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W e obtain the equation goveming the evolution of the coan ological gravitationalwave back-
ground, accounting for the presence of coam ic neutrinos, up to second order in perturbation theory.
In particular, we focus on the epoch during radiation dom inance, after neutrino decoupling, when
neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultra-
relativistic particles. B esides recovering the standard dam ping e ect due to neutrinos, a new source
term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The
In portance of such a source temm , so far com pletely disregarded in the literature, is related to the
high velocity dispersion of neutrinos in the considered epoch; its com putation requires solving the
fi1ll second-order B oltzm ann equation for collisionless neutrinos.

PACS num bers: 98.80Cqg

I. INTRODUCTION

An in portantdiscrin natoram ongdi erentm odels for
the generation of the prim ordialdensity perturbations is
the level of the gravitationalw ave background predicted
by these m odels. For exam ple, within the in ationary
scenario the tensor (gravitationalswave) am plitude gen—
erated by tiny initialquantum uctuationsduring the ac—
celerated in ationary expansion of the universe depends
on the energy scale atwhich this In ationary period took
place, and it can w idely vary am ong di erent in ation-
ary m odels ﬂ,@]. O n the other hand, som e altemative
scenarios, such as the curvaton m odel, typically predict
an am plitude of prin ordial tensor m odes that is far too
an allto be everdetectable by future satellite experim ents
ain ed at observing the B-m ode of the C oan ic M icrow ave
B ackground polarization.

There is however another background of stochastic
gravitationalw aves of coan ological origin. G ravitational
waves (aswell as vector m odes) are inevitably generated
at second order in perturbation theory by scalar density
perturbations E,Q,E,E,B]. T his is due to the fact that
the non-linear evolution alw ays involves quadratic source
term s for tensor (and vector) perturbation m odes m ade
of linear scalar (density) perturbations.
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Since the level of density perturbations is well de—
termm ined by CM B anisotropy m easuram ents and large-
scale structure observation @, @], we know that these
secondary vector and tensor m odes (produced after the
prin ordialcurvature perturbations have been generated)
m ust exist and their am plitude m ust have a oneto-one
relation w ith the level of density perturbations. In this
sense, the scalar-induced contribution can be com puted
directly from the observed density perturbationsand gen-—
eral relativity, and is lndependent of the speci ¢ coan o—
logicalm odel for generating the perturbations.

Such a background of gravitationalw aves could be in—
teresting in relation to future high-sensitivity CM B po-
larization experin ents or for sm all-scale direct detectors,
such as the spacebased laser interferom eter B ig Bang
O bserver (BBO ) and the D ecthertz Interferom eter G rav—
itational W ave O bservatory (DEC IG O ) operating in the
frequency range 0:1 { 1H z E']wjth an Im proved sensitiv—
ity (in temm s ofthe closure energy density of gravitational
waves, cuw 1017 10 *®). In particular, in Ref. [12]
the e ects of secondary tensor and vector m odes on the
large scale CM B polarization have been com puted, show —
ing that they dom inate over the prin ordial gravity-wave
background if the tensorto-scalar perturbation ratio on
large scales is ¥ < 10 © . M ore recently, Ref. [13] com —

1 See howeverR ef. m ], where in the context of the curvaton m ech—
anism , second-order gravitational waves can be produced when
the perturbations are still of isocurvature nature, thus resulting
to be strongly m odeldependent.
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puted the power-spectrum of the secondary tensors ac—
counting for their evolution during the radiation dom i-
nated epoch, to see their e ects on the scales relevant for
an allscale direct detectors, and R ef. [14] extended this
analysis by accounting for a m ore detailed study of the
transfer function for the secondary tensor m odes.

In this paper we consistently account for the presence
of coam ic neutrinos to analyze their In pact on the evolu-
tion of the second-order gravitationalw ave background.
At linear order it hasbeen shown that there isa dam ping
e ect due to the anisotropic stress of free-stream ing neu-
trinos that strongly a ects the prin ordial gravitational-
wave background on those wavelengths which enter the
horizon during the radiation dom inated epoch (at the
levelof30% ) [159,14,17,18,119,20,21] (seealsoRef. [22]).
At second order, along w ith the analogous dam ping ef-
fect, we nd that free-stream ing neutrinos are an Im por—
tant source for the second-order gravitationalw ave back—
ground during the radiation-dom inated epoch. We nd
com pletely new source tem s, arising because of the fact
that neutrinosgive a relevant contribution to the totalen—
ergy density during this epoch and they behave as ultra-
relativistic collisionless particles after their decoupling:
their high velocity dispersion acts as an extra source for
the second-order gravitationalwaves. To com pute such a
contribution we evaluate the second-order tensor part of
the neutrinos’ anisotropic stress tensor, that hasbeen ne-
glected so far. T hisisachieved by com puting and solving
the Boltzm ann equation for neutrinos. A pproxin ating
the neutrino contribution as a perfect uid of relativis—
tic particles during the radiation era leads to a serious
underestin ate of their role. Let us stress that the new
contribbution is at least of the sam e order of m agnitude
as that com puted by adopting a uid treatm ent in the
source of the scalar-induced gravitational waves. M ore—
over it hasa clear physical interpretation. Tt arises in the
Boltzm ann equation from a \lensing" e ect of the neu-
trinos as they travel through the inhom ogeneities of the
gravitational potential.

