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IMPROVING THE ENERGY RESOLUTION AND DUTY FACTOR OF
ISOCHRONOUS CYCLOTRONSt

M.M.GORDON

Cyclotron Laboratory, Michigan State Univ~rsity, East Lansing, Michigan, USA

A separ~ted turn isochr<:>nous cyclot!"on can produce beams having a precise energy resolution together with a
substantIal duty f~ct~r If the effectIve voltage wave form is 'flat-topped'. Optimum flat-topping resuits a
presented for five dIfferent harmonic combinations: n = 1 and 2· n = 1 2 and 3· n = 1 2 3 a d 4· - 1 d 3

r
:1 3 d 5 F· . ' "'" , ,n ,n - an

~ = , .' an . or a given eI.Iergy re~olut~on.' t~e improvement in duty factor with each added harmonic is quit~
InlpreSSIve. The success of thIS technIque IS lImIted by certain practical problems which are examined.

1. INTRODUCTION

If an isochronous cyclotron could be equipped
with an rf system which provided a square wave
voltage on the dees, then each ion pulse could extend
for nearly half of the rf period, while the energy
distribution within thi.s pulse would remain quite
homogeneous throughout the acceleration process.
Assuming a small radial beam width, optimum
conditions would then prevail for 'separated turn'
operation with 100 per cent bean1 extraction.{l)
The external beam would then possess exceptionally
fine energy resolution together with a duty factor
approaching 50 per cent. In addition the trans­
verse emittance of this beam would 'be directly
correlated to that of the ion source or injector. In
a certain sense, this cyclotron would operate like
a pulsed dc accelerator.

The advantages of a square wave voltage for a
classical cyclotron were first ,recognized by Rossi
who devised a method for superimposing a: third
harmonic voltage on the dees, and who showed that
when this voltage is one-ninth that of the main
harmonic, the resultant flat-topped wave form
partially fulfills the function of a square wave
voltage.(2) This third harmonic flat-topping
method was also investigated by Goodman as a
means for improving both classical and isochronous
cyclotrons.(3) Welton(4) and Blosser(5) considered
voltage flat-topping as an important element in an
isochronous cyclotron designed to yield superlative
beam characteristics including a substantial dutv
factor. r ~
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The desirable effects of a flat-topped voltage
wave form can be achieved by another method under
certain circumstances. Since the energy gained at
successive electric gap crossings is cumulative, and
since only the resultant energy is significant, the
voltages corresponding to -different harmonics can
be applied to separate sets of dees. This procedure
is particularly suitable for ring cyclotrons where
the ion injection energy is sub.stantially greater than
the energy gained at anyone gap crossing. (1) More'"
over, as pointed out by Rickey,(6) this procedure
permits the utilization of even as well as odd
harmonic voltages' and such combinations always
produce a superior flat-topping effect, and may
produce duty factors exceeding 50 per cent. The~e
considerations formed the -basis for the design of
the rf system· of the Indiana Cyclotron now under

. (7)constructIon. .. Several other cyclotrons have
been proposed recently which plan to utilize the
flat-topping effect ofeither second or third harmonic
voltages. (8,9)

The present paper explores the degree of energy
homogeneity which can be achieved as a function
of duty factor through the admixture of a small
number of harmonic voltages, and discusses some
of the practical problems which may limit the
success of this technique. In a subsequent paper,
we intend to discuss the limitation of energy resolu­
tion imposed by the longitudinal space-charge force
in cyclotrons with a substantial duty factor.

