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A bstract

W e consider non-perturbative term s in the 4d e ective action due to BP S D brane instan-—
tons, and study their continuity properties in m odulispace as instantons cross linesof BP S
stability, potentially becom ing nonBPS.W e argue that BPS instantons contributing to
the superpotential cannot becom e non-BP S anyw here in m oduli space, since they cannot
account for the required four goldstino ferm jon zero m odes. A tm ost they can reach lines
of threshold stability, where they split Into mutually BPS m ultiznstantons, as already
discussed In the literature. On the other hand, instantons w ith additional ferm jon zero
m odes, contributing to m ultiferm ion F-term s, can Indeed cross genuine lines ofm arginal
stability, beyond which they lead to non-BPS systam s. The non-BP S instanton generates
an operator which is a D-tem locally in m oduli space, but not glbally. This is due
to a cohom ological obstruction localized on the BPS locus, where the D term m ust be
w ritten as an F-tem , thus ensuring the continuity of the 4d contribution to the e ective
action. W e also point out an interesting relation between lifting of ferm ion zero m odes
on Instantons and 4d supersym m etry breaking.
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1 Introduction

An im portant aspect of the dynam ics of string theory com pacti cations is the study
of non-perturbative e ects, arising from euclidean brane instantons (see eg. [1, 2,
3,4)). Indeed, recent applications of D Jorane instantons in type II com pacti cations
(or F /M -theory duals) include, am ong others, m echaniam s of m oduli stabilization [5,
6, 7], generation of perturbatively forbidden couplings [8, 9] (see also [10, 11, 12]),
generation of gauge el theory superpotentials [13, 14, 15,16, 17], and realization of
supersym m etry breaking [18, 19, 20]. O ther agpoects of D brane instantons have been
recently discussed in eg. [21, 22,23, 24,25, 261.

Som e ofthese applications, lkem odulistabilization, invokre the use of the instanton—
induced 4d operators throughout m oduli space. T he com putation of such global ex—
pression for non-perturbative e ects would seem feasble for 4d F-tem s (eg. super—
potentials) which are holom orphic on all m oduli and thus nicely behaved. However
this question is subtler than it seam s, since the non-perturbative contributions to a
4d F—tem s depends in principle on the spectrum of BP S instantons at each point in
m odulispace, and this spectrum can jam p discontinuously across lines of BP S stability
(see eg. [27]), which are generically real codin ension one loci in m oduli space. It is
therefore I portant to elucidate the behaviour of instanton e ects across such loci, and
the m echanian s to restore holom orphy of the 4d non-perturbative F-tem .

T his program was nitiated In [28] for instantons generating superpotential temm s,
and crossing lines of threshold stability,' nam ely real codin ension one loci in m oduli
gpace, where a BP S brane splits into two (orm ore) m utually BP S branes, w hich beyond
the line recom bine back into another single BP S brane. C ontinuity of the superpotential
requires novel kinds of contridbutions to the non-perturbative superpotential arising
from multiznstanton e ects. T hesem ultiznstanton e ects have subsequently appeared
in several new applications and contexts [30, 24, 251.

Am ong the system s considered in [28], there is no exam ple of BP S instantons con-—
tributing to the superpotential and crossing genuine lines of m arginal stability, ie.
codin ension one loci In m oduli space, beyond which a BPS instanton tums into a

W e adopt the nom enclature in [29] and distinguish between lines of threshold stability and of
m arginal stability. W e refer to both of them as lines of BPS stability, in that the spectrum of BPS
ob Fcts jum ps at them .



(possibly multizinstanton) nonBP S system . In fact, such a situation is not possible,
for a sin ple wellknown reason. For an instanton to contribute to the superpotential,
it m ust have exactly two ferm ion zero m odes (to saturate the d®° superspace integra—
tion); while a non-BP S instanton breaks all supersym m etries and therefore has at least
four godstino ferm ion zero m odes (which saturate the d*  superspace integration, so
the Instanton actually generates a 4d D term ). T his sin ple obsarvation, together w ith
continuity of the non-perturbative e ects, in plies that it is not possible that a BPS
instanton contributing to the superpotential is connected w ith a non-BP S instanton 2

Equivalently, any BP S Instanton which can crossa genuine line ofm argihalstability
and becom e non-BP S cannot contribute to the non-perturbative superpotential. Such
BPS instantons must have additional ferm ion zero m odes, and therefore contribute
to m ultiferm jon F-tem s (denoted higher F-term s henceforth). T he present paper is
devoted to the study of the behaviour of non—perturbative higher F+term s across lines
of m arginal stability for the underlying Instantons. Since higher F-tem s are chiral
operators and enpy interesting holom orphy properties, they are expected to be well-
behaved upon such crossings.

Thiswould seam to contradict the equally wellHfounded expectation that the non-
BPS instanton generatesa D term . A swe argue, there is no contradiction, for a sin ple
but desp reason. A s discussed In [31, 32], higher F—-temm s are 4d operators which,
when regarded as functions over m oduli space, are associated to a non-trivial class ofa
certain cohom ology, such that locally in m oduli space can be w ritten as integrals over
all superspace, but not globally in m oduli space.

T hus the instanton am plitude is in such a cohom ologically non-trivial class, when
regarded globally in m oduli space. Away from the BPS locus, the Instanton am plitude
is Jocally trivial in m oduli space, and can be w ritten as an integral over all superspace,
a 4d D —tem , In agream ent w ith standard wisdom for non-BPS instantons. On the
BPS locus, the am plitude reduces to a chiral operator integrated over half superspace,
an F-tem , In agream ent w ith standard wisdom for BPS instantons. In this sense,
the cohom ological obstruction to writing the am plitude as a globally de ned D —term
Jocalizes on the BP S locus. Continuity and holom orphy of the 4d instanton am plitude
are naturally described using these concepts.

W e can also phrase in this language the fact that BPS instantons generating su-
perpotentials cannot becom e non-BPS. A superpotential is non—+rivial even locally in

°W hile this paper was in preparation, a revised version of [25] appeared, w ith results consistent
w ith our statem ent.



m oduli space, in the sense that it cannot be w ritten as an integral over all superspace.
T herefore, a putative non-BP S instanton generating a superpotential would contradict
standard wisdom of instanton physics, since such superpotential cannot be w ritten as
a D —-tem , even locally in m oduli space.

T he fact that only Instantonsw ith additional ferm ion zero m odes can cross genuine
lines of m arginal stability (while instantonsw ith two ferm ion zero m odes have atm ost
lines of threshold stability) leads to an interesting puzzle. Indeed, there are di erent
m echanism s lke, eg. closed string uxes, which can lift additional ferm ion zero m odes
and tum one kind of nstanton into another. T he resolution involres fourdin ensional
supersym m etry breaking in an interesting way. Consider a BPS instanton which can
becom e nonBP S, and which therefore has additional farm ion zero m odes. A ny m echa—
nign which lifts the additional ferm ion zero m odes and m akes the instanton contrbute
to the superpotential (at least on the BP S locus), sin ultaneously triggers 4d supersym —
m etry breaking in the region of m oduli space where the instanton is non-BPS. Since
there is no supersymm etry In the background in this region, the Instanton need not
have four goldstino zero m odes, thus avoiding a contradiction w ith the fact that the
would-e goldstinos have been lifted. W e present several realizations of this general
argum ent, providing further support for our general picture.

