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MATRIX METHOD FOR THREE-ELEMENT-EXTRACTION SYSTEMSt
ARTHUR C. PAUL

Lawrence Radiation Laboratory, University of California, Berkeley, California, U.S.A.

This paper discusses the matrix-method calculation of the properties of a three-element regenerative extraction
system for a synchrocyclotron. It is shown that the three-element-system stability calculation can be conveniently
parameterized in matrix formalism separating the perturbation strengths from the field geometry.

1. INTRODUCTION

During the extraction-improvement studies for
the Berkeley 184-inch synchrocyclotron we have
considered three-element regenerative extraction
systems. The motivation b~hind the three-element
system has been to effect efficient radial extraction
while -preserving vertical stability for all tur,ns
through the regenerator. Two calculational methods
have been used: exact integration of the equations
of motion in the magnetic field (1) and the matrix
method of ·LeCoute~lr.(2) This paper describes
some of our work using the matrix method. In
order to study the regenerative effect of these three
element systems, we have extended the standard
two-element equations for the stability criteria in
matrix formalism and show that a separation of the
perturbation strength from the ge~metry (location
of the perturbations) is possible.'

T'he geometry of the extraction system considered
is shown in Fig. 1. The perturbations Ql' Q2' and
Q3 begin at radii rl , r2 and r3 and are separated by
angles cx, [3, and y respectively.... These perturba
tions are considered superimposed on the normal
weak-focusing field of the cyclotron.

The effect of field perturbations on regeneration
.is studied by calculating the matrices for the several
field regions comprising a turn. The single-turn
pro.duct matrix can be used to track a given particle
vector one or more turns, or provide info,rmation on
stability from the value of the trace of the matrix. (3)

The matrix' 'transforms a particle vector (~,)

where x' = dxjd8, f) being the azimuth formed by
the right-handed polar coordinate system (x, z, 8).
We define the field index describing the field fall-off
as

t Work done under the auspices of the U.S. Atomic
Energy Commission.

z

r

FIG. 1. Geometry of the three-region extraction
system. The center of the cyclotron is at o. The
perturbations Ql' Q2' and Q3 begin at radii rb r2'
and r3 and are separated by angle Cl, {3, and y
respectively. The matrices AM(), BM(), 'and
CM( ) transform the particle vectors through the
angles Cl, {3, and y.

where p is the radius of curvature, PCjeBz, for a
particle of momentum P in field B z on the median
plane. The perturbations produced by a peeler,
regenerator, or additional extraction elements is
represented bya matrix which produces a deflection
of the particle without displacing the trajectory:

G,) = ( ! Qj ~) G!)
(:,) = (~j ~) G!) ·

Here Qj is the strength of the jth perturbation of
width ..d8j , Qj = -nj ..d8j • Note that Q has the'
sign of the field gradient:

P(Qj) = ( ! Qj ~).

The effect of the weak-focusing cyclotron field of
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azimuthal extent aj is given by the following matrix:

A(aj) = (COSV~j 'I/vSinvaj) ,
- v SIn vaj COS vaj

where v = In for vertical motion and v = J 1 - n for
radial motion. A complete revolution about the
cyclotron is simulated by the product ofthe matrices
in the order encountered:

This single-turn matrix represents the effect of the
three perturbations Ql' Q2' and· Q3 separated by
angles a, [3, and y in t4e cyclotron (Fig. 1). Radial
or vertical stability requires that the trace of the
matrix be less than 2. Calculating the trace, we
obtain:

Trace A(27T)

= 2 cos va cos vf3 cos vy - 2 sin va sin v[3 cos vy - 2 cos va sin v[3 sin v y - 2 sin va cos v[3 sin vy

+ Ql(l/v sin va cos v[3 cos vy + I/v cos va sin v[3 cos vy - I/v sin va sin v[3 sin vy + I/v cos va cos v[3 sin vy)

+ Q2 (1 Iv cos va sin vf3 cos vy + 1Iv cos va cos vf3 sin vy - 1Iv sin va sin vf3 sin vy + 1Iv sin va cos vf3 cos vy)

+ Q3(I/v cos va cos v[3 sin vy - I/v sin va sin v[3 sin vy + Ilv sin va cos v[3 cos vy + I/v cos va sin v[3 cos vy)

+ Ql Q2(11v2 sin va sin v[3 cos vy + I/v2 sin va cos v[3 sin vy)

+ Ql Q3(11v2 sin va cos v~ sin vy + Ijv2cos va sin vf3 sin vy)

+ Q2 Q3(I/v2 cos va sin vf3 sin vy + Ijv2 sin va sin v[3·cos vy)

+ Ql Q2 Q3(Ijv3sin v~ sin vf3 sin vy).

