part II will show, the function
W,~! + 0, has a pair of poles very close to the
imaginary axis in the p-plane. For typical accel-
erator parameters, this function is extremely
small unless p is close to one of those poles;
consequently, the relevant zero of the determi-
nant (4.17) is close to a pole of W,,~! + 4, for
just one value of n. That value is approximately
given by , = n{), in accordance with the heu-
ristic argument of the Introduction. For locating
the zero, only the n-th column of the matrix
{(W~! + 0]~ ! is appreciable. Thus, evaluation

(4.16)
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of the determinant is a trivial step, and to an
excellent approximation (4.17) becomes

1+ Cnn(p)Wn(p) = 0.

This is the familiar dispersion relation of plasma
theory, and {,, is a dimensionless form of the
usual coupling impedance of accelerator theory.
A more quantitative discussion of the approxi-
mation yielding (4.18) is given in Part II.

There is one anomalous case in which (4.18)
is not correct. For special values of accelerator
parameters, a pole of W,,~! + 6, may coincide
with a pole of W,,~! + 4,,,, for some m close to
n, with the coinciding poles having residues
nearly equal in magnitude and opposite in sign.
Then two columns of {[W~! + 6]~' must be
taken into account for evaluation of (4.17). If this
situation holds (or holds approximately), the
beam has anomalous stability, as will be ex-
plained in Part II.

For general p, the single impedance function
{.»(p) does not fully determine the response of
the axial field to an arbitrary charge-current per-
turbation. Owing to coupling of the various tube
Fourier modes induced by the cavity, the entire
matrix {{,..} (equivalent to the response function
of plasma theory) is required to find the full effect
of a perturbation. Nevertheless, only the element
{.» has quantitative importance in the stability
question, with the one exception noted above.

To derive the relation between {,,,, and the cou-
pling impedance Z, we recall the definition of the
latter,

(4.18)

—2nuRE,, = Z.l,. (4.19)

Here 1, is the n-th Fourier coefficient of a per-
turbation in beam current, and E_, the coefficient
of the resulting axial field perturbation. The coef-
ficients are for Fourier rather than Laplace trans-
forms in time, so that we must put p = —iw and
drop initial-value terms to derive (4.19). By
(4.11), ., may be calculated as the numerical
value of E,, when F,, d,.» (in some definite
system of units). Thus

—2mRun = ZulllF,,=s5,,, - (4.20)
The relation of I, to F,, is obtained from the def-
inition (3.8) and the continuity equation (2.14):

' . ke 1,
F,,=—’—2<,iow1,,—€—§,,)=, — 1. 4.21)
0

Putting F,, = 1 we get the desired relation

2iR

Zn =3 Cnn- (422)

Since w = Bck, approximates the frequency de-
termining stability, the value of Z,, needed in the
dispersion relation may be written as

Z, 2iZy

n  (k.a)B S (4.23)
where Z, = (poleg)'? is the impedance of free
space.

There are two ways to compute {,,,. For shal-
low cavities, the proper way is to solve (3.72) for
A,, with F,, = J,,,, and then obtain E,,, from
(4.1). For deep cavities, one should solve (3.68)
for D;, then get A,, from (3.74) and E,,, from
(4.1). The latter approach is comparable to the
method of Ref. 2, and gives the expression for

g

cmn = enamn
— a(alb)’[N(1 — nwR~ (1 — RE) " 'RN]m»
I(Xna)
Io(xmb)(l = Nelm)Xnalo(xnb)(1 — M)’
(4.24)
where
0,=1+ Io( b) SO(an Xna)
2
_(a ull Ii(xna)
(b) 1 — Mol Xnalo*(xnb) (4.23)

The formula obtained by solving (3.72) is

gmn = 8mn + 2 [1 - H]"_'l[l

X [o(xib) — meli(x:b)/x1b] ™"
X {8in[xnaSo(xnb, xna) — ndalb)S1(xrb, Xna)]
— a(a/b)IN(R — M)N1iS((Xnb, X na)},
(4.26)
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where the matrix H is defined by
Hnm = a[IO(an) - T]III(an)/an]_l
X [N(R = 10)NLumDi{(Xmb) Xmb. (4.27)