A swe havem entioned, the prototypical exam ple of Iine of m arginal stability is pro-
vided by a BP S Instanton, which splits into severalBP S instantons, w hich subsequently
m isalign their BPS phases and de ne an overall non-BP S systam . T he discussion of
how a multiHnstanton process reconstructs the am plitude of a single-instanton one is
sin ilar to [28], and we w illnot pursue it fiirther here. Indeed , m ost of the new concep—
tual issues are related to the instanton becom ing a non-BP S system , rather than to its
gplitting. H ence, it ism ore illustrative to focus on sim pler systam s of instantons w hich
are BPS on a real codin ension one locus in m oduli space, and are non-BP S away from
it, w ith no splitting whatsoever. W e regard this situation as another kind of line of
BPS stability, with m any features In comm on to lnes of m argial stability. Indeed,
as we discuss in one exam ple, the resulting lessons, com plem ented w ith deas in [28],
su ce to describe lines of m arginal stability w ith splitting of instantons.

T he paper is organized as follow s. In Section 2 we review som e useful properties of
higher F+tem s. In Section 3 we describe the exam ple of an isolated U (1) instanton,
with a real codin ension one BPS locus In m oduli space, away from which it is non-
BPS due to a m isalignm ent of its calibrating phase. W e describe the structure of its
am plitude on the BP S locus, in the deep non-BP S regin e, and their nice continuity in



the nearBPS region. W e show in Section 3.6 that these concepts carry over w ith little
m odi cation to lines of m arginal stability involring splitting of instantons. In Section
4 we discuss the Instanton am plitude and a line of BP S stability in a system providing
a D brane realization of N¢ = N, SQCD . In Section 5 we present exam ples show ing
the correlation between ferm ion zero m ode lifting and 4d supersymm etry breaking.
Finally, Section 6 contains som e concluding rem arks and outlook.

2 Review of higher F-tem s

In this section webrie vy review som e usefiil properties ofm ultiferm ion F-tem s (higher
F—term s henceforth), ollow iIng [31, 321].

BPS instantons with 2p additional ferm ion zero m odes, beyond the two N = 1
goMdstinos, generate a m ultiferm ion F-+term of the form

Z
4 2 1; j i j .
S = dxd !il lpjljp() D_1 lD—1 & D_p 1pD_p F 7
Z
d'xd® 0, (2.1)
where the el dependent tensor !y ;3 5 Isantisymm etric in the i and also in the
Jo , and sym m etric under their exchange. Formm ally it can be regarded as a section of
p p
M M *

The conditions that S is supersymm etric and a non-trivial F-term In plies that
! belongs to a non—rivial cohom ology class in m oduli space, for the non-standard
cohom ology de ned below . The condition that S is supersymm etric is that O, is
chiral, nam ely annihilated by the superchargesg_. Thisrequiresthat ! isholom orphic,
nam ely closed under @. On otherhand, even if S is supersym m etric, itm ay represent
a trivial F term . T hough wrgtten in (21) In the form Rd2 (:::),itmay be that S
can be altematively written d* (:::), n otherwordsasa D -tem . In %ct, ifO, =
fQ ;0 —;V gforsomeV ,then O istrivially chirmland onecanwrite S = d*xd* V.
O nem ust therefore In pose an equivalence relation on the space of operatorsO | , under
which it is considered trivial if S isequivalent to a D termm . T he equivalence relation
is of the form

!il bR b !j-l i b Ty o4 19 b + (Jks 3 (2.2)

w ith sym m etrization of the 1 and j indices in the term involving . This condition is
actually som ew hat stronger in principle than being a D termm , and just requires that
S cannot be w ritten as an integral over 3/4 of superspace.



A sa sim ple exam ple, consider the fam iliar statem ent that any correction K to the
Kahler form can be trivially rew ritten as an F -term correction upon perform ing half

the Integral over superspace:
Z Z Z

d’xd® K = d'xd® DK = d'xd® ror; K D "D (2.3)

where r is the covariant derivative in eld space. Hence 4-ferm ion F-term s w ith
'i3= rir4 K aretrivialand actually correspond to D —term s.

T he condition that ! de nes a supersym m etric operator (ie. closed under @) but
a non-trivial Ftem (ie. not exact in the above sense) i plies that it de nes a non—
trivial class w ith respect to a cohom ology. Because of the sym m etrization In (2.2), the
cohom ology does not correspond to the usual D olbeault cohom ology. Still, the only
Inform ation we nead to keep in m ind for our purposes is that the cohom ology groups
associated to higher F—+tem s are locally trivial In m oduli space. Nam ely, it is always
possible to write the interaction as a D term locally in m oduli space, but there m ay
be a cohom ological obstruction to doing it globally in m oduli space. T he interaction

m ust therefore be w ritten as an F-temm of the form (2.1), m odulo pure D -tem s.

3 The isolated U (1) instanton

In this section we consider the sim plest system of an instanton which can becom e
nonBPS, by sin ple m isalignm ent of its BPS phase. A s argued in the introduction,
it cannot contribute to the superpotential but rather to higher F—+tem s of the kind
studied in previous section. T his exam ple of line of BP S stability is sin ple in that the
instanton does not split, but still leads to several n portant lessons, which apply w ith
little m odi cation to m ore involved lines of m arginal stability where instantons split,
aswe show In section 36.

3.1 The setup

Let us consider a CalbiYau com pacti cation with an ordentifold projction, and a
D brane Instanton which is not m apped to itself under it (we denote the instanton
U (1) hereafter). W e consider the Instanton to be described by an A - or B—-brane in
type TTIA or type IIB regpectively, so that the holom orphic part of the supersym m etry
conditions are satis ed. Such instanton hasa realcodin ension oneBP S locus In m oduli
Space (com plex structure n T1IA ,K ahler in TIB ), where its BP S phase aligns w ith the
N = 1 subalgebra pressrved by the orientifold plane. At this locus the instanton
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Figure 1: A rigd isolated U (1) instanton (a) on the BPS locus (w ith respect to the N = 1
supersym m etry preferred by the orientifold plane, shown as a dashed line), and (b) when
non-BP S due to a m isalignm ent of its BP S phase. A s usual, black and w hite dots denote the
degenerations of the double C  bration in the geom etries discussed In A ppendix A .

breaks half of the supersymm etries of the 4d N = 1 background, whilk away from it
it breaks all supersym m etries. F inally, for sin plicity we consider the instanton to be
rigid, and isolated, ie. not intersecting its orientifold in age, so that the zero m ode
structure reduces to the universal sector of four translational bosonic zero m odes and
four ferm ionic zero m odes.

Tt is easy to devise sin ple realizations using euclidean D 2-branes wrapped on 3—
cycles in a ITA ordentifold com pacti cation, and we phrase the discussion in these
term s (although it is straightforward to do it for general situations in TIR ). For a fully
explicit realization, we can use the geom etries described in appendix A , see Figure 1.

Letus x som e notation for the relevant closad string m oduli. C onsider a D 2-brane
wrapped on a 3cycle A and its ordentifold in age wrapped on A°. W e also introduce
the dualcycles B and B °. Before the ordentifbold projction, the relevant closed string

sector is given by two hyperm ultiplets, w ith 4d bosonic com ponents
Z Z Z Z

t= Re + i Cs; ; u= In + i Cs (3.1)
A A B B

and sin ilar prin ed elds for the prin ed cycles. In 4d N = 1 tem s we have the chiral
m ultiplets

T = t+ ; = u+ (3.2)

and sin ilarprined elds. The com binations invariant under the ordentifold are T + T °
and %, which we also denote T, by abuse of Janguage. For fiiture convenience,

we also de ne



3.2 On theBPS locus

Let us consider the BP S locus, where the instanton isBPS w ith respect to theN = 1

preferred by the orientifold plane, see Figure la. A s mentioned, there are only the

four zero m odes, which we denote ,~ , providing the goldstinos of the N = 2 susy
In the absence of the ordentifold plane. The modes are godstinos of the N = 1
supersym m etry of the com pacti cation, and are saturated by the d? integration over
half of superspace of the non-perturbative 4d F-temm expected from a BPS nnstanton.

