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EFFECT OF SHIELDING OF ELECTRON RING
MAGNETIC FIELD ON THE RING MOTION IN THE

VICINITY OF THIN METAL SCREENS
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An analytical method for the determination of shielded field of current, moving in the vicinity of thin metal screens is used
for finding the retarding force and analysis of the electron ring stability in ERA.

1. INTRODUCTION

In an analysis of the electron ring stability during
compression inside the compressor chamber! as
well as in an analysis of the electron-ion ring
acceleration along a coaxial conducting cylinder
with it,2 the problem arises of finding the magnetic
field of image currents induced in thin metal screens
by a moving electron ring.

Shielding ofthe magnetic field ofa moving current
was studied in the case of planar geometry in
papers3

-
5 and in paper6 in cylindrical geometry. In

all these studies, it was assumed that the electron
ring (or straight beam) was moving at constant speed
parallel to the screen surface. However, it is neces­
sary to know the magnetic field of image currents in
the case when the beam velocity is an arbitrary
function of time and is not parallel to the screen. t

A computational procedure for the numerical
solution ofthis problem has been proposed in Ref. 8.
It is of advantage, however, to have an approximate
analytical solution, permitting a qualitative study of
the processes of interest and a determination of the
validity limits to the basic integral equation in Ref.
8. Such a solution for the current-carrying filament
moving arbitrarily near a thin plane screen is
obtained in Section II and is used to calculate the
retarding forces (Section III). In Section IV the
analytical method is extended to the case of shield­
ing by two plane-parallel screens of equal thickness
and conductivity. The solution obtained is used in
the electron-ring stability analysis (Section V).

t The problem of the magnetic field shielding for the CUlrent
moving parallel to the screen with the arbitrarily changing
velocity was treated earlier by Merkel.7

It is assumed throughout that the velocity of
transverse motion is nonrelativistic.

2. SHIELDING BY A SINGLE SCREEN

Let an infinitely long filament carrying the current
with density

j;O) (x,z,t) = I(t) o(x - Xo (t)) 0 (z - Zo (t))

be parallel to the infinite plane metal sheet (x = 0) of
thickness h and conductivity a (Fig. 1).

The density of the currents induced in the metal
is given by

. a oAy
j;nd = aEy = - ---~ , (1)

c ut

where Ay = A}O) + A;nd is the vector potential of the
total magnetic field of the filament and induced
currents. In the nonrelativistic limit (v 2 = x0

2 + i 0
2

«c2
, where c is the velocity oflight), the stationary

x

z.

FIGURE 1 Schematic of configuration.
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Green's function can be used to calculate the vector
potential

G(x,z;x',z') = - In[(x - X')2 + (z - Z')2]. (2)

Using Eq. (1), one can presentAy in the form

(6)

Ay (x,z,t) = A}O)(x,z,t) -

- ~. i- J G(x,z;x'z')Ay(x',z',t')dx'dz', (3)
c at

wheret

let)

elkl
exp[- ikzo(t) - I kxo(t) I ].

where the integration is performed over the cross
section of the screen with the plane y = const. This
relation can be regarded as an equation for the
vector potential of the total magnetic field in metal.8

If the screen thickness h is substantially smaller
than i) the skin-depth om at the characteristic fre­
quency vi IXo I

(:J =:. Ix:1 « 1,

where u = c2/21TUh, and ii) the distance over which
A}O) changes significantly on the metal

h"GJ «1,

then the induced currents density and the vector
potential may be assumed.constant over thickness of
the screen. Then Eq. (3) may be reduced to the one­
dimensional form8

- (0)' uh aJAy (Z,t) - Ay (z ,t) -? at G(z,z')Ay(z',t)dz'

(4)

Calculating the image field at observation points
at distances Ix I -., Ixol »h from the screen one can
use the surface density of induced currents i;nd =

hj;nd, the Fourier transform of which, according to
(1) and (5), is

• ind _ elk I ( _ (0»)
lyk - 21T ak ak •

With Ay It = 0 = M;O) It = 0 as the initial condition
for the vector potential of the total magnetic field in
the metal (X = 0 corresponds to complete shielding
ofthe filament field, X= 1corresponds to absence of
shielding) the vector potential of the image field is
presented in the form

t

+ [Ixl + Ixo(t) If} + 2u f dt' I~')
o

We shall first consider the decay of image cur­
rents. Let us assume that at pointxo >O,zo at time to

with the Green's function G(z,z') = - 2lnl z - z' I.
For the Fourier transform

ak(t) = 2~ J exp(- ikz) A,.(z,t)dz,

Ix.1 + Ixo(t') I + u(t - t')