As mentioned above, we wish to show that
{(p) has no singularity in the right half p-plane.
Since { involves the solution of an infinite-di-
mensional equation, not known in explicit form,
it is not easy to make a direct analytical dem-
onstration. We can give a persuasive physical
argument, however, on the basis of the definition
of { in (4.11). If the charge and current pertur-
bations were given time-independent functions,
rather than being determined by Vlasov dynam-
ics, then the field perturbation would also have
to be time independent. Consequently the La-
place transform of the field would have no sin-
gularity in the right half p-plane, but would have
a singularity on the imaginary axis. The Laplace
transform of a constant function is proportional
to 1/p, so that by (3.8) the F,(p) for a time-in-
dependent charge-current distribution is analytic
except for poles at p = 0 and p = =ick, (the
latter from the factor x, ~2). Since E,,(p) must
have no singularity in the right half-plane for such
an F,, we infer that {,,,(p) must also have none;
(take f,(p;, p) = 8,.f(p.)p, to see that each
element of { is free of singularities).

The above discussion emphasizes the electric
field on the tube axis, and represents the con-
ventional viewpoint of accelerator theory. It is
more natural, however, to emphasize the field in
the cavity region, if the cavities are fairly deep
and resonant. The axial field and the distribution
function may be eliminated in favor of the cavity
mode coefficients D. The rise time of an insta-
bility may be found directly from the inverse
Laplace transform of D(p), and there is no need
to consider the axial field. The self-consistent
equation for D has an appealing form, and is eas-
ier to analyze in a precise way than the scheme
described above.

To derive the equation, we take A, from (3.74)-

and substitute in (4.10). We solve the resulting
equation for F, in terms of D, to obtain

F, - W, [ a

T 1+ 0.Wo | (1 = medoIo(xnb)
_ ~ EZO’I
X [N(1 — muR YD1, + —p—] . (4.28)

Now we introduce this result for F,, in the source

term of (3.68), using (3.71), to obtain the desired
equation for D with Vlasov self-consistency,

D, = R, [2 (E,, + S,)D, + DS“”] (4.29)
t=0

The letters E and S denote ‘‘electromagnetic’’
and ‘‘self-consistency’’ parts of the kernel. That
is, E is the same kernel (3.69) that occurs in our
previous equation (3.68) with given source term,
and S is the new piece that arises from expressing
the source in terms of the field itself. We have

o B Im
Esu + Ssu = Q E Nsm l:]_—__—

m= — o - TItIm
N 1 <g> Li(xma)
a- 'ﬂtlm)z b XmaIOZ(me)
W,. 1
P mu’ - wl\ y 4.
X T emwm] Nyl NV LR 1 (4.30)

Under present assumptions, the inhomogeneous
term is

2 oo
Do=1(3) 3 N

% 1 Ii(xma) WinEzom
1 - TltIm XmaIO(me) 1 + emu/'m '

(4.31)

More generally, D contains various initial-
value terms; see Appendix A.

Rise times of unstable perturbations could be
obtained from zeros of the determinant of (4.29):

det[1 — R(p)(E(p) + S(p))] = 0. (4.32)

By solving (4.32) one effectively solves the elec-
tromagnetic problem and the dispersion relation
simultaneously, without the intermediate step of
computing an impedance. In Part II we shall find
it better not to work with (4.32) as it stands. We
eliminate the resonant mode from (4.29), and con-
sider the determinant of the reduced equation.

5. WATSON-SOMMERFELD
TRANSFORMATION

A difficulty arises in the practical computation
of the sum in (4.30) that defines the kernel E. The
factor N, or N, is maximum as a function of
m when its denominator is minimum, k,,g = mg/
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R = =x,. In typical cases of interest, this occurs
at a value of m = m, that is large from the view
point of practical computation, even for the first
few values of s. Values of m far beyond m, must
be included for an accurate summation of the
series, and the situation gets worse as s increases.

A Watson-Sommerfeld transformation®-*° re-
places the difference of squares in the denomi-
nators by a sum of squares, and thereby circum-
vents the difficulty. Furthermore, the
transformation eliminates the Bessel functions in
favor of easily computed Bessel-function zeros,
reveals the behavior of the sum for b/d — 0, and
facilitates the treatment of Eq. (4.29) by Fred-
holm theory. There is no reason to make a cor-
responding transformation of the sum defining
the self-consistency kernel S. As we show in Part
II, only one or two terms of this sum are impor-
tant (those for which 1 + 6,,W,, = 0), and in any
case the sum converges exponentially.