Themodes™ are additional ferm ion zero m odes, would-‘be goldstinos of an orthogonal
N = 1°broken by the orentifold plane. T heir presence in plies that the F-tem is not
a superpotential, but rather a higher F+em .

N =1|N =1°

Table 1: Universal ferm donic zerom odes ;- — of an instanton associated w ith the breaking
ofan fN = 2g= fN = 1lg fN = 1% SUSY alyebra into the N = 1 subalyebra preserved

by the ordentifold. For an antiHnstanton the universal zero m odes correspond to ( ;__) .

H igher F<+em s from D -brane instantons have been considered eg. In [33]. Let us
nevertheless o er a heuristic derivation of the structure of the am plitude, well suited for
our purposes. Sice it is necessary to integrate over the Instanton ferm ion zero m odes,
one needs to write the instanton action w ith its full dependence on ,~ . Nam ely, one
needs to Include the supersym m etric variations of the instanton action w ith respect to
the corresponding supersym m etries. W e thus have

Sper = t+ t+ T —t+ () o)t (3.4)
wherethe ’sdenotethevariationsw ith respectto theN = 2 supersym m etries. Nam ely
t= ;o —t= "7 t= ) @ u (35)

w here the Jast expression follow s from the observation that™ is the lowest com ponent
of the chiralm ultiplet

D ="+ (7 )Qu (3.6)

Notice that the value of the param eter  does not appear in this action (only its



derivatives do).?> Indeed, it controls the m isalignm ent w ith respect to the N = 1
supersym m etry, so it is in plicitly set to zero in the above expression in order to kesp
our instanton BP S.N ote also thatwe are already In plicitly using superm ultiplets under
the N = 1 supersymm etry preferred by the orientifold, and that the above discussion
can be carried out sim ilarly for the ordentifold im age. Tncluding the ordentifold and its
In age, the com p]etz,e nstanton am plitude re%ds

& d"e™P) = & "D D (3.7)
This is a supersymm etric higher F-temm , due to holom orphy of the coe cient. Its
non-triviality is encoded in the fact that the instanton isBP S and hasno fem ion zero
m odes along the ~ direction in superspace.

33 Away from the BPS locus

Let usm ove the system away from the BPS locus by tuming on the real closed string
modulus Reu in the multiplet , which in the TTIA realization controls the size of
the 3¢ycle B . A s ism anifest in Figure 1b, where it corresponds to m oving the white
degeneration away from the real axis, this m odulus controls the m isalignm ent of the
BPS phase of the instanton.

In general, such m isaligned instantons have a very non-holom orphic structure. For
instance, the bosonic part of their classical action (thew rapped volum e of the instanton
and its ordentifold im age) is a non-holom orphic fiinction of themoduliof the N = 1
theory. To bem ore speci ¢, consider the TIA setup, w ith a D 2-brane instanton w rapped
on a 3-cycle calbrated w ith respect to €' ,where is the phase of the centralcharge
T he real part of the classical action of such instanton is given by Re (et )j . This
can be phrased in tem s of its classical action on the BPS locus,Re j ,which isa
holom orphic filnction of the m oduli, by using the calibration condition

In (€ )] = 0 ! T j = tan Re j (3.8)
so that
i . . . Re J
Re(e )j] = cos Re j sn Tm Jj = (39)
cos

3 Incidentally, one can also heuristically understand the derivative coupling u, or rather its in aginary
part, as ollows. The eld In u is related to the Integral of RR potentials over the w rapped cycle, so
T 7@ u comes from the coupling of ferm ionic elds to RR  eld strength in the D -brane ferm ionic

action (see eg. [34)).
4Abusing language, w e use the sam e notation for the BP S phase and for R eu, even though the are

the sam e only in the near BP S regin e of next section.



which is a non-holom orphic function of the m oduli, since  is real.

A second general feature of these nonBP S instantons is that they have at least four
exact ferm ion zero m odes, the goldstinos generated by acting on the instanton w ith
the four supercharges it breaks. H ence, In agreem ent w ith standard w isdom , such non—
BPS instantons generate D term s. Indeed, we can be m ore explicit in this respect, by
considering the structure of ferm ion zero m odes for a non-BP S instanton w ith a non—
zero, constant phase . The instanton is supersym m etric w ith respect to the N = 1
subalgebra of the underlying N = 2 de ned by the phase . The ferm ion zero m odes,
denoted Y and 7, are associated to the orthogonal supercharges. T his prin ed m odes
can be rew ritten in temm s of the unprin ed m odes of the reference N = 1 subalgebra
by perform ing a spinorial rotation of angle

0 = cos( =2) + sin( =2)

= cos( =2) + sh( =2) (3.10)

T his expression can be understood easily by noticing that the preserved godstinos for
a rotated brane are solutions of the equation [351]:

".=R ppR '"r; (311)

where p, isa product of -m atrices along the worldvolum e of the unrotated brane
and R is the rotation m atrix relating the rotated system to the unrotated one. This
equation In plies that the susys presarved by the rotated Instanton are sin ply a rotation
of the solutions for the aligned instanton, as in (3.10).

Tn the com putation of the instanton am plitude, the ferm ion zero m ode integration
measure d° °d* 7Y can be expressed in tem s of variables natural in the 4d N = 1
supersym m etry of the com pacti cation, by using® d> %= sin?( =2)& (and sin ilarly
d? Y= cog( =2)d¢ ). Thus for non—zero BPS phase, the instanton generate tem s
which can be written as integrals over all of superspace &> & (:::), =0 the non-BPS
instanton generatesa D —tem .

However, regarding the instanton induced 4d operator as a global function over
m oduli space, the above change of variables signals a pathology at the BPS locus,
where = 0.Thegodstino™ has zero com ponent a]ong_ , and therefore the Instanton

5An analogue for bosonic variables is to consider a 2-plane param eterized by x;y, and introduce a
system rotated by an angle =2,namely x°= cos( =2)x + sin( =2)y,y°= sih( =2)x + cos( =2)y.
An integralalong the x” axis (hence y°= 0 and so y = tan( =2)x) can be traded to an integralovery
usihg dx’= dy=sin( =2).



e ect cannot be written as a D-+tem on this locus. In the lnguage of section 2,
the D tem produced by the instanton is in a non-trivial class of the Beasley-W itten
cohom ology, w ith the cohom ological obstruction localized on the BP S locus, w here the
contribution m ust be w ritten as a genuine F-tem .

T his observation, to be developed in the next paragraph, underlies the continuity of
the non-perturbative contrbbution across the BPS line. T he generation of the D ~term
away from the BPS locus, as dictated by physics of non-supersym m etric instantons,
does not contradict the generation of an F-term at the BPS locus, as dictated by
physics of supersym m etric nstantons.

34 Thenear BPS regim e

In order to show that the D term generated by the non-BP S instanton reduces to the
required F-temm at the BPS locus, we consider the Instanton slightly away from the
BPS locus. Treating the am plitude in an expansion in , the O () piece reduces to
the genuine Fterm of the BP S locus. H igher order contributions should correspond to
globally de ned D —tem s.

Considerm oving slightly away from the BP S locusby m oving in closed stringm oduli
Space In thedirection . From the viewpoint of the instanton, this corresponds, in  rst
approxim ation, to tuming on a world-volum e Fayet-TIliopoulos term . T hus at leading
order the interesting couplings on the instanton world-volum e theory are

D ; (3.12)

These can be understood by analogy with the tem s obtained from coupling a eld-
dependent FIterm in 4d Rd4 ( + )V.The rsttem ,once the auxilary ed D is
integrated out gives rise to an O ( ?) tem , corresponding to the quadratic term in the
expansion of the nonBP S instanton classical action Re j =cos . W edrop it in our
O ( Y) com putation. Notice also that the ferm ion zeromodes °, 7, reduce to  ,  at
this order.