T he paper is organized as follows. In Secs.[IIA] and
[IIB] we derive the evolution equation for the tensor
(gravitationalwave m odes) at second order, accounting
for photons and neutrinos. In Sec. [IIIA] we present
the Boltzm ann equation for neutrinos approxin ated as
being collisionless m assless particles (see Appendix A,
B and C for details about the Boltzm ann equation for
m assive neutrinos) and give an integral solution for it.
Sec.[IIIC] contains the com putation needed to determ ine
the tensor part of the second-order anisotropic stress ten—
sor of neutrinos, which leads to one of our m ain results,
Eq. (52). Fially, in Sec.[IV] we derive the photon contri-
bution, consistently accounting for the presence of neu-
trinos, which leads also to a new source of gravitational
waves. In Sec.[V] we present the sum m ary and ourm ain
conclusions.

II. SECOND - ORDER GRAVITATIONAL WAVES
A . M etric perturbations in the Poisson gauge

T he second-order m etric perturbations around a at
Friedm ann-R obertson-W alker (FRW ) background can be
described by the line<elem ent in the Poisson gauge

ds? = a®( ) € d?+2ldx’d + (e?

i)dxtdxd 1)

+

In this gauge one scalar degree of freedom is elim inated
from gp; and one scalar and two vector degrees of free-
dom are removed from gij5. Asusuala( ) is the scale
factor and  is the conform altim e. T he functions and

are scalar functions which corresoond to the New to-
nian potentialand to the spatialcurvature perturbations,
respectively. W ithin second-order perturbation theory,
they consist in the sum of a linear and a second-order
temm , such that and can be written as

= W4 @ gng = B @ (2

Since the choice of the exponentials greatly helps in sin —
plifying the com putation of m any expressions, they will
be keptw here it is convenient. It isworth rem arking here
that all the equations in the follow ing where the expo-
nential show up arem eant to be second order equations,
therefore the exponentials are to be thought as I plicitly
truncated up to second order in all these expressionseg.
e 142 My @4 My

T he rem aining functions that appear in Eq. () account
for second-ordervector (! ;) and tensor ( i) m odes. Ten—
sor perturbations are traceless and transverse: i = 0,
@; Y = 0 and vectors have vanishing spatialdivergence:
@'1; = 0. Linear vector m odes have been neglected as
they are not produced by standard m echanism s, such as
in ation, that generate cosm ological perturbations [23],
24 ]. A sdiscussed, for exam ple in Refs. [23]and [24], in-
deed linear vectorm odes have decreasing am plitudes and
they are not generated in the presence of scalar elds,
while the rstorder tensor part gives a negligble con-
tribution to second-order perturbations. Second-order
vector and tensorm odes how everm ust be taken into ac—
count, even if they were initially zero. This is because
scalar, vector and tensor m odes are dynam ically cou—
pled at this stage and second-order vectors and tensors
are generated by rstorder scalar m ode-m ode coupling.
F irst-order perturbations behave as a source for the in—
trinsically second-order uctuations [5].

Since our main task is to provide the second-order
E instein’s equations that describe the evolution of ten—
sor m odes, we are Interested in the spatial com ponents
of both the E instein and the energy-m om entum tensors.
Herewe nd that,using the Christo elsym bolsobtained
in Appendix[A] and accounting only for the term s up to



second order, the spatial E instein tensor reads
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where H = a%a, and a prin e denotes di erentiation

w r.t. conform altim e.

B . Second-order gravitational-w ave evolution
equation during the radiation-dom inated era

In Fourder space the equation which describes the evo—
Jution of second-order gravitationalwaves (GW ) can be
put in the fom :

00

L, +2H 4K, =16 GalSy, ;  (4)

w here the subscript refers to the two possible polariza—

tion states of a gravitationalwave. Each mode  is in

fact transverse w ith respect to the direction along which

it propagates and, for a m ode traveling in the z direction,
13 can be w ritten as:

0 1
+ 0
=@ . 0A (5)
0 0 0

T he tw o degrees of freedom account for the tw o polariza-
tion states , and

The source temm Sy; rGW in the radiation era con-
sists in the sum of three di erent parts: E; thatcomes

from the E instein tensor, }({;) that com es from the neu-

trino anisotropic stress tensor tem and ]i_) that ac-

counts for the photon contribution. W e then have:

Ski = Exy vy g 6)
In m aking the source term Sy; explicit, the st step
is to extract the tensor part of the E instein and energy—
mom entum tensors to get the corresponding transverse
traceless com ponent.
T his can be done by m aking use of the pro fction op-

eratorPr?,sothat2:
( ij)m = PrfTrS: (7)

Here T, contains both the neutrino and photon con-
tributions

T, =T '+ 7 ) (8)
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The de nition of such an operator is given in R ef. @]
is _ ins 1 ins .
P,y = PP} SPiP; 9)

w here
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M oving to Fourder space the two-indices operator Pji
reads

Bl= (1 kky); (11)
and then the operator to apply is
. . Ac A ATA 1/\-/\ Aa A
ﬁrf = ? k°k; ?klkr+ Eklkrkskj
> § S+ > §kskr+ > Skk; (12)

T he contrbution to the source term com ing from the
E instein tensor can then be w ritten as:

. 1 .
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TogetEy; wenow have tom ove to Fourder space and

pro ectalong one ofthe two polarization states = + ;

Ifwe take an orthonom albasism ade up by the three
unit vectors e, e and k , the two polarization tensors are
de ned as follow s:

"Lk) = p=leik)es k)

i ei(k)eyk)];

(14)

"y k)= P=leik)ey k) + epk)eyk)]:
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R em em bering that a gravitational wave is transverse
w ith respect to the direction K along which it propagates
we nd that® :

C d’ky Pk,
E, = "l ES=a’ —op tk X
, ,h
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1

+

kike x, x, kKika x, x * kike x ok, (15)

2 In the follow ing, w here not necessary, we w illom it the TT sub-—

script.
3 The indices of the 3-D unit vectors are lowered and raised by
using ij so that je'e;= 1= Je'ej.



