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The emittance of a charged particle beam can be considered as a measure of the disorder in the transverse motion of
the particles. The relation of this concept to the entropy of the distribution in transverse phase space is explored,
and a thermodynamic description of a beam as a 'two dimensional gas' is developed. The connection with informa­
tion in beams which can be focused to form an image is noted.

1. INTRODUCTION

The concept of emittance has been widely used
to define a figure of merit for the quality of charged
particle beams. Although it can be given a precise
meaning in connection with certain idealized types
of beam, its interpretation is not always unanl­
biguous in many situations of practical importance.
It is indeed possible to invent definitions which give
a unique value for irregular or filamented 'emittance
plots', but none of these is wholly satisfactory.
We suggest here that the closely related concept of
entropy provides a very appropriate measure of the
disorder in a charged particle beam, which is nlore
subtle than specifying the emittance. It enables the
increased disorder arising from filamentation to be
precisely specified for example, and also assumes
an appropriate~y low value for ,a beam which con­
tains information by virtue of a structure which
can be focused to form an image. Although it is
not suggested that changes be;made in the way that
emittance is defined and used in practical situations,
the conceptual clarification is perhaps helpful.

The emittance concept since its introduction by
Sigurgeirsson1 has become thoroughly familiar
in the accelerator literature; it is not generally
employed in the field of nlicrowave tubes, though
in electron optics the closely related concept of
'brightness' is used. In these disciplines, where
non-laminar flow arising from thermal velocity
distributions has been extensively studied, the

entropy is a quantity which may be linked naturally
to concepts such as the transverse temperature and
pressure of the beam. Again, in microscopy where
images are produced, the entropy of the beam is
closely related to the information contained in the
images. Aberrations cause increase of entropy, or
alternatively, loss of information.

2. THE EMITTANCE CONCEPT

Before calculating the entropy we review the
meaning of emittance as applied to particle beams.
It will be assumed throughout that trajectories
make a small angle with the axis, and that there is
no coupling between longitudinal and transverse
motion. This assumption implies that longitudinal
and both transverse degrees of freedom may be
considered independently; our concern will be
entirely with, transverse motion. Steady state
conditions are assumed (or average states in a noisy
or fluctuating beam).

The optical properties of the beam at a particular
value of z, the distance along the axis, can be
represented by a density distribution of points in
transverse phase space. For simplicity we consider
a system with axial symmetry, and confine attention
to the projection of the four dimensional X,Px' y, py
distribution on the x, Px plane. The momentum
Px is equal to f3ym ocx', and the area occupied by the
points in the x, x' plane (multiplied by lire) is
known as the 'emittance' e of the beam. In general,
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3. CALCULATION OF THE ENTROPY

M

log W = N log N - Lni log ni • (4)
i=l

For large N, n, Stirling's formula may be used to
give

We now examine the entropy associated with a
distribution of points in the x, x' plane. To do this,
it is necessary to divide it into cells of area
A = bxbx', of sufficient size that each contains a
large number of points. The entropy of the dis­
tribution is then by definitionS

(2)

(3)

s= klogW

where k is Boltzmann's constant and W is the
number of ways in which the points can be assigned
to the cells to produce the given distribution. If N
is the total number of points, ni the number in the
ith cell, and M the number of cells then

N!w=---­
n1!n2!···nM!

If now the focusing channel is slightly non-linear,
the wavelength for particles with large rx differs
from that of particles which remain near"the axis.
This means that points on the rotating line in the
emittance diagram rotate with different angular
velocities. After t wavelength it becomes slightly
S-shaped; after many wavelengths it becomes a
spiral bounded by the oval curve traced out by the
points at the end of the line. If now the beam
emittance is measured with apparatus of poor
resolution, it appears to occupy the whole of the
enveloping oval; 'emittance growth' has occurred.
The phenomenon is essentially that of a set of
oscillators with frequency slightly dependent on
amplitude which are in phase at t = O. After a long
time, all phases are present, and on superficial
inspection the system 'looks more disordered'.