T he full instanton action, com pleting the -dependence on the second term in (3.12)

(ie. prom oting — to the 4d supem ultiplet ) is

Smst = T + D (3.13)

thus reproducing the contribution on the BP S locus, w hich arisesasa m anifest F<tem .
Z Z

d*xd®? &~ e P ) = g*'xd® "D D (3.14)

10



If preferred, In the above analysis we could have kept the Integration over instead of
~ ,In order tom ake the connection w ith the situation faraway from the BPS locus. T he
result is the sam e, sin ply noticing the cancellations between -dependent factors (to
the corresponding order) between the farm ion zero m ode m easure, and the insertions
required to saturate .

In conclusion, the com plete instanton am plitude reduces to the above F<termm on the
BPS locus. Thus, the com plete instanton am plitude and the F—-+em on the BPS locus
correspond to F—term s in the sam e Beaslkey-W itten cohom ology class. T his In plies that
the higherordertemm sin  correspond to pure D -termm s, which are globally de ned over
m oduli gpace, and that the genuine F-+tem contribution of the instanton is given by

the above expression.

3.5 The global picture

Let us recap and re ne the global picture. T he instanton generates an F-termm contri-
bution in a cohom ologically non—trivial class of the Beasley-W itten cohom ology. T his
F-tem istrivialaway from the BPS locus and can be expressed as an integral over all
superspace In agreem ent w ith the standard wisdom that non-BPS instantons gener—
ate non-perturbative D termm s. T he instanton am plitude on the BP S locus is given by
(3.7),and de nes a genuine F-tem , In agreem ent w ith the standard wisdom for BPS
nstantons.

Letuscomm ent on a possible source of confiision, regarding the holom orphy of the
instanton induced F-tem as a function of m oduli, In particular of m oduli which take
the instantons away from their BPS locus. C learly the com plete instanton am plitude
does not depend holom orphically on the 4d m oduli, in particular on the m oduliw hich
take the instantons away from their BPS locus. O n the otherhand, the BP S am plitude
(3.7) does have a nice holom orphic structure, but, extending it trivially to the com plete
m oduli space, is not the com plete expression for the instanton am plitude away from
the BPS locus. The crucial point is that both expressions are two representatives of
the sam e cohom ology class, and thus di er by a globally de ned D -temm . T herefore,
all the non-holom orphies in the com plete instanton am plitude can be assigned to the
part that corresponds to a globally de ned D -termm . T he genuine F+tem is therefore
holom orphic In allm oduli, and in particular (3.7) provides a particular representative
which m akes this property m anifest. It is in this sense that holom orphy of the non-
perturbative F+term from the instanton is preserved across the line of BP S stability.
A Ithough we phrased the discussion in term s of our particularly sin ple exam ple, the
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argum ent applies in full generality to any other situations, including instantons that
solit at lines of m arginal stability, as we argue in the next section.

3.6 Application to lines of m arginal stability

In order to show thatthe lesson leamed In the previous section appliesalso to instantons
that split at lines of m arginal stability, we discuss the sim plest situation of this kind.
U sing a type TTIA language, consider a system oftwo rigid U (1) instantons, w rapped on
two cycles A, A,, with one chiral Intersection, and away from the orientifold planes
so0 that they do not intersect the ordentifold in age of the system .

Such systam s are easy to engineer in toroidal ordentifold exam ples. A 1so, although
the geom etries in appendix A realize naturally only non-chiral intersections, it is
straightforward to construct exam ples w ith such chiral intersections in closely related
geom etries. Consider a com plex plane z over which we ber a C degenerating at
points labeled z = a;, tines an elliptic ber, with (p;;q;) 1-cycles degenerating at
points labeled z = by. Our systam of interest can be realized by considering a geom e-
try w ith one a-type degeneration and two btype degenerations, with (o ;)= (1;0),
(E2;) = (0;1). Thetwo relevant 3<yclesC 4, C, are obtained by considering segm ents
on the zplane pining [a;b ], and [a;b, ], respectively, and over which we ber the circle
in C ber and the 1<cycles (1;0) and (0;1) on the elliptic ber, respectively. The
3—<ycles have Intersection numbers [C;] [B]= 1. By locating the degenerations in
suitable Jocations on the z-plane the system s can be taken to be BP S, or m isaligned
by an arbitrary am ount. It is also straightforward to add orientifold planes and other
required ingredients. Incidentally, the above double brations have appeared as the
m frrors of system s of D boranes at singularities, see eg. [36, 37]. In this language, the
above realization of our system can be regarded as considering two fractional branes
on the com plex cone over dP; . In any event, we can proceed w ith our discussion in filll
generality, independently of the details of speci ¢ realizations.

T he zero m ode content of the Instanton system isgiven by the two universalsets x; ,

., i, ori= 1;2,and bosonic and femm lonic zero m odes at the instanton intersection
m, ,andm, ,with charges (+1; 1)and ( 1;+1)under thetwo U (1)’s.

T he system hasa line ofm arginal stability, w hich is controlled by a realparam eter.

For sin péjc'w we may keep the 3—<cycle A, al"glged, then the relevant real param eter

is = 5 Imn , with an additional tem 5o I if we Include the orientifold
1
inage system £ The line of m arginal stability is located at = 0. W e focus on its
6In m ore nvolved situations w ith two param eters 1, »,the sam e role isplayed by = 1 5.
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neighbourhood, nam ely small , where its e ect can be described as a world-volum e
FItem for U (1);. The discussion of the world-=volum e action in this regin e can be
carried out sin ilar to [28]. W e have the couplings

Somse = F1 XTI T+ ik x,) + (1 W+ (1 T2)m (315)
In addition, there are couplings nvolring elds in the FIm ultiolet
Vp = (mm Y ; S, = "D (3.16)

Consider the system for > 0 which corresponds to the BPS side. Heuristically,
the bosons m ;m acquire a vev to m Inin ize the scalar potential Vp . T he instantons
recom bine into a single rigid BPS U (1) Instanton. T he vev accordingly also freezes the
two instantons at the sam e position x; = x, In space, and in the ferm jonic coordinates

1= 5, 1= »,,bymaking massive their di erence elds (along with , ). We

are left with a recom bined BP S instanton w ith a universal sector of translational zero

modes x; X,,and ferm ion zeromodes = 1+ ,, = 1+ ,. The latter pullout
two Insertions of , 0 that,denoting T = T ; + T, the instanton am plitude is
Z
d'xd? "D D (317)

as expected for the recom bined BPS rigid instanton (notice that can be regarded

as controlling the 3¢ycle dualto A = A1 + A,). In a m ore proper treatment, m ,m
are not frozen at their vevs, but rather one integrates over these bosonicm odes. The
above heuristic com putation, how ever, provides the saddle point approxin ation to the
instanton com putation.

At the BPS Iocus = 0,we have a system of two mutually BPS instantons, and
the am plitude (3.17) is reconstructed by a 2-instanton process involing both. In this
com putation, the above saddle point approxim ation is not vald (since it would x
m = 0 and all farm ion interactions would disappear), but the correct com putation
by integrating over bosonic zero m odes allow s to kesp the interactions and saturate
all ferm ion zero m odes jist as In the above discussion. Hence, one recovers the sam e
F—tem structure (3.17).