T he explicit form for the product "? k1 jkzi is given by
the analogous of eq. (34)).
T he next sections are devoted to the com putation of

the neutrino source term ]i; ) , since the term due to
the photons is already known and we w ill recall it Jater.
N otice how ever that Sec.[IV] presents a non trivial case
accounting for both neutrinos and photons: here in fact
the contrbution of the rstorder collisionless neutrinos
is fully accounted for the rst tine when explicitly cal-
culating the second-order photon quadrupole in the tight
coupled lim it (Eq.[59).

W e w ill proceed by steps. First we solve the second-
order Boltzm ann equation for the neutrinos In order to
give the expression for the neutrino energy m om entum
tensor. Then we will give the expression for the spatial
com ponents of the energy m om entum tensor of neutrinos
in term s of the their distrbution function perturbed up
to second order,and nally we can extract the transverse
and tracelees part of it.

III. NEUTRINOS AND SECOND -ORDER
TENSOR M ODES

A . Solution of the second-order B oltzm ann
equation for neutrinos

T he B oltzm ann equation up to second-order for decou—
pled neutrinos can be w ritten as

QF @QF dx* @F dE @F dnt
- 4 : —_— — . =0; (16)
@ @x* d QE d @nt d

where is the conformaltine, E = m2+ p?, p° =

gi;P P 3 is the sgquared neutrinos 3-m om entum and P is
theneutrino 4-m om entum de nedasP = dx =d .Here

param etrizes the particlke’s path and x = (t;x) repre-
sents a space-tin e point. The unit vector n, w ith com —
ponents nt, represents the neutrino m om entum direction
and it is therefore such that: p = pn and n'nJ 5= 1.
Equation (16) refers to the general case of m assive neu-
trhos(@ P P = m?).

T he neutrino distribbution fiinction F  at this stagew i1l
consist In an unperturbed, a rstorder and a second-
order term , such that we can put it in the form

(2)
d (E; ;xin’):

(17)

The explicit form s for the di erent contributions in
Eq. (Id) are listed in A ppendix[Cl.

Since we are Interested In evaluating the neutrino con-
tribution during the radiation-dom inated epoch, we can
specialize the second-order Boltzm ann equation for ul-
trarelativistic (m assless) neutrinos. Replacing E with
the com oving 3-m om entum g as one of the Independent
variables in Eq. (I8) such thatp= E and g= ap, the

F =F E&; )+ FYE; ;<mh+

relevant equation takes the form :
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G oing to Fourder space it can be put in the fom :
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Here Vi; accounts for the second-order vector pertur-
bations m odes, see Eq. {C17). W e will keep it in this
In plicit form , since we already know that second-order
vectors do not take part to the tensor contribution we
are interested In.

The term Ty represents the \pure" tensor contribution
and isde ned by

0 s
k; ( )"srrl nr:

Tk = q— (22)

@q
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T he Fourder expansion for the tensorm odes reads

Z
X &’k e
)= 2 )3 k; ( )ék ij

(23)

where ", are the polarization tensorsde ned In Eq. ()
with = ;+ accounting for the two possible polariza—
tion states of a gravitationalwave.

At this point, follow ing the standard procedure ,
l,we can w rite dow n an integralsolition of the second-
order Boltzm ann eguation as

( )= dOej_k(



A susual, gec refersto the neutrino decoupling conform al
tine?.

For Fk(i) we take the form al solution of the rst order
neutrino B oltzm ann equation integrated by parts:

eF 1 ?
. 0

Fk(i)( ) = J({11)< ) g Ocikr 1 )

Cq dec

@ o ™m°, 0 -

(, O+ (7)) (25)
where ;| = ﬁl n. In order not to weigh further the
notat‘]on,Fk(i) w ill be explicitly inserted only later, when

strictly necessary.

B . The second-order neutrino energy-m om entum
tensor

T he contrdbution to the energy m om entum tensor ofa
given gpecies \1" is
Z 3
1 d’P P P

T Y= gp— Fi:
giP 3 2 § po 't

(26)

whereP = dx =d 4-momentum of the particle and F;
is the distribbution fucntion of the given species.

Ifwenow wantan expression for the second-order spa—
tialcom ponent of the neutrino energy m om entum tensor,
we nd thatitw illconsist ofthe sum offourparts. T here
are In fact four term s which contain the perturbations:
the product of the 3-m om entum P in , the com ponent
P, the distrdbution finction F  and the determ inant of
them etric (1), g. As farasthe rst and the second term
are concemed wem ust rem em ber that

T 1
pi-Te 1 2 nn™nt 27)
a 2
Py g 5P (28)
h i
= g2l54 e ny = pan"n"ny+ nt
po- Lo 141t (29)

where we de ne g = a’g;;P'PJ and we introduce the
momentum g = qn ofm agnitude g and direction nt, see
the notations of R ef. @J and @}. T he overline refers
to unperturbed quantities and we have g = a ! gnt,
g; = agnj and 610 = g=a.