If A is sufficiently small, the summation may be
replaced by an integral to give

SlkN = So = log N - ~fp log A p dx dx' (5)

where p = njA is the density of points in x, x' space.
The quantity So, the normalized entropy, has been
introduced for simplicity.

the points are ·dense near the origin, and the iso­
density contours form a set of closed curves, often
roughly elliptical in shape. Typically the area
occupied by 90 per cent of the points may be several
times that occupied by half of them, and only half
that occupied by the total number. Under these
circumstances the area is not well defined, and it
has been suggested for exan1ple that instead of a
single figure, a plot of area against fraction of
points enclosed should be specified.2

An alternative definition is the rms emittance
proposed by Lapostolle3 and Sacherer.4 This n1ay
be written

e= 4(<X2)<X'2 ) - <XX' )2)1 /2 (1)

and has properties useful in the study of beams in
which space charge forces are important. Even if
e is zero, e may be finite. For an emittance plot
consisting of a straight line symmetrically placed
through the origin, e and 8 are zero. For an S­
shaped line however e = 0 but eis finite.

An important feature of density distributions in
x, x' space, or 'emittance plots', is that the density
of points in the neighbourhood of a particular point
is invariant unless pz varies, in which case it is pro­
portional to pz. This follows from Liouville's
Theorem, and is true in the presence of large scale
self fields, but not interparticle collisions.

Although en = pye is strictly invariant, ifmeasured
in terms of the area within a given contour, the
effective emittance can appear to increase in the
presence of aberrations, as a consequence of the
phenomenon of 'filamentation'.

A simple example is provided by the development
of a beam launched from a point source in a focus­
ing channel uniform with z, in which the restoring
force is a non-linear function ofamplitude. Suppose
particles are emitted uniformly over a small angle
±rx from a point source on the axis at z = o. Then
the 'emittance plot' at z = 0 is a straight line from
x' = - rx to x' = + rx. If the channel provides a
linear focusing force the line rotates in a clockwise
direction as z increases, making one revolution per
focusing wavelength. Its ends trace out an ellipse.
After an odd nun1ber of quarter wavelengths the
emittance line lies along the x axis, representing the
situation where all the particles move parallel to the
axis. The line has zero area, and so the beam has
zero emittance.
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(10)

Equation (5) will now be applied to two special
distributions, both of which have been extensively
studied. The first of these is the Kapchinskij­
Vladimirskij or 'normal' distribution6 in which the
density is uniform, and bounded by an ellipse. The
area of the ellipse is ne.. For this distribution
Eq. (5) simplifies to

So = 10gN-logANjne
= 10gne-logA. (6)

Another well-known distribution is the thermal
beam emitted from a hot cathode. Such a beam
can be generated (ideally) by placing a grid a small
distance Zl from a hot planar cathode of radius r c•

If the potential - q4J on the grid greatly exceeds
kTjq where kT is the thermionic emission tempera­
ture of the cathode, and Zl ~ rc then a beam is
produced with density distribution.

p(x) = f2P(X')dX'(r/-x2)1/2/nr/

p(x') = fp(X)dX(;n:~~y/2exp {-x'2 mv//2kT}

(7)

where fPdxdx' = N, !mvz
2 = -q4J.

To find So this is inserted into Eq. (5); after
some straightforward algebra and integration we
obtain

So = 10g{n3/2r{~~~)1/]-10gA. (8)

This may be more conveniently expressed in terms
of the rms emittance edefined in Eq. (1). For this
distribution e= 2rc(kTjmvz2)1/2 so that

So = logne+-!-log2n-logA. (9)

Equation (9) contains two additive constants.
The first of these is associated with the form of the
distribution function, and is larger for a Maxwellian
than for a uniform distribution as might be ex­
pected. The second, related to the cell size, is more
fundamental. It would seem reasonable to relate
it to the resolution of the apparatus used to measure
the emittance.

4. THE BEAM AS A TWO DIMENSIONAL
GAS

If we consider the x-y projection of the four

dimensional phase space distribution, the points
represent the particles of a two dimensional gas.
We examine now the thermodynamic properties of
this gas for a matched beam of circular cross
section. If the beam is so weak that self forces are
negligible, then a matched beam represents an
equilibrium state which is not thermal equilibrium
though, as we see below, a temperature can be
assigned to it. When self forces are present the
self-consistency of the self fields and particle motion
must be ensured; when the self fields are sufficiently
large compared with the external fields the distribu­
tion may not be stable.7

Parameters of the beam are assigned in the
following way. The (two dimensional) volume and
temperature are defined as

v= n«x2) +<y2») =rc<r2)
kT= -!-mp2c2«X'2) +<y'2») = m<r'2)p2c2.

where the z-axis is the beam axis and pc is the
z-velocity of the beam. In the first instance we
confine attention to a beam with a Kapchinskij­
Vladimirskij distribution. Such a beanl has
uniform density over the cross-section with a sharp
edge at radius r = a. The internal energy of the
beam is taken as the sum of the transverse kinetic
energy of the particles, and the electric and magnetic
energies associated with the charge and current.
This is legitimate provided that z~ x. The internal
energy is given by

