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We study cosmological perturbations in general inflation models with multiple scalar fields and

arbitrary kinetic terms, with special emphasis on the multifield extension of Dirac-Born-Infeld (DBI)

inflation. We compute the second-order action governing the dynamics of linear perturbations in the most

general case. Specializing to DBI inflation, we show that the adiabatic and entropy modes propagate with

a common effective sound speed and are thus amplified at sound horizon crossing. In the small sound

speed limit, we find that the amplitude of the entropy modes is much higher than that of the adiabatic

modes. We also derive, in the general case, the third-order action which is useful for studying primordial

non-Gaussianities generated during inflation. In the DBI case, we compute the dominant contributions to

non-Gaussianities, which depend on both the adiabatic and entropy modes.
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I. INTRODUCTION

While inflation has become a standard paradigm with
which to describe the physics of the very early Universe,
the nature of the field(s) responsible for inflation remains
an open question. The last few years have seen an intensive
effort devoted to trying to connect string theory and in-
flation (for recent reviews, see e.g. [1–5]), with the hope
that future cosmological observations, in particular, of the
cosmic microwave background anisotropies, could detect
some specific stringy signatures.

Of particular interest are scenarios based on the motion
of a D-brane in a higher-dimensional spacetime. Since the
dynamics of a D-brane is described by the Dirac-Born-
Infeld (DBI) action, characterized by a nonstandard kinetic
term, inflation can occur with steep potentials, in contrast
with usual slow-roll inflation. In this sense, this scenario,
called DBI inflation [6–9], belongs to the more general
class of k-inflation models [10,11] characterized by a
Lagrangian of the form PðX;�Þ, where X ¼
�@��@��=2.

In DBI inflation, the effective four-dimensional scalar
field corresponds to the radial position of a brane in a
higher dimensional warped conical geometry. For simplic-
ity, the other possible degrees of freedom of the brane,
namely, the angular coordinates, are usually assumed to be
frozen. Relaxing this assumption and allowing the brane to
move in the angular directions (see e.g. [12–15]) leads to a
multifield scenario, since each brane coordinate in the extra
dimensions gives rise to a scalar field from the effective
four-dimensional point of view.

Beyond the multifield extension of DBI inflation, it is
interesting to study, in the spirit of k inflation, very general
multifield Lagrangians of the form

P ¼ PðXIJ; �KÞ; (1)

with

XIJ � �1
2@��

I@��J; (2)

where I ¼ 1; . . . ; N labels the multiple fields. (In the fol-
lowing we will adopt the implicit summation convention
on both field and space-time indices.)
A more restrictive class of models consists of

Lagrangians that depend on the global kinetic term X ¼
GIJX

IJ where the functionsGIJð�KÞ are the components of
some metric defined in field space [16]. While this simpler
class of Lagrangians is enough to describe the homoge-
neous dynamics of multifield DBI inflation, it turns out that
the full inhomogeneous dynamics cannot be described by
such a Lagrangian, as we pointed out in [17] and show
below in more detail.
The purpose of the present work is thus two-fold. Our

first aim is to derive the equations governing cosmological
perturbations in the generalized models of the form given
in Eq. (1). Our second aim is to apply this general formal-
ism to the multifield extension of the DBI scenario.
The structure of this paper is the following. In the next

section, we first consider the multifield DBI action which
motivates our subsequent study of the general formalism.
In Sec. III we derive, in the general case, the field equations
for the metric and for the scalar fields, after which we
specialize to the homogeneous background. Section IV is
devoted to the dynamics of the linear perturbations in the
general case: we derive the second-order action and ana-
lyze the resulting equations of motion for the perturbations.
We then focus, in Sec. V, on the specific example of the
DBI action: we show that the adiabatic and entropy modes
propagate with the same speed of sound cs and we compute
the second-order action for linear perturbations. For two-
field DBI inflation we also compute the power spectra of
the adiabatic and entropy modes. Finally in Sec. VI we
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discuss non-Gaussianities. We first derive, in the general
case, the third-order action for perturbations. We then limit
our analysis to two-field DBI models, for which we com-
pute the main contribution to non-Gaussianity in the limit
of small cs. We summarize our main results in the last
section.

II. THE MULTIFIELD DBI ACTION

In this section we motivate our reasons for looking at
Lagrangians of the general form PðXIJ; �KÞ by showing, in
particular, that multifield DBI inflation is described by a
Lagrangian of this form. We also discuss the properties of
the higher-order terms in derivatives which appear in the
DBI Lagrangian.

Consider a D3-brane with tension T3 evolving in a 10-
dimensional geometry described by the metric

ds2 ¼ h�1=2ðyKÞg��dx�dx� þ h1=2ðyKÞGIJðyKÞdyIdyJ
� HABdY

AdYB (3)

with coordinates YA ¼ fx�; yIg, where � ¼ 0; . . . ; 3 and
I ¼ 1; . . . ; 6 (the label I has been chosen in this way as
below it will label the multiple effective scalar fields). The
kinetic part of the DBI action,

L ¼ �T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det���

q
(4)

depends on the determinant of the induced metric on the 3-
brane,

��� ¼ HAB@�Y
A
ðbÞ@�Y

B
ðbÞ (5)

where the brane embedding is defined by the functions
YAðbÞðx�Þ, with the x� being the spacetime coordinates on

the brane. In our case, they coincide with the first four bulk
coordinates. On writing YAðbÞ ¼ ðx�; ’Iðx�ÞÞ, we find

��� ¼ h�1=2ðg�� þ hGIJ@�’
I@�’

JÞ; (6)

which after substitution into (4) implies

L ¼ �T3h�1 ffiffiffiffiffiffiffi�gp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð��� þ hGIJ@

�’I@�’
JÞ

q
: (7)

Finally, in order to absorb the brane tension T3, it is
convenient to rescale in the following way:

f ¼ h

T3
; �I ¼ ffiffiffiffiffi

T3
p

’I: (8)

As a result, in the following, we consider the DBI
Lagrangian

P ¼ � 1

fð�IÞ ð
ffiffiffiffiffi
D

p
� 1Þ � Vð�IÞ (9)

where

D ¼ detð��� þ fGIJ@
��I@��

JÞ; (10)

and where we have also included potential terms, which

arise from the brane’s interactions with bulk fields or other
branes. From now on we let I ¼ 1; . . . ; N.
One can express the above Lagrangian in (9) explicitly

in terms of the XIJ defined in (2), by rewritingD, which is
the determinant of a 4� 4matrix, as the determinant of an
N � N matrix:

D ¼ detð�JI � 2fXJI Þ (11)

where

XJI ¼ GIKX
KJ: (12)

Throughout this paper field indices will always be raised
and lowered with the ‘‘field metric’’ GIJ ¼ GIJð�KÞ. The
equality between the expressions (10) and (11) for the
determinant can be proved by using the identity detðIdþ
�Þ ¼ exp½TrðlnðIdþ �ÞÞ� for the matrix � of components
��� ¼ fGIJ@

��I@��
J. Indeed from Eq. (10) we have

D ¼ exp½Trð�Þ � 1
2Trð�2Þ þ 1

3Trð�3Þ þ . . .�; (13)

and on noting that

Tr ð�nÞ ¼ Tr½ð�2fXÞn� (14)

where X represents the matrix of components XJI , one
obtains the expression given in Eq. (11).
Another very useful expression for D can be obtained

by computing directly the determinant in Eq. (10). As we
show in Appendix A, this yields

D ¼ 1� 2fGIJX
IJ þ 4f2X½I

I X
J�
J � 8f3X½I

I X
J
JX

K�
K

þ 16f4X½I
I X

J
JX

K
KX

L�
L ; (15)

where the brackets denote antisymmetrization on the field
indices. We note that, in four spacetime dimensions,
Eq. (15) is automatically truncated at order f4 even if the
number of scalar fields is larger than 4 (see Appendix A).
To use shorter notations, wewill rewrite the above equation
as

D ¼ 1� 2f ~X; (16)

with

~X � X þF ðXIJ; �KÞ; (17)

X � GIJX
IJ (18)

and where F ðXIJ; �KÞ can be read from Eq. (15):

F ðXIJ; �KÞ ¼ �2fX½I
I X

J�
J þ 4f2X½I

I X
J
JX

K�
K

� 8f3X½I
I X

J
JX

K
KX

L�
L : (19)

For a single field, I ¼ 1, it is straightforward to see that
F vanishes so that the determinant takes the familiar form
D ¼ 1þ f@��@

�� (for G11 ¼ 1). Similarly, for a multi-

field homogeneous configuration in which the scalar fields

depend only on time and XIJ ¼ _�I _�J=2, one again finds
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F ¼ 0 because of the antisymmetrization on field indices
in Eq. (19). Thus in this case the determinantD reduces to

�D ¼ 1� fGIJ
_�I _�J: (20)

(In the following a bar denotes homogeneous background
quantities.)

