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Calculation of the median-plane field in a superconducting cyclotron is greatly facilitated by assuming that all pole
pieces not having axial symmetry are uniformly magnetized in the vertical direction. Using this model, a detailed
analysis is presented in terms of surface currents flowing in horizontal loops around the sides of each pole tip, which
then leads to a field formula involving a single line integral around the closed-current contour. This formula is
simpler than the one previously obtained using a surface-charge representation of the field sources. A straight-
forward computation technique is described and explicit formulas are presented for circular and rectangular pole
geometries. The latter is used, for example, in field calculations for the focusing elements designed for the beam-

extraction system.

I. INTRODUCTION

A 500-MeV superconducting cyclotron is under
construction at Michigan State University for use
as a heavy-ion accelerator.' This machine will
eventually become the injector for a larger su-
perconducting cyclotron having K = 800 MeV.2

Calculation of the magnetic field in the super-
conducting cyclotron is divided into several
parts, which are then combined through super-
position. In the first part, the program TRIM (or
its successor, POISSON) is used to calculate the
dominant axially symmetric portion of the field
that is produced by the superconducting coils,
the circular yoke and core, together with a dis-
tribution of circular iron rings designed to rep-
resent the average effect of the non-symmetric
pole pieces.?

In the second part, which will concern us here,
a simple model is used to calculate the contri-
bution from the iron sectors (pole tips), which
produce the main azimuthal variation in the field,
plus the contributions from the other non-sym-
metric elements such as the vertical holes re-
quired for the dee stems. In addition, as part of
the superposition process, this model is also used
to calculate the contribution from the set of cir-
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cular iron rings used in the first part to represent
these elements.

In the model used to calculate the field pro-
duced by the pole tips and other such elements,
it is assumed for simplicity that the iron is uni-
formly magnetized in the vertical direction. This
assumption allows one to replace the field sources
by an equivalent surface-charge distribution on
the top and bottom surfaces of the pole pieces.
Such a representation was used by Blosser and
Johnson in the early design calculations for a su-
perconducting cyclotron.* This representation is
also being used at Oak Ridge National Labora-
tory, according to a recent report by McNeilly.’
Since the summer of 1976, however, we have
been using an improved method, which is the
subject of this note.

Uniform magnetization permits an alternative
representation of the field sources in terms of a
surface-current distribution flowing in horizontal
loops around the sides of the pole tips. This rep-
resentation produces simpler formulas for the
magnetic-field components because they involve
only a single line integral around the periphery
of the pole tips instead of two-dimensional area
integrals. These formulas lead to a significant im-
provement in the speed of the field computations.

In Section 2 below, we outline the derivation
of the formulas for the field components using
the surface-current representation. Then in Sec-
tion 3 we specialize these formulas to the median-
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plane field, which is the case of primary interest.
Finally, in two subsections, we present specific
formulas appropriate to circular and rectangular
geometries. The latter are directly applicable to
the focusing bars used in our extraction system
and were used to calculate the focusing-bar field
data, which were presented in our annual reports
covering 1976-78, and in a paper describing the
extraction system.®

2. DERIVATION OF FORMULAS

Consider a cylindrical piece of iron having hor-
izontal surfaces z = z, at bottom and z = z, at
top, and vertical sides. Let the horizontal cross
section be arbitrary, but independent of z. We
then assume that the pole tips under considera-
tion can be subdivided into a finite number of
such pieces. In addition, we assume that the iron
is uniformly magnetized so that M has constant
magnitude and points in the +z direction.

The theory of the equivalent-current distribu-
tion can be found in many text books. [See, e.g.,
Smythe (sec. 12.07) or Jackson (sec. 5.10).7]
Using mks units, the so-called magnetization cur-
rent density is given by J,, = curl M.

In our case, J,, is evidently zero inside the iron.
However, application of Stokes’ theorem shows
that a surface current flows in horizontal loops
around the sides of the iron with a corresponding
current density given by dl/dz = M X n, where
n is a unit vector along the outward normal to the
surface.