U = NkT+iJ(£2+B2)rdr (11)

where N is the number of particles per unit length
of beam. Er and Bo are given by

E(r < a) = 2Nqrja2, E(r> a) = 2Nqjr }
B(r < a) = 2Nqpr/a2, B(r> a) = 2Nqp/r (12)

so that from Eq. (11)

U = NkT- N 2q2(1 +p2)loga+const. (13)
= NkT-tN2q2(1 +p2) log V

where the constant term has been omitted. Finally,
the pressure is defined as

_ (au) _ k(d'T) nN
2eoq 2(1 +p2) ( )p- - - - -N - + 14

aliT s dV s 8V

The quantity (8Tj8V)s is found from the adiabatic
invariant for the transverse oscillations. For an,
adiabatic change, the action J = Sp dq is constant.
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Since all the oscillations are simple harmonic, J is
strictly proportional to «X2><X2>)1/2. From
Eq. (10) therefore, since <x2>= <y2> and <X,2> =
<y,2> we have VT = constant for adiabatic changes.
This implies a thermodynamic y of 2, as expected.

Since VT is constant

(15)

so that Eq. (14), the equation of state for the beam,
becomes

For a general system the transverse oscillations
are not simple harmonic; the potential well in
which they move may change shape when the beam
expands, so that it is not strictly correct to set
Sp dqj(<X2><X'2>)1/2 constant without a correcting
factor which depends on the density distribution
and hence in general on V. During the adiabatic
expansion this suggests that although the entropy
may remain constant the emittance can change.
This corresponds to a change in the first constant
noted after Eq. (9), associated with the changing
form of the distribution function.

dS = Nk{dT _ dV-(o1') }. (21)
T l' av s

In terms of the rms emittance for a matched
beam, e= 4(<X2><X'2>)1/2, and normalized entropy
So, Eq. (19) becomes

which, for each transverse direction x or y, gives
the entropy term log.e as in Eq. (6).

The question now arises, is the argument true for
a general non-linear system in which the individual
oscillators are not simple harmonic? If so, what
can be said about the constant C?

Looking back over the various steps of the
argument, Eqs. (10) and (11) can still be used to
define Vand kT, and U respectively. Equation (12)
does not hold; nevertheless the internal energy can
still be written as the sum of NkT and the self field
term which, for a given distribution function, is a
function of the volume alone. Proceeding as before,
but not evaluating (aTjaV)s' it turns out that the
self field term disappears in the expression for the
entropy. Corresponding to Eq. (18)

The entropy is found from the relation

TdS = dU+pdV.

From Eqs. (16) and (17)

(
dT dV)dS=Nk -+-
T Jl

whence

S = Nk log VT+const.

So = 210g e+ C

(16)

(17)

(18)

(19)

(20)

5. ENTROPY AND INFORMATION
ASSOCIATED WITH IMAGES

It would be interesting to extend these studies to
beams capable of producing images. At an image,
the x, x' plane will have a density variation with x
but not with x·'. The information in the image can
clearly be quantified by dividing the phase plane
into strips and allowing a finite number of discrete
densities, one to be associated with each strip. The
more detail in which this is done, the more re­
stricted is the number of ways the particles can be
distributed, and hence the lower the entropy. The
rms emittance however would not be affected
greatly, and is therefore a less appropriate measure
for the quality of such beams. A small amount of
aberration could seriously blur an image and cause
a considerable increase of entropy (loss of informa­
tion).

6. CONCLUDING REMARKS

A thermodynamic description of the transverse
motion of a charged particle beam acted upon by
an external focusing force, taking into account the
self-forces arising from the collective electric and
magnetic fields associated with the charge and
current, has been presented. This shows a close
relation between the entropy and beam emittance,
and provides a better understanding of the sources
of arbitrariness in the latter concept. The con­
nection with infornlation is noted, but not explored
in detail.

The entropy of collisionless plasmas has been
considered by earlier authors. Schmidt8 for
example, briefly considered the adiabatic be-
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haviour of two and three dimensional gases in a
manner essentially the same as that of the present
paper. Minardi9 has developed a different and
more sophisticated approach in which the assign­
ment of entropy is made in a completely different
way. His method yields stability criteria which
should be applicable to problems such as that
described in Ref. 7.
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