However, for multiple inhomogeneous scalar fields, the
terms in F , which are higher order in gradients and have
not been considered in previous works, do not vanish: we
will show later in this paper that they drastically change the
behavior of perturbations. Furthermore, since they vanish
in the homogeneous background, we expect them to mod-
ify only the terms in the perturbation equations which
contain spatial derivatives. From this discussion we there-
fore see explicitly that the multifield DBI action does not
depend only on X ¼ GIJX

IJ (as has been assumed in recent
works on multifield DBI inflation [18,19]), but requires a
general description of the form P ¼ PðXIJ;�KÞ.

After this digression on the specific form of the multi-
field DBI Lagrangian, in the following section we return to
the general Lagrangian given in Eq. (1).

III. FIELD EQUATIONS

We begin this section by deriving the equations of
motion for the general action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�gp ½ð4ÞRþ 2PðXIJ; �KÞ�; (21)

where we have set 8�G ¼ 1. The energy-momentum ten-
sor can be obtained by varying Pwith respect to the metric,
and is given by

T�� ¼ Pg�� þ PhIJi@��I@��J; (22)

where we have defined

PhIJi � 1

2

�
@P

@XIJ
þ @P

@XJI

�
¼ PhJIi: (23)

We use this symmetrized derivative of the Lagrangian P
with respect to XIJ for the following reason: since XIJ is
symmetric in I and J, the explicit dependence of P on say
X12 and X21 can vary depending on the chosen convention
and the above definition avoids any ambiguity. The same
notation will apply to the derivative of any arbitrary func-
tion which depends on XIJ.

The equations of motion for the scalar fields follow from
the variation of the action in Eq. (21) with respect to each
scalar field. One finds

1ffiffiffiffiffiffiffi�gp @�ð ffiffiffiffiffiffiffi�gp
PhIJi@��JÞ þ P;I ¼ 0; (24)

where P;I denotes a partial derivative with respect to �I.

Now we consider a spatially flat Friedmann-Lemaı̂tre-
Robertson-Walker geometry with metric

ds2 ¼ �dt2 þ aðtÞ2dx2; (25)

where t is cosmic time. Then the kinetic terms defined in
Eq. (2) reduce to

XIJ ¼ 1
2
_�I _�J; (26)

where a dot denotes a derivative with respect to t. From
Eq. (22), the energy density can be expressed as

� ¼ 2PhIJiXIJ � P (27)

while the pressure is simply P, and the Friedmann equa-
tions are given by

H2 ¼ 1
3ð2PhIJiXIJ � PÞ; _H ¼ �XIJPhIJi: (28)

The equations of motion for the scalar fields Eq. (24)
reduce to

a�3 d

dt
ða3PhIJi _�JÞ ¼ P;I: (29)

On calculating the time derivative and taking into account

the terms in €�J contained in d
dtPhIJi, the above equation can

be rewritten as

ðPhIJi þ PhILi;hJKi _�L _�KÞ €�J þ ð3HPhIJi
þ PhIJi;K _�KÞ _�J � P;I ¼ 0 (30)

where, in analogy with Eq. (23), we have defined

PhIJi;hKLi � 1

2

�
@PhIJi
@XKL

þ @PhIJi
@XLK

�
¼ PhKLi;hIJi: (31)

Finally we end this section by noting that were the
Lagrangian to depend on the XIJ only through X ¼
GIJX

IJ, then one would define ~PðX;�KÞ ¼ PðXIJ;�KÞ
so that PhIJi ¼ ~P;XGIJ. In that case all the above expres-

sions would reduce to those of [16].

IV. LINEAR PERTURBATIONS IN THE GENERAL
CASE

In this section, we derive the second-order action gov-
erning the dynamics of the linear perturbations for the
general action given in Eq. (21). As in [20], we use the
Arnowitt-Deser-Misner (ADM) approach, and our calcu-
lations are very similar to those of [16], except that we
work with the quantities XIJ rather than X.
Starting from the metric in the ADM form

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ (32)

where N is the lapse and Ni the shift, the full action
becomes

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�gp ðð4ÞRþ 2PÞ

¼ 1

2

Z
dtd3x

ffiffiffi
h

p �
Nð3ÞRþ 1

N
ð�E2 þ EijE

ijÞ þ 2NP

�
(33)

where ð3ÞR is the scalar curvature of the spatial metric hij
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with h its determinant, and the symmetric tensor Eij,

defined by

Eij ¼ 1
2
_hij �DðiNjÞ (34)

is proportional to the extrinsic curvature of the spatial
slices (Di denotes the spatial covariant derivative associ-
ated with the spatial metric hij).

The function P ¼ PðXIJ;�KÞ in Eq. (33) depends on the
kinetic quantities XIJ, which can be decomposed as

XIJ ¼ 1

2N2
vIvJ � 1

2
hij@i�

I@j�
J (35)

with

vJ ¼ _�J � Ni@i�
J: (36)

We now work in the flat gauge so that spatial sections are

flat, hij ¼ a2ðtÞ�ij and ð3ÞR ¼ 0. The Hamiltonian and

momentum constraints, which follow from the variation
of (33) with respect to the lapse and the shift are, respec-
tively,

2ðN2P� PhIJivIvJÞ þ E2 � EijE
ij ¼ 0; (37)

Dj

�
1

N
ðEji � E�ji Þ

�
¼ 1

N
PhIJivI@i�J: (38)

To zeroth order (background), the Hamiltonian constraint
simply gives the first Friedmann equation in Eq. (28), while
the momentum constraint vanishes identically.

At first order in the scalar perturbations, we write

N ¼ 1þ �N; Ni ¼ @i ; �I ¼ ��IðtÞ þQIðt;xÞ
(39)

where, from now on and when there is no ambiguity, we
promptly drop the bars on all the unperturbed fields. Note
that  is related to the standard Bardeen potential � by

� ¼ �H : (40)

At linear order, the momentum constraint (38) gives

�N ¼ 1

2H
PhIJi _�IQJ: (41)

The Hamiltonian constraint is more complicated, but a
straightforward calculation yields

� 2H

�
@2 

a2

�
¼ 2A�N þ BIJ _�J _QI þ CIQ

I (42)

with

A ¼ PhIJiXIJ � P� 2XIJXKLPhIJi;hKLi;

BIJ ¼ PhIJi þ 2XKLPhIJi;hKLi;

CI ¼ �P;I þ 2PhKLi;IXKL:

(43)

Actually, this explicit expression for  is not necessary in
order to derive the second-order action, as the terms in-

volving  (coming from the matter and gravitational parts
of the action) cancel each other. The scalar field perturba-
tions are related to a useful geometrical quantity, namely,
the comoving curvature perturbation R (see e.g. [21,22]).
On using the standard definition ofR which combines the
metric perturbations with the perturbations of the momen-
tum density for the Lagrangian P ¼ PðXIJ;�KÞ, one ob-
tains

R ¼
�

H

2PhIJiXIJ

�
PhKLi _�KQL: (44)

After these preliminary steps, one can now expand the
action (33) up to second order in the linear perturbations
�N,  andQI. As mentioned earlier, the terms involving  
cancel each other. On reexpressing �N in terms of the QI

using the constraint (41), one obtains, after a long but
straightforward calculation,

Sð2Þ ¼ 1

2

Z
dtd3xa3½ðPhIJi þ 2PhMJi;hIKiXMKÞ _QI _QJ

� PhIJihij@iQI@jQ
J �MKLQ

KQL þ 2�KIQ
K _QI�
(45)

where the mass matrix is

MKL ¼ �P;KL þ 3XMNPhNKiPhMLi

þ 1

H
PhNLi _�N½2PhIJi;KXIJ � P;K�

� 1

H2
XMNPhNKiPhMLi½XIJPhIJi

þ 2PhIJi;hABiXIJXAB� � 1

a3
d

dt

�
a3

H
PhAKiPhLJiXAJ

�
(46)

and the mixing matrix is

�KI ¼ _�JPhIJi;K � 2

H
PhLKiPhMJi;hNIiXLNXMJ: (47)

On denoting the coefficient of the kinetic parts in
Eq. (45) by

KIJ � PhIJi þ 2PhMJi;hIKiXMK; (48)

we find that the equations of motion for the QI (in Fourier
space) are

KIJ €Q
J þ k2

a2
PhIJiQJ þ ð _KIJ þ 3HKIJ þ�JI ��IJÞ _QJ

þ ð _�KI þMIK þ 3H�KIÞQK ¼ 0: (49)

The propagation velocities can be deduced from the struc-
ture of the first two terms in the above equation. On
assuming that KIJ is invertible, the sound speeds corre-
spond to the eigenvalues of the matrix of components
ðK�1ÞILPhLJi (recall that these are background quantities).
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For a single scalar field, PhIJi reduces to P;X, and it is

easy to see that the kinetic coefficient in Eq. (48) is simply
K ¼ P;X þ 2XP;XX which can be identified with �;X ac-

cording to the relation (27). Hence one recovers the famil-
iar result [11] that the effective speed of sound is given by

c2s ¼ P;X
�;X

¼ P;X
P;X þ 2XP;XX

ðsingle scalar fieldÞ: (50)

For multiple fields and in the particular case where the
Lagrangian is a function of X ¼ GIJX

IJ, i.e. P ¼
PðX;�KÞ, it has been shown in [16] (see also [18,19])
that the propagation matrix ðK�1ÞILPhLJi becomes aniso-

tropic: the perturbations along the field-space trajectory
propagate with an effective speed of sound cs, defined as in
the single-field case above (50), whereas the perturbations
orthogonal to the background trajectory propagate at the
speed of light. In the next section, we examine what
happens in multifield DBI inflation for which P ¼
PðXIJ; �KÞ.