[z - zO(t')]2 + [I xl +Ixo(t')1 +u(t - t')]2.
(7)

a differential equation follows from Eq. (4)

dak _ (0) __1_
Tk dt + ak - ak , Tk - u Ik I '

the solution to which is

(5)
t Performing the integration we ignore the logarithmic di­

vergence of the two-dimensional vector potential at infmity. The
correctness ofthe results obtained is confirmed by the solution of
the problem for a cylindrical geometry with subsequent limiting
transition to a planar geometry.
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- arctan

3. RETARDING FORCE

then Eq. (10) can be used to determine the magnetic
field acting on the filament

(11)

(12)

I r dv
z I I dvz I-~- = 7:' -- «1

Vz dt dz '

Bind/ = ~
x X = Xo CXo

z = vzt

Bind = _ 21. K • K(Z - vzt} - (x + xo)
xci + K2 (z - vzt)2 + (x + XO)2 '

(10)

where K = vz/u. An analysis of the nonrelativistic
limit of the strict solution obtained in Ref. 4 shows
that formula (10) is valid under conditions
h/xo« 1, I K I h/xo« 1 which are the same with the
assumptions made when deriving Eq. (4).

At velocities IVz I»u, the exact solution4 and the
approximate solution (10) as well tend asymptoti­
cally to the solution for a perfectly conducting screen.
For this reason, at sufficiently high ratios xo/h, when
the ranges of values of K, given by the inequalities
I K I «xo/h, I K I » 1, overlap, formula (10) and
consequently Eq. (4) are approximately valid for all
nonrelativistic velocities Vz •

Analogously, when the currents in the screen are
induced due to variation of the current in the
immobile filament, Eq. (4) under condition
h/xo « 1 is valid (approximately) for all fre­
quencies w « c/xo.

The retarding magnetic field B;nd for the parameters
of interest to electron-ion ring acceleration
1= 1-10kA, Xo = 0.5-1 cmand velocityvz -..- u,may
reach a high value (102-103 gauss), exceeding the
magnitude ofthe external accelerating field at which
ions can be held inside the electron ring. t This leads
to a "run-away situation" discussed by HerrmannlO

in detail.
If the filament velocity changes little during time

r = xo/u:

{
(vx - u) (x + xo)t)) - vz(z - vzt)

arctan vz(x + xo(t)) + (vx - u) (z - vzt)

(vx-u)(x+x~+ut)-Vzez ).
vz(x + xoo +ut) + (vx - u)ez

2 2uvz+ (x + xo(t)) ] + ~---­
v} + (vx - U)2

> 0 a current 1 appeared instantaneously. Inserting
zo(t) = Zo, xo(t) = Xo into Eq. (7) and integrating one
finds

A;nd = ~ In{(z - ZO)2 + [I x I + Xo + u(t - toWl.
c

(8)

The field (8) in the region x > 0 is adequate to
describe the field of current -1with the coordinates
-[xo + u(t - to)],zo; therefore, the velocity u has the
physical meaning of the image "run-away" veloc­
ity.9 The characteristic time of the induced currents
decay is r ~ xo/u, hence for the processes with
duration b.t «xo/u the screen may be considered as
perfectly conducting.

For a filament moving from time t = 0 at constant
speed (zo = vzt, Xo = xoo + vxl,xoo > 0, I = const.)
without crossing the screen (xo(t) > 0) the vector
potential of the image field in the upper half-space
(x> 0) is given by

The component of the magnetic field B;nd =
- aA)nd/az retarding the filament in z-direction, for
t » xoo/u and Vx < 0 is of the form

. 21
BInd =

x c[v} + (u + IVx I )2]

uVz(X + xo(t)) - [vz
2+ Ivxl (u + Ivxl )] (z - vzt)

(x + XO(t))2 + (z - vzt)2
(9)

If the filament moves parallel to the screen (v x =
0), the Eq. (9) is reduced to

t The contribution of the image charge electric field to the
retarding force may be disregardedO since we have assumed the
filament velocity to be nonrelativistic.
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This result is essentially the same as derived in
Refs. 3-6. The maximum values of the field
(Bx in~ax = I/2cxo) and the retarding force are
reached at V z = U = c2/21TUh. For the stainless-steel
screen of thickness h = 0.1 cm the velocity
u ~4· 10-6c.