2. FORMULATION

Using the azimuth eas the independent variable,
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we replace the time tee) by the phase variable ¢(e)
defined by:

(1)

where w 1 /2n is the' lowest (main) rf frequency of
the system, and h is its integral harmonic ratio;
that is, W 1 = 21thvo, where Va is the constant rota­
tion frequency of the ions under conditions of
perfect isochronism. If v is the ion's speed at any
point, then ¢(8) satisfies the differential equation:

d¢/d8 = (w I /v)[r2+(r')2+(z')2]t-h, (2)

with r' = (dr/d8) and z' = (dz/d8).
We assume that the electric field produced by the

entire rf systelTI in the region occupied by the beam
can be derived from a scalar potential <D(r, fJ, Z, t)
given by:

<1>(r, 8, z, t) = IWnj(r, 8, z)sin(nwi t+cxnj), (3)

where 11 specifies the harmonic number of a par­
ticular rf frequency, where j = (1, 2, ... , J)
designates one of the set of J dees operating at the
same frequency, and where the sum extends over
these j values and over whichever 11 values are
present (including 11 =' 1). For a given 11 value, the
function Wnj(r, 8~ z) gives the spatial dependence of
the potential produced by a specific dee, while CXnj
gives the relative phase of this potential. Note that
the same formula applies even if more than one~

frequency is supplied to a given dee.
After making use of t~e foregoing definitions, we

optain the following differential equation for the
kinetic energy E(fJ) of the ion:

dE/d8 = -QL[(oW/o8)+r'(oW/or)

+ z'(oW/oz)]nj sin (nh8+ n¢ + CXnj), (4)

where q is the ion's charge. To optain precise
values of E and ¢, this equation and (2) above must
be int~grated simultaneously together with the
appropriate orbit equations for obtaining r(8) and
z(8).

In order to simplify the analysis, the Eqs. (2, 4)
are customarily replaced by those obtained from
the loaveraging' method of approximation.(IO) The
radial and axial oscillations of the ions about a
given reference orbit (usually the closed equilibrium
orbit) are assulned to average to zero, or else to
be negligible. Conversely, it is assumed that the
discarded fluctuations in E and ¢ have negligible

effect on the radial and axial motion. To validate
these assumptions, the acceleration should be
adiabatic and the beam should occupy only a small
area of the radial and axial phase space.

Within the confines of these approximations,
Eqs. (2, 4) can be reduced to:

d¢jdr = W 1 T(E)-2nh, (5a)

dE/dr = qIn Vn(E) cos [n¢+l/Jn(E)], (5b)

where r = fJ/2n is the 'turn number' and T(E) is the
ion rotation period in the reference orbit. If the
field is perfectly isochronous, T(E) = 2nh/w1 = l/vo,
and the value of ¢ is then simply a constant
independent of E.

The functions V,lE) and l/Jn(E) can be obtained
from the expression:

Vn(E) exp (it/Jn) = Lj Xnj(E) exp (icxnj), (6a)

whereXnj(E) is give'n by (after partial integration):

Xn/E) = (nh)fJv,./E,8)eXP(inhO)d8, (6b)

and where Wnj(E, 8) is obtained by evaluating
Wnj(r, 8, Z =0) along the 'reference orbit for the
given energy E. In most cases of practical import­
ance, it is possible to choose the voltage phases cxnj
of (3) such that l/Jn(E) = 0, that is, such that the
vector sum (6a) reduces to a real number.

2.1. AMPLITUDES AND PHASES

Let us consider specifically the case where the J
dees are identica:~ and uniformly spaced apart by,
118 = 2n/J, and let us assume that Wnj is symmetric
about the radial line e= 8 nj. For this case, it then
follows from (6b) that:

Xnj(E) = Yn(E)exp(inh8nj), (7a)

where Yn(E) is real and independent of j; it also
follows from symmetry that:

0 n ,j+l -8nj = 2njJ. (7b)

In order to maximize the effectiveness of each dee,
and to satisfy t/Jn = 0, we should require that the
voltage phases CXnj satisfy:

cxnj +(nh)0nj = 2n(integer), (8)

for every 11 value and j value; in this case,
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Wnj = Um for I0-0nj I< A-a, (lOa)

Wnj=O, for IO-0nj l>A+a, (lOb)

where m = 0, 1, ... , J - 1.
In order to obtain an explicit formula for Vn

from (6-8) above, let u's aSSUlne that Wnj(E, 0) has
a symmetric trapezoidal shape; that is,

so that Un is the maximum voltage supplied to the
dee, AO = 2A is the full width at half maximum for
the trapezoidal potential, and AO = 2a is the full
width of the electric field region at each edge of
the dee. In this case, Eqs. (6-8) then yield:

Vn = 2JUn sin(nhA)[sin(nha)j(nha)], (11)

(15)

(14a)

D = (A¢)/2rr.