V. LINEAR PERTURBATIONS IN DBI INFLATION

We now focus on linear perturbations in the specific case
of multifield DBI inflation for which the Lagrangian was
derived in Sec. II:

PðXIJ; �KÞ ¼ � 1

fð�IÞ ð
ffiffiffiffiffi
D

p
� 1Þ � Vð�IÞ; (51)

where D is given in Eq. (11) or Eq. (15). According to
Eq. (16), this Lagrangian can also be seen as a function of
~X, and it will be convenient later to use ~P defined by

PðXIJ; �KÞ � ~Pð ~X;�KÞ

¼ � 1

fð�IÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fð�IÞ ~X

q
� 1Þ � Vð�IÞ:

(52)

A. Propagation speed

Before considering the full dynamics of the linear per-
turbations, it is instructive to concentrate on their propa-
gation speed. According to the general analysis given in the
previous section, we simply need to calculate PhIJi as well
as the matrix KIJ, defined in Eq. (48).

To do so, it is convenient to use the form of the deter-
minant given in Eq. (11), namely,

D ¼ detðMÞ; MJ
I � �JI � 2fGIKX

KJ: (53)

In the homogeneous background, the components of the
matrix MJ

I reduce to

�MJ
I ¼ �JI � 2fXeIe

J; (54)

when expressed in terms of X ¼ GIJX
IJ and of the unit

vector in field space

eI �
_�Iffiffiffiffiffiffi
2X

p ; eI � GIJe
J: (55)

We will shortly need the inverse of the background matrix
�M, denoted by ~G. Its components are given by

~G J
I ¼ �JI þ

2fX

1� 2fX
eIe

J ¼?J
I þ

1

1� 2fX
eIe

J (56)

where, in the second equality, we have introduced the
projector orthogonal to the vector eI,

?J
I¼ �JI � eIe

J: (57)

Let us also define

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fX

p ¼ �D1=2 (58)

which, as we show below, is the propagation speed for all
perturbations. Note that this definition coincides with that
given in Eq. (50) for a single scalar field (on replacing

PðX;�IÞ by ~Pð ~X;�IÞ given in Eq. (52)), and that ~G given
in Eq. (56) can be rewritten as

~G J
I ¼?J

I þ
1

c2s
eIe

J: (59)

Let us now compute PhIJi. The identity

�detðMÞ¼detð �MÞTrð �M�1�MÞ�detðMÞ¼detð �MÞ �M�1�M
implies, using Eq. (58), that

D hIJi ¼ �2fc2s ~GIJ; (60)

where ~GIJ ¼ ~GK
I GKJ. It then follows from Eq. (51) that

PhIJi ¼ � 1

2fcs
DhIJi ¼ cs ~GIJ; (61)

where all quantities are evaluated on the background. For
the matrix KIJ, one needs the second derivative of P with
respect with XIJ. On using the second derivative of the
determinantD, which can be deduced from Appendix A, it
is straightforward to obtain

PhIKi;hJLi ¼ fcsð ~GIL
~GKJ þ ~GIJ

~GKL � ~GIK
~GJLÞ: (62)

By noting that XKL ~GKL ¼ X=c2s , the above equation to-
gether with Eq. (61) leads to

KIJ � PhIJi þ 2PhIKi;hJLiXKL ¼ 1

cs
~GIJ ¼ 1

c2s
PhIJi: (63)

Hence we obtain the remarkable result that the propagation
matrix is proportional to the identity matrix and that all
perturbations propagate at the same speed, namely, the
effective sound speed cs defined in Eq. (58).
Intuitively one can understand this result as follows. Let

us return to the DBI action in terms of the embedding of a
brane in a higher dimensional spacetime, as discussed in
Sec. II. The perturbations we have considered above can be
seen as fluctuations of the brane position in the higher
dimensional background. Since the brane action is the
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world sheet volume, its fluctuations propagate at the speed
of light from the higher dimensional point of view. From a
4-dimensional point of view, this translates into the speed
of sound cs as a consequence of time-dilation between the
bulk time coordinate and the brane proper time (the
Lorentz factor is 1=cs).

B. Second-order action for the perturbations

We now turn to the full dynamics of linear perturbations
in multifield DBI inflation. In the second-order action (45),
the mass and mixing terms could be determined by explicit
substitution of P given in Eq. (51). Here, however, we
follow a more direct route and extend the results of [16]
(which were obtained for Lagrangians depending only on
X). To do so, we use ~Pð ~X;�IÞ defined in Eq. (52) and
simply identify the new terms which appear because the
DBI Lagrangian depends on ~X rather than X.

Computation of the first- and second-order variations of
~X gives (see Appendix B)

�ð1Þ ~X ¼ �ð1ÞX;

�ð2Þ ~X ¼ �ð2ÞX þ fX ?IJ h
ij@iQ

I@jQ
J:

(64)

With respect to the second-order action of [16], the extra
term in Eq. (64) only modifies the spatial gradient term,
while the rest of that action is unchanged. Hence, as in
[16], we can rewrite the action in terms of covariant
derivatives DI defined with respect to the field-space
metric GIJ. This gives

Sð2Þ ¼ 1

2

Z
dtd3xa3

�
1

cs
ð ~GIJDtQ

IDtQ
J

� c2s ~GIJh
ij@iQ

I@jQ
JÞ � ~MIJQ

IQJ

þ 2
fJX

c3s
_�IQ

JDtQ
I

�
; (65)

where we have substituted ~P; ~X ¼ 1=cs and ~P; ~XJ ¼ fJX=c
3
s

into the expression of [16], and introduced the time cova-

riant derivative DtQ
I � _QI þ �IJK

_�JQK where �IJK is the
Christoffel symbol constructed from GIJ (and RIKLJ will
denote the corresponding Riemann tensor). Finally the
mass matrix which appears above, and which differs
from MIJ in Eq. (46), is

~MIJ ¼ �DIDJ
~P� ~P; ~XRIKLJ

_�K _�L þ X ~P; ~X
H

ð ~P; ~XJ _�I þ ~P; ~XI
_�JÞ þ

X ~P3
; ~X

2H2

�
1� 1

c2s

�
_�I

_�J

� 1

a3
Dt

�
a3

2H
~P2
; ~X

�
1þ 1

c2s

�
_�I

_�J

�

¼ DIDJV � ð1� csÞ2
2cs

DIDJf

f2
� ð1� csÞ3ð1þ 3csÞ

4c3s

DIfDJf

f3
þ 2 _HRIKLJe

KeL þ ð1� c2sÞ2
2c4sf

2H
f;ðI _�JÞ

þ _H

2H2c4s
ð1� c2sÞ _�I

_�J � 1

a3
Dt

�
a3

2Hc4s
ð1þ c2sÞ _�I

_�J

�
(66)

where in the second equality we have substituted the ex-
plicit DBI Lagrangian, and used _H ¼ �X=cs as well as
c2s ¼ 1� 2fX.