Finally, or < 0 it is not possbl to cancel the world-volim e D -term scalar
potential, and we have a system of two instantons with di erent BPS phases, thus
de ning an overall nonBPS system . The non—<ancellation of Vi, re ects the non-
holom orphic dependence of the total wrapped volum e on the m oduli. N evertheless,

the discussion of ferm ion zero m ode saturation is exactly as in the previous single
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instanton situation. W e are left with a non-BPS instanton, w ith ferm ion zero m odes
= 14+ ,+0( )and™ =14+ 5+ sin( =2)_ . The fact that™ picksup a com ponent
along ~ allows to write the instanton am plitude as a D +temm , as expected for a non-
BPS instanton, w ith no discontinuity at the BPS locus, since the non-BP S instanton
am plitude reproduces the F—+tem (3.17) from its O ( %) contribution.
A s announced, the m ain concepts Involred in the study of instantons at lines of
m arginal stability can be already obtained from sin pler system s with lines of BPS
stability w here Instantonsdo not split. W e therefore focus on the latter kind of system s
to continue discussing other new features, w ith the understanding that their discussion

In genuine lines of m arginal stability is possible, and very sin ilar.

4 TheNf=N.SQCD instanton from branes

In the above discussion, the zero modes — plyed a fundam ental role, In that they
allowed an interpolation between ferm ion zero m odes w ith the interpretation of gold-
stinos (away from the BPS locus) and extra ferm ion zero m odes m aking the non-
perturbative contrbution a higher F-term rather than a superpotential (at the BPS

locus). Tt would seem crucial that the — are unlifted, and that the argum ent does not
apply to instantons where these m odels are lifted by interactions. In this section we
argue that In fact the discussion continues to be valid in such cases. W e describe this
In an illustrative exam ple, the D orane realization of the N, = N SQCD instanton.
Since this exam ple provides a stringy’ realization of the wellstudied system in [31]
(m odulo the gauging of the center ofm ass U (1) In our case), our discussion is sketchy

and targeted to illustrating the physics of the modes — . In fact we carry out m ost
com putations In the case N¢ = N, = 1, where there is no classical eld theory inter—
pretation for the Instanton (it is stringy In the sense of [38]), since the latter is not

essential to our purpose.

4.1 The setup

Consider a D brane instanton w ith the interpretation of a gauge instanton in an N¢ =
N. SQCD theory. Nam ely, in the TTA setup we consider N. = N D 6-oranes w rapped
on an rigd 3<cycle A ,and N¢ = N D 6-branes wrapped on a (possibly non-com pact)
3<yclke A .., with a non-chiral intersection with A . The instanton of interest is a

"For a recent detailed study of the instanton n N¢ = N, SQCD i a string theory realization, see
[26].
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a) b)

N D6 N D6 N D6

Figure 2: D ‘brane realization of the N¢ = N, SQCD theory in a geom etry of the kind in
Appendix A . T he construction show s that instanton on its BPS locus (a) and away from it

(b). Notice that gauge D branes recom bine and rem ain BP S through the process.

D 2-brane wrapped on A . T he sstup is easy to engineer using the geom etries described
In Appendix A, by wrapping sets of N D 6-branes on a com pact and a non-com pact
3<cycles as shown in Figure 28 A s in previous exam pls, there is a real param eter,
given by the size of the 3<ycle B dual to A , which controls the m isalignm ent of the
Instanton, see F igure 2b. N ote that the m isalignm ent of the instanton does not Im ply
a m isalignm ent of the gauge D branes, since the latter can recom bine and rem ain
BPS throughout m oduli space. T his recom bination is im portant, as we w ill recall in

Section 4 3.

42 AttheBPS locus
The Beasley-W itten higher Fterm for N.= N¢=1

Let us sketch the ferm ion zero m ode structure and their saturation In the BPS case. In
addition to the four universal ferm ion zerom odes , , there are bosonic and ferm ionic
zero m odes charged under the instanton world-volume U (1). W e have ferm ion zero
m odes ,_ from the instanton to the color 4d space lling D branes, and ,” from
the instanton to the avor D fbranes. In addition we have bosonic zero m odes from
the Instanton to the color D branes. O ur description of the bosonic zero m odes w ill be
sketchy, and we sin ply Introduce the relevant ones for ferm ion m ode saturation which

wedenote by m ,m . T he charges of these elds under the di erent groups are

8In this case the gauge D -branes su cetode neapreferred N = 1 supersym m etry, so the presence
of the ordentifold plane is not necessary. If desired for any other reason, an orientifold plane could be
added away from the D -brane systam , along w ith the corresponding ordentifold in ages.
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w here we have also Included the 4d quark chiralmultipletsQ = g+ Q= g+
Using results in the literature eg. [14], we have the follow Ing ferm ionic couplings,
which we already write In term s of 4d m ultiplets

“ m+- M QO~+ Q~+WM~DQ +m~IY (4.1)
Let us focus already on thecase N¢ = N.= 1. W e can saturate all the fem ionic zero
m odes only by pulling down the st two and the last two interactions in (4.1). W e
obtain the analog of the Beasley-W itten result forourN: = N.= 1 case

71$DoDQ (42)

C arrying out the bosonic zero m ode integral, which introduces a holom orphic function
of them oduli and which we skip for sin plicity, the BPS instanton am plitude has the
F-tem structure 7

& e"DODQ (43)

C oupling to the closed string sector

A nother in portant coupling for our considerations involring all of m oduli space is the
coupling of the ~ zero m odes com ing from the supersym m etrization of the instanton
volum e:

Svo1l= t+ t+ D (44)

W e can use the last coupling In order to saturate som e or all of the ™ zero m odes.
This gives rise to additional termm s in the low energy e ective action com pared to
the Beasky-W itten expression (4.3), which comes just from the open string sector
couplings. For exam ple:

C m)TD )(Q~)@~DQ) ! H300 DO) (4.5)
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Saturating the ferm ion zero m odes in all possible ways, sin ilar to the one above, and
skipping the discussion ofbosonicm odes, we obtain a 4d instanton am plitude w ith the
structure
Z
S = d'xd& &' DoDO+ 0DOD  ODOD O0OD D (46)
Them eaning of the m inus signs, and the F-+tem structure of this contribution w ill be
clari ed iIn next section. This induced operator has an interesting form , in particular
it couples the open and closad string sectors in a nontrivial way. T his structure can
be clari ed by deform ing the con guration slightly away from the BPS regine,aswe

consider now .

43 ThenearBPS regin e

To address the behaviour of the system around the line of BPS stability, and also to
understand better the m eaning of expression (4.6), ket us consider the con guration
slightly away from the BPS locus of the instanton. In this regin e, the m isalignm ent

can be described by the introduction of a F I tem = + ,both in the instanton
and in the 4d gauge theory. In the latter, we can describe it as
Z
Spr =  d'xd* ( + )V (4.7)

where we ignore a possible constant coe cient. A s already m entioned, in the 4d gauge
theory the resulting D term can be canceled by either Q or Q" acquiring a vev in order
to m ake the abelian D term potential vanish

v, = DF PF+ o+ 0 =0 (4 .8)

Com ing back to the stringy picture, the vev for (say) O tells us to recom bine the two
slightly m isaligned branes, and we end up in the con guration depicted in F igure 2b.
T he above discussion show s that from the string point of view , the m oduli space
m ixes the open and closad string sectors. O ne should therefore nd adapted coordi-
nates which param eterize it appropriately. A s is fam iliar, the m oduli space of D — at
directions, m odulo gauge transform ations, can be param eterized using a set ofgauge in—
variant operators. An In portant point in their construction is that the eld-dependent
FItem (4.7)actually arises from am odi ed K ahlerpotential for involving the vector
multiplet V , of the form (assum ing canonical K ahler potential for sim plicity) [39]
Z
d'xd* ( +  v)? (49)
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H ence there isa non—trivialgauge transform ation of by a shift of the gauge param eter.