T he determ inant of the m etric, g, up to second order
is such that:

(30)

4 Notice that we are assum ing that at a tin e right before 4. the
distribution of the neutrinos is the hom ogeneous one since they
are still in them alequilibrium .

while for the distrdbution function we use the decom po—
sition in Eq. (I7). By perform ing the variable change
Py ! g In order to m ake all the perturbations explicit
in eg. (28) and by com bining all the temm s, we nd that
the neutrino energy m om entum tensor at second order in
perturbation theory reads:

Z
(2) 4

, aJ3
le =a g

2L gninyE @

@ 7 e

Sim ilar to the linear case, vectorsand tensorsdo not show
up because of the angular integration.

W ith this results we are able to express the spatial
com ponent of the second-order energy-m om entum tensor
Eq. (Z1l) in Fourier space:

d gn'n; (32)

C. The neutrino contribution to the source term .

In order to get the transverse traceless part of the neu—
trino energy-m om entum tensor we now have to m ake use
of the operator de ned in Eq. (I2). Before proceeding
notice that we are interested only in the tensor contri-
bution to the energy m om entum tensor. T herefore it is
very usefill to keep in m ind the decom position of the dis—
tdbution function into its scalar, vector and tensor parts,
according to the splitting of R ef. ]. For exam ple the
tensor part is given by

X
F =

£ (k; ;qf) ynml: (33)

T his greatly helps in sin plifying all the expressions: it
is telling us that the only tensor contributions to the
energy m om entum tensor are those that can be built out
of the product of two m om entum direction n'. Looking
back to Eq. (31) and Eq. ({I8)) we see that, apart from
the straightforward term depending on the gravitational
waves ij,there is just one temm of this type, nam ely

(1)
QF .
nin*(

(1)
@ni K i

ES

+ )]: (34)

T herefore, from now on wew ill focus jast on this term in
Eq. (32), and we willdrop all the others since they cor—
respond to scalar and vectorm odes” It is interesting to
notice that the term (34)) has a clear and sin ple physical

5 In fact we have explicitly veri ed that all the rem aining tem s
vanish once the energy m om entum tensor is projcted along
the two polarization tensors {I4]) and the angular integration
in Eq. (32) is perform ed.



Interpretation. Tt arises in the Boltzm ann equation from
a \lensing" e ect of the neutrinos as they travel through
the Inhom ogeneities of the gravitationalpotential. In the
Boltzm ann equation {I8) itderives from Eq. (C11l),which
describeshow theneutrinosm om entum direction changes
in tin e due to the potentialwells they pass trough.

Let us now continue our com putation and apply the
progction operator {I2) to Eq. (32), kesping only the
tem (34) in G« ( %) and the \pure" tensor contribution
T ( %). W e see that this operator w illact on the product

of the tw o direction unit vectorsnng contained in Tsr( ).
Since °.nng = 1and theproductk p de nesthe cosihe
between the direction along which the perturbation

propagatesand the neutrinom om entum , thism eans that

( ?)}i ) will contain the tem :

. . . 1. .
n'n;  (kynt+ Knj)+ Eﬁlﬁjm 7y = i@ ?):3s)

N

A's already done in Sec.[IIBl, we can now choose one
of the two polarization states = + ; and projpct the
transverse traceless part w e are Interested in into the cor-
responding polarization tensors ";; . Sice a gravitational
wave is transverse w ith respect to the direction K along
which it propagates, we then have

uijninj: (1 2)(+

cos2’ 4+ sn2’,); (36)
where the angle ’ , isthe azin uthalangle of the neutrino
m om entum direction n in the orthonom albasis e, e and
K . In Fourier space the term  (34)) evalnated at °becom es
(for sim plicity we om it the convolution integral)

QF

O —
+ ok, ))q@q

w here we have w ritten explicitly the termm @Fk1=@ni as

—7Z
@Fy, eF -
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@n* @q ..
eikl (0 ),. (38)

using the solution of Eq. (28). It proves convenient to
take the tensor part of (k1 n)(k n) which reads

(kZlklm nt+ Im )";snrns + (kZlklm n Im )ursnrns .

(39)

N otidce that this step is equivalent to follow the decom po—
sition (33) of Ref. 22]which allow to isolate the tensor
contributions to the distrbution function ?

6 A lso in this case we have veri ed that the scalar and vector com —
ponents of (k1 n)(kz n)give a vanishing contribution once the
energy m om entum tensor is pro fcted along the tw o polarization
tensors (I4l) and the angular integration in Eq. {32]) is perform ed.

W ith these resultswe are now able to w rite the expres—

sion for }({;) = "ij ;i " at second order in the perturba—
tions
d’k; Sk
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where Ay () k()+ ().

Atthispointwe want to solve the angular and them o—
m entum dependence of the transverse, traceless neutrino

energy m om entum tensor }i ' Thisin plies solving the
d®’q integral in the previous expression.