If the external accelerating field rises steeply in
time or in space, then the condition (11) of a low
acceleration may not be satisfied and the vector
potential (7) must be used for calculation ofthe drag
force. Assuming x = Xo = const., zo(O) = 0 and
1= const., one obtains the retarding field in the form

oscillation may be found by equating the retarding
field (12) to the applied accelerating field.

Thus, acceleration of the initially rested fil­
ament to velocity Vz > u is possible in the
case IB;xt I ~ IBxma~nd I only.

In a real system,2 however, the roll-out of the
electron-ion ring starts in the end ofthe compression
phase, when the radial velocity is still rather high:
I vxl "-' 10-6e. The magnetic field ofcurrents induced
on the internal conducting tube2by the compressing
ring, according to (9) is equal to

c

21
. zBmd = A-

x Z2 +. (2xo + ut)2
Bindl

x x=o

z = zo(t)

I

exo{t)

t

J [z - zo{t')] · [2xo + u{t - t')]
+2u dt' {(z - zo(t')f + [2xo + u(t - t')fj2 ·

o
(13)

We assume that the external accelerating field
B:xt has negligibly short rise time, t the initial
conditions for the filament velocity and self-field
beingzo(O) = zo(O) = 0, A- = 1 (absence of shielding
at the start). During short time periods t « 2xo/u,
the integral in the right-hand part ofEq. (13) may be
disregarded, the remaining term corresponds to a
self-field "frozen" in the metal. Then, for the force
acting on the unit length of the filament one obtains

lind ( 4XoZ )
Fz = -; Bx max· b - Z2 + 4Xo2 '

where b = - B;xt/Bxma~nd. In the case of an external
field which does not depend on z, the potential
energy per unit length defined by the relations Fz =
- dU/dz, U{O) = 0, is of the form

U = - (~) 2[b{ - 10(1 + {2)],

where' = z/2xo. The condition of infinite motion
U < 0 is satisfied for b > bo, where bo~ 0.8 is the
root of the equation

~ 2[1 +v I-b2
]

1+v 1 - b =In 2 •
b

At lower accelerating field strength (b < bo),
reflection from the potential barrier occurs, and the
filament exhibits z-oscillation of amplitude ~ Xo·

The velocity of the slow motion averaged over this

t This field can be generated by a rectangular current pulse in
additional coils.

where Xo = R - R t « R. Rand R t are the radii of
ring and tube, respectively.

The maximum retarding field

. I uB md= -- • ---

x max 2exo u + IV
x
I

may be diminished to an acceptable value by
appropriate selection of conductivity and thickness
of the tube (u« I Vx I). Hence the run-away
situation can be avoided if the inner tube conduc­
tivity is sufficiently high.

4. SHIELDING BY TWO
PARALLEL SCREENS

If the filament moves between two metal screens of
equal thickness h and conductivity u, coincident
with planes x = ±d, then for the vector potential of
the total magnetic field in the metal there are
equations analogous to Eq. (4)

uh
A±(z,t) = All(z,t) - cr

00

· %t f G±(z - z') A±(z',t)dz', (14)

where A± = Y2{Ay I x = +d ± Ay I x = -d), G± =

- [21n Iz - z' I ± In( Iz - z' I 2 + 4d2
)].

The solutions to Eqs. (14) are ofthe form (6) with

1 ± exp(- 21 k Id)
T± = U I k I '
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dk
-I kl dHi/coshl kl x+ik-sinhl kl x) W'

The magnetic field, retarding the uniformly mov­
ing filament (vz = const., Vx = 0, Xo = 0, I = const.)
for t » diu is given by

/(t)
a~)(t) =---exp[- ikzo(t)
- elkl

Ikld] ·lcoshf'k'xo(t)]j ,(Ixol <d).
sinh [ I k Ixo(t)]

as a super-position of single-particle betatron os­
cillations about the cross-section center and co­
herent motion ofthe ring as a whole. It was shown by
Laslett11 that the destabilizing effect of image
charges on these two types of motion differs: in the
first case, defocusing is determined by the gradient
of the electric field of immobile images, whereas
during the coherent shift, the change of force acting
on the ring electrons is also connected with a shift of
images, which cause stronger defocusing.