AE = Em-E(¢) = 1:qVo(l-v(¢)), (14b)

and that the deviation AE from this Inaximuln is
given by:

E(¢) - E i = 1:q Vov(¢), (13a)

so that qVo is therefore the (averaged) peak energy
gain per turn. It then follows that the maximum
energy Em is given by:

v(¢) = In Vn cos (n¢), (13)

where Vn = VnjVo, and where Vo is so chosen that
Vmax = 1. Equation (12) can then be rewritten as
follows:

E(¢) - E i = -rqIn V:t cos (n¢), (12)

where E i is the initial energy, where v,t = <Vn(E),
and wh,ere t/Jn = 0 as discussed above. The sum
in Eq. (12) therefore represents an 'effective'
voltage wave form.

We introduce the normalized wave form v(¢)
defined by:

final energy spread within the beam. In order to
obtain results which are both concrete and useful,
we shall assume here that perfect isochronism
obtains so that ¢ is simply a constant. In addition,
we shall replace Vn(E) in (5b) by the value obtained
from averaging this function 'over the energy.
Equation (5b) can then be integrated directly so as
to yield:

If Vmin is the minimum value of v(¢) over this phase
range, then we define the parameter b as:

assumingEi is constant.
Let us assume that each ion pulse extends over

a phase range A¢ = w 1(At) so that the duty factor
for this beam is:

(9)an,j+l = anj -m(2njJ),

Vn(E) = JY,lE) as follows from (6a, 7a). (Note
that J need not have the same value for different
11 values.)

The above relations (7b, 8) yield certain well­
known rules for the voltage phases. In the case of
two dees (J = 2), for example, if. nh is an odd
integer, then an2 = an1 +n, while if nh is even, then
(Xn2 = anl' For the general case of J dees, if n'l = (nh
modulo J), we then obtain:

where Un' A, and/or a may depend on E (that is,
on radius), and where Un may be positive or nega­
tive depending on the sign desired for Vn • Although
a trapezoidal shape for Wnj is not very realistic,

. this formula is widely used because of its sinlplicity.
The factor in brackets (which is known as the
'transit time' factor) is the Fourier transform of the
electric field profile at the dee edge, and actually falls
off faster with increasing (nha) than this formula
indicates. In general, as the value of nh increases,
the value of Vn becomes more sensitive to the
detailed shape of W"j or the electric field it pro­
duces.

3. OPTIMUM FLAT-TOPPING

Given the functions T(E) andVn(E), the simpli­
fied Eqs. (5a, b) for the longitudinal motion can be
integrated (numerically, at least) so as to yi~ld E(1:)
and ¢(1:) in terms of their initial values. Corres­
ponding to a given distribution of these values for
the injected beam, one can then find a set of,har­
monic voltage amplitudes which minimizes the

(16a)

and we find that the energy resolution of the
emergent beam is given by:

(AE)jEm = (-rqVojEm)b ~ b, (16b)

as follows from (14). For a particular set of
harmonics, the ,flat-topping problem now consists
of finding the set of coefficients VII in (13) such that
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3.1. Harmonics n = 1 and 2

3.2. Harmonics n = 1, 2, and 3

In the first four cases below, the formulas give all
of the remaining parameters directly in terms of c.

cos cPt = {3±e/2; /3=1-e; (23a)

b = 2e3j(1 +9{3Z); (23b)

V3 = 1/(1 +9{32); - Vz = 6{3v3;

(21)c = sin2 (l1cP/4).

cOScP1 = 1-e = {3; (22a)

b = 2ez/(1 +2{3Z); (22b)