C. Two-field DBI

We can gain a better intuition for the system of pertur-
bations described by the action (65) by restricting our
attention to a two-field system, I ¼ 1, 2. Then one can
unambiguously decompose perturbations into (instanta-
neous) adiabatic and entropic modes by projecting, respec-
tively, parallel and perpendicular to the background
trajectory in field space. In other words, we introduce the
basis fe	; esg where eI	 ¼ eI, and eIs is the entropy unit
vector orthogonal to eI	:

eI	 � eI; GIJe
I
se
J
s ¼ 1; GIJe

I
se
J
	 ¼ 0: (67)

We also define

_	 � ffiffiffiffiffiffi
2X

p
: (68)

One can reformulate the background equations of motion
Eq. (30) for DBI in terms of these quantities. The adiabatic
component is

€	 ¼ c2sðcs ~P;	 � cs _	
2 ~P; ~X	 � 3H _	Þ; (69)

whereas the entropy component gives the time variation of
eI	:

D te
I
	 ¼ cs ~P;s

_	
eIs: (70)

In the above equations, ~P is given in (52) and partial
derivatives with respect to 	 or s denote the projection of
the field-space gradients along eI	 or eIs, respectively. For
example, ~P;	 � eI	 ~P;I and ~P;ss � eIse

J
sDIDJ

~P.
On introducing the decomposition

QI ¼ Q	e
I
	 þQse

I
s; (71)

the equations of motion for Q	 and Qs follow from
Eqs. (65) and (66) (see [16]). For the adiabatic part one
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finds

€Q	 þ
�
3H � 3

_cs
cs

�
_Q	 þ

�
c2sk

2

a2
þ�2

	

�
Q	

¼ ð�QsÞ� �
�ðHc2sÞ�
Hc2s

� cs ~P;	
_	

�
�Qs; (72)

where the coupling � between the adiabatic and entropy
components is

� � cs
_	
½ð1þ c2sÞ ~P;s � c2s ~P; ~Xs _	

2�

¼ �cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

1� c2s

s �ð1� csÞ2
f2

f;s þ ð1þ c2sÞV;s
�

(73)

while the effective mass of the adiabatic modes can be
written in the form

�2
	 � �ð _	=HÞ��

_	=H
�

�
3H � 3

_cs
cs

þ ð _	=HÞ�
_	=H

� ð _	=HÞ�
_	=H

:

(74)

The equation of motion for the entropy part can be ex-
pressed as

€Q s þ
�
3H � _cs

cs

�
_Qs þ

�
c2sk

2

a2
þ�2

s þ�2

c2s

�
Qs

¼ � _	
_H
�
k2

a2
�; (75)

where the right-hand side depends on the Bardeen potential
�, introduced in Eq. (40), and which depends on Q	 and
Qs through Eqs. (41) and (42). The effective mass appear-
ing above is given by

�2
s � �cs ~P;ss þ 1

2
_	2RG � ~P2

;s

_	2
þ 2c2s ~P; ~Xs ~P;s

¼ csV;ss � f

1� c2s
V2
;s � ð1� csÞ3

4ð1þ csÞf3
f2;s

� ð2þ csÞð1� csÞ
ð1þ csÞf f;sV;s � ð1� csÞ2

2f2
f;ss

þ 1

2
_	2RG: (76)

(RG is the scalar Riemann curvature in field space.) Note
that in this form, Eq. (75) is useful on large scales when the
right-hand side can be neglected—in this case one sees
immediately that the entropy perturbation Qs evolves in-
dependently of the adiabatic mode.

In order to study the quantum fluctuations of the system,
it is convenient, after going to conformal time 
 ¼R
dt=aðtÞ, to work in terms of canonically normalized

fields given by

v	 ¼ a

c3=2s

Q	; vs ¼ affiffiffiffiffi
cs

p Qs: (77)

Remarkably, in terms of these new variables, the second-
order action (65) reduces to the very simple form

Sð2Þ ¼ 1

2

Z
d
d3x

�
v02	 þ v02s � 2�v0	vs � c2s½ð@v	Þ2

þ ð@vsÞ2� þ z00

z
v2	 þ

�
�00

�
� a2�2

s

�
v2s

þ 2
z0

z
�v	vs

�
(78)

where a prime denotes a derivative with respect to confor-
mal time. The coupling between v	 and vs depends on

� ¼ a

cs
� (79)

and we have introduced the two background-dependent
functions

z ¼ a _	

Hc3=2s

; � ¼ affiffiffiffiffi
cs

p : (80)

This result is similar to that of [16], except for the spatial
gradient terms which have the same coefficient c2s for both
the adiabatic and isocurvature perturbations. The equations
of motion for v	 and vs are

v00	 � �v0s þ
�
c2sk

2 � z00

z

�
v	 � ðz�Þ0

z
vs ¼ 0; (81)

v00s þ �v0	 þ
�
c2sk

2 � �00

�
þ a2�2

s

�
vs � z0

z
�v	 ¼ 0:

(82)

In the following we will assume that the time evolution
ofH, _	 and cs is very slow with respect to that of the scale
factor, so that z00=z ’ �00=� ’ 2=
2. Since 
 varies from
�1 to 0, the wavelength of a given mode is first inside the
sound horizon (when jkcs
j � 1) and then crosses out the
sound horizon. As in standard inflation, the initial condi-
tions for the perturbations are determined by choosing the
familiar Minkowski-like vacuum on very small scales.
Below, we consider in turn the quantization on subhorizon
scales and then the classical evolution on large scales.

1. Quantization

For simplicity, we assume that the coupling � is very
small when the scales of interest cross out the sound
horizon, in which case one can quantize the 2 degrees of
freedom independently and solve analytically the system
(otherwise, one can resort to numerical integration by
starting deep enough inside the sound horizon as in
[23,24]). Furthermore we only work at tree level. Loop
corrections to the power spectrum and higher n-point
correlation functions may be important, and their contri-
bution can be calculated following the arguments of
[25,26]: we leave their estimation for future work. The
amplification of the vacuum fluctuations at horizon cross-
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ing is possible only for very light degrees of freedom.
Consequently, if �2

s is larger than H2, this amplification
is suppressed and there is no production of entropy modes.
Interestingly we see from Eq. (76) that the term coming
from the second derivative of the potential along the en-
tropy direction is multiplied by the sound speed cs, which
implies that, with a similar potential, it is easier to generate
entropy modes in DBI inflation than in standard slow-roll
inflation. Moreover, the second and third terms in �2

s are
always negative and thus tend to destabilize the entropic
direction. Below we assume that j�2

s j=H2 � 1.
Following the standard procedure (see e.g. [21] or [22])

one selects the positive frequency solutions of Eqs. (81)
and (82), which correspond to the usual vacuum on very
small scales:

v	k ’ vsk ’ 1ffiffiffiffiffiffiffiffiffiffi
2kcs

p e�ikcs

�
1� i

kcs


�
: (83)

As a consequence, the power spectra for v	 and vs after
sound horizon crossing have the same amplitude

P v	 ¼ P vs ¼
k3

2�2
jv	kj2 ’ H2a2

4�2c3s
: (84)

However, in terms of the initial fieldsQ	 andQs, one finds,
using (77),

P Q	� ’
H2

4�2
; PQs� ’

H2

4�2c2s
; (85)

(the subscript � indicates that the corresponding quantity is
evaluated at sound horizon crossing kcs ¼ aH) which
shows that, for small cs, the entropic modes are amplified
with respect to the adiabatic modes:

Qs� ’ Q	�
cs

: (86)

In order to confront the predictions of inflationary models
to cosmological observations, it is useful to rewrite the
scalar field perturbations in terms of geometrical quanti-
ties, such as the comoving curvature perturbation. The
latter is related to the adiabatic perturbation by the expres-
sion (44), which yields

R ¼ H

_	
Q	; (87)

so that one recovers the usual single-field result [11] that
the power spectrum for R at sound horizon crossing is
given by

P R� ¼
k3

2�2

jv	kj2
z2

’ H4

4�2 _	2
¼ H2

8�2�cs
; (88)

where � � � _H=H2.
It is then convenient to define an entropy perturbation,

which we denote S, such that its power spectrum at sound
horizon crossing is the same as that of the curvature

perturbation:

S ¼ cs
H

_	
Qs: (89)

We thus have

P R� ¼ PS� � P �: (90)

We stress that our convention for the definition of S is
purely for convenience.
In contrast with the scalar perturbations, the tensor

modes are, as usual, amplified at Hubble radius crossing.
The amplitude of their power spectrum, given by

P T ¼
�
2H2

�2

�
k¼aH

; (91)

is much smaller than the curvature amplitude in the small
cs limit.