F irst of all notice that the pure tensor part in the last
Iine of Eq. (40)) represents the second-order analogue of
the dam ping e ect found and discussed in Refs. ,,

E,IE,IE,IE,EJ,@L W e are then able to dealw ith it

(see, for exam ple, R efs. @,@,@}) and we nd

Z — 7
, dgg*er "

; 1 10 3.
( )2@_q . du (U )EDO(SH‘ 7]2(S)+§]4(S)];
(41)
which becom es
Zu 0 1 . 10 | 3,
8 () . du (U )E[jo(s)+ 7]2(S)+ 5]4(8)];
(42)

where we have used Egs. (80)-{51l), the variable change

I u=k ,s=u U,withU = k? and the derivative
is with regpect to U. This m eans that also at second
order gravitational waves are dam ped by neutrino free
stream Ing,asexpected on generalgrounds. Here  isthe
unperturbed neutrino energy density given in Eq. (80).

W e now have to dealw ith the rem inder of Eq. {4Q),
giving an additional source term that represents a com —
pletely new result.

1. Angular integration

W e notice that there isa -dependence hidden in the
exponential

Xl

21+ 1)38"P1( 1)



21+ 1)(1m)! 0_ 0
T and s° = ki ( ) Uy

u; ). Forthe Integration overthe angle ’ , weneed to take
L.n*n°) in Eq. [@0)

where aj, =

into account the product ("ij ninj y("
and, using Eq. (3d),we nd
Z

T 0
n ("ijnlnj)(nrsnrns) _ (l

’

d’ nejm
(44)

which means that the cross temm s vanish, while the
squared ones selectm = 0. W henm = 0 the Py, corre-
spond to the Legendre polynom ials P; and we have:
p__X! 0P
4 ) 21+ 1Yy, (K1 )P ) :
=0

(45)

T herefore by expanding e (
led to an integration over

) asin Eq. {43) we are
of the follow ing quantity

Z +1 X
d APi( BpPp( )1 ) (46)
1 110
w here
pi A
A= i 4 @1+ DY, ) aki (P 91;
Bp = £ @C+ 1)ipk(® )i 47)

Such an integral is easily perform ed using the form ulae
of Appendix[D], and Eq. {4d) becom es

X 1 b 1) (1) 1) (:L)i
1t 1 AB AlBl Al B+ Al Bl ; (48)
w here "
A0 11 1) A (1+ 1)
1 21 3)e1 1) 7 21+ 1)1+ 3)
2 iA L _Gr2aen
e+ el 1) ' @1+ 3)@1+ 5)
(49)

and sim j]arierl(l).

2. Integration over the com oving m om entum d.

W e can treat the mom entum integration over g In
Eq. {(40) independently from the angular part. There
is jast one type of g-dependence, nam ely o' @F =@q. Re-
menber thatF is the unperturbed neutrino distribution
function given by the Ferm iD irac distrdbution and

Z
— 4 9i = 3 7 g T 4

_ Fofdg= ——T*%;
@ 2z AT gyt

is the unperturbed neutrino energy density. H ence, inte—

(50)

grating by parts when necessary,we nd (the =2 factor
com es from Eq. (44))
7 _
dg @QF 1
4 4 —
a i — —q = = 51
%y 2y @qq > (51)

3. Finalexpression for the neutrino contribution

C ollecting the previous results w e arrive at the contri-
bution of stream ing neutrinos to the evolution of gravi-
tationalwaves:

27 3 3
() _ dkld k2 nrs
K; = (27)3 (kg + ko k)karkis )
Z
X l h 1
T o (9+ (O By BY
Z o h
a®%® Ol (%H+ (" a, al"
dec Z
8 () doo(o)i[ (8)+ —H(s)+ =du(s)]
k 15 Jo 7]2 7]4

(52)

where s = k( 9, and t’heﬁmctjonsAl,Ail),Bland
il

B, " arede ned Eq. (1) and Eq. {49).

T hisequation is clearly telling us that collisionless free
stream Ing neutrinos contribute w ith new temm s to the
source of second-order gravitationalwaves, w ith respect
to the uid treatm ent adopted in the literature so far,

w here the tensor part of ig ! at second order has never
been taken into account.

Even with a qualitative approach, we can state that
if Jow 1 contrdbutions (up to 1 = 2) can have a corre-
spondence w ith respect to a source w here neutrinos and
photons are treated as a sihgle- uid radiation, higher
m ultipoles surely do not. These in fact com e from the
high neutrino velocity dispersion and can be found only
if neutrinos are treated as collisionless particles.

M oreover, during the radiation-dom nated epoch, the
neutrino fraction £ ( )= = r isnotnegligble. Sihce
all the tetm s In ]i ) are multiplied by — , they are
therefore nonnegligible at that tin e.

Iv. THE PHOTON TENSOR QUADRUPOLE

In order to complete the expression of the source
tem for gravitational waves during the radiation era in
Eq. (@), we now have to add the photon contribution.
Follow ing [29], the second-order photon quadrupole in
the tight coupling lim it is given by:

@5, 8 Igome (53)
3 3

To get the photon contribution to the second-order

gravitational waves source we then have to extract the
transverse and traceless com ponent.

Since the operator to apply is such t’hat}?rﬁs s=0,we

will nd that the tensor quadrupole takes the form :
2)i , 8 s

; Zp syMr ).