Considerable insight into this horrendous expres
sion can be obtained by decomposing the trace into
the sum of vector elements W j obtained by the

matrix product of a perturbation matrix, P, and a
geometry vector, G.

Trace A(21T) = L Wj,
.j

Wj = L PjkGk ,
k

2 0 0 0 0 -2v2 -2v2 -2v2

0 - Ql - Ql -Ql Ql 0 0 0

0 -Q2 -Q2 -Q2 Q2 0 0 0
p,= 0 -Q3 -Q3 -Q3 Q3 0 0 0

0 0 0 0 0 0 Ql Q2 Ql Q2
0 0 0 0 0 Ql Q3 0 Ql Q3
0 0 0 0 0 Q2Q3 Q2Q3 0

0 0 0 0
- Ql Q2 Q3

0 0 0
v2

cos va cos vf3 cos vy
cos va sin vf3 cos vylv
cos va cos vf3 sin vylv

G == sin va cos vf3 cos vylv
sin va sin vf3 sin vyIv
cos va sin vf3 cos vyjv2

sin va sin vf3 cos vyIv2

sin va cos v(3 sin vylv2
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FIG. 2. Field and peeler-regenerator strengths for
184-inch cyclotron.

184-inch cyclotron, Fig. 2, we have Ql =:: - 0.4,
Q2 = 0.6, Vr = 0.98, vz = 0.2, ex = 90 deg and
[3 = 270deg, giving:
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_~v2Jcos vex cos v[3

W= 0 - Ql -Ql cos vex sin vf3/v .
0 -Q2 -Q2

·Q?Q2
sin vex cos v[3/v

0 0 0 sin vex sin v[3/v~
-

Here. Ql and Q2 are posjtive for, a rising field and
riegative for a falling field. From the field of the

+ Ql Q2 sin vex sin v[3.
v

The geometry vector G depends on the azimuthal
~ocation of the perturbations and the weak
focusing strength of the cyclotron field while the
perturbation strengths enter in an 8 x 8 matrix of
siniple structure. The advantage of this represen
tation is that for a .given geometry, the effect of
change in perturbation strengths can be readily
evaluated.

Ifwe consider the usual two-elemen"t system made
of perturbations Ql and Q2 separated by angles
ex and [3, we obtain, after elimination of zero
elements:

This gives the usual expression for the trace of a
regenerator-peeler system: (4)

Trace =2 cos ~{Cl + (3) - ! (Ql + Q2) sin v(ex + (3)
v

1.984 2 0 0 -1.9208 -.00296
W= -.05116 0 +.4 .4 0 -.09598r

.07673 0 -.6 -.6 0 -.03191

.2486 0 0 0 - .24 -1.0361

.6180 2 0 0 -0.080 .5590
W = .-1.902 0 -.4 -.4 0 .90818z

2.853 0 .6 .6 0 3.8471
-1.500 0 0 0 - .24 6.250

The radial trace is Lj Wrj = 2.258 and the vertical
trace is Lj WZj = 0.0691; this then gives regenera
tion without vertical instability.

Given Tn the desired value of the trace of the

radial matrix, and the strength of one regenerator
and peeler, say Tn Ql and Q3 the value of Q2
required to produce T r can be calculated from the
expression

Q2= Tr - 2gr +2V;(g6 +g7 +gs) + WI + Qa)(g2 +ga +g4 -gs) - QI QaCg6 +gs)
(g2 +g3 +g4 -gs) + Ql(g7 +gs) - Q3(g6 +g7) + Ql Q3g5/Vr
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FIG. 4. Vertical and radial trace of transfer
matrix as a function of lens strength at radial
regeneration node for last five resolutions in
184-inch cyclotron. The matrices extend from
60, 116, 168 to 60-deg and were calculated numeric
ally by orbit integration in the existing magnetic
field of the 184-inch cyclotron for typical 730-MeV
protons.