2. Evolution on large scales

In order to determine the observational consequences of
single-field inflation models, it is usually sufficient to
evaluate the amplitude of the comoving curvature pertur-
bation just after horizon crossing. The reason is that the
comoving curvature perturbation is conserved on large
scales for adiabatic perturbations, as is also the case for
the curvature perturbation on uniform energy density hy-
persurfaces 
 , which coincides with �R on large scales.
This property is simply a consequence of the conservation
of the energy-momentum tensor [27] (this is also true for
nonlinear perturbations [28–30]).
In contrast with the single-field case, the curvature per-

turbation generally evolves in time, even on large scales, in
a multifield scenario [31] (see also [24] for a recent analy-
sis with nonstandard kinetic terms). This can be interpreted
as due to a transfer between the adiabatic and entropic
modes, governed by the relation [16]

_R ¼ �

cs
S þH

_H

c2sk
2

a2
�: (92)

Note that, whereas this relation might be useful during
inflation, it is not always relevant, for example, at the
end of inflation and during reheating where _	 may tempo-
rarily vanish. The importance of the transfer depends on
the specific model under consideration and can be com-
puted analytically only in some simple cases.
On large scales the curvature-entropy evolution can be

approximated by two equations of the form

_R 	 �HS; _S 	 �HS; (93)

where in the latter, we have neglected the second-order
time derivative in Eq. (75). In our case, the coefficients �
and � are given by
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� ¼ �

csH
; � ’ s

2
� �

2
� 1

3H2

�
�2
s þ�2

c2s

�
; (94)

where we have introduced the slow-varying parameters

� ¼ _�

H�
; s ¼ _cs

Hcs
; (95)

and kept only the leading order terms in the expression for
�.

The system of Eqs. (93) can be formally integrated (see
[32]) to yield

R
S

� �
¼ 1 TRS

0 TSS

� �
R
S

� �
�

(96)

with

TSSðt�; tÞ ¼ exp

�Z t

t�
�ðt0ÞHðt0Þdt0

�
;

TRSðt�; tÞ ¼
Z t

t�
�ðt0ÞTSSðt�; t0ÞHðt0Þdt0:

(97)

Hence the (time-dependent) power spectra for the curva-
ture perturbation, the entropy perturbation and the corre-
lation between the two can be formally expressed as

P R ¼ ð1þ T2
RSÞP �; PS ¼ T2

SSP �;

CRS � hRSi ¼ TRSTSSP �;
(98)

(recall that R and S are implicitly assumed to be uncorre-
lated at sound horizon crossing).

An interesting question, which depends on the details of
reheating and thus goes beyond the scope of the present
work, is whether the entropy perturbation during inflation
can be transferred to some entropy perturbations after
inflation, i.e. in the radiation phase. If this is the case,
then the primordial entropy fluctuations could be directly
observable, with the interesting possibility that there could
be a correlation between the adiabatic and entropy modes
[33].

In any case, one can introduce the correlation angle �,
defined by

sin� � CRSffiffiffiffiffiffiffiffi
PR

p ffiffiffiffiffiffiffi
PS

p (99)

which can also be seen as a transfer angle, since

sin� ¼ TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q : (100)

If � ¼ 0 there is no transfer (TRS ¼ 0), whereas if j�j ¼
�=2 (TRS � 1) the final curvature perturbation is mostly
of entropic origin. The relationship between the curvature
power spectrum at sound horizon crossing and its final
value is thus

P R� ¼ PRcos2�: (101)

This implies, on using the tensor amplitude Eq. (91), that
the tensor to scalar ratio is given by

r � PT

PR
¼ 16�cscos

2�: (102)

Interestingly this expression combines the result of k in-
flation [11], where the ratio is suppressed by the sound
speed cs, and that of standard multifield inflation [32].
From the expression of the curvature power spectrum,

one can compute the scalar spectral index in the slow-
varying approximation. We obtain

nR � d lnPR

d lnk
¼ nR� þH�1� sinð2�Þ @TRS

@t�

¼ nR� � �� sinð2�Þ � 2��sin2� (103)

with

nR� � 1 ¼ �2�� � �� � s�; (104)

and where we have used

H�1�
@TSS
@t�

¼ �TSS��; H�1�
@TRS

@t�
¼ ��� � TRS��:

(105)

The observable spectral index, given in Eq. (103), not only
depends on the values of the various parameters at sound
horizon crossing, but also on the transfer angle �.

VI. NON-GAUSSIANITIES

In the simplest models of inflation, primordial perturba-
tions are characterized by a very small amount of non-
Gaussianity [20]. However, other models, such as single-
field DBI inflation, are expected to produce significant
non-Gaussianity [34]. If ever detected, primordial non-
Gaussianity would be a powerful discriminator between
various early universe models. In order to study non-
Gaussianities, one must analyze the perturbations beyond
linear order. During inflation, primordial non-Gaussianities
can arise from the quantum fluctuations at horizon crossing
or, in the case of multifield inflation, from the classical
nonlinear evolution on large scales (see e.g. [35,36]).
In this section, we concentrate on the primordial non-

Gaussianity originating from the three-point function of
the scalar field fluctuations, which is the main contribution
in single-field DBI inflation. Its calculation requires the
third-order action in perturbations. Below, we first consider
the general case—that is models of the form (1)—and then
specialize to DBI.

A. Third-order action: general case

We follow the standard approach which has been pre-
sented in [20,37–39], considering successively the third-
order action from the Einstein-Hilbert term and then from
the matter part. A similar calculation of the third-order
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action can be found in [40], but only for the multifield
Lagrangians of the form PðX;�KÞ, where X ¼ �IJX

IJ.
The third-order action coming from the gravitational

part is the same as in the single-field case and is given by
the expression

SðGÞð3Þ ¼ 1

2

Z
dtd3xa3

�
��N

a4
½ð@i@j Þ@i@j � ð@2 Þ2�

þ 4
H

a2
@2 ð�NÞ2 þ 6H2ð�NÞ3

�
; (106)

where the relation between �N and the field perturbations
given in Eq. (41) can be rewritten as

�N � N AQ
A (107)

with the (field-space) vector

N A ¼ 1

2H
PhABi _�B: (108)

By expanding systematically the matter part of the action
up to third order, we finally find (intermediate steps can be
found in Appendix C)

SðMÞ
ð3Þ ¼

Z
dtd3xa3ð�ð3ÞPþ ð�NÞ�ð2ÞPÞ

¼
Z

dtd3xa3fðg1ÞABCQAQBQC þ ðg2ÞABCQAQB _QC

þ ðg3ÞABCQA _QB _QC þ ðg4ÞABC _QA _QB _QC

þ ðgaÞABQA@jQ
Bð�NjÞ þ ðgbÞAB _QA@jQ

Bð�NjÞ
þ ðgcÞABCQAðhij@iQB@jQ

CÞ
þ ðgdÞABC _QAðhij@iQB@jQ

CÞg (109)

with

ðg1ÞABC¼ 1
6P;ABCþ 1

2P;BCN A�PhIJiXIJN AN BN C

þPhIJi;BXIJN AN C

�4PhIJi;hKLiXIJXKLN AN BN C

�XIJPhIJi;BCN Aþ2PhIJi;hKLi;CXIJXKLN AN B

� 4
3PhIJi;hKLi;hMNiXIJXKLXMNN AN BN C;

(110)

ðg2ÞABC ¼ 2HN AN BN C þ 1
2PhKCi;AB _�K

þN A
_�K½5N BX

IJPhIJi;hKCi � PhKCi;B

þ 2N BX
IJXNLPhIJi;hNLi;hKCi

� 2XIJPhIJi;hKCi;B�; (111)

ðg3ÞABC ¼ �1
2N APhBCi þ 1

2PhBCi;A �N A½3XIKPhIBi;hKCi
þ XKLPhBCi;hKLi� � 2N APhIJi;hKBi;hMCiXIJXKM

þ PhIBi;hKCi;AXIK; (112)

ðg4ÞABC ¼ 1
2
_�MPhBCi;hMAi þ 1

3X
IK _�MPhIAi;hKBi;hMCi; (113)

ðgaÞAB ¼ 2HN AN B þ 2N AX
KL _�IPhIBi;hKLi

� _�IPhIBi;A; (114)

ðgbÞAB ¼ �PhABi � 2XIKPhIBi;hKAi; (115)

ðgcÞABC ¼ N AX
KLPhBCi;hKLi � 1

2PhBCi;A � 1
2PhBCiN A;

(116)

ðgdÞABC ¼ �1
2
_�KPhBCi;hKAi: (117)

In order to get a flavor for the new effects which could
arise in multifield inflation with nonstandard kinetic terms,
it is instructive to compare the above terms with their
counterparts in standard multifield inflation, such as
studied in [38]. Substituting the standard matter
Lagrangian

P ¼ GIJX
IJ � Vð�Þ; GIJ ¼ �IJ; (118)

the above coefficients reduce to

ðg1ÞABC ¼ �1
6V;ABC � 1

2V;BCN A � XN AN BN C;

ðg2ÞABC ¼ 2HN AN BN C; ðg3ÞABC ¼ �1
2N AGBC;

ðg4ÞABC ¼ 0; ðgaÞAB ¼ 2HN AN B;

ðgbÞAB ¼ �GAB; ðgcÞABC ¼ �1
2GBCN A;

ðgdÞABC ¼ 0: (119)

As wewill see in the next subsection, the main contribution
for DBI inflation will come precisely from the vertices
associated with the coefficients g4 and gd, which do not
exist for standard kinetic terms.