3P ) (54)

TT



By m aking use of the rstorder space-tin e com ponent
of the E instein equations (see A ppendix [B)

16 G

1, . .
—@* %+ 5 )= T(— viip = Wiy (55)

32
we can de ne the rstorder photon velocity as:

h 3 - i
()i _ i, 0 (1)i
v = —q +H )+ —v ; 56

16 Ga?~ ( ) - (56)

where v\ represents the rstorder neutrino velocity.
D uring the radiation-dom inated epoch neutrinos are still
relativistic so that, In Fourier space, the velocity can be
w ritten as:

Flpt= 12 iN;k*:  (57)

+ P 2 P
The term N ; refers to the neutrino dipole and P is the
neutrino pressure. By m aking use of the form al solution
(29) of the rst-order neutrino Boltzm ann equation, the
dipole can be expressed explicitly in term s of the pertur-
bations to give:

. = 4 h.
i@mnF ik . .
Ni(k) = S oig d 071 S (Gols) 2% (s))
idec
+ 15 ds) (58)

P ro cting along one of the polarization state (+ ), we
have that, In Fourder space, the photon contribution we
are searching for takes the fom :

zZ 3 3
) dkldkg 3j i
L= ———— ki + ko k)" kijk;
L @)
3kiko 0 0
e Pl ntE I E )
— 2
+ 32 12 —  Ni(kiNq(kg) (59)
+ 6 —kNi(ki)( o, +H )
_ i

6
+ GaTklNl(k2)( £1+H k)

It is worth stressing that this expression contains at
most multipoles with 1 = 2. Therefore, if we had
used a uid treatm ent for the neutrinos as well (eg.

3 / V(l)iv(l)j ), we would have found in the second-
order neutrino contrbutions term sw ith 1not higher then
1= 2. Thisisclearly in contrast w ith the neutrino source

tem Eq. (32).

V. CONCLUSIONS

T his paper represents the st step towards the quan—
titative evaluation of the in pact of cosm ic neutrinos on

the evolution of the gravitational wave background; it
provides, rst ofall, a com plete study of the Boltzm ann
equations for neutrinos at second order and the expres-
sion for the second-order anisotropic stress tensor.

Free-stream ing neutrinos are an in portant source of
second-order gravitational waves during the radiation-
dom Inated epoch. A long with the fact that neutrinos
yield a relevant contrbution to the total energy during
this epoch, this is due to the large neutrino velocity dis-
persion and it em erges from the calculations perform ed in
this paper when assum ing that neutrinos are collisionless
particles, as it is the case after their decoupling.

The uild treatment adopted so far for descrbing
neutrinos tums out therefore to be a poor approxin a—
tion that leads, In particular, to underestin ating the
role of neutrino freestream ing as a source of gravita—
tionalwaves. In particular, in this paper we have m ade
the st full consistent com putation of the second-order
tensor part of the neutrino anisotropic stress tensor,
Eq. (B2). This has been achieved by com puting and
solving the second-order Boltzm ann equation for the
neutrino distrbution function. Besides recovering the
second-order counterpart of the dam ping e ect studied
in Ref. [15,114,117,18,119,120,121, 22], Eq. (52) repre-
sents a com pletely new source term for the evolution of
gravitationalw aves.
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APPENDIX A:THE SECOND-ORDER EINSTEIN
TEN SOR

In this appendix we provides the de nitions for the
connection coe cients and the expression of the second-
order E instein tensor Hor the m etric {):
e d?+ 20dx’d + (e?

ds® = a’( ) st gy )dxidx?

The spacetinemetric g has signature ( ;+ ;+ ;+ ).
T he connection coe cients are de ned as
1 @ @ @
- Zg g + g g @1)
2 @x @x @x
Greek indices ( ; ;i 5 ;o) run from 0 to 3, while

latin indices (a;bj:::;1;3;k; 0, m ;n;:::) run from 1 to
3. In particular, their explicit expression w ith ourm etric



reads:

o0 = H + ;
@

0
0i T @Xi+H'l, Aaz2)
5o = [ e *2@—;
@xy
@'y @!
o _ + j i 2 2 0y
5702 ext e o © H =
1y
+ 5 ij+H ij 7
1 1 @!';y @
(l)j= (H 0) ij A gj+_ l - 7
2 2 @xJ @x*
e @
o= H! g — % — 54+ 5

exk 7 oexi X ex;
1 @ ij . @ ik @ 5
2 @xk @x3 @x;

The Einstein equations are written as G =
8 GyT ,whereGy istheusualN ew tonian gravitational
constant,G =R %g R is the E instein tensor and
T is the Energy-m om entum tensor.

The R iccitensor R is a contraction of the R iem ann
tensor,R = R and In term s of the connection co—
e clent it is given by

R = @ @ + (A 3)

TheR icciscalar is the trace of theR iccitensor,R = R
T he com ponents of E instein’s tensor up to second-order
read

e
cY% = — 3% 61 %+ 3( %
a
e *2 @ et 2r? ; @ 4)
2
i € i0 0y mi 1 50
G = 2—— @ + (H @ — !
0 a? ( ) 2a?
(03] !i
+ 4H2 2— o (A5)
a a
. 1 a®
G = S e? H? 2= 2°° 3(%+ @6
a a
+ 28 %42 040 @ 4 &2 @ @k ¢
+ 2 2 & i i
r r j+? @ @j @ @j +
+ @'e; e@te; +rete; etey
= oetyrett — et1f+e?
a 2a? J
1 50 1 o 1,
+ ; H j+5j Er F ;

T he exponentials are m aintained since they help in sim -
plifying lots of calculation, however notice that in all
these expressions they are in plicitly truncated up to sec—
ond order.