Let us define

fm, 5,8 = NyuNpy = N_ Ny (5.1)
The sum that occurs in the kernel E is

3= 2 fim,s,0L,(1 —nd)"" (52)

m=—o

For s — t odd, 2, vanishes: then f is odd in m,
while I,,, as defined in (3.60) is even. Henceforth
taking s — t to be even we write

f=f+5f, (5.3)

_1 1 1
T 4 (kmg)? — x5 (kmg)? — X

f(i')

((kmg)? + &> + (=)*!
X (kmg + ik)2e™2kme]  (5.4)

The numerator of (5.4) vanishes at k,g = =*x,
where x satisfies (3.37) for s even and (3.38) for
s odd. Thus f*’ is bounded at k,,g = *x,, £x,
provided that s # ¢. If s = ¢, there is a pole with
residue given by

lim [(m F x;R/2) f(m, s, )]

kmg— £ x5

—1lim [(m + st/g)f(_)(m’ S, S)]
Kimg s (5.5)
iR x> — k + K2
2 8x,2 ’

Except for the poles that occur when s = ¢, f*
has no singularities in the finite m plane and for
large | m | has the bound

[£220m) | < g1+ e=Cs0im), - (5.6)

where c is a positive constant.
To convert the sum to an integral we employ
the functions

&= (m) = J(m) = (m)e=""/sin mm, (5.7)
where

I

J(m) = 1=l ol

_ I (me)
XmbIo(Xmb) — nIi(Xmb)

Now ¢‘=) has poles at the integers with residue

(5.9

lim (m — )& (m) = 2 JWF D0, 69

and poles that arise from zeros of the denomi-
nator of J. Since m, is small compared to one, the
latter are close to the zeros of Iy(x,,b), which is
to say near the points at which x,,b = =i,
where j; is the i-th zero of the ordinary Bessel
function Jy. With such points as the first approx-
imation, Newton’s method locates the poles of
J(m) at the points m = *m;, where

_=l(r) <f£>2
m,-—zR[(c) + b
1/2
X (1—2%)] . (5.10)
Joi

i=1,2,...
Inside the square root the exact expression has
been expanded to lowest order in m,. The poles
at m = *+m; have residue

lim (m F m)J(m)

%1 20\ (R\?
= <1 + j%i> <b> , (5.11

to lowest order in m,. Except for these poles,
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J(m) is analytic in the finite m-plane. The branch
point of x,, does not appear in J(m), because the
entire functions Iy(z) and I, (z)/z contain only even
powers of z.

In view of (5.6) and the fact that I, and I, have
the same asymptotic behavior, the functions ¢*’
are bounded as follows at large | m |:

| 6 (m) | < —— | (5.12)
| m|?

In fact, each of the functions ¢‘=’ decreases cu-
bically in one half-plane, and exponentially in the
other.

We shall integrate over a path C consisting of
a rectangle with corners — A = iB, A *+ iB,
where A lies between two positive integers, M
<A <M + 1. We first take s 5 ¢, and choose
B and p so that J(m) has no poles inside C. Then
by (5.3) and (5.9),

| 60m) + 6 myldm

M
=2 > Jmfm), (5.13)

m=—-M

since the only singularities of the integrand inside
C are poles at integers. Taking a sequence of
paths C with increasing A we obtain the required
sum (5.2) as an integral,

1 w —iB — o + (B
2ﬁ='f[f +.[ ]
2i —®—iB ® +iB

X [P(m) + & )(m)ldm. (5.14)

Now the integral on Im() = =B may be re-
placed by an integral over an infinite semi-circle
in the upper (lower) half-plane, plus a contribu-
tion from the poles at the points +m,. According
to (5.12) the integrals on the semi-circles vanish,
and the formula (5.11) for pole residues gives

(B S (142
2= W (b) Zm (1 TR
X [——"‘1——— [F=m) + f(—m)]
sin( —mm;)
1
sinmm;

[ (m) + f“)(ms)]] (5.15)

We have chosen the branch of the square root
in (5.10) so that m; is in the upper half-plane.