Nam ek, undervV ! V + +

0! &0 ; o' et o ; ! (4.10)

B=0Qe ; B=20e (4.11)

T hese operators play the role of the baryons of the e ective \SU (1)" theory below the
scale of the U (1) m ass, generated by the B * F coupling in (4.7). Notice for instance
that BB = QQ M isclassically related to the m esonic operator.

Hence, the discussion of the 4d instanton am plitudes is m ost naturally carried
out in tem s of these variables. O f utm ost in portance for us is that the structure

of operators insertions in (4.6) corresponds to the expansion of D B D B'. Thus, the

F-tem contribution of the instanton at the BP S locus is given by
Z
Su = d'xd* e DBDE (412)

T his contribution is recovered as the O ( %) temn of the instanton am plitude in the
nearBPS regin e, show ing that the full instanton am plitude is In a non-trivial class of
the Beaskey-W itten cohom ology. A s In the exam ple In Section 3, higher order tem s
sin ply corresoond to globally de ned D -term s, and this can be traced to the fact that
the left over zerom ode picksup a com ponentalong ™ ,which itselfpicksup a com ponent
along .

A swe have argued, sw itching on a FI forcesus to give a vev to Q or Q. From the
point of view of the induced 4d operator, sw itching on a F I corresponds to interpolating
from a situation where the rst term n (4.6) dom inates (the Beasley-W itten gauge
theory analysis) to a situation w ith a desply nonBP S instanton where the last term
dom inates. W e study this regin e of very non-BP S nstantons a bit m ore in the next
section.

Vevs along the m esonic branch

Before m oving on to the nonBP S regim e, let us shortly consider another interesting
direction in m oduli space, nam ely that in which we do not tum on a vev for , and
m ove Instead along the direction in which Q and @ get the sam e vev (ie. them esonic
branch in gauge theory language). In this situation the branes recom bine and m ove
together along the plane of the black degeneration, away from the instanton.
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In this situation, the Instanton and the branes get separated without m isaligning
the system , and the ~ m odes on the instanton no longer get lifted. T his is perfectly
com patible with all of our discussion so far. The setup is sin ilar to the one In Sec—
tion 3.2, with the recom bined brane playing the role of the orientifold selecting the
preferred N = 1 subalgebra. From the sam e considerations we expect the instanton to
generate a D D tem ,which is exactly the term that dom inates in (4.6) when both
Q and Q get a vev.

44 Thedeep nonBPS regim e

Let us now describe how the above structure of couplings reproduces the expected
physics In the deep nonBPS regin e, nam ely for large . Here it is im portant that
m otion away from the BPS locus of the instanton forces the recom bination of the 4d
space lling D Joranes, nam ely the scalar com ponents in either Q or Q°, depending on
the sign of , acquire a large vev, thersby rem oving a subset of the instanton zero
m odes. Consider eg. the regin e where Q" acquires a large vev, and the modes , ~
are ram oved (see eg. (4.)). So are the bosonicm odesm ,m due to the m isalignm ent
of the instanton and the 4d D Jranes. W e are thus left with a U (1) Instanton, w ith
0

the universal sector of zero m odes

mu]tjp]et§ in the \ad pint" of the recom bined U (1), denoted In what follows. In

, % and zeromodes , ~ coupling to the 4d chiral

the nonBPS regin e, ie. fornon—zero BPS phase , the universal set can be traded for

, toyield an Instanton am plitude roughly of the form
Z
d*xd®> & &7’ + hw: (413)

Here T is the expression of the wrapped volum e as a (non-holom orphic) function
of the m oduli. For instance, In the lin it where the instanton looks vertical in the
picture of Figure 2, the instanton has tension but no (relevant) charge (in a theory
w ith orientifold, the orientifod in age would cancel its charge exactly),and T°= +
where controls the vertical position of the white degeneration.

T he above is precisely the farm ion zero m ode content and am plitude expected for a
non-BPS U (1) instanton wrapped on a cycle w ith a chiral intersection w ith the 4d D -
branes. Tt alsom atches (4.6) In the Iim it where we discard the last two term s since they
are subleading when the instanton is very nonBPS. In particular, saturating the RS
w ith the antichiral pieces in T Y, one can generate am plitudes w ith two insertions of the
4d ferm ions™ ntheD m ultiplet, show Ing the expected behaviour fora (non-isolated)
U (1) instanton.
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Tn conclusion, the instanton am plitude satis es the overall global picture discussed
In Section 3, degpite the fact that the crucialm odes ™ have non-trivial interactions.
W e expect a sin ilar discussion in other exam ples w ith interacting ~ ’s.

5 Lifting of ferm ion zero m odes and 4d supersym —
m etry breaking

In this section we analyze the follow Ing possibility. Tt is in principle possible to consider
D brane Instantons w hich contribute to the superpotential, and w hich nevertheless can
m isalign. Thiswould seem to contradict our general statem ents, based on the counting
of godstinos. However, there is a way out, which autom atically com es out in a clever
way In the explicit exam ples below . The m odulus that takes the instanton away from
the BP S Jocus sim ultaneously triggers breaking of 4d spacetin e supersym m etry. T hus,
the Instanton actually does not break any exact supersym m etry of the background, and
is not forced to have four godstinos. In certain situations it still has two approxim ate
ferm ion zero m odes (which are not true godstinos), and the instanton generates 4d
operators which, In the near supersym m etric regin e, can be thought of as an approx—
In ate superpotential in the approxin ately supersym m etric theory, w ith susy breaking
broken by a spacetin e D -term .
W e discuss two exam ples. The rst corresponds to a D brane realization of N ¢ =

N. 1SQCD ,where the instanton generates a superpotential. M otion away from the
BPS locus of the D brane instanton is param eterized by a closed string m odulus, which
sin ultaneously induces a 4d spacetin e D term potential which cannot be com pletely
canceled and thus breaks 4d supersymm etry. The second exam ple corresoonds to
a U (1) D—=nstanton with the additional ferm ion zero m odes lifted by closed string

uxes. Again,we nd that them odulus taking the Instanton away from the BPS locus
sin ultaneously m akes the closed string uxes non-supersym m etric.

5.1 G auge theories w ith non-perturbative superpotential

Letusconsidera D brane construction, sim ilar to that of previous section, oftheU (N .)
SQCD withN¢ = N, 1 avours,seeFigure 3a. In this case, the D brane instanton on
the BP S locus generates the expected eld theory A eck-D he-Seberg superpotential
(see eg. [14]fora detailed com putation in the string setup). Let us consider the e ect
ofm isaligning the instanton.
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a) b)

N D6 N-1 D6 N-1 D6

Figure 3: D brane realization of theN¢ = N, 1 SQCD theory In a geom etry of the kind In
Appendix A . T he construction show s that instanton on its BPS locus (a) and away from it
(b). The gauge D boranes cannot all recom bine and de ne a non-supersym m etric background

for the Instanton.

In the regin e of an allm isalignm ent, one can use the gauge theory view point, w here
it is described as tuming on a FIterm . Being a D -term , this should not change the 4d
superpotential. Thus it suggests that a non-BP S instanton induces a superpotential,
seem Ingly in contradiction w ith our general picture, and w ith the counting of ferm ion
zero m odes from goldstinos. There is however no contradiction, as is m anifest using
the brane picture. In m isaligning the instanton by m oving the w hite degeneration up,
as In Figure 3b, the gauge D boranes cannot all recom bine and one of the color brane
m isaligns (this is visble in the eld theory description as an uncancelled 4d D <em ).
Thus away from the Instanton BPS locus, there is really no supersymm etry in the
background, and therefore no need for the instanton to have four godstinos. Indeed,
them odes " are lifted by couplings w ith the bosonic zero m odes betw een the instanton
and them isaligned color D brane. T he instanton hasonly two (accidental) zero m odes,
the Y and in the near BPS regin e it induces operators which can be described in the

eld theory approxin ation asa superpotential (in a theory w ith D ‘term supersym m etry
breaking).