APPENDIX B:FIRST-ORDER
PERTURBATIONS OF EINSTEIN EQUATIONS
FOR PHOTONS AND NEUTRINOS

C arrying out the calculation, the rstorder E instein’s
equations, expressed in Fourier space In term s of the per-

turbations and , take the fomm :
2 a a 2 _
k 3— — — =16 Ga'[ o+ o] B1)
a a
K2 ( )= 32 Ga? (B2)
Here o and o are, respectively, the photon and

the neutrino m onopole contribution, while
the neutrino scalar quadrupole.
R ean em ber that the rstorderperturbation to the neu—

> refers to

trino distrdbution function is de ned by F Mo F N ’
w here
eIhF
N = B3)
@Inp

and (tx;n) = TL . Sin ilarly it happens to the photon
contribution.
In general, the lth multipole of the tem perature eld
can be de ned as:

Z
L d PaC ) 5 B4)
1= ( l)l . 2 1 ’
where P;( ) are the Legendre polynom ials.
T he neutrino m onopole is then de ned by:
Z
d (B5)
0= — ’
;2
w hile the quadrupole, corresponding to 1= 2, is
2
2= 75’2( ) B6)

1

APPENDIX C:THE SECOND-ORDER
NEUTRINO BOLTZM ANN EQUATION

In this appendix we provide the explicit form for the
di erent contributions in the neutrino B oltzm ann equa—

. QF @F_ dx* , @F dE , @F dn’ _ .
ton T— + G g e a tenr a = 0°
axt _ dxtd B!
d ~ d d PO
For this term we have
ax* i+ ) ;P 1 i3
— = —ne L !5n’= - nn-] (C1)
d E E 2



dE.
e

D eriving an expression forthisterm ism ore lengthy
since it nvolves the use of the geodesic equation.
W e can start noting that, using Eq. (29),we obtain:
i

7 (C2)

1dE
E d

lda
ad
whereB = 1+ £ !:n®.

To sin plify a bit the notation, from now on we w ill
set

0

@g €g . 4 -
g @— and g,j @I 89 g( /Xl)- (C3)

If we now m ake the total derivatives explicit, ac—
cording to the fact that

d . pi
e + Hp0 (C4)
and
B p .dli p | pJ
3 B a TEh itlwgs i €9
we nd:
h .
1dp?® e P ‘ P
Ea - . Mgt (o)
E lda_p . , P’ i_c6
+ d_ gd—‘F En(.i+ .i;jﬁ) .( )

By making use of the geodesic equation, we can
express the tin e com ponentasa sum ofthree term s

P P
1ij PO

_ 0 0
- NP

2 P’
Cc7)

If we now insert the connection coe cients and
the perturbed com ponents of the 4-m om entum  (27)
and (29), we com e at last to the required term

1dE 2 2
-—— = Py Py se "+ P 0
E d E E E .
i

P10 - p 2

= n*!{+ 2n)!yH  2H ! .n" =

p 21 0 i+

= > ijnlnj : (C8)

W e can note that the rst term In the RHS of the
latter equation is the zeroth-order tin e com ponent
of the geodesic equation.

dn*

d

This term requires som e lengthy algebra as well.
To obtain it the spatial com ponent of the geodetic
equation m ust be used:

dp? ; PP
3 = =~ : (C9)

10

Carrying on the calculation In the sameway aswe

dd fordE =d ,atthe end we recover the expression
api  pldnt 4 nf
= = +nt—+ —e 2=—EH n’ ;E
d a d d P
+ Pgpoo (€10)
E
The term we are looking for has the form
dnt E , E , . E
= — 7 — "yninl— 5+ P hink %t (C11)
d p p p E

It is worth noticing that, since @F =@n' is already
a rstorder term , we m ust consider this equation
Just up to rstorder. T he scalars that appear here
are therefore the linear com ponents of the pertur-
bations.

T he purpose of this A ppendix is to nd the second-order
Boltzm ann equation for (decoupled) neutrinos. It is then
usefl1l to use the relations in Egs. {I7) and (2) form aking
the second-order temm s explicit.

T he second-order contrbutions of each part of equa-
tion (14) are listed below in the follow ing expressions:

2

i,

Rp) (1) (2)
QF dx'3 _er 'p HRNCEN (1))+}@F b
@xt d ¢ nd op. @xi E 2 @xi E
(C12)

T he energy dependence term isa bitm ore com plicated
since it consists of three term s such that:

?
@F dE 2
@E d .,

_ ?
@F dE 3 eF
?

e d ‘L. eE d ..

o
[Eal
[VIVEVON]

2
1er® de 3

5 : (C13)
2 GE  d ‘.

(T he overline refers to the zeroth-order neutrino distri-
bution function).
W e then have

2
?
1 dE S e, oo, O
E d nd E 2 7] 7] 7]
P21l p p 21l
+ = = W — — j:nn
E 2 g 294
(C14)
while
3
1dE . 2
=3 - Do e D0 ah s
Ed 7. 97 E
and



H: (C16)

O,
Q. | &
DD )

p 2
E

Pj|}—l

. oth

T he term Vi1 accounts for the second-order vector con—
tribution. T hisalready appears in Eq. {C8) and isde ned
as

h s 1
Vip = 2 nf1% 2ndtH 2H 1ont EB C17)

Finally,we use Eq. {C11l) to dealw ith the dependence
on them om entum direction. M atching together all these
term s In Eg. (Id), we have now all the tools needed to

obtain the second-order B oltzm ann equation.