B. Non-Gaussianities in DBI inflation

Single-field DBI inflation is an inflationary model which
naturally produces a (relatively) high level of non-
Gaussianity in the small cs limit, as shown in [7,41]. It is
thus important to investigate how the amplitude and shape
of primordial non-Gaussianities are modified in the multi-
field case [42,43].
Here, we will focus on the dominant contributions to the

non-Gaussianities for cs � 1, and therefore ignore the
contributions coming from the gravitational part of the
action, which are known to be subdominant. As in the
single-field case, the dominant contributions come from
the terms involving derivatives of P with respect to the
XIJ’s, because they are enhanced by negative powers of cs
with respect to the other terms. Moreover, terms containing
N A are suppressed in the slow-varying approximation.
Indeed, if one compares, for example, the first term of gc
with gd, one finds schematically

gc
Hgd


 _	2

H2cs
; (120)

which is proportional to � ¼ � _H=H2 and thus small.
Finally, the dominant contributions come from the follow-
ing terms in Sð3Þ:

LANGLOIS, RENAUX-PETEL, STEER, AND TANAKA PHYSICAL REVIEW D 78, 063523 (2008)

063523-10



ðg4ÞIJK _QI _QJ _QK þ ðgdÞIJK _QIhjk@jQ
J@kQ

K: (121)

On substituting the multifield DBI Lagrangian into the
expressions given in Eqs. (113) and (117), the coefficients
g4 and gd can be calculated explicitly (one needs the third
derivative of P with respect to the XIJ, which can be
deduced from Appendix A).

In the two-field case, decomposing the fields in terms of
their adiabatic and entropic components according to (71),
as well as using (62), one finally finds that the relevant
terms of the third-order action are given by

SðmainÞ
ð3Þ ¼

Z
dtd3x

�
a3

2c5s _	
½ð _Q	Þ3 þ c2s _Q	ð _QsÞ2�

� a

2c3s _	
½ _Q	ðrQ	Þ2 � c2s _Q	ðrQsÞ2

þ 2c2s _QsrQ	rQsÞ�
�

(122)

where we have used the fact that f ’ 1= _	2 in the limit
cs � 1. All the terms which appear in Eq. (122) are of the
same order of magnitude, since Qs ’ Q	=cs as we have
seen earlier. Note that using X instead of ~X in the DBI
action (that is, neglecting the higher-order terms appearing
in F ) would lead to a different third-order action.

Let us now compute the contribution of these vertices to
the relevant three-point functions, by following the proce-
dure outlined in detail in [37]. Working at leading order in
the slow-varying regime, we use the adiabatic and entropic
propagators defined by, respectively,

hQ	ð0ÞQ	ð
Þi ¼ H2

2k3
ð1� ikcs
Þeikcs
;

hQsð0ÞQsð
Þi ¼ H2

2k3c2s
ð1� ikcs
Þeikcs
;

(123)

which correspond to the Fourier transforms of the Green
functions, solutions of Eqs. (81) and (82) with � ¼ 0 and
z00=z ¼ �00=� ¼ 2=
2. The calculation of the three-point
functions involve time integrations and we assume that, as
usual, the main contribution to these integrals comes from
the period around horizon crossing [44], which enables us
to extrapolate the integration bound to 
 ¼ 0. We also
implicitly ignore the correlations at different times be-
tween the adiabatic and entropy modes, since these are
expected to be small if the coupling � is small. The
quantities _	 and cs will be considered as constant in time
in the integrals. Given these assumptions, the only integrals
required areZ 0

�1
d
eiKcs
 ¼ � i

Kcs
;

Z 0

�1
d

eiKcs
 ¼ 1

ðKcsÞ2
;

Z 0

�1
d

2eiKcs
 ¼ 2i

ðKcsÞ3
(124)

which have been computed by using the appropriate con-
tour in the complex plane (
! �ð1� i�Þ).

The contributions to the three-point function
hQ	ðk1ÞQ	ðk2ÞQ	ðk3Þi are, respectively,

ð2�Þ3�
�X

i

ki

�
3H4

2
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c2s

1Q
i
k3i

k21k
2
2k

2
3

K3
(125)

from the vertex proportional to _Q3
	 and

�ð2�Þ3�
�X

i

ki

�
H4

4
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c2s

1Q
i
k3i

�
k21ðk2 � k3Þ

�
1

K
þ k2 þ k3

K2
þ 2k2k3

K3

�
þ perm:

�
(126)

from the vertex proportional to _Q	ðrQ	Þ2, where we have
introduced K � k1 þ k2 þ k3 and used _	 ¼ H

ffiffiffiffiffiffiffiffiffiffi
2�cs

p
.

Summing these contributions, one thus finds

hQ	ðk1ÞQ	ðk2ÞQ	ðk3Þi¼�ð2�Þ3�
�X

i

ki

�
H4

4
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c2s

� 1Q
i
k3i K

3
½�6k21k

2
2k

2
3þk23ðk1 �k2Þ

�ð2k1k2�k3Kþ2K2Þþperm:�
(127)

where the ‘‘perm.’’ indicate two other terms with the same
structure as the last term but permutations of indices 1, 2
and 3). This is the standard result from single-field DBI
inflation [41].
Let us now turn to the new terms which arise from the

entropy fluctuations. They appear in the three-point func-
tion hQ	ðk1ÞQsðk2ÞQsðk3Þi, with the contribution

ð2�Þ3�
�X

i

ki

�
H4

2
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c4s

1Q
i
k3i

k21k
2
2k

2
3

K3
(128)

from the vertex proportional to _Q	
_Q2
s , the contribution

ð2�Þ3�
�X

i

ki

�
H4

4
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c4s

1Q
i
k3i
k21ðk2 � k3Þ

�
�
1

K
þ k2 þ k3

K2
þ 2k2k3

K3

�
(129)

from the vertex proportional to _Q	ðrQsÞ2 and finally the
contribution

�ð2�Þ3�
�X

i

ki

�
H4

4
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c4s

1Q
i
k3i

�
k23ðk1 � k2Þ

�
�
1

K
þ k1 þ k2

K2
þ 2k1k2

K3

�
þ ðk2 $ k3Þ

�
(130)

from the vertex proportional to _QsrQsrQ	.
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Summing these three contributions, we find

hQ	ðk1ÞQsðk2ÞQsðk3Þi¼�ð2�Þ3�
�X

i

ki

�
H4

4
ffiffiffiffiffiffiffiffiffiffi
2cs�

p
c4s

� 1Q
i
k3i K

3
½�2k21k

2
2k

2
3�k21ðk2 �k3Þ

�ð2k2k3�k1Kþ2K2Þ
þk23ðk1 �k2Þð2k1k2�k3Kþ2K2Þ
þk22ðk1 �k3Þð2k1k3�k2Kþ2K2Þ�:

(131)

As we will see below, the three-point function of the
curvature perturbation depends on the symmetrized (with
respect to permutations of the three wave vectors ki)
version of this three-point function, and this has exactly
the same shape as (127). Nevertheless, its amplitude is
enhanced with respect to the purely adiabatic one by a
factor of 1=c2s .

Let us now relate the correlation function of the scalar
fields to the three-point function of the curvature perturba-
tion R which is the observable quantity. In order to do so,
we use Eqs. (87), (89), and (96) to write

R 	 A	Q	� þAsQs� (132)

with

A 	 ¼
�
H

_	

�
�
; As ¼ TRS

�
csH

_	

�
�
: (133)

Let us compute the three-point function for three wave
vectors of comparable magnitude (so that the coefficients
A	 and As, which depend on the time at which the relevant
scales cross the sound horizon, have approximately the
same value). The two three-point functions of the fields
we have calculated give the following contribution:

hRðk1ÞRðk2ÞRðk3Þið3Þ ¼ ðA	Þ3hQ	ðk1ÞQ	ðk2ÞQ	ðk3Þi
þA	ðAsÞ2ðhQ	ðk1ÞQsðk2Þ
�Qsðk3Þi þ perm:Þ

¼ ðA	Þ3hQ	ðk1ÞQ	ðk2Þ
�Q	ðk3Þið1þ T2

RSÞ (134)

where the adiabatic three-point function is given in
Eq. (127). Note that the enhancement of the mixed corre-
lation hQ	QsQsi by a factor of 1=c2s is compensated by the
ratio betweenA	 andAs so that the purely adiabatic and
mixed contributions in (134) are exactly of the same order.