V1 = 4{3/(1 + 2{32); - V2 = v1/4{3. (22c)

has a constant amplitude. In the five subsections
which follow, we present without commentary the
formulas obtained in the most interesting cases.
These formulas relate the k + 1 values of Vn' the k
values of cPi' the energy resolution parameter b of
(16), and the phase width ~cP. Instead of ~cP itself,
we actually use the parameter e given by:and that only the positive half of this range need

be considered. If k is the number of harmonics
added to the main harmonic (n = 1), then because
of the normalization condition Vmax = 1, this k gives
the number of coefficients Vn in (13) which are freely
adjustable. Alternatively, the function v(cP) will
have k adjustable extrema located at cP = cP1'
cPz, ... , cPk' and these extrema should be positioned
such that:

-(~¢)/2 ~ cP ~ (~cP)/2, (17)

0< cP1 < cPz < ... < <Pk < (~cP)/2, (18)

since we wish to minimize! dv/d¢ lover the'speci­
fied cP range. Since v(cP) has no extrema for cP > ¢k
(except those near cP = n, which may be ignored),
it follows that v(cP) must have a maximu'm at ¢ = cPk;
it also follows that v(cP = 0) is a maximum/mini­
mum when k is an even/odd integer. For a 'specified
set of extrema points cPi' we also conclude that the
optimum result will be obtained when ~cP is de­
termined from the condition:

b is minimized for a given D, or such that D is
maximized for a given b.

Since v(cP) is ,symmetric about cP = 0, it follows
that the optimum range of cP values is:

v(cP = ~cP/2) = 1-£5 = Vmin' (19) (23c)

These considerations are sufficient to determine the
optimum result when k = 1.

The analysis proceeds by introducing the variable
u = cos cP, which is restricted to the range:
1 ~ u ~ cos(~cP/2). In terms of this variable, the
function v reduces to a polynomial whose degree is
determined by the largest n value present in the
sum (13). In order to save space, we shall omit the
details of this analysis here. The primary con­
clusion is that the,optimum result will be obtained
when all the maxima of v have the same height, and
all the minima have the same depth; that 'is,

1 = V(cPk) = V(cPk-Z) = ... ; (20a)

1-b = V(cPk-1) = V(cPk-3) =.... (20b)

These conditions, together with those specified in
the preceding paragraph, are sufficient to determine
all of the parameters.

The resultant flat-top region of v(cP) is then
characterized by a 'ripple' which, though irregular,

3.3. Harmonics n = 1,2, 3, and 4
/-

cOS¢2 = 1-e = {3; cos cPt = {3±e/~2; (24a)

b = 284/(1 + 24{32 + 8{33 + 2{34); (24b)

v4 = -1/(1 + 24{32 + 8{33 + 2{34);

V3 = -8{3V4; V2 = 4f3(2+5{3)V4;

(24c)

3.4. Harmonics n = 1 and 3

Although this case has been treated before,(1) we
present the results again for the sake of complete­
ness.

cOScP1 = tt = (1-2e+4ez/3)t (25a)

b = -!-(1-tt)2(1 +2tt)/tt3; (25b)

V3 = -1/(2tt)3; V1 = 3(4ttZ -1)/(2tt)3. (25c)
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3.5. Harmonics n = 1, 3, and 5

COS¢l =~; COS¢2 = 1]; C= 2e-(1-~); (26a)

5{~2_1]2)(21]+1) = (1-1])(3+91]+81]2); (26b)

15~.(~2 _1]2) - 5(5~2 _1]2)C + 15~C2 = 3C3
; (26c)

b = [(~ _1])/1]]3(~2 + 1]2 + 3~1])/(5~2 _1]2); (26d)

V3 /V s = -5(4~2+41]2_3)/3;

Vi/VS = 10(8~21]2 - 2~2 - 21]2 + 1);

(26e)

Since these formulas are far less transparent than
those found in the preceding cases, we present in
Table I the values of b, Vi' v3 , and Vs as a function
of A¢.

harmonics n = 1, 2, ... , k+ 1, that is, for the set of
lowest possible frequencies. Each of the curves in
Fig. 1 represents the optimum result which can be
achieved only under ideal conditions.