The currents induced in the chamber walls by
radially compressing ring exert stabilizing effect.
Assuming that

i) the chamber is formed by two infinite plane­
parallel metal sheets at distance 2d from each other;

ii) the curvature of the ring and its images is not
essential (R » d, where R is the ring major radius),
we shall use the results obtained in Section IV in
order to find the induced currents. In this Section we
use cylindrical coordinates r, 0, Z, with planes at
Z = ± d corresponding to conducting surfaces (see
Fig. 2). The transition from Cartesian coordinates
x,y,z to the cylindric coordinates in the formulae of
the preceding Section is accomplished by sub­
stitution x-+z. y-+rO, (-z)-+r.

If the ring with charge of line density q = live is
shifted from the median plane at distance zo, then
the electric field of image charges is given by12(15)

2/ K

=~ arctan 1 + 2K2B;ndI
x=O
z = zot

The vector potential of the image field can be
expressed from the Fourier transform ofthe surface
density of induced currents

elk I (a± - aiO»i
k
± = --------

2rr(1 ± exp(-21 k Id))

in the following way

If K « 1, then the field (15) is twice as large as the
field (12) reflected from a single screen; if K » 1'1
then Eqs. (12) and (15) yield approximately equal
values. The maximum retarding field

. d /BIn ------
xmax V2 cd

is reached at K = 1/y!2:

5. ELECTRON-RING STABILITY WITH
RESPECT TO COHERENT SHIFT

d~d
z

In the compressor of the heavy ion collective
accelerator,1 the electron ring is compressed inside a
narrow metal chamber. The electric charges in­
duced by the ring on the conducting walls close to it
essentially affect the axial (towards the wall) motion
of the electrons.

The electron motion in the ring may be considered FIGURE 2 Geometry of ring between conducting side-walls.
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ind _ rrq [ rr(z + zo)
Ez Ir=R - 2d tan. 4d

If Iz I , Izol «d, then Eq. (16) can be written in
the form

rr(z - zo) 4d ]
+ cot 4d - rr(z - Zo) ·

(16)
The dependence of factorsf± on parameter 1(, as

well as the dependence ofthe shielding factor for the
filament, moving along single screen

1(2

1; = 1 + ,,2

with

rr
2 (R) 2

¢+ = 12 d ,¢- = 2 · ¢+ ·

For the magnetic field of currents induced by the
ring compressing with constant radial velocity
( v = R = const.), after some manipulations one finds
(t » diu)

B;nd (z.t) = Ci2 · {¢+ · 1+ · z + ¢-

t ,

· [/- · zo(t) +f K~ [U(t~ t )j to(t') dt'] } ,

o (18)

with

exp [ - x (1 + 1 ~e-x)] xdx

where I( = I Vr Ilu. In the limiting cases I( « 1 and
I( » 1 the following approximations are obtained

15 9
1) f ~ - 1(2 f- ~ -- 1(2 for I( « 1·

+ 2' 2 2 'rr rr

is shown in Fig. 3.
Taking into account the image fields (17) and

(18), the frequency of the single-particle axial
oscillation (in units of gyrofrequency Wo = voiR) is
given by

v
v/=n-~nb- ep+(I-{3Y+), (19)

{32,y

where {3 = volc, y = (1 - (32)-Yl, Vo is the azimuthal
velocity,

r oBext I
n = - B;xt • a; r = R

is the external magnetic field index, v = eqImc2 is
the Budker parameter with e < 0 and m being the
electron charge and rest mass, and ~nb is the
frequency shift due to the unshielded ring self-fields
(for a ring with a circular cross section of radius a

b..nb = ~ (R) 2
{32y3 a

At high radial compression speed ( IVr I ~ u), the

J

9. ~2

FIGURE 3 Magnetic field shielding factors as functions of K2

for the filament moving between two plane-parallel screens (f±)
and along a single screen (Ii).
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defocusing effect of the image charges is substan­
tially weakened (f+ ~ 1). In practice, however, the
requirement of a low level of distortion of the
compressing magnetic field by the chamber walls 1

has the result that IV r I «u and, consequently
f± « 1. Therefore, the frequency shift due to the
image fields must be taken into account.

Proceeding to the coherent motion analysis we
first introduce the condition of static equilibrium,
i.e., the requirement that the total force acting on the
shifted ring from the external field B:xt =

(me2/e) ({3y/R 2)/nz and image fields at zo = 0 be
restoring. Calculating the fields (1 7) and (18) at the
ring positionz = z0 one obtains the stability criterion
in the form

of single-particle betatron resonances during the
ring compression.