The superscript (3) in the above equation indicates that
we take into account only the contribution from the three-
point function of the scalar fields. One could also include
the contribution from the four-point function of the scalar
fields, which can be expressed in terms of the power
spectra using Wick’s theorem, and also from other

higher-order terms. This has been done for instance in
[35,36]. In the single-field DBI case, the corresponding

contribution fð4ÞNL is negligible compared to fð3ÞNL. Because of
the transfer between adiabatic and entropic modes, this
should be reconsidered in specific multifield models.
Here we simply disregard these contributions though it
should be borne in mind that they are present in principle.
Instead of the three-point function, it is now customary

to use the non-Gaussianity parameter fNL defined by

hRðk1ÞRðk2ÞRðk3Þi ¼ �ð2�Þ7�
�X

i

ki

��
3

10
fNLðPRÞ2

�

�
P
i
k3iQ

i
k3i
: (135)

From the relation between PR and PR� given in
Eq. (101), we then obtain, for the equilateral configuration,

fð3ÞNL ¼ � 35

108

1

c2s

1

1þ T2
RS

¼ � 35

108

1

c2s
cos2�: (136)

One can easily understand this result. The curvature power
spectrum is amplified by a factor of (1þ T2

RS) due to the

feeding of curvature by entropy modes. Similarly the three-
point correlation function for R resulting from the three-
point correlation functions of the adiabatic and entropy
modes is enhanced by the same factor (1þ T2

RS).

However, since fNL is roughly the ratio of the three-point
function with respect to the square of the power spectrum,
one sees that fNL is now reduced by the factor (1þ T2

RS).

This may be important in confronting DBI models to
observations [45,46].
We end by revisiting the consistency condition relating

the non-Gaussianity of the curvature perturbation, the ten-
sor to scalar ratio r, and the tensor spectral index nT ¼
�2�, given in [47] for single-field DBI. In our case, sub-

stituting fð3ÞNL ’ � 1
3

1
c2s
cos2� in (102) gives

rþ 8nT ¼ �r
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3fð3ÞNL
q

cos�3�� 1

�
: (137)

As we can see from (136) and (137), violation of the
standard inflation consistency relation (corresponding to
a vanishing right-hand side in (137)) would be stronger in
multifield DBI than in single-field DBI, and thus easier to
detect. In the multifield case the consistency condition is
only an inequality, unless the entropy modes survive after
inflation in which case � is potentially observable.

VII. CONCLUSIONS

In this paper we have studied cosmological perturba-
tions in multifield inflation models for which the
Lagrangian depends a priori on all the NðN þ 1Þ=2 kinetic
terms that can be constructed by contracting the spacetime
gradients of the N scalar fields. Our analysis can be seen as
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the multifield extension of k inflation, and it also general-
izes very recent papers which considered more restrictive
Lagrangians of the form P ¼ PðX;�KÞ. In our very gen-
eral framework, we have computed the second-order action
which governs the dynamics of the linear perturbations,
and were thus able to identify the propagation matrix
whose eigenvalues correspond to the generalized propaga-
tion speeds.

We have argued that such a general framework is neces-
sary in order to study multifield DBI inflation. In that
model, we showed that all modes propagate with the
same speed of sound cs, and hence (if light) they are all
amplified simultaneously at sound horizon crossing.
However, because their respective canonically normalized
functions differ, the result is that the entropy modes are
enhanced with respect to the adiabatic modes: Qs 

Q	=cs. If there is a subsequent transfer from the entropy
modes into the curvature perturbation—a generic feature
as soon as the trajectory in field space is nontrivial—the
final amplitude of the curvature perturbation is signifi-
cantly affected by the entropy modes.

We have also derived, in the general case, the third-order
action from which one can compute the predictions for
primordial non-Gaussianities. We have identified the ver-
tices which appear in this action and expressed their co-
efficients in terms of the initial Lagrangian and its
derivatives. In the DBI case, we have computed the domi-
nant contributions to the non-Gaussianities of the curvature
perturbation in the small cs limit. If there is an entropy-
curvature transfer, we have shown that the contribution
from the entropy modes will increase the amplitude of
the three-point function with respect to the single-field
DBI prediction, but the shape of the non-Gaussianities
remains exactly the same. Since the entropy modes en-
hance the curvature two-point and three-point functions by
the same amount, it implies that the fNL parameter, which
is related to the three-point function divided by the square
of the two-point function, is smaller than in the single-field
case. The impact of the entropy modes can be expressed
simply in terms of the entropy-curvature transfer coeffi-
cient, which is model-dependent. In the future, it would be
interesting to study specific scenarios of DBI inflation and
to estimate quantitatively this transfer coefficient.
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APPENDIX A: THE DBI LAGRANGIAN AND ITS
DERIVATIVES

1. Calculation of the DBI determinant

The expression for D in Eq. (15) can be obtained from
its definition in Eq. (10) on substituting into

detðAÞ ¼ � 1

4!
��1�2�3�4

��1�2�3�4A�1
�1
A�2

�2
A�3

�3
A�4

�4

(A1)

the matrix of components

A�� ¼ ���þ fB�I B
I
�; B�I �GIJ@

��J; BI� � @��
I:

(A2)

On using the identity

��1�2�3�4
��1...�j�jþ1...�4 ¼ �ð4� jÞ!j!�½�jþ1

�jþ1
. . .��4�

�4
;

(A3)

and the contractions B�I B
J
� ¼ �2GIKX

KJ, one finally gets
the expression

D ¼ 1� 2fGIJX
IJ þ 4f2X½I

I X
J�
J � 8f3X½I

I X
J
JX

K�
K

þ 16f4X½I
I X

J
JX

K
KX

L�
L : (A4)

If there are three scalar fields, the last term disappears
because of the antisymmetrization over the field indices.
For two scalar fields, the last two terms disappear; and for
one scalar field, only the first two terms remain. For more
than four scalar fields, the truncation at order f4 is natural
if one considers D as the determinant of a 4� 4 matrix,
but it is less obvious if one starts from the expression forD
as the determinant of a N � N matrix, Eq. (11). However,
this can be understood by noting that the term proportional
to fn is a sum of products involving n terms of the form
XIJ ¼ �BI�B�J =2. If n > 4, among the n terms of the form

BI�, at least two have the same index � because the space-

time index � can only take four different values. Since, by
definition of the determinant, all the field indices I are
antisymmetrized, one thus finds that the term of order fn

necessarily vanishes.

2. Derivatives

In order to compute the derivatives of the DBI
Lagrangian with respect to XIJ, one can use the explicit
expression for D given above in Eq. (A4). An alternative
derivation, which is simpler, is to start from the identity

D ¼ exp½Tr lnM� ¼ exp½Tr lnð �Mþ �MÞ�
¼ expfTr½lnð �MÞ þ lnðIdþ �M�1�MÞ�g; (A5)

where the components ofM, given in (53), are decomposed
into
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�M J
I ¼ �JI � 2fGIK

�XKJ; �MJ
I ¼ �2fGIK�X

KJ:

(A6)

Moreover the components of the matrix ð �MÞ�1 are the ~GJ
I

given in Eq. (59).

Using (A5), the expansion ofD1=2 in terms of the matrix
U ¼ �M�1�M yields

D 1=2 ¼ �D1=2 exp

�
1
2 TrðUÞ � 1

4 TrðU2Þ þ 1
6 TrðU3Þ þ . . .�

¼ �D1=2½1þ 1
2 TrðUÞ � 1

4 TrðU2Þ þ 1
8ðTrUÞ2

þ 1
6 TrðU3Þ � 1

8 TrðUÞTrðU2Þ þ 1
48ðTrUÞ3 þ . . .�:

(A7)

Substituting in the above expression the components

UI
J ¼ �2f ~GIK�X

KJ (A8)

of the matrix U, one gets

D1=2 ¼ �D1=2

�
1� f ~GIJ�X

IJ � f2

2
ð2 ~GIL

~GJK

� ~GIJ
~GKLÞ�XIJ�XKL þ f3

�
~GIJ

~GKM
~GLN

� 4

3
~GIN

~GJK
~GLM � 1

6
~GIJ

~GKL
~GMN

�

� �XIJ�XKL�XMN
�
: (A9)

By interpreting this relation as a Taylor expansion with
respect to the variables XIJ, one can obtain the derivatives

ofD1=2 and thus of the DBI Lagrangian with respect to the
XIJ, up to third order, as required for the computation of
the non-Gaussianities.