node. (5) The vertical and radial trace space is
shown in Fig. 4 as a function of lens strength for
values of Qb Q2' and n appropriate for the turn
under, consideration. For a zero lens strength
we have the values of the vertical trace for the
various turns calculated in the preceding section.
As we change the lens strength the vertical trace
can be made to increase or decrease in value for any
given turn while maintaining radial instability, but
nowhere is there a lens value for which the vertical
trace is less than 2 for all turns. It then must be
concluded that a vertical lens placed at the radial
node cannot correct the vertical over-focusing
produced by the peeler on turns N - 1 and N for the
184-in. cyclotron.
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FIG. 3. Effect of lens placed at radial node. Here
ex = 40 deg, f3 = 230 deg, y = 90.deg, Ql = 0.6,
Q3 = - 0.4, and' n = 0.04.

where g j are the elements of the geometry vector G
evaluated with v = Vr = JI - n. The trace in the
vertical plane produced by this value of Q2 is
obtained from

T z = 2hl -2vz(h6 +h7 +hs) -(h2 +ha+h4 -h5)

· (Ql + Q2 + Qa) + Ql Q2(h7 +hs)
+ Ql Qa(h6 +hs) + Q2 Qa(h6 +h7)

- Ql Q2 Qa h5 V z-2
,

where h j are the elements of the geometry.vectorG
evaluated with v = v z = In. This equation sim
plifies to a straight line when plotting T z vs Q2
(Fig. 3):

T z = a+bQ2'
a = 2h1 -2vz(h6 +h7 +hs) -(h2 +ha+h4 -h5)

· (Ql + Qa) + Ql Qa(h6 +hs),
b = Qa(h6 +h7) + Ql(h7 +hs) -(h2 +ha+h4 -h5)

· (Ql + Qa) - Ql Qa Q5 v z- 2
•

2. VERTICAL FOCUSING LENS AT
RADIAL NODE

We have examined the effect of placing' a vertic
ally focusing lens Qa, at the radial regeneration

3. MAGNETIC BUMP BEAM STRETCHER

Consider the stability diagram -and regeneration
properties of a gradient coil used to stretch the
beam. This scheme(6) calls for the acceleration of
the beam into a field region that off-centers the
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values pf the gradient coil Q2 is indicated. This
figure is. 0 btai~ed from the- results of a three
dimensional map produced by varing the perturba
tions Ql (peeler), Q2 (gradient' coil), and Qa
(regenerator) by a computer code REGEN. (7)

It will be noted that as .the p-,armoriic coil Q2
pushes the particles off center, out into the fringing
field, the value of the strength of the fringe field will
increase (Fig. 2). When the orbits are out to about
85 in., Ql = 0.6, Qa = 0, and we have vertical
instability (Fig. 5). The action of ·Q2 under'
acceleration can be investigated by accelerating out
toa radius of 81.15 in. with the gradient bump Q2
on (Q2 = - 0.2). -Regeneration does not occur
since the trace of the radial matrix is less than 2
with the perturbatiqn on. This is effected .by the
off-~enteringof the orbits so that they do not enter
the regenerator, so Qa = O. The perturbation is \
now turned off and the particles enter the
regenerator and are extracted.o-.2-.4
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FIG. 5. Stability diagramfor magnetic bump beam
stretcher. The lines are drawn for trace of matrix
equal to 2.0 with arrows pointing in direction of
trace less than 2.0. 'the curves are marked H 'for
horizontal and V for vertical for regenerator
strengths R as indicated, the point marked X is the
current operating point where radial trace is greater
than 2 and the vertical trace is less than 2,R =0.6.

beam so as to prevent its entry into the regenerator.
The 'acceleration is then turned off and extraction
accomplished by a slow reduction of the magnetic
bump, slowly bringing the beam into the
regenerator, large radial amplitudes first. Figure 5
shows the stability diagram. The area marked
'vertical instability' is the area for which the abso
lute value of the trace of the vertical matrix is
greater than 2; the area marked 'regeneration' is
the area for which the radial trace is greater than 2
and the absolute value of the vertical trace is less
than 2. The effect on the stable area for various'
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