Figure 1 shows a top view and a side view of
the iron geometry under consideration. Included
here is n at some point on the side surface, to-
gether with ds, the horizontal line element di-
rected along the current flow at this point.

The current dI flowing around a horizontal
band of height dz' is therefore given by dI =
M dz7’'. Moreover, if B, = poM is the correspond-
ing magnetization field, then dI = (By/po)dz’.
Because of the high fields produced by the su-
perconducting coils, we usually take B, to be the
saturation value, b, = 2.14 T. v

This current distribution corresponds exactly
to a uniformly wound solenoid, and the resultant
field B can be calculated from the Biot-Savart
law. We choose instead an equivalent, but sim-
pler procedure which makes use of the vector
potential A, defined by B = curl A.

v
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FIGURE 1 Top view and side view of a uniformly magnet-
ized iron cylinder which forms the basic geometry used in the
field calculations. Here, M indicates the magnetization vec-
tor, while n is a unit vector along the outward normal to the
side surface. The horizontal line element ds is directed along
the surface current flow at the given point.

In our situation, this potential is-given by

B% J’dz'
E S -_— 1
A 47 ds R’ M

where R =|r — r'| is the distance from the
source point r’ to the field point r. That is,

R=((x-xVY+0-¥YP+G-2M" @

where r = (x, y, z) is the point at which the field
is to be evaluated, and ¥’ = (x’, y’, z') gives the
location of a particular current element.

The primed coordinates are therefore the in-
tegration variables. Thus, the components of ds
are (dx’, dy’, 0). As a consequence, we. note that
A, =0.

The second integral in (1) can readily be eval-
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uated and yields

%__ . _I(Z—Z|>
fR = sinh ,
— sinh ™! (ﬁ) , (3
p

where p is the distance in the (x, y) plane from
the source point to the field point; that is,

p — ((X _ xl)z + (y _ yr)2)|/2. (4)

With this result, the expression for A reduces to
a single line integral around the periphery of the
iron cylinder.

It is also clear that the expression for A now
divides into two separate terms, one involving
only z, and the other only z,. We may therefore
treat the field as arising from two separate parts,
one from the lower (negatively charged) surface
at z = z,, and the other from the upper (posi-
tively charged) surface at z = z,. Since we need
to make use of superposition eventually, we can
simplify the results here by considering just the
upper surface.

With this in mind, we let z,— —. That is, we
consider a semi-infinite cylinder that extends
from z = —wuptoz,. From B = curl A, it then
follows that

_Bowy' _
BX_41T st By_

Bo dX,
- — —_, 5
41 Rz ()

where R, is the same as R in (2), but withz' = z,.
The expression for B, is more complicated, and
we give here one of several possible forms:

BZ___& [I_Z—Zz]
411’ Rz (6)

y — y)dx' — (x — x")dy'
x—xY+@-y)

This expression has been checked in certain
limiting cases and special cases where the result
is known. For example, if we let z, = +, so
that the cylinder becomes infinitely long, then we
must obtain B, = B, inside, and B, = 0 outside.
For this limiting case, the expression (6) becomes

B(w) = @f}g v = y)dx’ — (x = x')dy’
) 2w x=xV+ @G-y 7

X

= BOS("

where 8. = 1 if the point (x, y) lies inside the
contour, and 3. = 0if it lies outside. Perhaps the
simplest way to prove this identity is to let Z
= (x' = x) + i(y’ — y), and then use Cauchy’s
theorem.

The same analysis applies to another special
case, namely, z = z,. Thus we find B (z,) =
1B 8., which shows that the field at the surface
of the iron is just one-half the limiting value. This
same result may be used to evaluate the term in
(6) that is independent of z, but such an evalua-
tion produces a formula which is less suitable for
a computer program.

One may ask how the results obtained above
using a surface-current formulation are related
to those obtained using a surface-charge for-
mulation. Mathematically, the two results are
connected by Stokes’ theorem, which can be
used to transform the line integral into a surface
integral, or vice versa. One must recognize, how-
ever, that the surface-current description yields
the B field directly, while the surface-charge de-
scription produces the H field (multiplied by ),
so that the two results differ inside the iron.