180
b.ep

(deg) 234

140

23

100

35

FIG. 1. Curves showing the maximum phase width
11c/> (in degrees) of a beam which can be achieved for
a given energy resolution and for a given combina­
tion of harmonics. The range of energy resolution
covered is: (AE)jE = 10-4 to 10 -2. Reading from
bottom to top, the curves correspond to the
harmonic combinations: n = 1 and 3; n = 1 and
2; n = 1, 3, and 5; n = 1, 2, and 3; n = 1, 2, 3,
and 4.

Figures 2 and 3 display curves of the effective
voltage wave form v(¢), defined in (13), which are
obtained when b = 10- 3 by using the optimum
flat-topping formulas given in Sees. 3.1-3.5. The
beam is confined within the flat-top region shown
on these curves ,for I¢ I< (A¢)/2. The plots in
Fig. 3 extend only to ¢ = n/2, since v(n:-¢) =
- v(¢) in. these cases where only odd harmonics
are involved. The large negative values near, ¢ == n
in Fig. 2 constitute no difficulty in themselves since
they lie far outside tlle flat~top region within which
the beam is confined. These values do, however.,
indicate that when eve.n and odd harmonics are
mixed, the available dee voltages are utilized rather
inefficiently. The value of Vi = Vi /VO provides a
good measure of this inefficiency since V 1 = 1 for a

TABLE I
Optimum flat-topping parameters for n = 1, 3, and

5 harmonic combination

~¢J

(deg) log c5 Vl V3 Vs

35 -4.779 1.1773 -0.2036 0.0264
40 -4.425 1.1789 -0.2063 0.0273
45 -4.111 1.1808 -0.2092 0.0285
50 -3.828 1.1828 40.2126' 0.0298
55 - 3.571 1.1850 -0.2164 0.0314

60 -3.334 1.1874 -0.2206 0.0332
65 -3.115 1.1899 -0.2252 0.0353
70 -2.910 1.1924 -0.2302 0.0377
75 -2.717 1.1951 -0.2356 0.0406
80 -2.535 1.1977 -0.2415 0.0438

85 -2.362 1.2003 -0.2479 0.0476
90 -2.197 1.2026 -0.2547 0.0521
95 -2.039 1.2047 -0.2619 0.0572

100 -1.887 1.2062 -0.2694 0.0632

4. DISCUSSION

Figure 1 shows curves of A¢ versus, log b over
the range b = 10- 4 -10":-2 for the five different types
of harmonic combinations considered abov:e. For
comparison, a pure sinusoidal voltage, would yield
A¢ = 1.6°-16° over the same () range. the improve­
ment in duty factor with each added harmonic,
as manifested by the curves in Fig. 1, is therefore
quite impressive. For a given k value (number of
added harmonics) these curves confirm that the
largest duty factor is obtained for the set of

60
2

3

log (~E/E)
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:FIG..2. Optimum flat-topping curves showing the
effectIve voltage wave form v( 4» obtained for an
energy resolution 8 = (AE)jE = 10-3 and for the
follo.wing different 'harmonic combin~tions: n= 1
and 2; n = 1, 2, and 3; n = 1, 2, 3, and 4. These
curves are symmetric'about 4> = O. On the scale of
~hi~ ~gure, 'the ripple within the flat-top region is
inVISIble.

FIG..3. Optimum flat-topping curves showing the
effective voltage wave form v( 4» obtained for an
energy resolution 8 = (AE)jE = 10-3 and for the
following different harmonic con1bin~tions: n = 1
and .3; n = 1, 3, and 5. These curves are sym­
Il1etnc about 4> = 0, and. anti-symmetric about
4> •= ?Oo. On the scale of this figure, the ripp!e
WIthIn the flat-top region is invisible. Compare
with Fig. 2.

purely sinusoidal voltage. The curves shown in
Fig.2require:v1(n= 1,2)= 1.35,v1(n= 1,2,3)=
1.55, and v1(n = 1,2,3,4) = 1.67; by way of com­
pari~on, the odd harmonic curves shown in Fig. 3
requIre: v1(n = 1,3) == 1.l3 and v1(n = 1,3,5)=
1.19.