For this reason we shall make a further study of
the coherent axial motion at field index values
assuring the integrity of the ring, but not necessarily
its equilibrium in the mid-plane of the chamber.

Substitution of fields (17) and (18) into the
equation of motion of the ring center of mass

z +nw 2Z = _e_ (E ind - f3Bind)Io 0 0 z r
my z =zo

and subsequent Laplace transformation

zo(P) = J e-P1zo(t)dt

or, in the case off± « 1, in the form 11

\)

yield a dispersion equation

F(P) =-

with

(21)

F

FIGURE 4 F(fl) as a function of real positivepfor a number of
K values.

a: =5

52o

where p= 2:P The roots of Eq. (21) with

Rep> 0 correspond to unstable motion. Figure 4
shows F(j) as a function ofjf for several values of K.

.8

where ¢c = ¢+ + ¢-. For the chamber geometry
considered, ¢c = 3¢+.

Comparison of this result with Eq. (19) shows
that in ultra-relativistic limit y » d/a the coherent
equilibrium is stable for the ring current which is
three times lower than the value compatible with the
requirement of the ring integrity (v; > 0).

AtR = 20cm, 2d= 5 cm, y= 7, andn =0.33,for
example, the equilibrium is stable at ring current! <
250A.

As the ring nears the wall (I z 0 I -+ d), the force of
electrostatic attraction, according to (16), rises to
infinity. Therefore, in a real compressor where the
mid-planes of the chamber and the external mag­
netic field may not coincide, the intensity limitation
imposed by the requirement ofthe coherent stability
is even more stringent that it follows from (20).

In order to satisfy the equilibrium condition at
high ring current, it is necessary to increase the
external field index n and/or the aperture of the
chamber (2d). At a substantial separation of the
walls, the ring is subjected to a rapidly developing
negative mass instability.13 The possibility of in­
creasing the field index is also limited: the coherent
radial motion becomes unstable at n > 1. A
substantial increase ofn is also undesirable because
ofinevitable (in this case) crossing ofa large number
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In the limiting cases the following approximations
are valid:

1) FcP) ~ 1 - f- - : for I; I »Vl + K
2

P (22a)

(24)

where Qz is given by

K

'" '- 6 J 1 - y2
2) F(P) ~pF, where F = rr2K (l + y2)2

o
2 .. VQst > - - ct>-(1 - f-). (25)

y

If Qs; < 0, then, as it follows from (22) and (25),
Eq. (24) has a real positive root. For values ofn not
too close to the single-particle stability lImit; :S 4.

IfQs; >0, thelJ-Eq. (24) has no root in the positive
half-plane, t Rep> O.

Thus, if the condition (20) is not satisfied, the ring
moves slowly towards the wall. The ring displace­
ment from the mid-plane increases by a factor ofe in

2d d
the time r =----: ~ - . In a real compressor l this

up 2u
time is sufficiently long r ~ 5 J-lsec. Such a slow
motion may be stabilized by supplementary
measures.

It should be noted that under the condition

At field-index values sufficient for single-particle
stability the following inequality is valid (taking into
account that a < d)

(22b)dyfor 1;1 « 1.

The coefficientF' may be regarded as the magnet­
ic friction coefficient. It is straighforward to show
that it is positive for all values of the parameter K.

For practical values of the velocity u, the ratio
u/vo is very small (from 10-6 to 10-4

), so that Eq.
(21) has roots differing strongly in absolute value.
According to this the coherent motion ofthe ring is a

· . f.c I"" Vo 2dsuperposItIon 0 last p '- - · - and slow

1
'"'-'1 u R

(p '- 1) motion. The roots of Eq. (21), corre-
sponding to fast motion are

up= ± iwoQz-
2d

the coherent radial motion has qualitatively the
same character.

(23)

Relation (23) shows that the stability of the
single-particle motion (v; > 0) guarantees the
stability ofthe high-frequency coherent oscillation t
independent of whether the condition of static
equilibrium (20) has been satisfied or not. A fast ring
movement into the wall is therefore impossible: the
currents induced in the walls during an abrupt ring
deflection compensate for the charge attraction. As
a consequence, the beam performs damped oscilla­
tion of frequency woQz in respect to the mean
position. The variation of the ring mean position in
time is described by small-value roots of Eq. (21).

Vo 2dIn the range Iffl «- - Eq. (21) may be
u R

simplified to
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