APPENDIX B: VARIATIONS OF ~X UP TO SECOND
ORDER

The computation of the first- and second-order varia-
tions of ~X follows from

�ð1Þ ~X ¼ �ð1ÞXþF hIJi�ð1ÞXIJ þF ;KQ
K (B1)

where

�ð1ÞXIJ ¼ _�ðI _QJÞ � _�I _�J�N; (B2)

and also from

�ð2Þ ~X ¼ �ð2ÞXþF hIJi�ð2ÞXIJ þ 1
2F hIJi;hKLi�ð1ÞXIJ�ð1ÞXKL

þ 1
2F ;KLQ

KQL þF hIJi;K�ð1ÞXIJQK (B3)

where

�ð2ÞXIJ ¼ 1
2
_QI _QJ þ 3

2
_�I _�J�N2 þ _�ðI�ð2ÞvJÞ

� 1
2h
ij@iQ

I@jQ
J � 2 _�ðI _QJÞ�N: (B4)

From the explicit expression for F in Eq. (19), we imme-

diately see that its antisymmetric structure implies that
F ;K ¼ F ;KL ¼ 0. We also find

F hIJi ¼ �2fX ?IJ; (B5)

F hIJi;hKLi ¼ 2fc2sð ~GIðK ~GLÞJ � ~GIJ
~GKLÞ; (B6)

F hIJi;K ¼ �2fXðGIJ;K þGIJe
LeMGLM;K � eIe

LGJL;K

� eJe
LGIL;KÞ � 2f;KX ?IJ; (B7)

where the first two identities can be deduced from Eqs. (61)
and (62). This readily gives

�ð1Þ ~X ¼ �ð1ÞX;

�ð2Þ ~X ¼ �ð2ÞX þ fX ?IJ h
ij@iQ

I@jQ
J:

(B8)

APPENDIX C: THIRD-ORDER ACTION

The following relations are useful for determining the
third-order action:

XIJ ¼ 1
2
_�I _�J þ �ð1ÞXIJ þ �ð2ÞXIJ þ �ð3ÞXIJ (C1)

where we have used Eq. (108) to rewrite (B2) and (B4) in
the form

�ð1ÞXIJ ¼ �2N AX
IJQA þ _�ðI _QJÞ; (C2)

�ð2ÞXIJ ¼ �2N A
_�ðI _QJÞQA þ 3N AN BX

IJQAQB

þ 1
2
_QI _QJ � _�ðI@iQJÞð�NiÞ � 1

2h
ij@iQ

I@jQ
J:

(C3)

We also have

PhIJi�ð3ÞXIJ ¼ �4PhIJiXIJN AN BN CQ
AQBQC

þ 6HN AN BN CQ
AQB _QC

� PhBCiN AQ
A _QB _QC

þ 4HN BN AQ
A@iQ

B�Ni

� PhABi _QA@iQ
B�Ni (C4)

as well as

�ð2ÞP ¼ PhIJi�ð2ÞXIJ þ 1
2PhIJi;hKLi�ð1ÞXIJ�ð1ÞXKL

þ PhIJi;KQK�ð1ÞXIJ þ 1
2P;KLQ

KQL (C5)

and

�ð3ÞP ¼ PhIJi�ð3ÞXIJ þ ½PhIJi;hKLi�ð2ÞXIJ�ð1ÞXKL

þ PhIJi;KQK�ð2ÞXIJ�
þ 1

6½PhIJi;hKLi;hMNi�ð1ÞXIJ�ð1ÞXKL�ð1ÞXMN

þ P;IJKQ
IQJQK�

þ 1
2½PhIJi;hKLi;MQM�ð1ÞXIJ�ð1ÞXKL

þ PhMNi;IJQIQJ�ð1ÞXMN�: (C6)

LANGLOIS, RENAUX-PETEL, STEER, AND TANAKA PHYSICAL REVIEW D 78, 063523 (2008)

063523-14



[1] L. McAllister and E. Silverstein, Gen. Relativ. Gravit. 40,
565 (2008).

[2] C. P. Burgess, Proc. Sci. P2GC (2006) 008; Classical
Quantum Gravity 24, S795 (2007).

[3] R. Kallosh, Lect. Notes Phys. 738, 119 (2008).
[4] J.M. Cline, arXiv:hep-th/0612129.
[5] S. H. Henry Tye, Lect. Notes Phys. 737, 949 (2008).
[6] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505

(2004).
[7] M. Alishahiha, E. Silverstein, and D. Tong, Phys. Rev. D

70, 123505 (2004).
[8] X. Chen, Phys. Rev. D 71, 063506 (2005).
[9] X. Chen, J. High Energy Phys. 08 (2005) 045.
[10] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov,

Phys. Lett. B 458, 209 (1999).
[11] J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219

(1999).
[12] A. Kehagias and E. Kiritsis, J. High Energy Phys. 11

(1999) 022.
[13] D. A. Steer and M. F. Parry, Int. J. Theor. Phys. 41, 2255

(2002).
[14] Ph. Brax and D.A. Steer, Phys. Rev. D 66, 061501 (2002).
[15] D. Easson, R. Gregory, G. Tasinato, and I. Zavala, J. High

Energy Phys. 04 (2007) 026.
[16] D. Langlois and S. Renaux-Petel, J. Cosmol. Astropart.

Phys. 04 (2008) 017.
[17] D. Langlois, S. Renaux-Petel, D.A. Steer, and T. Tanaka,

Phys. Rev. Lett. 101, 061301 (2008).
[18] D. A. Easson, R. Gregory, D. F. Mota, G. Tasinato, and I.

Zavala, J. Cosmol. Astropart. Phys. 02 (2008) 010.
[19] M.X. Huang, G. Shiu, and B. Underwood, Phys. Rev. D

77, 023511 (2008).
[20] J.M. Maldacena, J. High Energy Phys. 05 (2003) 013.
[21] V. F. Mukhanov, H.A. Feldman, and R.H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[22] D. Langlois, arXiv:hep-th/0405053.
[23] S. Tsujikawa, D. Parkinson, and B.A. Bassett, Phys. Rev.

D 67, 083516 (2003).
[24] Z. Lalak, D. Langlois, S. Pokorski, and K. Turzynski, J.

Cosmol. Astropart. Phys. 07 (2007) 014.
[25] D. Seery, J. Cosmol. Astropart. Phys. 11 (2007) 025.
[26] D. Seery, J. Cosmol. Astropart. Phys. 02 (2008) 006.
[27] D. Wands, K.A. Malik, D.H. Lyth, and A. R. Liddle,

Phys. Rev. D 62, 043527 (2000).
[28] D. H. Lyth, K.A. Malik, and M. Sasaki, J. Cosmol.

Astropart. Phys. 05 (2005) 004.
[29] D. Langlois and F. Vernizzi, Phys. Rev. Lett. 95, 091303

(2005).
[30] D. Langlois and F. Vernizzi, Phys. Rev. D 72, 103501

(2005).
[31] A. A. Starobinsky and J. Yokoyama, arXiv:gr-qc/9502002.
[32] D. Wands, N. Bartolo, S. Matarrese, and A. Riotto, Phys.

Rev. D 66, 043520 (2002).
[33] D. Langlois, Phys. Rev. D 59, 123512 (1999).
[34] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Phys.

Rep. 402, 103 (2004).
[35] D. H. Lyth and Y. Rodriguez, Phys. Rev. Lett. 95, 121302

(2005).
[36] F. Vernizzi and D. Wands, J. Cosmol. Astropart. Phys. 05

(2006) 019.
[37] D. Seery and J. E. Lidsey, J. Cosmol. Astropart. Phys. 06

(2005) 003.
[38] D. Seery and J. E. Lidsey, J. Cosmol. Astropart. Phys. 09

(2005) 011.
[39] X. Chen, M. x. Huang, S. Kachru, and G. Shiu, J. Cosmol.

Astropart. Phys. 01 (2007) 002.
[40] X. Gao, J. Cosmol. Astropart. Phys. 06 (2008) 029.
[41] X. Chen, Phys. Rev. D 72, 123518 (2005).
[42] D. Babich, P. Creminelli, and M. Zaldarriaga, J. Cosmol.

Astropart. Phys. 08 (2004) 009.
[43] F. Bernardeau and J. P. Uzan, Phys. Rev. D 66, 103506

(2002).
[44] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[45] R. Bean, S. E. Shandera, S. H. Henry Tye, and J. Xu, J.

Cosmol. Astropart. Phys. 05 (2007) 004.
[46] H. V. Peiris, D. Baumann, B. Friedman, and A. Cooray,

Phys. Rev. D 76, 103517 (2007).
[47] J. E. Lidsey and D. Seery, Phys. Rev. D 75, 043505 (2007).

PRIMORDIAL PERTURBATIONS AND NON- . . . PHYSICAL REVIEW D 78, 063523 (2008)

063523-15


