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It is useful to describe a leading order parton shower as the solution of a linear equation that
speci es how the state of the partons evolves. T his description involves an essential approx—
In ation of a strong ordering of virtualities as the shower progresses from a hard interaction
to softer interactions. If this is to be the only approxin ation, then the partons should carry
color and spin and quantum interference graphs should be included. W e explain how the
evolution equation for this kind of a shower can be form ulated. W e discuss brie y our e orts
to In plem ent this evolution equation num erically.

1 Introduction

T he evolution of a parton show er can be understood as a num erical solution of a linear evolution

equation of the ﬁarm

€ =U(w) () 1)
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Here (t) describesthe system at \shower tin e" t, w here increasing tdenotes increasingly soft
interactions. T he state at tin e t is related to the state at an earlier tin e ty by a linear evolution
operator U (t;4). T he evolution equation (2) isw ritten using an operator N (t;to) that represents
the probability for the system to go from tin e t to tin e tw ith no splitting and another operator
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H 1( ) that represents a parton splitting to two partons. T hus the systam either goes from ty to
tw ith no splitting or else it goes from ty to an interm ediate tine  w ith no gplitting, then splits
at tine , then evolves from  to twith the full evolution operator, possibly involving further
splittings.

In the sim plest sort of shower, each parton carries a m om entum p, so thatm partons carry
momenta fpi;p27:::0n g fpgn . W e can denote the state n which there m partons w ith
momenta fpg, by fpg, . Then a general state is a linear com bination of basis states

fog, ,wih fpgy representing the probability for there to bem partons w ith m om enta
fodn . W hen the splitting operator H 1( ) acts on an m parton state fpg, , it produces an
m + 1 parton state w ith a de nite probability

fpgm+lHI( )fpgm

T here isa certain am ount of freedom in specifying H 1( ), butone is constrained by the structure
of the underlying quantum theory in the lin it that the virtuality of the new pair of daughter
partons approaches zero. In this sin plest sort of show er, the basis states fpg, are eigenstates
of the no-splitting operator N (t;tY),

N () fogn = (G0fpon ) foon (3)
The eigenvalue  (t;t%fpgy, ) is the Sudakov factor
Z . Z
1
(t;tO ;fpgm ): exp d —— dfpgm+l fpngrl H I( ) fpgm . (4)
t m + 1)!
T he integrand 7
o o dfpgm+l fpngrlHI( )fpgm
m + 1)!

isthe totalprobability for thegiven stateto splitattine .Then (tjty;fpg, ) is the probability
for the state not to split between tim es ty and t.

2 The parton shower in quantum chrom odynam ics

So far, I have described a fairly general structure for a parton shower. T his description m ight
apply, for exam ple, to Pythja.2 T he style of the description sketched above em phasizes that
we are using a de nite linear evolution equation, so that we can bring the full power of linear
algebra to bear on the problem as needed. At this point, we need to expand the description so
that it can encom passes quantum interference, spin, and color in quantum chrom odynam icel

To includequantum interference, the description should bebased on the quantum am plitude.
The quantum am plitude depends on the spins and colors of the partons, so we start w ith

M (Epifay 2D

Here, for hadron-hadron scattering, the partons carry labels a;b;1; ;m and each parton has
amomentum p,a avor f,a spin ndex s and a color index c. The array M can be thought of
as a vector in spin and color space,
M (fp;fdm )
T he cross section for a possibly spin and color dependent observable F , including the proper
factors for the parton distribution functions and for the num ber of color states n. ofeach parton,
is
X 1 Z
F 1= —  dfp;fg
m ! " anc@me®)2 2 ppa B (5)
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Werewrite [F ]in the form of a trace over the color spin space,
X 1 z
F 1= —  dfp;fogn Trf (fp;fon )F (fpifon )9 (6)
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Thus is the density operator in color spin space. W e can expand (fp;fg, ) in basis states
fs;og, for the color spin space,
X X
(fpifgn ) = fsjogn  (fpif;s’idsioom ) £5%% (8)
s 90

T hus (fp;f;so;co;s;ogm ) is the density m atrix. It is this m atrix, with variable num bers of
partons m , that is the basic obpct that evolves in a parton shower. In analogy with the
notation used in the Introduction, we consider to be a vector w ith

(fp; ;8% si00m ) = fpif 8% s 00 : 9)

N otice that each parton isdescribed by itsm om entum , its avor, two spin indices, and two color
indices.

W ith this form ulation, we can de nd a splitting operator H 1(t) based on the behavior of
the am plitude when two partons becom e collinear or one becom es soft. This gives a shower
evolution equation of the orm (Z). H ow ever, in general the no-splitting operator N (t;t%) is now
am atrix in the color space.

3 Issues of im plem entation

A parton shower program lke Pythja2 starts w ith a state (tp) with just a few partons and

produces states fp;fgm w ith m any partonsata nalshowertin e . A parton shower program
could also report a weight w for the state. The weight tin es the probability to produce state
fp;fg, i

fPifon Ultito) (o) = (10)

How can the evolution equation discussed above be In plam ented as a com puter program ? T he

evolution equation, solved iteratively, produces results expressed as integrals, so one could sin ply

perform the integrations by num erical M onte C arlo integration, producing events and accom pa-
nying weights. H owever, for a large num ber of splittings it is lkely that the uctuations in the
weights are too Jarge for thism ost straightforward m ethod to be practical.

To proceed, we need to m ake som e further approxin ations, w ith the understanding that
any approxin ations should allow one to approach the exact solution of the evolution equation
by using a sequence of approxin ations that becom e m ore and m ore exact as one proceeds,
presum ably at the cost of requiring m ore and m ore com puter pow er.

T he base approxin ation is to average over spoins and take the leading color approxin ation,
1=Nc2 ! 0,where N, = 3 is the number of colors. W ith these approxin ations, we nd® that
the evolution equation has the proper form to be in plem ented as a M arkov process. In term s
of num erical integration, thism eans that the integrals are nested and one can take the weights
to bel.

Next, we need to put spin back® W e assum e that the nalm easurem ent fiinction does not
m easure parton spin. H owever, the gpin states of interm ediate partonscan in  uence the angular



distrbbutions of gplittings. If we use the spinaveraged show er to generate events, then the prob—
ability to generate a given show er history is w rong by the ratio of the splitting probabilities w ith
spin to those w ithout spin. W e can take that ratio to be a weight that accom panies the event.
Follow ing an insight of C oJJjns,5 we nd that the spin weight factor can be calculated e clently,
using com putational resources that are linear in the num ber of partons. (H erw ig incorporates
som e spin e ects using a related m ethod6.) Possbly, for reasons of num erical convergence, one
should include the spin exactly for the st N splittings, then average over spins for further
splittings. T hen the exact result is approxin ated m ore and m ore closely as we take N to be
large.

Finall, we need to put color back. This is m ore com plicated than putting spin back.
W e expect to use a base approxin ation that is much less restrictive than the leading color
approxin ation but that still allow s e cient com putation. There is a di erence between the
exact H 1 and the approxin ate one. Thisdi erence would be included perturbatively at w hatever
order is needed to obtain an accurate result. O ur work on color is in progress.
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