Su~cessful application of the voltage flat-topping
technIque demands very precise control over the
amplitudes and phases of the different harmonic
volta~es. For a given phase width ~4J, the energy
resolution of the emergent beam can be adversely
affected either through a change in the shape of. the
voltage wave form or through a fluctuation ill its
overall amplitude. Assuming the phases t/Jn in
(5b, 12) remain fixed, a small fluctuation in V
having an amplitude d Vn will produce an increas~
in b by an amount:

(27a)

Similarly, a phase error of magnitude dljJn in one
of the harmonics will, by itself, produce an incre­
ment:

(27b)

assuming sin (n4J) ~ 1 somewhere in the given 4J
range. Each of these errors, or the root-mean­
square combination of all such errors, must satisfy
the condition: db ~ b before the optimum flat­
topping results can be realized in practice.

As discussed previously,(l) deviation of the
magnetic field shape from that required for iso­
chronism willproducephase:nexcursions in the
beam, thereby reducing the total. phase width which
can be maintained within the flat-top region of the
effective voltage wave form. Similar effects are
produced by a· time dependent fluctuation in the
magnetic field or in the main rf frequency. A
change in the frequency of one of the harmonic
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voltages by an amount dOJn = OJ 1(dn) will produce
a phase shift dt/Jn given by: .

and, as indicated above, the energy resolution will
deteriorate accordingly.

Since _the entire voltage flat-topping discussion is
based on Eqs. (Sa, b), the approximations involved
in obtaining these equations should also be
examined. Second and higher order corrections
to these approximate equations will result from the
radial and axial oscillations about the reference
orbit, and from the nonadiabatic nature of the
acceleration. Such corrections could be quite sig­
nificant whenever a very precise energy resolution
is being -sought over a wide phase range. In par­
ticular, it should be kept in mind that the cyclotron
is the least adiabatic of all cyclic accelerators.

The incoherent radial and axial oscillations can
be limited by controlling the emittance _of the beam
from the ion source or injector. Coherent oscilla­
tions will be produced by magnetic field imperfec­
tions or by misalignments of electrical and magnetic
components. Such oscillations can be readily
detected with suitable beam probes and can there­
fore be limited ifappropriate correction mechanisms
have been provided. However, unavoidable
coherent radial oscillations will be induced by the
acceleration process, and the amplitude of these
oscillations can vary significantly for different l/J
values. Moreover, these radial oscillations will
produce corresponding oscillations i~ l/J. Further­
more, fluctuations in E will result from these
oscillations and from the acceleration process itself.
The magnitude of these effects will depend on the
injection energy and on the details of the rf system.

Under certain circumstances we can justify the
use of Eqs. (Sa, b) even when the acceleration is
quite nonadiabatic. In these cases, the reference
orbit should be chosen to coincide with the ac­
celerated 'central ray' orbit which spirals outward.
The isochronous magnetic field is then specified by
requiring that the rotation period of this orbit be
independent ofenergy. If, in addition, the potential
of Eq. (3) changes insignificantly over a radial
distance equal to the radius gain per turn of this

dt/Jn = 2n-rh(dn), (28)

orbit, then Eq. (Sa, b) will be reasonably valid. It
--nust,however, be verified that a unique central ray
orbit exists independent of the <p value within the
desired ~¢ range. This. iscert~inly the case when
a- square wave voltage (such as shown in Fig. 3) is
supplied to each dee. Such may not be the case
when the harmonics are supplied to separate dees
which are widely spaced apart.

Ordinarily, 'isochronous' cyclotrons have
sufficient flexibility regarding phase excursions to
permit the acceleration of the beam into the non­
isochronous edge region of the magnetic field prior
to extraction. This procedure leads to greater turn
separation at the entrance to the electrostatic
channel, and also reduces the electric field required
by this channel for successful beam deflection.
However, this. extraction procedure cannot be
applied to cyclotrons which utilize the voltage flat­
topping technique since the isochroni::;m condition
must be carefully maintained in the3e machines.
Despite this drawback, and despite the difficulties
outlined in the preceding paragraphs, the potential
advantages of the voltage flat-topping technique
are sufficiently attractive to justify the effort
required to successfully implement this technique.
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