Since f*’(m) = f~)(— m), the poles in the upper
and lower half-planes give equal contributions.
For s = t there is an additional term in X, from
the poles at m = =x,R/g with residue (5.5).
These poles are close to the real axis, and give
the following addition to 3,

1 [1 - fgx%"—)] J(xsRIg)ds.  (5.16)

200 s

Since the m; are near the imaginary axis for
the values of p of interest, it is convenient to
state the final form of X, in terms of nearly real
numbers p; defined by

m; = Ip;. (5.17)

Then (5.4), (5.15), and (5.16) give

aZy=a 2: Ny = Npu

pi(1 + 2~r|,/j(2,,-)

|

|

3

Q
N
S0
N——
[ )
M s

1 1
X .
(maw)? + x  (map)? + x°

X

- cosh mp; + (—)**!
smh‘rrpb,-[ e ¥ (5)

X cosh[mu(1 — 2w)]
+ 2(= ) k(map;) !
x sinh[mp(l — 20)]] + Ads,  (5.18)

N L(T.b)
* 7 2§.2(9) T.bIo(T,b) — ni(T,b)

(5.19)

We have neglected «? in comparison with (maw;)?
in the coefficients of the hyperbolic cosines. The
notation of (5.18) is defined in the following equa-
tions: w; in (5.17), (5.10), x, in (3.41), 3.42), m,
as in (3.29), k in (3.39), a in (3.56), I'; in (3.16),
fs(g) in (3.57). Note that « in (3.16) stands for a;
of (3.39).

Since w; and x, are approximately real for the
values of p of interest, the denominator (mwop;)?
+ x,2 is nearly a sum of squares of real numbers,
rather than the troublesome difference of squares
that appeared in the original expression. The se-
ries converges cubically, and is quite easy to
compute numerically.
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The last term in (5.18), proportional to 3, is
important in the analysis of the equations for the
case of fairly deep cavities, because it is the only
term that survives in the limit b/d — 0. It is in-
teresting that this limit is difficult to treat without
the Watson-Sommerfeld transformation. One
may draw an analogy to the use of that transfor-
mation in Regge’s scattering theory.?! There the
transformation gives the asymptotic behavior,
for cos 6 — «, of the sum of a series in Legendre
polynomials, P; (cos 0). Here we get the asymp-
totic behavior, for b — 0, of the sum of a series
in Bessel function ratios, I;(X,n0)/XmbIo(Xmb).

ACKNOWLEDGEMENT

R. Warnock enjoyed the hospitality of the The-
oretical Physics Group, Lawrence Berkeley Lab-
oratory. His work was supported by the Director,
Office of Energy Research, Office of High En-
ergy and Nuclear Physics, Division of High En-
ergy Physics of the U.S. Department of Energy
under Contract No. W-7405-ENG-48.

APPENDIX A
INITIAL VALUE TERMS

We repeat the considerations of Section 3, allow-
ing arbitrary initial values [f(0), E,(0), H4(0)],
but requiring infinite conductivity on the end
walls of the cavities. Solving (3.5) by the method
of variation of parameters, we find that (3.9) and
(3.10) must be modified by adding to their sum-
mands the term exp(ik,,z)G,,, where

Gn(r) = jo u dugm(U)Ro(xmr, xmu), (A.1)
with
gm(r) = — %Ezm(r, 0)
C
F)
- %5 (rHom(r, 0).  (A.2)

Similarly, by solving (2.31) we find that (3.13)
acquires the new term

e* 2 (Lp(r) + Kmrl2) (A.3)
while (3.14) is augmented by
e (L (r) + Kna?2r), (A.4)

where
—ikmq (~
K== [ 0o 0 dpe, (A

9 - ka r
Lm(r)=€—02[p—G——— u du
X

m ar r Jo

X E;m(u, 0) + —p~2H¢m(r, 0)] (A.6)
€oC

In solving (2.31), one first has to allow an arbi-
trary solution vy/r of the homogeneous equation,
in Region II. The requirement that the fields sat-
isfy all four Maxwell equations then determines
v to be zero. After an application of the continuity
condition at r = a the fields in Region II take the
form

o

E'r, = X

m= — o

[AmI()(er)

ikmz
b

— XmaSo(Xmls Xma) + Gm(r)le
(A.7)

A (r,0) = >

m=—o

[f-“—’@ Ay (Xom?)