APPENDIX D:SOME FORMULAE USED FOR
THE ANGULAR INTEGRATION

The coe cients A il) and Bl(l) appearing in Eq. (48)
are sin ply given in tem s of Eq. {47) as

1) A 1) (1+ 1)?
Al s A, — L
21 321 1) 21+ 1)(21+ 3)
2 i 1+ 2)(1+ 1)
T o~ . l+ —Al+2;
21+ )21 1) 21+ 3)(21+ 5)

0©1)

11

and sin ilar for Bl(l) . The result in Eq. {48) is obtained
using the orthogonality of the Legendre Polynom ialsand
applying to Eq. (46) the ormula (here a; is a generic
function of 1)

X X
ah(x) Pi( )= ePi( ); (D2)
1 1
w here
0 1) s (1+ 1)?
T 01 3y k™ 21+ 1)(21+ 3)
¥
. b . 1+ 2)1+ 1) )
2L+ Lyl 1) = 21+ 3)(21+ 5) w22l

(D3)

w hich derives from the recursion relation of the Legendre
Polynom ials (see also @]).

[1]J.E.Lidsey,A.R.Lidde,E.W .Kob,E.J.Copeland,
T.Barreiro and M . Abney, Rev. M od. Phys. 69, 373
(1997)

[2]1D .H .Lyth and A .R Iotto, Phys.Rept.314,1 (1999)

[31K Tom ita, Prog. Theor. Phys. 37, 831 (1967).

[4] S.M atarrese, O . Pantano and D . Saez, Phys.Rev. Lett.
72,320 (1994).

[5]1S.M atarrese, S.M ollerach and M . Bruni, Phys.Rev.D
58, 043504 (1998).

[6] C.Carbone and S.M atarrese, Phys.Rev.D 71, 043508
(2005).

[7]N .Bartolo, S.M atarrese and A .R iotto,JCAP 0605, 010
(2006).

[B]D.N.Spermgeletal. W M AP Collaboration ], A strophys.
J. Suppl. 170,377 (2007).

O1E. K om atsu et al
arX v :0803.0547 [astro-ph].

[10] N .Bartolo, S.M atarrese, A . R Iotto and A . Vaihkonen,
Phys.Rev.D 76, 061302 (2007)

[11IN. Seto, S. Kawamura and T . Nakamura, Phys. Rev.
Lett. 87, 221103 (2001); C. Ungarelli, P. Corasaniti,
R.A .M ercer and A . Vecchio, Class. Quant. Grav. 22,
5955 (2005);V .Corbin and N .J.Comish, C Jass. Q uant.
Grav. 23,2435 (2006).

[12] S.M ollerach, D .Harariand S.M atarrese, Phys.Rev.D
69,063002 (2004).

[13]K .N .Ananda,C .Clarkson and D .W ands,Phys.Rev.D
75,123518 (2007).

WMAP C ollaboration ],

[14]D. Baumann, P. J. Stenhardt, K . Takahashi and
K .Ichiki, Phys.Rev.D 76,084019 (2007).

[15] J.R .Bond, \T heory and observations of the cosm ic back—
ground radiation", Lectures at Summ er School on Cos-
m ology and Large Scale Structure, Les H ouches, France,
Aug 122, 1993. Published in Les Houches Cosn ology,
469-674 (1993).

[16]A .K .Rebhan and D .J.Schwarz,Phys.Rev.D 50,2541
(1994).

[17]R .Durrerand T .K ahniashvili,Helv.Phys.Acta 71, 445
(1998).

[18] S.W einberg, Phys.Rev.D 69, 023503 (2004).

[19]1J.R .Pritchard and M .K am ionkow ski, A nnals of Physics
318: 2-36, (2005).

[20]D .A.Dicusand W .W .Repko,Phys.Rev.D 72,088302
(2005).

[21]1Y .W atanabe and E .Kom atsu Phys.Rev.D 73, 123515
(2006).

[22]M .Kasaiand K .Tom ita, Phys.Rev.D 33,1576 (1986).

[23]N . Bartolo, S. M atarrese and A . Riotto, \Cogn ic M i
crow ave Background anisotropies up to second order",
Lectures given at Les H ouches Summ er School - Session
86 (Jul2006) [arX ivastro-ph/0703496v2].

[24]N . Bartolo, E. Kom atsu, S. M atarrese and A . R iotto,
Phys.Reports 402,103 (2004).

[25]1C .M a and E. Bertschinger, A strophys. J. 455: 725,
1995.

[26]N. Bartolo, S. Matarrese and A . Riotto, JCAP


http://arxiv.org/abs/0803.0547

12

0606, 024 (2006). jarX v astro-ph/0604416]. N . Bartolo, Press (2003).
S. M atarrese and A . Riotto, JCAP 0701, 019 (2007) [29] N .Bartolo, S.M atarrese and A .R iotto, JCAP 0701 019
arX v astroph/0610110)]. (2007).
[27]1U0 . Selpk and M . Zaldarriaga, A strophys. J. 469, 437 [30]K .Tom ita, Phys.Rev.D 77,103521 (2008).
(1996).

[28] See, eg., S. Dodelson, M odern Cosn olgy, A cadem ic


http://arxiv.org/abs/astro-ph/0604416
http://arxiv.org/abs/astro-ph/0610110