3. MEDIAN-PLANE FIELD

The formulas in the previous section apply to a
single piece of iron and we are usually more in-
terested in a geometry having median-plane sym-
metry. In this case, for each piece below the
median plane, there is a matching piece sym-
metrically located above this plane. Here again,
the general situation can be obtained by super-
position from one basic geometry.

This basic geometry consists of a semi-infinite
cylinder extending from z = —o up to —z,, and
a matching cylinder extending from z = +z, up
to +, This geometry is equivalent to a single
infinite cylinder with a piece cut out between z
= —Zzoand +2z,.

We restrict ourselves here to calculating the
field in the median plane z = 0. This median-
plane field is denoted by B,, and we present a
formula corresponding to the one given in (6)
above, namely,

B, 20
Bo=3" - =
¢ 2m l:l R0:|

vy = y)dx' — (x — x")dy'
x=x)V+@-y)y

@®)
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Here the distance R is given by
Ro=(x =xP+ 0@ -yrP+z)? O

as a direct consequence of (2) above.

In accordance with the discussion in the pre-
vious section for the case of an infinite cylinder,
we can rewrite B, as follows

By <Zo>
BZ - ¢ T A N
o = Bod I R,

v —y)dx' — (x — x")dy’
x—xY+0@-y)

Although this expression appears simpler, the
formula in (8) above is more suitable for a com-
puter program because it requires no special test
to determine whether the point (x, y) lies inside
or outside the integration contour.

Except for the special cases described below,
we generally use a simple straightforward method
to evaluate numerically the contour integral in
B . First, the contour is divided into a sequence
of n straight-line segments joining the points
(x;,y;), where j = 0, 1, 2, ..., n. Here, (x,,, y,,)
= (xo0, ¥o) is required in order that the contour
be closed. Next, we replace the integral by a sum
over the line segments after making the substi-
tutions

(10)

x' = WY(x; + x;-1), ¥y =Yy, + yi-1) (11)

dx'— x; — xj-1, dy'—=y; = yi-1.
Since the integrand involves only simple alge-
braic expressions, the numerical integration is
quite rapid. The accuracy can be tested and im-
proved by systematically increasing n.

3.1 Circular Geometry

The circular geometry is important since it in-
cludes such frequently used cases as circular
discs, holes, and rings. Here we take as our basic
geometry a circular disc having radius a centered
at (xq, yo).

We first define the distance r and the angle u
through the relations

r=(x —x’+ @ —y))" (12a)
p? = (r + a)* — 4arsin® u, (12b)
RQ = (p2 + 202)1/2’ (12C)

where p and R, are given in (4) and (9). Then,
the equation for B, in (8) reduces to

By = Eﬂjm(pz + a? ~ r’)du
T m e Ro(Ro + zo)

(13)

This formula is quite suitable for numerical
calculations. For example, using the trapezoidal
method with an integration step Au = 2°, we find
that the maximum error is less than 107° B, in
a case where z,/a = 0.2. (The maximum error
usually occurs at r = a.)

As a useful point to test, we note that forr = 0,
the exact result is

B.o(r = 0) = Bo(l — zol(zo* + a?)'?). (14)

3.2 Rectangular Geometry

We turn next to the rectangular geometry, whose

main application is to the case of focusing bars,

already mentioned in the introduction. This ge-

ometry is the only one we know that yields simple

analytical solutions, not only for the median

plane field B ,,, but also for the general field com-

ponents given in (5) and (6) of Section 2. Since

the latter are, however, useful only for rather

special purposes, we restrict ourselves here to
B, alone.