— €opaSi(Xmr', Xm@)Fm
+ L,.(r) + Kmaz/Zr:I etkmz, (A.8)

In Region III we now have k = 0 (infinite end-
wall conductivity), and the functions f; of (3.43)
reduce to (1 + d,0) ™2 cos a,(z + g). We solve
(3.15) by variation of parameters and then solve
(2.31) to obtain

EM(r,z) = 3 [DRo(T,r, Tsd)

s=0

(A.9)
+ Dy’ So(Tsr, Tsd) + Gs(N1fs(2)

A, (r,2) = eop >, [Ty~ 'D,R,(T,r, Tid)

s=0
+ I's7'Dy' 81 (Csr, Tsd)

+ Li(r) + K;a?12r1fs(2) (A.10)
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where

Gi(r) = fb u dug sw)Ro(Tsr, Tsu), (A.11)
gs(r) = -2 E.s(r, 0) — ——(rH¢s(r 0)),

_ _ € 0Gs  a ("

Ly(r) = T2 [p o ll N u du (A.12)

X Ees(u, 0) + ——3 H¢s(r, 0)] (A.13)

K. = =5

f F+(pz, 0) dp.. (A.14)

Here f,(p., 0) is the coefficient in a development
of f(z, p;, 0) in the functions (1 + 8,0) "2 sin
a,(z + g). In deriving H,™ from (2.31), one again
has to allow a term +/r, and this time v is not
zero (for the choice of particular solution of the
inhomogeneous equation that we have found con-
venient). The requnrement that the two Maxwell
equatlons (2.29), (2.30) gnve the same E,, deter-
mines . The field E,(r, 0) is eliminated through
Poisson’s equation, as in (3.6).

Given the series (A.7)-(A.10), the remaining
calculations for continuity and boundary condi-
tions can be done in precise analogy to Section
3. The general form of the boundary condition
is derived in Appendix B. On the cavity wall r
= d the boundary condition stated in terms of
Fourier components is

1/2
E.(d) = — (%") Hos(d) + Nse,  (A.15)

where the term \,. arises from the initial-value
term of (B.12). Similarly, on the tube wall r =

172
Eon(b) = — <%”> Hom(b) + e (A.16)

In place of (3.28) the condition (A.15) gives

D, = — (ms/Tsb)Ds + Js, (A.17)
pp - a
= ra{ () [ + £
+ Gs(d) — xsc} . (A.18)

The continuity and boundary conditions at r =
b now lead to our previous equations (3. 66),
(3.67) for A and D, specialized to k = 0 and
augmented with terms A and RD?, respec-
tively, on their right hand sides. With the argu-
ment p of all functions indicated explicitly, the
latter terms have the form

Am(O)(p) =a 2 Nms[Js(p)SO(rspb, Fspd)

s=0

E (amn -

n=—o

12 2
x [— (%”) (L (b, p) + ~ K(p)>

+ hm(p)] , (A19)

+ Gs(by P)] - Gm(b9 P) + OLVm,,)

Rs(p)Ds“(p)
1
=Rs(p) [eopb 2_ N_ ms[ m(bap)

2

[L (b, p) + K (p)]
opb

LB g b, l“s,,d)] . (A.20)
b

The initial-value term in the Vlasov equation
(2.22) must also be accounted for. Its effect is to
modify the expression (4.10) for F, by addition
of a term

1+ W, 'F,©, (A.21)
where
© qp..of pu + iknc?
F, (P) X szfn(Pz, 0) D+ ik.v .
(A.22)

To see the implications of initial values for the
rise time of instabilities, we must look at the p-
plane analyticity properties of initial-value terms
in the ‘‘self-consistent’’ equation [either equation
(4.12) for the axial field or (4.29) for the cavity
field]. The complete inhomogeneous term of
(4.29) is R,D,”, where
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_ z 1
DS(O) — Ds(O) + N—ms . m
2 [1 - T]tIm

—_—
(1 - T]tIm)z

2
v (g I, (sza) Wi [Am(o)
b/ xmalo*(xmb) 1 + 0,,W,,
+ an(NvD®),,]

-

m= — o 1 - T]tlm
Il (Xma) ] . WmEzom
xmalo(xmb) 1+0,,W D

- Fm(o)] (A.23)

Despite the complicated appearance of (A.23) it
is not too difficult to be convinced that it is an-
alytic in the right half p-plane and consequently
does not affect the rise time of an instability. It
does have singularities on the imaginary axis,
which appear to reflect the circumstance men-
tioned in Section 2; namely, that one cannot ex-
pect the field perturbations to vanish in the
course of time.