T he global description of this kind of exam ple is very di erent from the previous
system s, since In thedesp nonBP S regin e the background is very non-supersym m etric.
W e refrain from any further discussion.

A nother com plam entary approach to understand the Ny = N, 1 SQCD systam

would be to start with theN¢ = N, con guration,and add a m ass term for one of the

avors. Thiswas done by Beasley and W itten directly In  eld theory, the result being

that the N¢ = N, instanton is deform ed so that the 4d operator it leads to has two
less ferm ion Insertions. Tn sketchy termm s, we have (at the BP S locus)

Z Z Z
& e"poDQo + & MQQ ! d* e (5.1)
This is in agreem ent w ith the fact that the IR of the N¢ = N . theory with the m ass
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term should reduce to theN¢ = N. 1 theory. On a sim ilar line, we expect that when
we tum on an FIdeform ation, there w ill be supersym m etry breaking in the N¢ = N,
theory with massive avor. This is easy to see In  eld theory, and also in the brane

realization of the theory.

5.2 Closed string uxes

A wellknown m echanisn to lift zero m odes is to consider D -brane instantons in the
presence of N = 1 closed string background uxes [40,41,33]. A sthe uxesbreak the
CalabiYau N = 2 supersymm etry down to N = 1 on top of Instanton worldvolum e,
there is a priorino reason for the additional zero m odes  of Section 3 to be present.
Hence one would expect that, in the presence of uxes, one can obtain U (1) instan-
tons that contribute to the non-perturbative superpotential. Since in principle such
instantons can m isalign, this would lead to contradiction with general argum ents of
counting of goldstinos. In the follow ing we would lke to argue, using the view point of
the world-=volum e ferm ionic action, that this is not the case.
T he D irac action for the ferm ionic m odes on a D p=instanton reads [34]

1
pP°°D ;= P PP M™ D, 5o (52)

where are the ferm ionic superem bedding variables,P PP isthe -symm etry profctor,
which for an instanton with BPS phase  selects the zero m odes of the form (3.10),
and D, and O are the operators appearing in the gravitino and dilatino variations,
pulkbacked to the D <instanton wordvolim e. Finally,M ™" isam atrix which depends
on the instanton worldvolime ux F ,and which forF = 0 reducesto g™ ".

From (5.2) one can see that a Instanton ferm ionic zero m ode needs to satisfy two
requirem ents. First, In order to be a true ferm ion m ode (rather than a -symm etry
param eter) it m ust not be profcted out by PP P; and, second, it m ust be annihilated
by the operator D . Let us see how these requirem ents apply for the U (1) instanton of
Section 3, which we will again assum e to be rigid and isolated. Hence, the space of
zero m ode candidates is contained in Table 1. It is In portant that, since the instanton
isnotm apped to itself under the orientifold, one can use (5.2) on the covering space.

If our background is C alabi¥Y au, it is clear that any linear com bination of the zero
m odes In table 1 isannihilated by D , for they are all individually annihilated by D ,, and
O . Hence, the rotated m odes (3.10) selected by PP P are autom atically zero m odes,
whether we are In the BPS locus ( = Oor ) or away from it, and we recover the

wellknown result that such U (1) instanton has four zero m odes.
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Ifwe now tum on background uxes the operatorsD , and O get deform ed, and it
isno Ionger true thatD, =D, =0 =0 = 0.However,we can use the fact that
for 6 0, the instanton isnon-BPS and thus has four zero m odes, w hich are the four
goldstinos of the broken N = 1 supersymm etry,namely D = 0Oand D °= 0, to yied

0=D""= cos( =2)D” + sh( =2)D = cos( =2)D = 0; (53)

and sin ilarly for °. Here we have used that is constant and thatD, = O = 0,for
thism ode com es from the background K illing spinor.

W e thus nd that, anywhere close to the BPS locus = 0,  isanniilated by D .
By continuity of the specttum of such di erential operator, we conclide that £ must
also be so for = 0. Thus, it is not possible to tum on this kind of closed string
backgrounds to lift the additional ferm ion zero m odes ™ .

N otice that the argum ent above does not apply if the instanton cannot m isalign
via a & 0. This ncludes the case of instantons invariant under som e ordentifold
action, of gauge group either O (1) orU Sp(2), that were considered in [41]to nd new
contributions to the superpotential’

N otice that there is a further way out of the argum ent, involving breaking of 4d
supersymm etry in a way sin ilar to section 5.1. Therem ay exist ux background which
lift the additional ferm ion zero m odes, and allow the instanton to contribute to the
superpotential, if the ux background is non-supersym m etric for non—zero . Indeed,
In that case taking 6 0 would not only m ean that the Instanton is non-BPS, but
also that the closad string background isN = 0. In that case (5.3) need not be true
because, away from = 0, Dn_ =0 = 0no Jonger holds. In addition, we cannot
clain that there isam ninum of four ferm ion zero m odes com ing from goldstinos, for
there are no buk supersym m etries to be broken.

To our know ledge, lifting of ferm ion zero m odes by the latter kind of uxes hasnot
been m uch considered in the literature. A sa sketchy exam ple, along the lines of section
53 0of [33],wem ay consider a toroidal orientifold com pacti cation'® with J = F dz;dz;
and a supersym m etric prin itive (2;1) 3fom  ux G 1,5 . Consider a D 3-brane instanton
wrapped on z;;7, and m agnetized w ith a word-volum e prim itive ux Fi,, so that it
isBPS.Asargued In [33]this ux could ram ove the additional ferm jon zero m odes in
the universal sector~ . Thiswould seem to contradict our general argum ents, since the

°In addition, as pointed out in [41], .n this case the ferm ionic action (5.2) is not valid, and needs

to be further pro fcted by the orientifold action.
For sin plicity we ignore tadpole cancellation, or include suitable antibranes away from the system

of Interest so that they do not m odify the argum ent.
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BPS phase of the D 3-brane can bem isaligned by tuming on a com ponent of the K ahler
form along dz; dz, + dz; dz,, so that the worldvolum e ux is no longer prim itive and
the instanton becom es non-BP S. H owever, this sin ultaneously m akes the 3-fom  ux
non-prim itive, and thus breaks spacetim e supersym m etry.
Forthem ost studied setup oftype IR w ith 3-form  uxeson warped genune Calabi-
Yau geom etries [42, 43], the 3-form ux prin itivity condition is autom atic and the
uxes do not a ect the (K ahler) m oduli controlling the FI param eter . Hence, by
our discussion above, they w ill never succeed in lifting the zero m odes — unless they
break supersymm etry at the sam e tim e. T his was partially observed for TIB D 3-brane
Instantons in 3-form  ux backgrounds in [33], but should hold In filll generality. N ote
that the above analysis provides a new , desper understanding of the negative results
n [40,41, 33].

53 E ectsofadditional instantons

A further possibility is to consider the lifting or absorption of additional ferm ion zero
m odes of an instanton by another. Refraining from a general analysis, let us brie y
sketch an exam ple of the interplay between lifting of additional zero m odes and BP S
m isalignm ent of U (1) Instanton.