We take as our basic surface area a rectangle
whose boundaries are specified by x, = x = x,,
and y, =y =< y,. Next, we define C; and D, as
follows

Cj = (XA,' - )C)/(ZO2 + (Xj _ X)Z)l/z,
Di= (y« — y)/(zoz + (i — y)Z)I/Z’

where j, k = 1, 2. We then find the following
analytical formula for the median-plane field

(15)

BzO = %(4)22 + d)n - d)lz - ¢21), (16)
kN

where the angle & is given by
by = sin~(C,Dy), (16a)

subject to the condition — /2 = &, = +#/2. This
formula can then be used directly to calculate the
desired field values.

In the limit where the rectangle becomes an
infinite strip, the above result can be checked
against that obtained from a simple two-dimen-
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sional analysis. In both cases, one finds
. BO PR s
B (strip) = ;—(sm C,—sin"'Cy), (17)

where we have let y, » +o< and y, > —x in
obtaining the infinite strip. Here, C- and C, are
the same as those defined in (15).

In the formula (16) for B.,, we note that there
is one ¢; for each corner of the rectangle and
that these quantities alternate in sign as one cir-
culates around the rectangle from one corner to
the next. This sign alternation has an interesting
consequence.

Suppose we need to calculate B, for some
more general surface area whose shape is such
that it can be subdivided into a large number of
small rectangles. This situation is reminiscent of
the small rectangular tiles which are cemented
together to form a table top or a bathroom floor.

For this type of surface area, the resultant B _,
is obtained through superposition by adding up
the contributions from all of the small rectangles,
or rather, the corners of these rectangles. How-
ever, because of the sign alternation noted above,
one finds that the contributions from all of the
interior corners cancel each other out since they
occur in pairs having opposite signs. Thus, the
resultant B, is determined entirely from the con-
tributions of the unpaired corners which occur
only around the periphery of the surface area.
Moreover, in adding up these contributions, if
one traverses the periphery as a closed curve, the
contributions from successive corners again al-
ternate in sign. One can therefore recognize that
the resultant B, reduces here to the evaluation
of a line integral around the periphery, exactly
as indicated in the general formula given in (8)
above.

4. ADDED NOTES

At first glance, assuming uniform magnetization
of the pole tips appears to be a somewhat dubious
approximation. This assumption does, of course,
provide a simple. rapid method for calculating the
required fields. Moreover, the speed of these cal-
culations is particularly important in the design
of a superconducting cyclotron, where a wide
variety of operating conditions must be explored
before a final decision is reached on the optimum
shape of the pole tips.

Fortunately, the accuracy of these calculations

turns out to be reasonably satisfactory. A com-
parison of the calculated fields with some prelim-
inary measurements showed that the average
field values differ by about 1%, while values of
the (main) three-sector field component differ by
about 5%.% These conclusions have been con-
firmed for the most part by a much more com-
prehensive study, the results of which will soon
be available.’

Finally, a note is in order regarding the change
from a surface-integral to a line-integral formu-
lation of a field calculation. Our attention has
been called to a similar transformation carried
out by Beth' in the calculation of a strictly two-
dimensional field produced by a current density
that is constant within a given contour in the xy-
plane. In this case, the transformation is carried
out through the use of certain theorems concern-
ing functions of a complex variable.

Postscript (May 19, 1980). In response to re-
ceiving a preprint of this paper, Heighway'' has
kindly sent us a copy of an interesting report by
Westcott'? which is practically unknown outside
of Chalk River. In this report, Westcott used the
Biot-Savart law to derive an expression for the
median plane field which is entirely equivalent
to our Eq. (8) except for his use of polar coor-
dinates throughout. Although he did not consider
the rectangular geometry discussed above, West-
cott did present a detailed analysis of the case
where a portion of the bounding contour consists
of a circular arc, and for this important case, he
obtained an analytical expression for the result-
ant field involving elliptic integrals of both the
first and third kinds. Most of Westcott’s report
deals with a computer program for carrying out
field calculations, and this program was used at
Chalk River in the early design'® of a four sector
magnet for the superconducting cyclotron which
is now under construction there.'* Quite inad-
vertently, none of the external reports of pub-
lished papers arising out of this project refers
explicitly to Westcott’s report, so that knowledge
of this work has remained quite hidden.
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