To check analyticity of (A.23) we note that the
required analyticity of the ingredients D,?,
A, @ and F,,? follows easily from their defini-
tions. It then remains to show that 1 — m,/,, and
1 + 6,,W,, have no zeros in the right half plane.
A zero of the former would, by (4.24), imply a
pole of {,,,., which has already been ruled out.
Analysis of 1 + 6,,W,, for particular choices of
fo(p,) (see Part II) suggests that its zeros are all
in Rep < 0, but a general proof may be difficult.
We needn’t be concerned, however, since (1 +
0,,W,.) ! also occurs in the kernel of (4.29). A
pole of (1 + 0,,W,.,)~!in (A.23) would be can-
celled by a similar pole from the kernel, and
would not appear in the solution D. The same
argument applies to the factor R; in (4.29).

APPENDIX B
RESISTIVE WALL BOUNDARY
CONDITIONS FOR THE LAPLACE
TRANSFORM

We adapt the standard treatment®* of resistive-
wall boundary conditions to accommodate the
Laplace transform. We suppose that the wall is

planar, obeys J = oE, D = €¢E, B = pH, and is
substantially thicker than the skin depth for pen-
etration of fields at the frequencies of interest.
The unit normal pointing away from the wall is
denoted by n. We analyze fields inside the wall,
supposing that they have relatively little variation
in directions parallel to the wall; this is the es-
sential assumption. Then, if £ is the distance from
the surface to a point inside the wall, the gradient
acting on any field may be written as V = — ng/
0¢. Laplace transformation of the Maxwell equa-
tions involving curls yields

n x % — wpH - pHO),  B.D
n X E’al; = — (o + )k + €E(0). (B.2)

Elimination of E gives

’H .
e wp(o + ep)H = g, (B.3)

(o 220)
g—p n pre n

— p(o + ep)HO) — en X

oE(0)
ot
By variation of parameters, we find the general

solution of (B.3) having exponential decrease for
increasing &. It has the form

(B.4)

A d *®
H(¢) = ae % — Eeg’af g(x)e " dx
g

£
—ge_g’ﬁf ge® dx, (B.S)
0

where

8 = [uo + ep)pl~ 17, (B.6)
and a is an arbitrary constant vector. The branch
of the square root in (B.6) is such that Red™!

> 0 when Rep > 0. Equation (B.5) implies that
H satisfies the relation

N 1 . b
oH/9¢ = — gH - eg’af gx)e *® dx. (B.7)
£

Substitution of (B.7) in (B.2) and evaluation of
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the resulting equation at § = 0 yields the relation
between H and E that must hold at the surface:

172
E = [—’&] nxH+A (E=0), (BS)

o+p
where
A= _ E@0) + n X fm g(x)e ~*"® dx
o+ €p 0 £=0
=—1—[€E(O,O) —n X f [en ><E(0—’—Q
o+ €p 0 9

+ p(o + ep)H(O, g)] e~ d§:| . (B9

The component of Eq. (B.8) in the direction of
n is of no interest, since it merely coincides with
the corresponding component of (B.2). We may
then write the tangential part of (B.8) as

I

1/2
EI\ [ P :l n X ﬁu + N, (B.10)
o +p

where, through an integration by parts, Ay may
be cast in the form

* 13
A= fo [m Ei0, &

— wn X Hy(0, E)] e ¥ dt. (B.11)

For the values of p of interest it is an excellent
approximation to drop the displacement current
by putting € = 0. We then have the form of the
boundary condition used in the foregoing work,

1/2
E = [%p] n x H

—u [0 x BO 0P de B.12)

By using cylindrical coordinates and the appro-
priate Bessel functions, one can find a similar
relation for a cylindrical surface. That refinement
involves little extra effort; we have avoided it
only to simplify notation.
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