In [28]a mechanisn to saturate the extra ferm ion zero m odes of a U (1) instanton
was presented. Nam ely, a U (1) instanton in the presence of an additionalO (1) instan-—
ton can produce a two-instanton e ect which contributes to the superpotential. In a
precise sense, the O (1) instanton produces a non-perturbative lifting of the additional
zerom odes of the U (1) instanton. Thiswould seem to contradict our general argum ent
above, since there is a param eter which can m isalign the U (1) instanton and m ake it
nonBPS. The resolution of the puzzle is that the m isalignm ent is realized when only
the U (1) Instanton is present; in the presence of the O (1) instanton, nam ely precisely
when the additional zero m odes are lifted, the sam e param eter actually tums the two-
nstanton system into a BPS one-instanton system . Nam ely, there is line of m arginal
stability for the U (1) instanton (with four ferm ion zero m odes), which is just a line
of threshold stability for the U (1)-0O (1) two—-instanton system (with two fermm ion zero
m odes). Thus no contradiction w ith our general picture is found.

T his provides an am using exam ple of a behaviour com plem entary to the previous
system s. In this case, them echanisn that provides the lifting of extra zero m odes does
not break the 4d supersym m etry, but rather restores the BP S property for the new
m ultisinstanton system .
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Tt is easy to device other systam s of several instantons and show that such system s
m anage in clever ways to always com ply as expected w ith the general rules of counting
of godstinos. O ther exam ples follow Ing a sin ilar pattem have appeared in [25].

6 Conclusions

In this paperwe have com pleted the picture of instanton am plitudes as they cross lines
of BP S stability ofdi erent kinds. BP S instantons contributing to the superpotential
have atw orst lines of threshold stability, w here they split intom utually BP S instantons,
which reconstruct the non-perturbative superpotential. BP S instantons contributing
to higher F+tem s can also have lines of m arginal stability, beyond which they tum
nto (possibly multi-instanton) non-BPS system s, which reproduce the sam e F-tem
(rew ritten locally as a D -temm ), m odulo globally de ned D <em s.

T he picture is consistent, in a non-trivial way, w ith standard wisdom of instan-
ton ferm ion zero m ode counting, and with holom orphy of 4d N = 1 Ftems. An
In portant lesson in this story has been the role of the Beasley-W itten cohom ological
structure of higher F—+em s. A lthough the structure of this cohom ology is unfam i
iar and quantitative statem ents are hard to m ake explicit, the instanton zero m ode
structure autom atically reproduces the appropriate features. Tt would be interesting
to develop a form alization of these results, beyond the exam ples we have provided.

It would also be Interesting to continue understanding the behaviour of instanton
am plitudes globally in m oduligpace. In N = 2 language we have focused on hyperm ul-
tiplet m oduli space (com plex structure m oduli space for TIA , K ahler for TIB ). Tt would
be interesting to also explore further the dependence on vector m ultiplet m oduli space
(K ahler for TTA , com plex for IIB ), w hich essentially control the 1-loop prefactors of the
exponential term in the instanton am plitude. These m oduli are naturally related to
F—+em s on the world-=volum e of the instanton, and therefore the holom orphic depen—
dence on the m oduli is quite straightforward. Still one m ay expect interesting lessons
also from a deegper look into this dependence, and we hope that som e of the concepts
we discussed In this work w ill be useful in this new setup.

For Instance, it is easy to consider system s of BP S system s which can becom e non—
BPS due to an uncancelled world-volum e F—erm . Possibly the sim plest system of this
kind is given by a D 1Jbrane Instanton wrapped on the non-trivial two-<cycle of a two—
center hyperkahler ALE geom etry. There is a triplet of blow -up param eters, which,
w ith respect to som e prefarred 4d N = 1 supersym m etry, couple to the instanton asa
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realword-volim e F I term , and a holom orphic world-volum e F-termm (a superpotential
linear In a com plex bosonic zero m ode). A s In our exam ples of D termm m isalignm ent
In this paper, the F-term m isaligned instanton has four godstinos and generates a 4d
non-perturbative operator, which is writable as a D term locally in m oduli space and
which reduces to a 4d non-perturbative higher Fterm as onem oves the BPS locus. In
this case, the picture of F-term m isalignm ent is ddentical to D term m isalignm ent since
the underlying hyperkahler geom etry in plies a tri-holom orphic sym m etry relating the
di erent com ponents in the triplet of blow Ing-up param eters. W e nevertheless expect
a sim ilar behaviour for F+term m isalignm ent in m ore generic situations, since the basic
facts relate to general properties of counting of goldstinos and properties of higher
F'—term s.

W e expect interesting forthcom ing fundam ental results and interesting applications
from continuing the analysis of instanton am plitudes globally in m oduli space.
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A  Som e useful geom etries

Here we descrilbe a set of geom etrdes, Introduced in [44] and already used in 28] In
a sin ilar context, and which we use In several of our explicit exam ples. They are
non-com pact geom etries, but they su ce to provide instanton e ects and transitions
as long as they involve just the local structure of com pact cycles.

Consider the class of local C alabiY au m anifolds, describbed by

N
Xy = (z  a)
k=1
,f 0
x%0 = z B) @ 1)
k%=1

Ttdescribestwo C  brations, param eterized by x ;v and x°;v°, varying over the com plex
plane z, and degenerating at the locations a;, by respectively. The local geom etry
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contains Jagrangian 3-cycles obtained by bering thetwo S!’sin thetwo C  bers over
segm ents pining pairs of degeneration points on the base. Segm ents pining pairs of
a-type degenerations or pairs of btype degenerations lead to 3—cycles w ith topology
S? S!, while segm ents Ppining a- and btype degenerations lead to 3-cycles w ith
topology S°. W e denote [p; ;p, ] the 3<cycle associated to the pair of degeneration
pontspr, Pz .

Introducing the holom orphic 3-form

x x0

the 3-cycle [o; ;. ] is calbrated by the form € ,where is the angle of the segm ent
o1 ;P2 ] with the real axis in the zplane. Namely Im (€' )jp, p,1 = 0, where Jo, p, ]
denotes restriction to the 3—<cycle. Segm ents parallel in the zfplane de ne 3—<cycles
preserving a comm on supersymm etry. O ur con gurationswillbed N = 1 supersym —
m etric, w ith the preferred supersym m etry associated to segm ents parallel to the real
axisn z.

W e will consider stacks of 4d space 1ling D 6-branes and/or euclidean D 2-branes
w rapping the di erent 3—cycles, and describe the non-perturbative superpotentials aris-
Ing from these con gurations. T he open string m odes and their interactions are easy to
determ ine. For instance, each stack of N D 6-braneson a 3cycle leadstoa U (N ) gauge
group i a vectorm ultiplet of N = 1 supersymm etry or 3-cycles of S° topology, and of
N = 2 supersymm etry or 3cycles of S S! topology. The angle  introduced above
determ ines the precise supersym m etry preserved by the corresponding set of branes.
A 1so, two D 6-branes w rapping two 3-cycles involving one com m on degeneration point
lead to a vectorike pair of bifundam ental chiralm ultiplets, arising from open strings
in the intersection of 3-cycles (which is topologically S, com ing from theC thatdoes
not degenerate at the intersection).

A sdiscussed In [44] one can perform T -dualities along the two S! directions, and
m ap the con guration to a Hanany-W itten sstup of P N S-branes (along 012345) and
P YN S"branes (along 012389), w ith D 4-branes (along 01236) suspended am ong them ,
in a at space geom etry with a periodic coordinate x°. The gauge theory content
described above follow s from the standard rules in this setup (see [45]). This picture
also facilitates the com putation of the superpotential, w hose generaldiscussion we skip,

but which we present In our concrete exam ple below .
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